| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (C) 2007 Oracle. All rights reserved. |
| */ |
| |
| #include <linux/bio.h> |
| #include <linux/slab.h> |
| #include <linux/pagemap.h> |
| #include <linux/highmem.h> |
| #include <linux/sched/mm.h> |
| #include <crypto/hash.h> |
| #include "messages.h" |
| #include "misc.h" |
| #include "ctree.h" |
| #include "disk-io.h" |
| #include "transaction.h" |
| #include "bio.h" |
| #include "print-tree.h" |
| #include "compression.h" |
| #include "fs.h" |
| #include "accessors.h" |
| #include "file-item.h" |
| #include "super.h" |
| |
| #define __MAX_CSUM_ITEMS(r, size) ((unsigned long)(((BTRFS_LEAF_DATA_SIZE(r) - \ |
| sizeof(struct btrfs_item) * 2) / \ |
| size) - 1)) |
| |
| #define MAX_CSUM_ITEMS(r, size) (min_t(u32, __MAX_CSUM_ITEMS(r, size), \ |
| PAGE_SIZE)) |
| |
| /* |
| * Set inode's size according to filesystem options. |
| * |
| * @inode: inode we want to update the disk_i_size for |
| * @new_i_size: i_size we want to set to, 0 if we use i_size |
| * |
| * With NO_HOLES set this simply sets the disk_is_size to whatever i_size_read() |
| * returns as it is perfectly fine with a file that has holes without hole file |
| * extent items. |
| * |
| * However without NO_HOLES we need to only return the area that is contiguous |
| * from the 0 offset of the file. Otherwise we could end up adjust i_size up |
| * to an extent that has a gap in between. |
| * |
| * Finally new_i_size should only be set in the case of truncate where we're not |
| * ready to use i_size_read() as the limiter yet. |
| */ |
| void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size) |
| { |
| struct btrfs_fs_info *fs_info = inode->root->fs_info; |
| u64 start, end, i_size; |
| int ret; |
| |
| i_size = new_i_size ?: i_size_read(&inode->vfs_inode); |
| if (btrfs_fs_incompat(fs_info, NO_HOLES)) { |
| inode->disk_i_size = i_size; |
| return; |
| } |
| |
| spin_lock(&inode->lock); |
| ret = find_contiguous_extent_bit(&inode->file_extent_tree, 0, &start, |
| &end, EXTENT_DIRTY); |
| if (!ret && start == 0) |
| i_size = min(i_size, end + 1); |
| else |
| i_size = 0; |
| inode->disk_i_size = i_size; |
| spin_unlock(&inode->lock); |
| } |
| |
| /* |
| * Mark range within a file as having a new extent inserted. |
| * |
| * @inode: inode being modified |
| * @start: start file offset of the file extent we've inserted |
| * @len: logical length of the file extent item |
| * |
| * Call when we are inserting a new file extent where there was none before. |
| * Does not need to call this in the case where we're replacing an existing file |
| * extent, however if not sure it's fine to call this multiple times. |
| * |
| * The start and len must match the file extent item, so thus must be sectorsize |
| * aligned. |
| */ |
| int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start, |
| u64 len) |
| { |
| if (len == 0) |
| return 0; |
| |
| ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize)); |
| |
| if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES)) |
| return 0; |
| return set_extent_bits(&inode->file_extent_tree, start, start + len - 1, |
| EXTENT_DIRTY); |
| } |
| |
| /* |
| * Mark an inode range as not having a backing extent. |
| * |
| * @inode: inode being modified |
| * @start: start file offset of the file extent we've inserted |
| * @len: logical length of the file extent item |
| * |
| * Called when we drop a file extent, for example when we truncate. Doesn't |
| * need to be called for cases where we're replacing a file extent, like when |
| * we've COWed a file extent. |
| * |
| * The start and len must match the file extent item, so thus must be sectorsize |
| * aligned. |
| */ |
| int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start, |
| u64 len) |
| { |
| if (len == 0) |
| return 0; |
| |
| ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize) || |
| len == (u64)-1); |
| |
| if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES)) |
| return 0; |
| return clear_extent_bit(&inode->file_extent_tree, start, |
| start + len - 1, EXTENT_DIRTY, NULL); |
| } |
| |
| static size_t bytes_to_csum_size(const struct btrfs_fs_info *fs_info, u32 bytes) |
| { |
| ASSERT(IS_ALIGNED(bytes, fs_info->sectorsize)); |
| |
| return (bytes >> fs_info->sectorsize_bits) * fs_info->csum_size; |
| } |
| |
| static size_t csum_size_to_bytes(const struct btrfs_fs_info *fs_info, u32 csum_size) |
| { |
| ASSERT(IS_ALIGNED(csum_size, fs_info->csum_size)); |
| |
| return (csum_size / fs_info->csum_size) << fs_info->sectorsize_bits; |
| } |
| |
| static inline u32 max_ordered_sum_bytes(const struct btrfs_fs_info *fs_info) |
| { |
| u32 max_csum_size = round_down(PAGE_SIZE - sizeof(struct btrfs_ordered_sum), |
| fs_info->csum_size); |
| |
| return csum_size_to_bytes(fs_info, max_csum_size); |
| } |
| |
| /* |
| * Calculate the total size needed to allocate for an ordered sum structure |
| * spanning @bytes in the file. |
| */ |
| static int btrfs_ordered_sum_size(struct btrfs_fs_info *fs_info, unsigned long bytes) |
| { |
| return sizeof(struct btrfs_ordered_sum) + bytes_to_csum_size(fs_info, bytes); |
| } |
| |
| int btrfs_insert_hole_extent(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| u64 objectid, u64 pos, u64 num_bytes) |
| { |
| int ret = 0; |
| struct btrfs_file_extent_item *item; |
| struct btrfs_key file_key; |
| struct btrfs_path *path; |
| struct extent_buffer *leaf; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| file_key.objectid = objectid; |
| file_key.offset = pos; |
| file_key.type = BTRFS_EXTENT_DATA_KEY; |
| |
| ret = btrfs_insert_empty_item(trans, root, path, &file_key, |
| sizeof(*item)); |
| if (ret < 0) |
| goto out; |
| BUG_ON(ret); /* Can't happen */ |
| leaf = path->nodes[0]; |
| item = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_file_extent_item); |
| btrfs_set_file_extent_disk_bytenr(leaf, item, 0); |
| btrfs_set_file_extent_disk_num_bytes(leaf, item, 0); |
| btrfs_set_file_extent_offset(leaf, item, 0); |
| btrfs_set_file_extent_num_bytes(leaf, item, num_bytes); |
| btrfs_set_file_extent_ram_bytes(leaf, item, num_bytes); |
| btrfs_set_file_extent_generation(leaf, item, trans->transid); |
| btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG); |
| btrfs_set_file_extent_compression(leaf, item, 0); |
| btrfs_set_file_extent_encryption(leaf, item, 0); |
| btrfs_set_file_extent_other_encoding(leaf, item, 0); |
| |
| btrfs_mark_buffer_dirty(leaf); |
| out: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| static struct btrfs_csum_item * |
| btrfs_lookup_csum(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, |
| u64 bytenr, int cow) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| int ret; |
| struct btrfs_key file_key; |
| struct btrfs_key found_key; |
| struct btrfs_csum_item *item; |
| struct extent_buffer *leaf; |
| u64 csum_offset = 0; |
| const u32 csum_size = fs_info->csum_size; |
| int csums_in_item; |
| |
| file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; |
| file_key.offset = bytenr; |
| file_key.type = BTRFS_EXTENT_CSUM_KEY; |
| ret = btrfs_search_slot(trans, root, &file_key, path, 0, cow); |
| if (ret < 0) |
| goto fail; |
| leaf = path->nodes[0]; |
| if (ret > 0) { |
| ret = 1; |
| if (path->slots[0] == 0) |
| goto fail; |
| path->slots[0]--; |
| btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); |
| if (found_key.type != BTRFS_EXTENT_CSUM_KEY) |
| goto fail; |
| |
| csum_offset = (bytenr - found_key.offset) >> |
| fs_info->sectorsize_bits; |
| csums_in_item = btrfs_item_size(leaf, path->slots[0]); |
| csums_in_item /= csum_size; |
| |
| if (csum_offset == csums_in_item) { |
| ret = -EFBIG; |
| goto fail; |
| } else if (csum_offset > csums_in_item) { |
| goto fail; |
| } |
| } |
| item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item); |
| item = (struct btrfs_csum_item *)((unsigned char *)item + |
| csum_offset * csum_size); |
| return item; |
| fail: |
| if (ret > 0) |
| ret = -ENOENT; |
| return ERR_PTR(ret); |
| } |
| |
| int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, u64 objectid, |
| u64 offset, int mod) |
| { |
| struct btrfs_key file_key; |
| int ins_len = mod < 0 ? -1 : 0; |
| int cow = mod != 0; |
| |
| file_key.objectid = objectid; |
| file_key.offset = offset; |
| file_key.type = BTRFS_EXTENT_DATA_KEY; |
| |
| return btrfs_search_slot(trans, root, &file_key, path, ins_len, cow); |
| } |
| |
| /* |
| * Find checksums for logical bytenr range [disk_bytenr, disk_bytenr + len) and |
| * store the result to @dst. |
| * |
| * Return >0 for the number of sectors we found. |
| * Return 0 for the range [disk_bytenr, disk_bytenr + sectorsize) has no csum |
| * for it. Caller may want to try next sector until one range is hit. |
| * Return <0 for fatal error. |
| */ |
| static int search_csum_tree(struct btrfs_fs_info *fs_info, |
| struct btrfs_path *path, u64 disk_bytenr, |
| u64 len, u8 *dst) |
| { |
| struct btrfs_root *csum_root; |
| struct btrfs_csum_item *item = NULL; |
| struct btrfs_key key; |
| const u32 sectorsize = fs_info->sectorsize; |
| const u32 csum_size = fs_info->csum_size; |
| u32 itemsize; |
| int ret; |
| u64 csum_start; |
| u64 csum_len; |
| |
| ASSERT(IS_ALIGNED(disk_bytenr, sectorsize) && |
| IS_ALIGNED(len, sectorsize)); |
| |
| /* Check if the current csum item covers disk_bytenr */ |
| if (path->nodes[0]) { |
| item = btrfs_item_ptr(path->nodes[0], path->slots[0], |
| struct btrfs_csum_item); |
| btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); |
| itemsize = btrfs_item_size(path->nodes[0], path->slots[0]); |
| |
| csum_start = key.offset; |
| csum_len = (itemsize / csum_size) * sectorsize; |
| |
| if (in_range(disk_bytenr, csum_start, csum_len)) |
| goto found; |
| } |
| |
| /* Current item doesn't contain the desired range, search again */ |
| btrfs_release_path(path); |
| csum_root = btrfs_csum_root(fs_info, disk_bytenr); |
| item = btrfs_lookup_csum(NULL, csum_root, path, disk_bytenr, 0); |
| if (IS_ERR(item)) { |
| ret = PTR_ERR(item); |
| goto out; |
| } |
| btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); |
| itemsize = btrfs_item_size(path->nodes[0], path->slots[0]); |
| |
| csum_start = key.offset; |
| csum_len = (itemsize / csum_size) * sectorsize; |
| ASSERT(in_range(disk_bytenr, csum_start, csum_len)); |
| |
| found: |
| ret = (min(csum_start + csum_len, disk_bytenr + len) - |
| disk_bytenr) >> fs_info->sectorsize_bits; |
| read_extent_buffer(path->nodes[0], dst, (unsigned long)item, |
| ret * csum_size); |
| out: |
| if (ret == -ENOENT || ret == -EFBIG) |
| ret = 0; |
| return ret; |
| } |
| |
| /* |
| * Locate the file_offset of @cur_disk_bytenr of a @bio. |
| * |
| * Bio of btrfs represents read range of |
| * [bi_sector << 9, bi_sector << 9 + bi_size). |
| * Knowing this, we can iterate through each bvec to locate the page belong to |
| * @cur_disk_bytenr and get the file offset. |
| * |
| * @inode is used to determine if the bvec page really belongs to @inode. |
| * |
| * Return 0 if we can't find the file offset |
| * Return >0 if we find the file offset and restore it to @file_offset_ret |
| */ |
| static int search_file_offset_in_bio(struct bio *bio, struct inode *inode, |
| u64 disk_bytenr, u64 *file_offset_ret) |
| { |
| struct bvec_iter iter; |
| struct bio_vec bvec; |
| u64 cur = bio->bi_iter.bi_sector << SECTOR_SHIFT; |
| int ret = 0; |
| |
| bio_for_each_segment(bvec, bio, iter) { |
| struct page *page = bvec.bv_page; |
| |
| if (cur > disk_bytenr) |
| break; |
| if (cur + bvec.bv_len <= disk_bytenr) { |
| cur += bvec.bv_len; |
| continue; |
| } |
| ASSERT(in_range(disk_bytenr, cur, bvec.bv_len)); |
| if (page->mapping && page->mapping->host && |
| page->mapping->host == inode) { |
| ret = 1; |
| *file_offset_ret = page_offset(page) + bvec.bv_offset + |
| disk_bytenr - cur; |
| break; |
| } |
| } |
| return ret; |
| } |
| |
| /* |
| * Lookup the checksum for the read bio in csum tree. |
| * |
| * Return: BLK_STS_RESOURCE if allocating memory fails, BLK_STS_OK otherwise. |
| */ |
| blk_status_t btrfs_lookup_bio_sums(struct btrfs_bio *bbio) |
| { |
| struct btrfs_inode *inode = bbio->inode; |
| struct btrfs_fs_info *fs_info = inode->root->fs_info; |
| struct extent_io_tree *io_tree = &inode->io_tree; |
| struct bio *bio = &bbio->bio; |
| struct btrfs_path *path; |
| const u32 sectorsize = fs_info->sectorsize; |
| const u32 csum_size = fs_info->csum_size; |
| u32 orig_len = bio->bi_iter.bi_size; |
| u64 orig_disk_bytenr = bio->bi_iter.bi_sector << SECTOR_SHIFT; |
| u64 cur_disk_bytenr; |
| const unsigned int nblocks = orig_len >> fs_info->sectorsize_bits; |
| int count = 0; |
| blk_status_t ret = BLK_STS_OK; |
| |
| if ((inode->flags & BTRFS_INODE_NODATASUM) || |
| test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state)) |
| return BLK_STS_OK; |
| |
| /* |
| * This function is only called for read bio. |
| * |
| * This means two things: |
| * - All our csums should only be in csum tree |
| * No ordered extents csums, as ordered extents are only for write |
| * path. |
| * - No need to bother any other info from bvec |
| * Since we're looking up csums, the only important info is the |
| * disk_bytenr and the length, which can be extracted from bi_iter |
| * directly. |
| */ |
| ASSERT(bio_op(bio) == REQ_OP_READ); |
| path = btrfs_alloc_path(); |
| if (!path) |
| return BLK_STS_RESOURCE; |
| |
| if (nblocks * csum_size > BTRFS_BIO_INLINE_CSUM_SIZE) { |
| bbio->csum = kmalloc_array(nblocks, csum_size, GFP_NOFS); |
| if (!bbio->csum) { |
| btrfs_free_path(path); |
| return BLK_STS_RESOURCE; |
| } |
| } else { |
| bbio->csum = bbio->csum_inline; |
| } |
| |
| /* |
| * If requested number of sectors is larger than one leaf can contain, |
| * kick the readahead for csum tree. |
| */ |
| if (nblocks > fs_info->csums_per_leaf) |
| path->reada = READA_FORWARD; |
| |
| /* |
| * the free space stuff is only read when it hasn't been |
| * updated in the current transaction. So, we can safely |
| * read from the commit root and sidestep a nasty deadlock |
| * between reading the free space cache and updating the csum tree. |
| */ |
| if (btrfs_is_free_space_inode(inode)) { |
| path->search_commit_root = 1; |
| path->skip_locking = 1; |
| } |
| |
| for (cur_disk_bytenr = orig_disk_bytenr; |
| cur_disk_bytenr < orig_disk_bytenr + orig_len; |
| cur_disk_bytenr += (count * sectorsize)) { |
| u64 search_len = orig_disk_bytenr + orig_len - cur_disk_bytenr; |
| unsigned int sector_offset; |
| u8 *csum_dst; |
| |
| /* |
| * Although both cur_disk_bytenr and orig_disk_bytenr is u64, |
| * we're calculating the offset to the bio start. |
| * |
| * Bio size is limited to UINT_MAX, thus unsigned int is large |
| * enough to contain the raw result, not to mention the right |
| * shifted result. |
| */ |
| ASSERT(cur_disk_bytenr - orig_disk_bytenr < UINT_MAX); |
| sector_offset = (cur_disk_bytenr - orig_disk_bytenr) >> |
| fs_info->sectorsize_bits; |
| csum_dst = bbio->csum + sector_offset * csum_size; |
| |
| count = search_csum_tree(fs_info, path, cur_disk_bytenr, |
| search_len, csum_dst); |
| if (count < 0) { |
| ret = errno_to_blk_status(count); |
| if (bbio->csum != bbio->csum_inline) |
| kfree(bbio->csum); |
| bbio->csum = NULL; |
| break; |
| } |
| |
| /* |
| * We didn't find a csum for this range. We need to make sure |
| * we complain loudly about this, because we are not NODATASUM. |
| * |
| * However for the DATA_RELOC inode we could potentially be |
| * relocating data extents for a NODATASUM inode, so the inode |
| * itself won't be marked with NODATASUM, but the extent we're |
| * copying is in fact NODATASUM. If we don't find a csum we |
| * assume this is the case. |
| */ |
| if (count == 0) { |
| memset(csum_dst, 0, csum_size); |
| count = 1; |
| |
| if (inode->root->root_key.objectid == |
| BTRFS_DATA_RELOC_TREE_OBJECTID) { |
| u64 file_offset; |
| int ret; |
| |
| ret = search_file_offset_in_bio(bio, |
| &inode->vfs_inode, |
| cur_disk_bytenr, &file_offset); |
| if (ret) |
| set_extent_bits(io_tree, file_offset, |
| file_offset + sectorsize - 1, |
| EXTENT_NODATASUM); |
| } else { |
| btrfs_warn_rl(fs_info, |
| "csum hole found for disk bytenr range [%llu, %llu)", |
| cur_disk_bytenr, cur_disk_bytenr + sectorsize); |
| } |
| } |
| } |
| |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| int btrfs_lookup_csums_list(struct btrfs_root *root, u64 start, u64 end, |
| struct list_head *list, int search_commit, |
| bool nowait) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct btrfs_key key; |
| struct btrfs_path *path; |
| struct extent_buffer *leaf; |
| struct btrfs_ordered_sum *sums; |
| struct btrfs_csum_item *item; |
| LIST_HEAD(tmplist); |
| int ret; |
| |
| ASSERT(IS_ALIGNED(start, fs_info->sectorsize) && |
| IS_ALIGNED(end + 1, fs_info->sectorsize)); |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| path->nowait = nowait; |
| if (search_commit) { |
| path->skip_locking = 1; |
| path->reada = READA_FORWARD; |
| path->search_commit_root = 1; |
| } |
| |
| key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; |
| key.offset = start; |
| key.type = BTRFS_EXTENT_CSUM_KEY; |
| |
| ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); |
| if (ret < 0) |
| goto fail; |
| if (ret > 0 && path->slots[0] > 0) { |
| leaf = path->nodes[0]; |
| btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1); |
| |
| /* |
| * There are two cases we can hit here for the previous csum |
| * item: |
| * |
| * |<- search range ->| |
| * |<- csum item ->| |
| * |
| * Or |
| * |<- search range ->| |
| * |<- csum item ->| |
| * |
| * Check if the previous csum item covers the leading part of |
| * the search range. If so we have to start from previous csum |
| * item. |
| */ |
| if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID && |
| key.type == BTRFS_EXTENT_CSUM_KEY) { |
| if (bytes_to_csum_size(fs_info, start - key.offset) < |
| btrfs_item_size(leaf, path->slots[0] - 1)) |
| path->slots[0]--; |
| } |
| } |
| |
| while (start <= end) { |
| u64 csum_end; |
| |
| leaf = path->nodes[0]; |
| if (path->slots[0] >= btrfs_header_nritems(leaf)) { |
| ret = btrfs_next_leaf(root, path); |
| if (ret < 0) |
| goto fail; |
| if (ret > 0) |
| break; |
| leaf = path->nodes[0]; |
| } |
| |
| btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); |
| if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID || |
| key.type != BTRFS_EXTENT_CSUM_KEY || |
| key.offset > end) |
| break; |
| |
| if (key.offset > start) |
| start = key.offset; |
| |
| csum_end = key.offset + csum_size_to_bytes(fs_info, |
| btrfs_item_size(leaf, path->slots[0])); |
| if (csum_end <= start) { |
| path->slots[0]++; |
| continue; |
| } |
| |
| csum_end = min(csum_end, end + 1); |
| item = btrfs_item_ptr(path->nodes[0], path->slots[0], |
| struct btrfs_csum_item); |
| while (start < csum_end) { |
| unsigned long offset; |
| size_t size; |
| |
| size = min_t(size_t, csum_end - start, |
| max_ordered_sum_bytes(fs_info)); |
| sums = kzalloc(btrfs_ordered_sum_size(fs_info, size), |
| GFP_NOFS); |
| if (!sums) { |
| ret = -ENOMEM; |
| goto fail; |
| } |
| |
| sums->bytenr = start; |
| sums->len = (int)size; |
| |
| offset = bytes_to_csum_size(fs_info, start - key.offset); |
| |
| read_extent_buffer(path->nodes[0], |
| sums->sums, |
| ((unsigned long)item) + offset, |
| bytes_to_csum_size(fs_info, size)); |
| |
| start += size; |
| list_add_tail(&sums->list, &tmplist); |
| } |
| path->slots[0]++; |
| } |
| ret = 0; |
| fail: |
| while (ret < 0 && !list_empty(&tmplist)) { |
| sums = list_entry(tmplist.next, struct btrfs_ordered_sum, list); |
| list_del(&sums->list); |
| kfree(sums); |
| } |
| list_splice_tail(&tmplist, list); |
| |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| /* |
| * Do the same work as btrfs_lookup_csums_list(), the difference is in how |
| * we return the result. |
| * |
| * This version will set the corresponding bits in @csum_bitmap to represent |
| * that there is a csum found. |
| * Each bit represents a sector. Thus caller should ensure @csum_buf passed |
| * in is large enough to contain all csums. |
| */ |
| int btrfs_lookup_csums_bitmap(struct btrfs_root *root, u64 start, u64 end, |
| u8 *csum_buf, unsigned long *csum_bitmap) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct btrfs_key key; |
| struct btrfs_path *path; |
| struct extent_buffer *leaf; |
| struct btrfs_csum_item *item; |
| const u64 orig_start = start; |
| int ret; |
| |
| ASSERT(IS_ALIGNED(start, fs_info->sectorsize) && |
| IS_ALIGNED(end + 1, fs_info->sectorsize)); |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; |
| key.type = BTRFS_EXTENT_CSUM_KEY; |
| key.offset = start; |
| |
| ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); |
| if (ret < 0) |
| goto fail; |
| if (ret > 0 && path->slots[0] > 0) { |
| leaf = path->nodes[0]; |
| btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1); |
| |
| /* |
| * There are two cases we can hit here for the previous csum |
| * item: |
| * |
| * |<- search range ->| |
| * |<- csum item ->| |
| * |
| * Or |
| * |<- search range ->| |
| * |<- csum item ->| |
| * |
| * Check if the previous csum item covers the leading part of |
| * the search range. If so we have to start from previous csum |
| * item. |
| */ |
| if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID && |
| key.type == BTRFS_EXTENT_CSUM_KEY) { |
| if (bytes_to_csum_size(fs_info, start - key.offset) < |
| btrfs_item_size(leaf, path->slots[0] - 1)) |
| path->slots[0]--; |
| } |
| } |
| |
| while (start <= end) { |
| u64 csum_end; |
| |
| leaf = path->nodes[0]; |
| if (path->slots[0] >= btrfs_header_nritems(leaf)) { |
| ret = btrfs_next_leaf(root, path); |
| if (ret < 0) |
| goto fail; |
| if (ret > 0) |
| break; |
| leaf = path->nodes[0]; |
| } |
| |
| btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); |
| if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID || |
| key.type != BTRFS_EXTENT_CSUM_KEY || |
| key.offset > end) |
| break; |
| |
| if (key.offset > start) |
| start = key.offset; |
| |
| csum_end = key.offset + csum_size_to_bytes(fs_info, |
| btrfs_item_size(leaf, path->slots[0])); |
| if (csum_end <= start) { |
| path->slots[0]++; |
| continue; |
| } |
| |
| csum_end = min(csum_end, end + 1); |
| item = btrfs_item_ptr(path->nodes[0], path->slots[0], |
| struct btrfs_csum_item); |
| while (start < csum_end) { |
| unsigned long offset; |
| size_t size; |
| u8 *csum_dest = csum_buf + bytes_to_csum_size(fs_info, |
| start - orig_start); |
| |
| size = min_t(size_t, csum_end - start, end + 1 - start); |
| |
| offset = bytes_to_csum_size(fs_info, start - key.offset); |
| |
| read_extent_buffer(path->nodes[0], csum_dest, |
| ((unsigned long)item) + offset, |
| bytes_to_csum_size(fs_info, size)); |
| |
| bitmap_set(csum_bitmap, |
| (start - orig_start) >> fs_info->sectorsize_bits, |
| size >> fs_info->sectorsize_bits); |
| |
| start += size; |
| } |
| path->slots[0]++; |
| } |
| ret = 0; |
| fail: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| /* |
| * Calculate checksums of the data contained inside a bio. |
| */ |
| blk_status_t btrfs_csum_one_bio(struct btrfs_bio *bbio) |
| { |
| struct btrfs_inode *inode = bbio->inode; |
| struct btrfs_fs_info *fs_info = inode->root->fs_info; |
| SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); |
| struct bio *bio = &bbio->bio; |
| u64 offset = bbio->file_offset; |
| struct btrfs_ordered_sum *sums; |
| struct btrfs_ordered_extent *ordered = NULL; |
| char *data; |
| struct bvec_iter iter; |
| struct bio_vec bvec; |
| int index; |
| unsigned int blockcount; |
| unsigned long total_bytes = 0; |
| unsigned long this_sum_bytes = 0; |
| int i; |
| unsigned nofs_flag; |
| |
| nofs_flag = memalloc_nofs_save(); |
| sums = kvzalloc(btrfs_ordered_sum_size(fs_info, bio->bi_iter.bi_size), |
| GFP_KERNEL); |
| memalloc_nofs_restore(nofs_flag); |
| |
| if (!sums) |
| return BLK_STS_RESOURCE; |
| |
| sums->len = bio->bi_iter.bi_size; |
| INIT_LIST_HEAD(&sums->list); |
| |
| sums->bytenr = bio->bi_iter.bi_sector << 9; |
| index = 0; |
| |
| shash->tfm = fs_info->csum_shash; |
| |
| bio_for_each_segment(bvec, bio, iter) { |
| if (!ordered) { |
| ordered = btrfs_lookup_ordered_extent(inode, offset); |
| /* |
| * The bio range is not covered by any ordered extent, |
| * must be a code logic error. |
| */ |
| if (unlikely(!ordered)) { |
| WARN(1, KERN_WARNING |
| "no ordered extent for root %llu ino %llu offset %llu\n", |
| inode->root->root_key.objectid, |
| btrfs_ino(inode), offset); |
| kvfree(sums); |
| return BLK_STS_IOERR; |
| } |
| } |
| |
| blockcount = BTRFS_BYTES_TO_BLKS(fs_info, |
| bvec.bv_len + fs_info->sectorsize |
| - 1); |
| |
| for (i = 0; i < blockcount; i++) { |
| if (!(bio->bi_opf & REQ_BTRFS_ONE_ORDERED) && |
| !in_range(offset, ordered->file_offset, |
| ordered->num_bytes)) { |
| unsigned long bytes_left; |
| |
| sums->len = this_sum_bytes; |
| this_sum_bytes = 0; |
| btrfs_add_ordered_sum(ordered, sums); |
| btrfs_put_ordered_extent(ordered); |
| |
| bytes_left = bio->bi_iter.bi_size - total_bytes; |
| |
| nofs_flag = memalloc_nofs_save(); |
| sums = kvzalloc(btrfs_ordered_sum_size(fs_info, |
| bytes_left), GFP_KERNEL); |
| memalloc_nofs_restore(nofs_flag); |
| BUG_ON(!sums); /* -ENOMEM */ |
| sums->len = bytes_left; |
| ordered = btrfs_lookup_ordered_extent(inode, |
| offset); |
| ASSERT(ordered); /* Logic error */ |
| sums->bytenr = (bio->bi_iter.bi_sector << 9) |
| + total_bytes; |
| index = 0; |
| } |
| |
| data = bvec_kmap_local(&bvec); |
| crypto_shash_digest(shash, |
| data + (i * fs_info->sectorsize), |
| fs_info->sectorsize, |
| sums->sums + index); |
| kunmap_local(data); |
| index += fs_info->csum_size; |
| offset += fs_info->sectorsize; |
| this_sum_bytes += fs_info->sectorsize; |
| total_bytes += fs_info->sectorsize; |
| } |
| |
| } |
| this_sum_bytes = 0; |
| btrfs_add_ordered_sum(ordered, sums); |
| btrfs_put_ordered_extent(ordered); |
| return 0; |
| } |
| |
| /* |
| * Remove one checksum overlapping a range. |
| * |
| * This expects the key to describe the csum pointed to by the path, and it |
| * expects the csum to overlap the range [bytenr, len] |
| * |
| * The csum should not be entirely contained in the range and the range should |
| * not be entirely contained in the csum. |
| * |
| * This calls btrfs_truncate_item with the correct args based on the overlap, |
| * and fixes up the key as required. |
| */ |
| static noinline void truncate_one_csum(struct btrfs_fs_info *fs_info, |
| struct btrfs_path *path, |
| struct btrfs_key *key, |
| u64 bytenr, u64 len) |
| { |
| struct extent_buffer *leaf; |
| const u32 csum_size = fs_info->csum_size; |
| u64 csum_end; |
| u64 end_byte = bytenr + len; |
| u32 blocksize_bits = fs_info->sectorsize_bits; |
| |
| leaf = path->nodes[0]; |
| csum_end = btrfs_item_size(leaf, path->slots[0]) / csum_size; |
| csum_end <<= blocksize_bits; |
| csum_end += key->offset; |
| |
| if (key->offset < bytenr && csum_end <= end_byte) { |
| /* |
| * [ bytenr - len ] |
| * [ ] |
| * [csum ] |
| * A simple truncate off the end of the item |
| */ |
| u32 new_size = (bytenr - key->offset) >> blocksize_bits; |
| new_size *= csum_size; |
| btrfs_truncate_item(path, new_size, 1); |
| } else if (key->offset >= bytenr && csum_end > end_byte && |
| end_byte > key->offset) { |
| /* |
| * [ bytenr - len ] |
| * [ ] |
| * [csum ] |
| * we need to truncate from the beginning of the csum |
| */ |
| u32 new_size = (csum_end - end_byte) >> blocksize_bits; |
| new_size *= csum_size; |
| |
| btrfs_truncate_item(path, new_size, 0); |
| |
| key->offset = end_byte; |
| btrfs_set_item_key_safe(fs_info, path, key); |
| } else { |
| BUG(); |
| } |
| } |
| |
| /* |
| * Delete the csum items from the csum tree for a given range of bytes. |
| */ |
| int btrfs_del_csums(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, u64 bytenr, u64 len) |
| { |
| struct btrfs_fs_info *fs_info = trans->fs_info; |
| struct btrfs_path *path; |
| struct btrfs_key key; |
| u64 end_byte = bytenr + len; |
| u64 csum_end; |
| struct extent_buffer *leaf; |
| int ret = 0; |
| const u32 csum_size = fs_info->csum_size; |
| u32 blocksize_bits = fs_info->sectorsize_bits; |
| |
| ASSERT(root->root_key.objectid == BTRFS_CSUM_TREE_OBJECTID || |
| root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| while (1) { |
| key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; |
| key.offset = end_byte - 1; |
| key.type = BTRFS_EXTENT_CSUM_KEY; |
| |
| ret = btrfs_search_slot(trans, root, &key, path, -1, 1); |
| if (ret > 0) { |
| ret = 0; |
| if (path->slots[0] == 0) |
| break; |
| path->slots[0]--; |
| } else if (ret < 0) { |
| break; |
| } |
| |
| leaf = path->nodes[0]; |
| btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); |
| |
| if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID || |
| key.type != BTRFS_EXTENT_CSUM_KEY) { |
| break; |
| } |
| |
| if (key.offset >= end_byte) |
| break; |
| |
| csum_end = btrfs_item_size(leaf, path->slots[0]) / csum_size; |
| csum_end <<= blocksize_bits; |
| csum_end += key.offset; |
| |
| /* this csum ends before we start, we're done */ |
| if (csum_end <= bytenr) |
| break; |
| |
| /* delete the entire item, it is inside our range */ |
| if (key.offset >= bytenr && csum_end <= end_byte) { |
| int del_nr = 1; |
| |
| /* |
| * Check how many csum items preceding this one in this |
| * leaf correspond to our range and then delete them all |
| * at once. |
| */ |
| if (key.offset > bytenr && path->slots[0] > 0) { |
| int slot = path->slots[0] - 1; |
| |
| while (slot >= 0) { |
| struct btrfs_key pk; |
| |
| btrfs_item_key_to_cpu(leaf, &pk, slot); |
| if (pk.offset < bytenr || |
| pk.type != BTRFS_EXTENT_CSUM_KEY || |
| pk.objectid != |
| BTRFS_EXTENT_CSUM_OBJECTID) |
| break; |
| path->slots[0] = slot; |
| del_nr++; |
| key.offset = pk.offset; |
| slot--; |
| } |
| } |
| ret = btrfs_del_items(trans, root, path, |
| path->slots[0], del_nr); |
| if (ret) |
| break; |
| if (key.offset == bytenr) |
| break; |
| } else if (key.offset < bytenr && csum_end > end_byte) { |
| unsigned long offset; |
| unsigned long shift_len; |
| unsigned long item_offset; |
| /* |
| * [ bytenr - len ] |
| * [csum ] |
| * |
| * Our bytes are in the middle of the csum, |
| * we need to split this item and insert a new one. |
| * |
| * But we can't drop the path because the |
| * csum could change, get removed, extended etc. |
| * |
| * The trick here is the max size of a csum item leaves |
| * enough room in the tree block for a single |
| * item header. So, we split the item in place, |
| * adding a new header pointing to the existing |
| * bytes. Then we loop around again and we have |
| * a nicely formed csum item that we can neatly |
| * truncate. |
| */ |
| offset = (bytenr - key.offset) >> blocksize_bits; |
| offset *= csum_size; |
| |
| shift_len = (len >> blocksize_bits) * csum_size; |
| |
| item_offset = btrfs_item_ptr_offset(leaf, |
| path->slots[0]); |
| |
| memzero_extent_buffer(leaf, item_offset + offset, |
| shift_len); |
| key.offset = bytenr; |
| |
| /* |
| * btrfs_split_item returns -EAGAIN when the |
| * item changed size or key |
| */ |
| ret = btrfs_split_item(trans, root, path, &key, offset); |
| if (ret && ret != -EAGAIN) { |
| btrfs_abort_transaction(trans, ret); |
| break; |
| } |
| ret = 0; |
| |
| key.offset = end_byte - 1; |
| } else { |
| truncate_one_csum(fs_info, path, &key, bytenr, len); |
| if (key.offset < bytenr) |
| break; |
| } |
| btrfs_release_path(path); |
| } |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| static int find_next_csum_offset(struct btrfs_root *root, |
| struct btrfs_path *path, |
| u64 *next_offset) |
| { |
| const u32 nritems = btrfs_header_nritems(path->nodes[0]); |
| struct btrfs_key found_key; |
| int slot = path->slots[0] + 1; |
| int ret; |
| |
| if (nritems == 0 || slot >= nritems) { |
| ret = btrfs_next_leaf(root, path); |
| if (ret < 0) { |
| return ret; |
| } else if (ret > 0) { |
| *next_offset = (u64)-1; |
| return 0; |
| } |
| slot = path->slots[0]; |
| } |
| |
| btrfs_item_key_to_cpu(path->nodes[0], &found_key, slot); |
| |
| if (found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID || |
| found_key.type != BTRFS_EXTENT_CSUM_KEY) |
| *next_offset = (u64)-1; |
| else |
| *next_offset = found_key.offset; |
| |
| return 0; |
| } |
| |
| int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_ordered_sum *sums) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct btrfs_key file_key; |
| struct btrfs_key found_key; |
| struct btrfs_path *path; |
| struct btrfs_csum_item *item; |
| struct btrfs_csum_item *item_end; |
| struct extent_buffer *leaf = NULL; |
| u64 next_offset; |
| u64 total_bytes = 0; |
| u64 csum_offset; |
| u64 bytenr; |
| u32 ins_size; |
| int index = 0; |
| int found_next; |
| int ret; |
| const u32 csum_size = fs_info->csum_size; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| again: |
| next_offset = (u64)-1; |
| found_next = 0; |
| bytenr = sums->bytenr + total_bytes; |
| file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; |
| file_key.offset = bytenr; |
| file_key.type = BTRFS_EXTENT_CSUM_KEY; |
| |
| item = btrfs_lookup_csum(trans, root, path, bytenr, 1); |
| if (!IS_ERR(item)) { |
| ret = 0; |
| leaf = path->nodes[0]; |
| item_end = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_csum_item); |
| item_end = (struct btrfs_csum_item *)((char *)item_end + |
| btrfs_item_size(leaf, path->slots[0])); |
| goto found; |
| } |
| ret = PTR_ERR(item); |
| if (ret != -EFBIG && ret != -ENOENT) |
| goto out; |
| |
| if (ret == -EFBIG) { |
| u32 item_size; |
| /* we found one, but it isn't big enough yet */ |
| leaf = path->nodes[0]; |
| item_size = btrfs_item_size(leaf, path->slots[0]); |
| if ((item_size / csum_size) >= |
| MAX_CSUM_ITEMS(fs_info, csum_size)) { |
| /* already at max size, make a new one */ |
| goto insert; |
| } |
| } else { |
| /* We didn't find a csum item, insert one. */ |
| ret = find_next_csum_offset(root, path, &next_offset); |
| if (ret < 0) |
| goto out; |
| found_next = 1; |
| goto insert; |
| } |
| |
| /* |
| * At this point, we know the tree has a checksum item that ends at an |
| * offset matching the start of the checksum range we want to insert. |
| * We try to extend that item as much as possible and then add as many |
| * checksums to it as they fit. |
| * |
| * First check if the leaf has enough free space for at least one |
| * checksum. If it has go directly to the item extension code, otherwise |
| * release the path and do a search for insertion before the extension. |
| */ |
| if (btrfs_leaf_free_space(leaf) >= csum_size) { |
| btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); |
| csum_offset = (bytenr - found_key.offset) >> |
| fs_info->sectorsize_bits; |
| goto extend_csum; |
| } |
| |
| btrfs_release_path(path); |
| path->search_for_extension = 1; |
| ret = btrfs_search_slot(trans, root, &file_key, path, |
| csum_size, 1); |
| path->search_for_extension = 0; |
| if (ret < 0) |
| goto out; |
| |
| if (ret > 0) { |
| if (path->slots[0] == 0) |
| goto insert; |
| path->slots[0]--; |
| } |
| |
| leaf = path->nodes[0]; |
| btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); |
| csum_offset = (bytenr - found_key.offset) >> fs_info->sectorsize_bits; |
| |
| if (found_key.type != BTRFS_EXTENT_CSUM_KEY || |
| found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID || |
| csum_offset >= MAX_CSUM_ITEMS(fs_info, csum_size)) { |
| goto insert; |
| } |
| |
| extend_csum: |
| if (csum_offset == btrfs_item_size(leaf, path->slots[0]) / |
| csum_size) { |
| int extend_nr; |
| u64 tmp; |
| u32 diff; |
| |
| tmp = sums->len - total_bytes; |
| tmp >>= fs_info->sectorsize_bits; |
| WARN_ON(tmp < 1); |
| extend_nr = max_t(int, 1, tmp); |
| |
| /* |
| * A log tree can already have checksum items with a subset of |
| * the checksums we are trying to log. This can happen after |
| * doing a sequence of partial writes into prealloc extents and |
| * fsyncs in between, with a full fsync logging a larger subrange |
| * of an extent for which a previous fast fsync logged a smaller |
| * subrange. And this happens in particular due to merging file |
| * extent items when we complete an ordered extent for a range |
| * covered by a prealloc extent - this is done at |
| * btrfs_mark_extent_written(). |
| * |
| * So if we try to extend the previous checksum item, which has |
| * a range that ends at the start of the range we want to insert, |
| * make sure we don't extend beyond the start offset of the next |
| * checksum item. If we are at the last item in the leaf, then |
| * forget the optimization of extending and add a new checksum |
| * item - it is not worth the complexity of releasing the path, |
| * getting the first key for the next leaf, repeat the btree |
| * search, etc, because log trees are temporary anyway and it |
| * would only save a few bytes of leaf space. |
| */ |
| if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { |
| if (path->slots[0] + 1 >= |
| btrfs_header_nritems(path->nodes[0])) { |
| ret = find_next_csum_offset(root, path, &next_offset); |
| if (ret < 0) |
| goto out; |
| found_next = 1; |
| goto insert; |
| } |
| |
| ret = find_next_csum_offset(root, path, &next_offset); |
| if (ret < 0) |
| goto out; |
| |
| tmp = (next_offset - bytenr) >> fs_info->sectorsize_bits; |
| if (tmp <= INT_MAX) |
| extend_nr = min_t(int, extend_nr, tmp); |
| } |
| |
| diff = (csum_offset + extend_nr) * csum_size; |
| diff = min(diff, |
| MAX_CSUM_ITEMS(fs_info, csum_size) * csum_size); |
| |
| diff = diff - btrfs_item_size(leaf, path->slots[0]); |
| diff = min_t(u32, btrfs_leaf_free_space(leaf), diff); |
| diff /= csum_size; |
| diff *= csum_size; |
| |
| btrfs_extend_item(path, diff); |
| ret = 0; |
| goto csum; |
| } |
| |
| insert: |
| btrfs_release_path(path); |
| csum_offset = 0; |
| if (found_next) { |
| u64 tmp; |
| |
| tmp = sums->len - total_bytes; |
| tmp >>= fs_info->sectorsize_bits; |
| tmp = min(tmp, (next_offset - file_key.offset) >> |
| fs_info->sectorsize_bits); |
| |
| tmp = max_t(u64, 1, tmp); |
| tmp = min_t(u64, tmp, MAX_CSUM_ITEMS(fs_info, csum_size)); |
| ins_size = csum_size * tmp; |
| } else { |
| ins_size = csum_size; |
| } |
| ret = btrfs_insert_empty_item(trans, root, path, &file_key, |
| ins_size); |
| if (ret < 0) |
| goto out; |
| if (WARN_ON(ret != 0)) |
| goto out; |
| leaf = path->nodes[0]; |
| csum: |
| item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item); |
| item_end = (struct btrfs_csum_item *)((unsigned char *)item + |
| btrfs_item_size(leaf, path->slots[0])); |
| item = (struct btrfs_csum_item *)((unsigned char *)item + |
| csum_offset * csum_size); |
| found: |
| ins_size = (u32)(sums->len - total_bytes) >> fs_info->sectorsize_bits; |
| ins_size *= csum_size; |
| ins_size = min_t(u32, (unsigned long)item_end - (unsigned long)item, |
| ins_size); |
| write_extent_buffer(leaf, sums->sums + index, (unsigned long)item, |
| ins_size); |
| |
| index += ins_size; |
| ins_size /= csum_size; |
| total_bytes += ins_size * fs_info->sectorsize; |
| |
| btrfs_mark_buffer_dirty(path->nodes[0]); |
| if (total_bytes < sums->len) { |
| btrfs_release_path(path); |
| cond_resched(); |
| goto again; |
| } |
| out: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode, |
| const struct btrfs_path *path, |
| struct btrfs_file_extent_item *fi, |
| struct extent_map *em) |
| { |
| struct btrfs_fs_info *fs_info = inode->root->fs_info; |
| struct btrfs_root *root = inode->root; |
| struct extent_buffer *leaf = path->nodes[0]; |
| const int slot = path->slots[0]; |
| struct btrfs_key key; |
| u64 extent_start, extent_end; |
| u64 bytenr; |
| u8 type = btrfs_file_extent_type(leaf, fi); |
| int compress_type = btrfs_file_extent_compression(leaf, fi); |
| |
| btrfs_item_key_to_cpu(leaf, &key, slot); |
| extent_start = key.offset; |
| extent_end = btrfs_file_extent_end(path); |
| em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); |
| em->generation = btrfs_file_extent_generation(leaf, fi); |
| if (type == BTRFS_FILE_EXTENT_REG || |
| type == BTRFS_FILE_EXTENT_PREALLOC) { |
| em->start = extent_start; |
| em->len = extent_end - extent_start; |
| em->orig_start = extent_start - |
| btrfs_file_extent_offset(leaf, fi); |
| em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi); |
| bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); |
| if (bytenr == 0) { |
| em->block_start = EXTENT_MAP_HOLE; |
| return; |
| } |
| if (compress_type != BTRFS_COMPRESS_NONE) { |
| set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); |
| em->compress_type = compress_type; |
| em->block_start = bytenr; |
| em->block_len = em->orig_block_len; |
| } else { |
| bytenr += btrfs_file_extent_offset(leaf, fi); |
| em->block_start = bytenr; |
| em->block_len = em->len; |
| if (type == BTRFS_FILE_EXTENT_PREALLOC) |
| set_bit(EXTENT_FLAG_PREALLOC, &em->flags); |
| } |
| } else if (type == BTRFS_FILE_EXTENT_INLINE) { |
| em->block_start = EXTENT_MAP_INLINE; |
| em->start = extent_start; |
| em->len = extent_end - extent_start; |
| /* |
| * Initialize orig_start and block_len with the same values |
| * as in inode.c:btrfs_get_extent(). |
| */ |
| em->orig_start = EXTENT_MAP_HOLE; |
| em->block_len = (u64)-1; |
| em->compress_type = compress_type; |
| if (compress_type != BTRFS_COMPRESS_NONE) |
| set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); |
| } else { |
| btrfs_err(fs_info, |
| "unknown file extent item type %d, inode %llu, offset %llu, " |
| "root %llu", type, btrfs_ino(inode), extent_start, |
| root->root_key.objectid); |
| } |
| } |
| |
| /* |
| * Returns the end offset (non inclusive) of the file extent item the given path |
| * points to. If it points to an inline extent, the returned offset is rounded |
| * up to the sector size. |
| */ |
| u64 btrfs_file_extent_end(const struct btrfs_path *path) |
| { |
| const struct extent_buffer *leaf = path->nodes[0]; |
| const int slot = path->slots[0]; |
| struct btrfs_file_extent_item *fi; |
| struct btrfs_key key; |
| u64 end; |
| |
| btrfs_item_key_to_cpu(leaf, &key, slot); |
| ASSERT(key.type == BTRFS_EXTENT_DATA_KEY); |
| fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); |
| |
| if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE) { |
| end = btrfs_file_extent_ram_bytes(leaf, fi); |
| end = ALIGN(key.offset + end, leaf->fs_info->sectorsize); |
| } else { |
| end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); |
| } |
| |
| return end; |
| } |