blob: 49a27af22742bc5067449e1aca48274403a8698b [file] [log] [blame] [edit]
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2021-2022 NVIDIA Corporation
*
* Author: Dipen Patel <dipenp@nvidia.com>
*/
#include <linux/err.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/stat.h>
#include <linux/interrupt.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/hte.h>
#include <linux/uaccess.h>
#include <linux/gpio/driver.h>
#include <linux/gpio/consumer.h>
#define HTE_SUSPEND 0
/* HTE source clock TSC is 31.25MHz */
#define HTE_TS_CLK_RATE_HZ 31250000ULL
#define HTE_CLK_RATE_NS 32
#define HTE_TS_NS_SHIFT __builtin_ctz(HTE_CLK_RATE_NS)
#define NV_AON_SLICE_INVALID -1
#define NV_LINES_IN_SLICE 32
/* AON HTE line map For slice 1 */
#define NV_AON_HTE_SLICE1_IRQ_GPIO_28 12
#define NV_AON_HTE_SLICE1_IRQ_GPIO_29 13
/* AON HTE line map For slice 2 */
#define NV_AON_HTE_SLICE2_IRQ_GPIO_0 0
#define NV_AON_HTE_SLICE2_IRQ_GPIO_1 1
#define NV_AON_HTE_SLICE2_IRQ_GPIO_2 2
#define NV_AON_HTE_SLICE2_IRQ_GPIO_3 3
#define NV_AON_HTE_SLICE2_IRQ_GPIO_4 4
#define NV_AON_HTE_SLICE2_IRQ_GPIO_5 5
#define NV_AON_HTE_SLICE2_IRQ_GPIO_6 6
#define NV_AON_HTE_SLICE2_IRQ_GPIO_7 7
#define NV_AON_HTE_SLICE2_IRQ_GPIO_8 8
#define NV_AON_HTE_SLICE2_IRQ_GPIO_9 9
#define NV_AON_HTE_SLICE2_IRQ_GPIO_10 10
#define NV_AON_HTE_SLICE2_IRQ_GPIO_11 11
#define NV_AON_HTE_SLICE2_IRQ_GPIO_12 12
#define NV_AON_HTE_SLICE2_IRQ_GPIO_13 13
#define NV_AON_HTE_SLICE2_IRQ_GPIO_14 14
#define NV_AON_HTE_SLICE2_IRQ_GPIO_15 15
#define NV_AON_HTE_SLICE2_IRQ_GPIO_16 16
#define NV_AON_HTE_SLICE2_IRQ_GPIO_17 17
#define NV_AON_HTE_SLICE2_IRQ_GPIO_18 18
#define NV_AON_HTE_SLICE2_IRQ_GPIO_19 19
#define NV_AON_HTE_SLICE2_IRQ_GPIO_20 20
#define NV_AON_HTE_SLICE2_IRQ_GPIO_21 21
#define NV_AON_HTE_SLICE2_IRQ_GPIO_22 22
#define NV_AON_HTE_SLICE2_IRQ_GPIO_23 23
#define NV_AON_HTE_SLICE2_IRQ_GPIO_24 24
#define NV_AON_HTE_SLICE2_IRQ_GPIO_25 25
#define NV_AON_HTE_SLICE2_IRQ_GPIO_26 26
#define NV_AON_HTE_SLICE2_IRQ_GPIO_27 27
#define HTE_TECTRL 0x0
#define HTE_TETSCH 0x4
#define HTE_TETSCL 0x8
#define HTE_TESRC 0xC
#define HTE_TECCV 0x10
#define HTE_TEPCV 0x14
#define HTE_TECMD 0x1C
#define HTE_TESTATUS 0x20
#define HTE_SLICE0_TETEN 0x40
#define HTE_SLICE1_TETEN 0x60
#define HTE_SLICE_SIZE (HTE_SLICE1_TETEN - HTE_SLICE0_TETEN)
#define HTE_TECTRL_ENABLE_ENABLE 0x1
#define HTE_TECTRL_OCCU_SHIFT 0x8
#define HTE_TECTRL_INTR_SHIFT 0x1
#define HTE_TECTRL_INTR_ENABLE 0x1
#define HTE_TESRC_SLICE_SHIFT 16
#define HTE_TESRC_SLICE_DEFAULT_MASK 0xFF
#define HTE_TECMD_CMD_POP 0x1
#define HTE_TESTATUS_OCCUPANCY_SHIFT 8
#define HTE_TESTATUS_OCCUPANCY_MASK 0xFF
enum tegra_hte_type {
HTE_TEGRA_TYPE_GPIO = 1U << 0,
HTE_TEGRA_TYPE_LIC = 1U << 1,
};
struct hte_slices {
u32 r_val;
unsigned long flags;
/* to prevent lines mapped to same slice updating its register */
spinlock_t s_lock;
};
struct tegra_hte_line_mapped {
int slice;
u32 bit_index;
};
struct tegra_hte_line_data {
unsigned long flags;
void *data;
};
struct tegra_hte_data {
enum tegra_hte_type type;
u32 map_sz;
u32 sec_map_sz;
const struct tegra_hte_line_mapped *map;
const struct tegra_hte_line_mapped *sec_map;
};
struct tegra_hte_soc {
int hte_irq;
u32 itr_thrshld;
u32 conf_rval;
struct hte_slices *sl;
const struct tegra_hte_data *prov_data;
struct tegra_hte_line_data *line_data;
struct hte_chip *chip;
struct gpio_chip *c;
void __iomem *regs;
};
static const struct tegra_hte_line_mapped tegra194_aon_gpio_map[] = {
/* gpio, slice, bit_index */
/* AA port */
[0] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_11},
[1] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_10},
[2] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_9},
[3] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_8},
[4] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_7},
[5] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_6},
[6] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_5},
[7] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_4},
/* BB port */
[8] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_3},
[9] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_2},
[10] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_1},
[11] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_0},
/* CC port */
[12] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_22},
[13] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_21},
[14] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_20},
[15] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_19},
[16] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_18},
[17] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_17},
[18] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_16},
[19] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_15},
/* DD port */
[20] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_14},
[21] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_13},
[22] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_12},
/* EE port */
[23] = {1, NV_AON_HTE_SLICE1_IRQ_GPIO_29},
[24] = {1, NV_AON_HTE_SLICE1_IRQ_GPIO_28},
[25] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_27},
[26] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_26},
[27] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_25},
[28] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_24},
[29] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_23},
};
static const struct tegra_hte_line_mapped tegra194_aon_gpio_sec_map[] = {
/* gpio, slice, bit_index */
/* AA port */
[0] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_11},
[1] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_10},
[2] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_9},
[3] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_8},
[4] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_7},
[5] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_6},
[6] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_5},
[7] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_4},
/* BB port */
[8] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_3},
[9] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_2},
[10] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_1},
[11] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_0},
[12] = {NV_AON_SLICE_INVALID, 0},
[13] = {NV_AON_SLICE_INVALID, 0},
[14] = {NV_AON_SLICE_INVALID, 0},
[15] = {NV_AON_SLICE_INVALID, 0},
/* CC port */
[16] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_22},
[17] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_21},
[18] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_20},
[19] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_19},
[20] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_18},
[21] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_17},
[22] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_16},
[23] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_15},
/* DD port */
[24] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_14},
[25] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_13},
[26] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_12},
[27] = {NV_AON_SLICE_INVALID, 0},
[28] = {NV_AON_SLICE_INVALID, 0},
[29] = {NV_AON_SLICE_INVALID, 0},
[30] = {NV_AON_SLICE_INVALID, 0},
[31] = {NV_AON_SLICE_INVALID, 0},
/* EE port */
[32] = {1, NV_AON_HTE_SLICE1_IRQ_GPIO_29},
[33] = {1, NV_AON_HTE_SLICE1_IRQ_GPIO_28},
[34] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_27},
[35] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_26},
[36] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_25},
[37] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_24},
[38] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_23},
[39] = {NV_AON_SLICE_INVALID, 0},
};
static const struct tegra_hte_data aon_hte = {
.map_sz = ARRAY_SIZE(tegra194_aon_gpio_map),
.map = tegra194_aon_gpio_map,
.sec_map_sz = ARRAY_SIZE(tegra194_aon_gpio_sec_map),
.sec_map = tegra194_aon_gpio_sec_map,
.type = HTE_TEGRA_TYPE_GPIO,
};
static const struct tegra_hte_data lic_hte = {
.map_sz = 0,
.map = NULL,
.type = HTE_TEGRA_TYPE_LIC,
};
static inline u32 tegra_hte_readl(struct tegra_hte_soc *hte, u32 reg)
{
return readl(hte->regs + reg);
}
static inline void tegra_hte_writel(struct tegra_hte_soc *hte, u32 reg,
u32 val)
{
writel(val, hte->regs + reg);
}
static int tegra_hte_map_to_line_id(u32 eid,
const struct tegra_hte_line_mapped *m,
u32 map_sz, u32 *mapped)
{
if (m) {
if (eid > map_sz)
return -EINVAL;
if (m[eid].slice == NV_AON_SLICE_INVALID)
return -EINVAL;
*mapped = (m[eid].slice << 5) + m[eid].bit_index;
} else {
*mapped = eid;
}
return 0;
}
static int tegra_hte_line_xlate(struct hte_chip *gc,
const struct of_phandle_args *args,
struct hte_ts_desc *desc, u32 *xlated_id)
{
int ret = 0;
u32 line_id;
struct tegra_hte_soc *gs;
const struct tegra_hte_line_mapped *map = NULL;
u32 map_sz = 0;
if (!gc || !desc || !xlated_id)
return -EINVAL;
if (args) {
if (gc->of_hte_n_cells < 1)
return -EINVAL;
if (args->args_count != gc->of_hte_n_cells)
return -EINVAL;
desc->attr.line_id = args->args[0];
}
gs = gc->data;
if (!gs || !gs->prov_data)
return -EINVAL;
/*
*
* There are two paths GPIO consumers can take as follows:
* 1) The consumer (gpiolib-cdev for example) which uses GPIO global
* number which gets assigned run time.
* 2) The consumer passing GPIO from the DT which is assigned
* statically for example by using TEGRA194_AON_GPIO gpio DT binding.
*
* The code below addresses both the consumer use cases and maps into
* HTE/GTE namespace.
*/
if (gs->prov_data->type == HTE_TEGRA_TYPE_GPIO && !args) {
line_id = desc->attr.line_id - gs->c->base;
map = gs->prov_data->map;
map_sz = gs->prov_data->map_sz;
} else if (gs->prov_data->type == HTE_TEGRA_TYPE_GPIO && args) {
line_id = desc->attr.line_id;
map = gs->prov_data->sec_map;
map_sz = gs->prov_data->sec_map_sz;
} else {
line_id = desc->attr.line_id;
}
ret = tegra_hte_map_to_line_id(line_id, map, map_sz, xlated_id);
if (ret < 0) {
dev_err(gc->dev, "line_id:%u mapping failed\n",
desc->attr.line_id);
return ret;
}
if (*xlated_id > gc->nlines)
return -EINVAL;
dev_dbg(gc->dev, "requested id:%u, xlated id:%u\n",
desc->attr.line_id, *xlated_id);
return 0;
}
static int tegra_hte_line_xlate_plat(struct hte_chip *gc,
struct hte_ts_desc *desc, u32 *xlated_id)
{
return tegra_hte_line_xlate(gc, NULL, desc, xlated_id);
}
static int tegra_hte_en_dis_common(struct hte_chip *chip, u32 line_id, bool en)
{
u32 slice, sl_bit_shift, line_bit, val, reg;
struct tegra_hte_soc *gs;
sl_bit_shift = __builtin_ctz(HTE_SLICE_SIZE);
if (!chip)
return -EINVAL;
gs = chip->data;
if (line_id > chip->nlines) {
dev_err(chip->dev,
"line id: %u is not supported by this controller\n",
line_id);
return -EINVAL;
}
slice = line_id >> sl_bit_shift;
line_bit = line_id & (HTE_SLICE_SIZE - 1);
reg = (slice << sl_bit_shift) + HTE_SLICE0_TETEN;
spin_lock(&gs->sl[slice].s_lock);
if (test_bit(HTE_SUSPEND, &gs->sl[slice].flags)) {
spin_unlock(&gs->sl[slice].s_lock);
dev_dbg(chip->dev, "device suspended");
return -EBUSY;
}
val = tegra_hte_readl(gs, reg);
if (en)
val = val | (1 << line_bit);
else
val = val & (~(1 << line_bit));
tegra_hte_writel(gs, reg, val);
spin_unlock(&gs->sl[slice].s_lock);
dev_dbg(chip->dev, "line: %u, slice %u, line_bit %u, reg:0x%x\n",
line_id, slice, line_bit, reg);
return 0;
}
static int tegra_hte_enable(struct hte_chip *chip, u32 line_id)
{
if (!chip)
return -EINVAL;
return tegra_hte_en_dis_common(chip, line_id, true);
}
static int tegra_hte_disable(struct hte_chip *chip, u32 line_id)
{
if (!chip)
return -EINVAL;
return tegra_hte_en_dis_common(chip, line_id, false);
}
static int tegra_hte_request(struct hte_chip *chip, struct hte_ts_desc *desc,
u32 line_id)
{
int ret;
struct tegra_hte_soc *gs;
struct hte_line_attr *attr;
if (!chip || !chip->data || !desc)
return -EINVAL;
gs = chip->data;
attr = &desc->attr;
if (gs->prov_data->type == HTE_TEGRA_TYPE_GPIO) {
if (!attr->line_data)
return -EINVAL;
ret = gpiod_enable_hw_timestamp_ns(attr->line_data,
attr->edge_flags);
if (ret)
return ret;
gs->line_data[line_id].data = attr->line_data;
gs->line_data[line_id].flags = attr->edge_flags;
}
return tegra_hte_en_dis_common(chip, line_id, true);
}
static int tegra_hte_release(struct hte_chip *chip, struct hte_ts_desc *desc,
u32 line_id)
{
struct tegra_hte_soc *gs;
struct hte_line_attr *attr;
int ret;
if (!chip || !chip->data || !desc)
return -EINVAL;
gs = chip->data;
attr = &desc->attr;
if (gs->prov_data->type == HTE_TEGRA_TYPE_GPIO) {
ret = gpiod_disable_hw_timestamp_ns(attr->line_data,
gs->line_data[line_id].flags);
if (ret)
return ret;
gs->line_data[line_id].data = NULL;
gs->line_data[line_id].flags = 0;
}
return tegra_hte_en_dis_common(chip, line_id, false);
}
static int tegra_hte_clk_src_info(struct hte_chip *chip,
struct hte_clk_info *ci)
{
(void)chip;
if (!ci)
return -EINVAL;
ci->hz = HTE_TS_CLK_RATE_HZ;
ci->type = CLOCK_MONOTONIC;
return 0;
}
static int tegra_hte_get_level(struct tegra_hte_soc *gs, u32 line_id)
{
struct gpio_desc *desc;
if (gs->prov_data->type == HTE_TEGRA_TYPE_GPIO) {
desc = gs->line_data[line_id].data;
if (desc)
return gpiod_get_raw_value(desc);
}
return -1;
}
static void tegra_hte_read_fifo(struct tegra_hte_soc *gs)
{
u32 tsh, tsl, src, pv, cv, acv, slice, bit_index, line_id;
u64 tsc;
struct hte_ts_data el;
while ((tegra_hte_readl(gs, HTE_TESTATUS) >>
HTE_TESTATUS_OCCUPANCY_SHIFT) &
HTE_TESTATUS_OCCUPANCY_MASK) {
tsh = tegra_hte_readl(gs, HTE_TETSCH);
tsl = tegra_hte_readl(gs, HTE_TETSCL);
tsc = (((u64)tsh << 32) | tsl);
src = tegra_hte_readl(gs, HTE_TESRC);
slice = (src >> HTE_TESRC_SLICE_SHIFT) &
HTE_TESRC_SLICE_DEFAULT_MASK;
pv = tegra_hte_readl(gs, HTE_TEPCV);
cv = tegra_hte_readl(gs, HTE_TECCV);
acv = pv ^ cv;
while (acv) {
bit_index = __builtin_ctz(acv);
line_id = bit_index + (slice << 5);
el.tsc = tsc << HTE_TS_NS_SHIFT;
el.raw_level = tegra_hte_get_level(gs, line_id);
hte_push_ts_ns(gs->chip, line_id, &el);
acv &= ~BIT(bit_index);
}
tegra_hte_writel(gs, HTE_TECMD, HTE_TECMD_CMD_POP);
}
}
static irqreturn_t tegra_hte_isr(int irq, void *dev_id)
{
struct tegra_hte_soc *gs = dev_id;
(void)irq;
tegra_hte_read_fifo(gs);
return IRQ_HANDLED;
}
static bool tegra_hte_match_from_linedata(const struct hte_chip *chip,
const struct hte_ts_desc *hdesc)
{
struct tegra_hte_soc *hte_dev = chip->data;
if (!hte_dev || (hte_dev->prov_data->type != HTE_TEGRA_TYPE_GPIO))
return false;
return hte_dev->c == gpiod_to_chip(hdesc->attr.line_data);
}
static const struct of_device_id tegra_hte_of_match[] = {
{ .compatible = "nvidia,tegra194-gte-lic", .data = &lic_hte},
{ .compatible = "nvidia,tegra194-gte-aon", .data = &aon_hte},
{ }
};
MODULE_DEVICE_TABLE(of, tegra_hte_of_match);
static const struct hte_ops g_ops = {
.request = tegra_hte_request,
.release = tegra_hte_release,
.enable = tegra_hte_enable,
.disable = tegra_hte_disable,
.get_clk_src_info = tegra_hte_clk_src_info,
};
static void tegra_gte_disable(void *data)
{
struct platform_device *pdev = data;
struct tegra_hte_soc *gs = dev_get_drvdata(&pdev->dev);
tegra_hte_writel(gs, HTE_TECTRL, 0);
}
static int tegra_get_gpiochip_from_name(struct gpio_chip *chip, void *data)
{
return !strcmp(chip->label, data);
}
static int tegra_hte_probe(struct platform_device *pdev)
{
int ret;
u32 i, slices, val = 0;
u32 nlines;
struct device *dev;
struct tegra_hte_soc *hte_dev;
struct hte_chip *gc;
dev = &pdev->dev;
ret = of_property_read_u32(dev->of_node, "nvidia,slices", &slices);
if (ret != 0) {
dev_err(dev, "Could not read slices\n");
return -EINVAL;
}
nlines = slices << 5;
hte_dev = devm_kzalloc(dev, sizeof(*hte_dev), GFP_KERNEL);
if (!hte_dev)
return -ENOMEM;
gc = devm_kzalloc(dev, sizeof(*gc), GFP_KERNEL);
if (!gc)
return -ENOMEM;
dev_set_drvdata(&pdev->dev, hte_dev);
hte_dev->prov_data = of_device_get_match_data(&pdev->dev);
hte_dev->regs = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(hte_dev->regs))
return PTR_ERR(hte_dev->regs);
ret = of_property_read_u32(dev->of_node, "nvidia,int-threshold",
&hte_dev->itr_thrshld);
if (ret != 0)
hte_dev->itr_thrshld = 1;
hte_dev->sl = devm_kcalloc(dev, slices, sizeof(*hte_dev->sl),
GFP_KERNEL);
if (!hte_dev->sl)
return -ENOMEM;
ret = platform_get_irq(pdev, 0);
if (ret < 0) {
dev_err_probe(dev, ret, "failed to get irq\n");
return ret;
}
hte_dev->hte_irq = ret;
ret = devm_request_irq(dev, hte_dev->hte_irq, tegra_hte_isr, 0,
dev_name(dev), hte_dev);
if (ret < 0) {
dev_err(dev, "request irq failed.\n");
return ret;
}
gc->nlines = nlines;
gc->ops = &g_ops;
gc->dev = dev;
gc->data = hte_dev;
gc->xlate_of = tegra_hte_line_xlate;
gc->xlate_plat = tegra_hte_line_xlate_plat;
gc->of_hte_n_cells = 1;
if (hte_dev->prov_data &&
hte_dev->prov_data->type == HTE_TEGRA_TYPE_GPIO) {
hte_dev->line_data = devm_kcalloc(dev, nlines,
sizeof(*hte_dev->line_data),
GFP_KERNEL);
if (!hte_dev->line_data)
return -ENOMEM;
gc->match_from_linedata = tegra_hte_match_from_linedata;
hte_dev->c = gpiochip_find("tegra194-gpio-aon",
tegra_get_gpiochip_from_name);
if (!hte_dev->c)
return dev_err_probe(dev, -EPROBE_DEFER,
"wait for gpio controller\n");
}
hte_dev->chip = gc;
ret = devm_hte_register_chip(hte_dev->chip);
if (ret) {
dev_err(gc->dev, "hte chip register failed");
return ret;
}
for (i = 0; i < slices; i++) {
hte_dev->sl[i].flags = 0;
spin_lock_init(&hte_dev->sl[i].s_lock);
}
val = HTE_TECTRL_ENABLE_ENABLE |
(HTE_TECTRL_INTR_ENABLE << HTE_TECTRL_INTR_SHIFT) |
(hte_dev->itr_thrshld << HTE_TECTRL_OCCU_SHIFT);
tegra_hte_writel(hte_dev, HTE_TECTRL, val);
ret = devm_add_action_or_reset(&pdev->dev, tegra_gte_disable, pdev);
if (ret)
return ret;
dev_dbg(gc->dev, "lines: %d, slices:%d", gc->nlines, slices);
return 0;
}
static int __maybe_unused tegra_hte_resume_early(struct device *dev)
{
u32 i;
struct tegra_hte_soc *gs = dev_get_drvdata(dev);
u32 slices = gs->chip->nlines / NV_LINES_IN_SLICE;
u32 sl_bit_shift = __builtin_ctz(HTE_SLICE_SIZE);
tegra_hte_writel(gs, HTE_TECTRL, gs->conf_rval);
for (i = 0; i < slices; i++) {
spin_lock(&gs->sl[i].s_lock);
tegra_hte_writel(gs,
((i << sl_bit_shift) + HTE_SLICE0_TETEN),
gs->sl[i].r_val);
clear_bit(HTE_SUSPEND, &gs->sl[i].flags);
spin_unlock(&gs->sl[i].s_lock);
}
return 0;
}
static int __maybe_unused tegra_hte_suspend_late(struct device *dev)
{
u32 i;
struct tegra_hte_soc *gs = dev_get_drvdata(dev);
u32 slices = gs->chip->nlines / NV_LINES_IN_SLICE;
u32 sl_bit_shift = __builtin_ctz(HTE_SLICE_SIZE);
gs->conf_rval = tegra_hte_readl(gs, HTE_TECTRL);
for (i = 0; i < slices; i++) {
spin_lock(&gs->sl[i].s_lock);
gs->sl[i].r_val = tegra_hte_readl(gs,
((i << sl_bit_shift) + HTE_SLICE0_TETEN));
set_bit(HTE_SUSPEND, &gs->sl[i].flags);
spin_unlock(&gs->sl[i].s_lock);
}
return 0;
}
static const struct dev_pm_ops tegra_hte_pm = {
SET_LATE_SYSTEM_SLEEP_PM_OPS(tegra_hte_suspend_late,
tegra_hte_resume_early)
};
static struct platform_driver tegra_hte_driver = {
.probe = tegra_hte_probe,
.driver = {
.name = "tegra_hte",
.pm = &tegra_hte_pm,
.of_match_table = tegra_hte_of_match,
},
};
module_platform_driver(tegra_hte_driver);
MODULE_AUTHOR("Dipen Patel <dipenp@nvidia.com>");
MODULE_DESCRIPTION("NVIDIA Tegra HTE (Hardware Timestamping Engine) driver");
MODULE_LICENSE("GPL");