| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * KMSAN hooks for kernel subsystems. |
| * |
| * These functions handle creation of KMSAN metadata for memory allocations. |
| * |
| * Copyright (C) 2018-2022 Google LLC |
| * Author: Alexander Potapenko <glider@google.com> |
| * |
| */ |
| |
| #include <linux/cacheflush.h> |
| #include <linux/dma-direction.h> |
| #include <linux/gfp.h> |
| #include <linux/kmsan.h> |
| #include <linux/mm.h> |
| #include <linux/mm_types.h> |
| #include <linux/scatterlist.h> |
| #include <linux/slab.h> |
| #include <linux/uaccess.h> |
| #include <linux/usb.h> |
| |
| #include "../internal.h" |
| #include "../slab.h" |
| #include "kmsan.h" |
| |
| /* |
| * Instrumented functions shouldn't be called under |
| * kmsan_enter_runtime()/kmsan_leave_runtime(), because this will lead to |
| * skipping effects of functions like memset() inside instrumented code. |
| */ |
| |
| void kmsan_task_create(struct task_struct *task) |
| { |
| kmsan_enter_runtime(); |
| kmsan_internal_task_create(task); |
| kmsan_leave_runtime(); |
| } |
| |
| void kmsan_task_exit(struct task_struct *task) |
| { |
| struct kmsan_ctx *ctx = &task->kmsan_ctx; |
| |
| if (!kmsan_enabled || kmsan_in_runtime()) |
| return; |
| |
| ctx->allow_reporting = false; |
| } |
| |
| void kmsan_slab_alloc(struct kmem_cache *s, void *object, gfp_t flags) |
| { |
| if (unlikely(object == NULL)) |
| return; |
| if (!kmsan_enabled || kmsan_in_runtime()) |
| return; |
| /* |
| * There's a ctor or this is an RCU cache - do nothing. The memory |
| * status hasn't changed since last use. |
| */ |
| if (s->ctor || (s->flags & SLAB_TYPESAFE_BY_RCU)) |
| return; |
| |
| kmsan_enter_runtime(); |
| if (flags & __GFP_ZERO) |
| kmsan_internal_unpoison_memory(object, s->object_size, |
| KMSAN_POISON_CHECK); |
| else |
| kmsan_internal_poison_memory(object, s->object_size, flags, |
| KMSAN_POISON_CHECK); |
| kmsan_leave_runtime(); |
| } |
| |
| void kmsan_slab_free(struct kmem_cache *s, void *object) |
| { |
| if (!kmsan_enabled || kmsan_in_runtime()) |
| return; |
| |
| /* RCU slabs could be legally used after free within the RCU period */ |
| if (unlikely(s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON))) |
| return; |
| /* |
| * If there's a constructor, freed memory must remain in the same state |
| * until the next allocation. We cannot save its state to detect |
| * use-after-free bugs, instead we just keep it unpoisoned. |
| */ |
| if (s->ctor) |
| return; |
| kmsan_enter_runtime(); |
| kmsan_internal_poison_memory(object, s->object_size, GFP_KERNEL, |
| KMSAN_POISON_CHECK | KMSAN_POISON_FREE); |
| kmsan_leave_runtime(); |
| } |
| |
| void kmsan_kmalloc_large(const void *ptr, size_t size, gfp_t flags) |
| { |
| if (unlikely(ptr == NULL)) |
| return; |
| if (!kmsan_enabled || kmsan_in_runtime()) |
| return; |
| kmsan_enter_runtime(); |
| if (flags & __GFP_ZERO) |
| kmsan_internal_unpoison_memory((void *)ptr, size, |
| /*checked*/ true); |
| else |
| kmsan_internal_poison_memory((void *)ptr, size, flags, |
| KMSAN_POISON_CHECK); |
| kmsan_leave_runtime(); |
| } |
| |
| void kmsan_kfree_large(const void *ptr) |
| { |
| struct page *page; |
| |
| if (!kmsan_enabled || kmsan_in_runtime()) |
| return; |
| kmsan_enter_runtime(); |
| page = virt_to_head_page((void *)ptr); |
| KMSAN_WARN_ON(ptr != page_address(page)); |
| kmsan_internal_poison_memory((void *)ptr, |
| PAGE_SIZE << compound_order(page), |
| GFP_KERNEL, |
| KMSAN_POISON_CHECK | KMSAN_POISON_FREE); |
| kmsan_leave_runtime(); |
| } |
| |
| static unsigned long vmalloc_shadow(unsigned long addr) |
| { |
| return (unsigned long)kmsan_get_metadata((void *)addr, |
| KMSAN_META_SHADOW); |
| } |
| |
| static unsigned long vmalloc_origin(unsigned long addr) |
| { |
| return (unsigned long)kmsan_get_metadata((void *)addr, |
| KMSAN_META_ORIGIN); |
| } |
| |
| void kmsan_vunmap_range_noflush(unsigned long start, unsigned long end) |
| { |
| __vunmap_range_noflush(vmalloc_shadow(start), vmalloc_shadow(end)); |
| __vunmap_range_noflush(vmalloc_origin(start), vmalloc_origin(end)); |
| flush_cache_vmap(vmalloc_shadow(start), vmalloc_shadow(end)); |
| flush_cache_vmap(vmalloc_origin(start), vmalloc_origin(end)); |
| } |
| |
| /* |
| * This function creates new shadow/origin pages for the physical pages mapped |
| * into the virtual memory. If those physical pages already had shadow/origin, |
| * those are ignored. |
| */ |
| void kmsan_ioremap_page_range(unsigned long start, unsigned long end, |
| phys_addr_t phys_addr, pgprot_t prot, |
| unsigned int page_shift) |
| { |
| gfp_t gfp_mask = GFP_KERNEL | __GFP_ZERO; |
| struct page *shadow, *origin; |
| unsigned long off = 0; |
| int nr; |
| |
| if (!kmsan_enabled || kmsan_in_runtime()) |
| return; |
| |
| nr = (end - start) / PAGE_SIZE; |
| kmsan_enter_runtime(); |
| for (int i = 0; i < nr; i++, off += PAGE_SIZE) { |
| shadow = alloc_pages(gfp_mask, 1); |
| origin = alloc_pages(gfp_mask, 1); |
| __vmap_pages_range_noflush( |
| vmalloc_shadow(start + off), |
| vmalloc_shadow(start + off + PAGE_SIZE), prot, &shadow, |
| PAGE_SHIFT); |
| __vmap_pages_range_noflush( |
| vmalloc_origin(start + off), |
| vmalloc_origin(start + off + PAGE_SIZE), prot, &origin, |
| PAGE_SHIFT); |
| } |
| flush_cache_vmap(vmalloc_shadow(start), vmalloc_shadow(end)); |
| flush_cache_vmap(vmalloc_origin(start), vmalloc_origin(end)); |
| kmsan_leave_runtime(); |
| } |
| |
| void kmsan_iounmap_page_range(unsigned long start, unsigned long end) |
| { |
| unsigned long v_shadow, v_origin; |
| struct page *shadow, *origin; |
| int nr; |
| |
| if (!kmsan_enabled || kmsan_in_runtime()) |
| return; |
| |
| nr = (end - start) / PAGE_SIZE; |
| kmsan_enter_runtime(); |
| v_shadow = (unsigned long)vmalloc_shadow(start); |
| v_origin = (unsigned long)vmalloc_origin(start); |
| for (int i = 0; i < nr; |
| i++, v_shadow += PAGE_SIZE, v_origin += PAGE_SIZE) { |
| shadow = kmsan_vmalloc_to_page_or_null((void *)v_shadow); |
| origin = kmsan_vmalloc_to_page_or_null((void *)v_origin); |
| __vunmap_range_noflush(v_shadow, vmalloc_shadow(end)); |
| __vunmap_range_noflush(v_origin, vmalloc_origin(end)); |
| if (shadow) |
| __free_pages(shadow, 1); |
| if (origin) |
| __free_pages(origin, 1); |
| } |
| flush_cache_vmap(vmalloc_shadow(start), vmalloc_shadow(end)); |
| flush_cache_vmap(vmalloc_origin(start), vmalloc_origin(end)); |
| kmsan_leave_runtime(); |
| } |
| |
| void kmsan_copy_to_user(void __user *to, const void *from, size_t to_copy, |
| size_t left) |
| { |
| unsigned long ua_flags; |
| |
| if (!kmsan_enabled || kmsan_in_runtime()) |
| return; |
| /* |
| * At this point we've copied the memory already. It's hard to check it |
| * before copying, as the size of actually copied buffer is unknown. |
| */ |
| |
| /* copy_to_user() may copy zero bytes. No need to check. */ |
| if (!to_copy) |
| return; |
| /* Or maybe copy_to_user() failed to copy anything. */ |
| if (to_copy <= left) |
| return; |
| |
| ua_flags = user_access_save(); |
| if ((u64)to < TASK_SIZE) { |
| /* This is a user memory access, check it. */ |
| kmsan_internal_check_memory((void *)from, to_copy - left, to, |
| REASON_COPY_TO_USER); |
| } else { |
| /* Otherwise this is a kernel memory access. This happens when a |
| * compat syscall passes an argument allocated on the kernel |
| * stack to a real syscall. |
| * Don't check anything, just copy the shadow of the copied |
| * bytes. |
| */ |
| kmsan_internal_memmove_metadata((void *)to, (void *)from, |
| to_copy - left); |
| } |
| user_access_restore(ua_flags); |
| } |
| EXPORT_SYMBOL(kmsan_copy_to_user); |
| |
| /* Helper function to check an URB. */ |
| void kmsan_handle_urb(const struct urb *urb, bool is_out) |
| { |
| if (!urb) |
| return; |
| if (is_out) |
| kmsan_internal_check_memory(urb->transfer_buffer, |
| urb->transfer_buffer_length, |
| /*user_addr*/ 0, REASON_SUBMIT_URB); |
| else |
| kmsan_internal_unpoison_memory(urb->transfer_buffer, |
| urb->transfer_buffer_length, |
| /*checked*/ false); |
| } |
| EXPORT_SYMBOL_GPL(kmsan_handle_urb); |
| |
| static void kmsan_handle_dma_page(const void *addr, size_t size, |
| enum dma_data_direction dir) |
| { |
| switch (dir) { |
| case DMA_BIDIRECTIONAL: |
| kmsan_internal_check_memory((void *)addr, size, /*user_addr*/ 0, |
| REASON_ANY); |
| kmsan_internal_unpoison_memory((void *)addr, size, |
| /*checked*/ false); |
| break; |
| case DMA_TO_DEVICE: |
| kmsan_internal_check_memory((void *)addr, size, /*user_addr*/ 0, |
| REASON_ANY); |
| break; |
| case DMA_FROM_DEVICE: |
| kmsan_internal_unpoison_memory((void *)addr, size, |
| /*checked*/ false); |
| break; |
| case DMA_NONE: |
| break; |
| } |
| } |
| |
| /* Helper function to handle DMA data transfers. */ |
| void kmsan_handle_dma(struct page *page, size_t offset, size_t size, |
| enum dma_data_direction dir) |
| { |
| u64 page_offset, to_go, addr; |
| |
| if (PageHighMem(page)) |
| return; |
| addr = (u64)page_address(page) + offset; |
| /* |
| * The kernel may occasionally give us adjacent DMA pages not belonging |
| * to the same allocation. Process them separately to avoid triggering |
| * internal KMSAN checks. |
| */ |
| while (size > 0) { |
| page_offset = addr % PAGE_SIZE; |
| to_go = min(PAGE_SIZE - page_offset, (u64)size); |
| kmsan_handle_dma_page((void *)addr, to_go, dir); |
| addr += to_go; |
| size -= to_go; |
| } |
| } |
| |
| void kmsan_handle_dma_sg(struct scatterlist *sg, int nents, |
| enum dma_data_direction dir) |
| { |
| struct scatterlist *item; |
| int i; |
| |
| for_each_sg(sg, item, nents, i) |
| kmsan_handle_dma(sg_page(item), item->offset, item->length, |
| dir); |
| } |
| |
| /* Functions from kmsan-checks.h follow. */ |
| void kmsan_poison_memory(const void *address, size_t size, gfp_t flags) |
| { |
| if (!kmsan_enabled || kmsan_in_runtime()) |
| return; |
| kmsan_enter_runtime(); |
| /* The users may want to poison/unpoison random memory. */ |
| kmsan_internal_poison_memory((void *)address, size, flags, |
| KMSAN_POISON_NOCHECK); |
| kmsan_leave_runtime(); |
| } |
| EXPORT_SYMBOL(kmsan_poison_memory); |
| |
| void kmsan_unpoison_memory(const void *address, size_t size) |
| { |
| unsigned long ua_flags; |
| |
| if (!kmsan_enabled || kmsan_in_runtime()) |
| return; |
| |
| ua_flags = user_access_save(); |
| kmsan_enter_runtime(); |
| /* The users may want to poison/unpoison random memory. */ |
| kmsan_internal_unpoison_memory((void *)address, size, |
| KMSAN_POISON_NOCHECK); |
| kmsan_leave_runtime(); |
| user_access_restore(ua_flags); |
| } |
| EXPORT_SYMBOL(kmsan_unpoison_memory); |
| |
| /* |
| * Version of kmsan_unpoison_memory() that can be called from within the KMSAN |
| * runtime. |
| * |
| * Non-instrumented IRQ entry functions receive struct pt_regs from assembly |
| * code. Those regs need to be unpoisoned, otherwise using them will result in |
| * false positives. |
| * Using kmsan_unpoison_memory() is not an option in entry code, because the |
| * return value of in_task() is inconsistent - as a result, certain calls to |
| * kmsan_unpoison_memory() are ignored. kmsan_unpoison_entry_regs() ensures that |
| * the registers are unpoisoned even if kmsan_in_runtime() is true in the early |
| * entry code. |
| */ |
| void kmsan_unpoison_entry_regs(const struct pt_regs *regs) |
| { |
| unsigned long ua_flags; |
| |
| if (!kmsan_enabled) |
| return; |
| |
| ua_flags = user_access_save(); |
| kmsan_internal_unpoison_memory((void *)regs, sizeof(*regs), |
| KMSAN_POISON_NOCHECK); |
| user_access_restore(ua_flags); |
| } |
| |
| void kmsan_check_memory(const void *addr, size_t size) |
| { |
| if (!kmsan_enabled) |
| return; |
| return kmsan_internal_check_memory((void *)addr, size, /*user_addr*/ 0, |
| REASON_ANY); |
| } |
| EXPORT_SYMBOL(kmsan_check_memory); |