| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (C) 2014 Intel Corporation |
| * |
| * Adjustable fractional divider clock implementation. |
| * Uses rational best approximation algorithm. |
| * |
| * Output is calculated as |
| * |
| * rate = (m / n) * parent_rate (1) |
| * |
| * This is useful when we have a prescaler block which asks for |
| * m (numerator) and n (denominator) values to be provided to satisfy |
| * the (1) as much as possible. |
| * |
| * Since m and n have the limitation by a range, e.g. |
| * |
| * n >= 1, n < N_width, where N_width = 2^nwidth (2) |
| * |
| * for some cases the output may be saturated. Hence, from (1) and (2), |
| * assuming the worst case when m = 1, the inequality |
| * |
| * floor(log2(parent_rate / rate)) <= nwidth (3) |
| * |
| * may be derived. Thus, in cases when |
| * |
| * (parent_rate / rate) >> N_width (4) |
| * |
| * we might scale up the rate by 2^scale (see the description of |
| * CLK_FRAC_DIVIDER_POWER_OF_TWO_PS for additional information), where |
| * |
| * scale = floor(log2(parent_rate / rate)) - nwidth (5) |
| * |
| * and assume that the IP, that needs m and n, has also its own |
| * prescaler, which is capable to divide by 2^scale. In this way |
| * we get the denominator to satisfy the desired range (2) and |
| * at the same time a much better result of m and n than simple |
| * saturated values. |
| */ |
| |
| #include <linux/debugfs.h> |
| #include <linux/device.h> |
| #include <linux/io.h> |
| #include <linux/math.h> |
| #include <linux/module.h> |
| #include <linux/rational.h> |
| #include <linux/slab.h> |
| |
| #include <linux/clk-provider.h> |
| |
| #include "clk-fractional-divider.h" |
| |
| static inline u32 clk_fd_readl(struct clk_fractional_divider *fd) |
| { |
| if (fd->flags & CLK_FRAC_DIVIDER_BIG_ENDIAN) |
| return ioread32be(fd->reg); |
| |
| return readl(fd->reg); |
| } |
| |
| static inline void clk_fd_writel(struct clk_fractional_divider *fd, u32 val) |
| { |
| if (fd->flags & CLK_FRAC_DIVIDER_BIG_ENDIAN) |
| iowrite32be(val, fd->reg); |
| else |
| writel(val, fd->reg); |
| } |
| |
| static void clk_fd_get_div(struct clk_hw *hw, struct u32_fract *fract) |
| { |
| struct clk_fractional_divider *fd = to_clk_fd(hw); |
| unsigned long flags = 0; |
| unsigned long m, n; |
| u32 val; |
| |
| if (fd->lock) |
| spin_lock_irqsave(fd->lock, flags); |
| else |
| __acquire(fd->lock); |
| |
| val = clk_fd_readl(fd); |
| |
| if (fd->lock) |
| spin_unlock_irqrestore(fd->lock, flags); |
| else |
| __release(fd->lock); |
| |
| m = (val & fd->mmask) >> fd->mshift; |
| n = (val & fd->nmask) >> fd->nshift; |
| |
| if (fd->flags & CLK_FRAC_DIVIDER_ZERO_BASED) { |
| m++; |
| n++; |
| } |
| |
| fract->numerator = m; |
| fract->denominator = n; |
| } |
| |
| static unsigned long clk_fd_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) |
| { |
| struct u32_fract fract; |
| u64 ret; |
| |
| clk_fd_get_div(hw, &fract); |
| |
| if (!fract.numerator || !fract.denominator) |
| return parent_rate; |
| |
| ret = (u64)parent_rate * fract.numerator; |
| do_div(ret, fract.denominator); |
| |
| return ret; |
| } |
| |
| void clk_fractional_divider_general_approximation(struct clk_hw *hw, |
| unsigned long rate, |
| unsigned long *parent_rate, |
| unsigned long *m, unsigned long *n) |
| { |
| struct clk_fractional_divider *fd = to_clk_fd(hw); |
| |
| /* |
| * Get rate closer to *parent_rate to guarantee there is no overflow |
| * for m and n. In the result it will be the nearest rate left shifted |
| * by (scale - fd->nwidth) bits. |
| * |
| * For the detailed explanation see the top comment in this file. |
| */ |
| if (fd->flags & CLK_FRAC_DIVIDER_POWER_OF_TWO_PS) { |
| unsigned long scale = fls_long(*parent_rate / rate - 1); |
| |
| if (scale > fd->nwidth) |
| rate <<= scale - fd->nwidth; |
| } |
| |
| rational_best_approximation(rate, *parent_rate, |
| GENMASK(fd->mwidth - 1, 0), GENMASK(fd->nwidth - 1, 0), |
| m, n); |
| } |
| |
| static long clk_fd_round_rate(struct clk_hw *hw, unsigned long rate, |
| unsigned long *parent_rate) |
| { |
| struct clk_fractional_divider *fd = to_clk_fd(hw); |
| unsigned long m, n; |
| u64 ret; |
| |
| if (!rate || (!clk_hw_can_set_rate_parent(hw) && rate >= *parent_rate)) |
| return *parent_rate; |
| |
| if (fd->approximation) |
| fd->approximation(hw, rate, parent_rate, &m, &n); |
| else |
| clk_fractional_divider_general_approximation(hw, rate, parent_rate, &m, &n); |
| |
| ret = (u64)*parent_rate * m; |
| do_div(ret, n); |
| |
| return ret; |
| } |
| |
| static int clk_fd_set_rate(struct clk_hw *hw, unsigned long rate, |
| unsigned long parent_rate) |
| { |
| struct clk_fractional_divider *fd = to_clk_fd(hw); |
| unsigned long flags = 0; |
| unsigned long m, n; |
| u32 val; |
| |
| rational_best_approximation(rate, parent_rate, |
| GENMASK(fd->mwidth - 1, 0), GENMASK(fd->nwidth - 1, 0), |
| &m, &n); |
| |
| if (fd->flags & CLK_FRAC_DIVIDER_ZERO_BASED) { |
| m--; |
| n--; |
| } |
| |
| if (fd->lock) |
| spin_lock_irqsave(fd->lock, flags); |
| else |
| __acquire(fd->lock); |
| |
| val = clk_fd_readl(fd); |
| val &= ~(fd->mmask | fd->nmask); |
| val |= (m << fd->mshift) | (n << fd->nshift); |
| clk_fd_writel(fd, val); |
| |
| if (fd->lock) |
| spin_unlock_irqrestore(fd->lock, flags); |
| else |
| __release(fd->lock); |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_DEBUG_FS |
| static int clk_fd_numerator_get(void *hw, u64 *val) |
| { |
| struct u32_fract fract; |
| |
| clk_fd_get_div(hw, &fract); |
| |
| *val = fract.numerator; |
| |
| return 0; |
| } |
| DEFINE_DEBUGFS_ATTRIBUTE(clk_fd_numerator_fops, clk_fd_numerator_get, NULL, "%llu\n"); |
| |
| static int clk_fd_denominator_get(void *hw, u64 *val) |
| { |
| struct u32_fract fract; |
| |
| clk_fd_get_div(hw, &fract); |
| |
| *val = fract.denominator; |
| |
| return 0; |
| } |
| DEFINE_DEBUGFS_ATTRIBUTE(clk_fd_denominator_fops, clk_fd_denominator_get, NULL, "%llu\n"); |
| |
| static void clk_fd_debug_init(struct clk_hw *hw, struct dentry *dentry) |
| { |
| debugfs_create_file("numerator", 0444, dentry, hw, &clk_fd_numerator_fops); |
| debugfs_create_file("denominator", 0444, dentry, hw, &clk_fd_denominator_fops); |
| } |
| #endif |
| |
| const struct clk_ops clk_fractional_divider_ops = { |
| .recalc_rate = clk_fd_recalc_rate, |
| .round_rate = clk_fd_round_rate, |
| .set_rate = clk_fd_set_rate, |
| #ifdef CONFIG_DEBUG_FS |
| .debug_init = clk_fd_debug_init, |
| #endif |
| }; |
| EXPORT_SYMBOL_GPL(clk_fractional_divider_ops); |
| |
| struct clk_hw *clk_hw_register_fractional_divider(struct device *dev, |
| const char *name, const char *parent_name, unsigned long flags, |
| void __iomem *reg, u8 mshift, u8 mwidth, u8 nshift, u8 nwidth, |
| u8 clk_divider_flags, spinlock_t *lock) |
| { |
| struct clk_fractional_divider *fd; |
| struct clk_init_data init; |
| struct clk_hw *hw; |
| int ret; |
| |
| fd = kzalloc(sizeof(*fd), GFP_KERNEL); |
| if (!fd) |
| return ERR_PTR(-ENOMEM); |
| |
| init.name = name; |
| init.ops = &clk_fractional_divider_ops; |
| init.flags = flags; |
| init.parent_names = parent_name ? &parent_name : NULL; |
| init.num_parents = parent_name ? 1 : 0; |
| |
| fd->reg = reg; |
| fd->mshift = mshift; |
| fd->mwidth = mwidth; |
| fd->mmask = GENMASK(mwidth - 1, 0) << mshift; |
| fd->nshift = nshift; |
| fd->nwidth = nwidth; |
| fd->nmask = GENMASK(nwidth - 1, 0) << nshift; |
| fd->flags = clk_divider_flags; |
| fd->lock = lock; |
| fd->hw.init = &init; |
| |
| hw = &fd->hw; |
| ret = clk_hw_register(dev, hw); |
| if (ret) { |
| kfree(fd); |
| hw = ERR_PTR(ret); |
| } |
| |
| return hw; |
| } |
| EXPORT_SYMBOL_GPL(clk_hw_register_fractional_divider); |
| |
| struct clk *clk_register_fractional_divider(struct device *dev, |
| const char *name, const char *parent_name, unsigned long flags, |
| void __iomem *reg, u8 mshift, u8 mwidth, u8 nshift, u8 nwidth, |
| u8 clk_divider_flags, spinlock_t *lock) |
| { |
| struct clk_hw *hw; |
| |
| hw = clk_hw_register_fractional_divider(dev, name, parent_name, flags, |
| reg, mshift, mwidth, nshift, nwidth, clk_divider_flags, |
| lock); |
| if (IS_ERR(hw)) |
| return ERR_CAST(hw); |
| return hw->clk; |
| } |
| EXPORT_SYMBOL_GPL(clk_register_fractional_divider); |
| |
| void clk_hw_unregister_fractional_divider(struct clk_hw *hw) |
| { |
| struct clk_fractional_divider *fd; |
| |
| fd = to_clk_fd(hw); |
| |
| clk_hw_unregister(hw); |
| kfree(fd); |
| } |