|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | #include <linux/bitmap.h> | 
|  | #include <linux/bug.h> | 
|  | #include <linux/export.h> | 
|  | #include <linux/idr.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/xarray.h> | 
|  |  | 
|  | /** | 
|  | * idr_alloc_u32() - Allocate an ID. | 
|  | * @idr: IDR handle. | 
|  | * @ptr: Pointer to be associated with the new ID. | 
|  | * @nextid: Pointer to an ID. | 
|  | * @max: The maximum ID to allocate (inclusive). | 
|  | * @gfp: Memory allocation flags. | 
|  | * | 
|  | * Allocates an unused ID in the range specified by @nextid and @max. | 
|  | * Note that @max is inclusive whereas the @end parameter to idr_alloc() | 
|  | * is exclusive.  The new ID is assigned to @nextid before the pointer | 
|  | * is inserted into the IDR, so if @nextid points into the object pointed | 
|  | * to by @ptr, a concurrent lookup will not find an uninitialised ID. | 
|  | * | 
|  | * The caller should provide their own locking to ensure that two | 
|  | * concurrent modifications to the IDR are not possible.  Read-only | 
|  | * accesses to the IDR may be done under the RCU read lock or may | 
|  | * exclude simultaneous writers. | 
|  | * | 
|  | * Return: 0 if an ID was allocated, -ENOMEM if memory allocation failed, | 
|  | * or -ENOSPC if no free IDs could be found.  If an error occurred, | 
|  | * @nextid is unchanged. | 
|  | */ | 
|  | int idr_alloc_u32(struct idr *idr, void *ptr, u32 *nextid, | 
|  | unsigned long max, gfp_t gfp) | 
|  | { | 
|  | struct radix_tree_iter iter; | 
|  | void __rcu **slot; | 
|  | unsigned int base = idr->idr_base; | 
|  | unsigned int id = *nextid; | 
|  |  | 
|  | if (WARN_ON_ONCE(!(idr->idr_rt.xa_flags & ROOT_IS_IDR))) | 
|  | idr->idr_rt.xa_flags |= IDR_RT_MARKER; | 
|  |  | 
|  | id = (id < base) ? 0 : id - base; | 
|  | radix_tree_iter_init(&iter, id); | 
|  | slot = idr_get_free(&idr->idr_rt, &iter, gfp, max - base); | 
|  | if (IS_ERR(slot)) | 
|  | return PTR_ERR(slot); | 
|  |  | 
|  | *nextid = iter.index + base; | 
|  | /* there is a memory barrier inside radix_tree_iter_replace() */ | 
|  | radix_tree_iter_replace(&idr->idr_rt, &iter, slot, ptr); | 
|  | radix_tree_iter_tag_clear(&idr->idr_rt, &iter, IDR_FREE); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(idr_alloc_u32); | 
|  |  | 
|  | /** | 
|  | * idr_alloc() - Allocate an ID. | 
|  | * @idr: IDR handle. | 
|  | * @ptr: Pointer to be associated with the new ID. | 
|  | * @start: The minimum ID (inclusive). | 
|  | * @end: The maximum ID (exclusive). | 
|  | * @gfp: Memory allocation flags. | 
|  | * | 
|  | * Allocates an unused ID in the range specified by @start and @end.  If | 
|  | * @end is <= 0, it is treated as one larger than %INT_MAX.  This allows | 
|  | * callers to use @start + N as @end as long as N is within integer range. | 
|  | * | 
|  | * The caller should provide their own locking to ensure that two | 
|  | * concurrent modifications to the IDR are not possible.  Read-only | 
|  | * accesses to the IDR may be done under the RCU read lock or may | 
|  | * exclude simultaneous writers. | 
|  | * | 
|  | * Return: The newly allocated ID, -ENOMEM if memory allocation failed, | 
|  | * or -ENOSPC if no free IDs could be found. | 
|  | */ | 
|  | int idr_alloc(struct idr *idr, void *ptr, int start, int end, gfp_t gfp) | 
|  | { | 
|  | u32 id = start; | 
|  | int ret; | 
|  |  | 
|  | if (WARN_ON_ONCE(start < 0)) | 
|  | return -EINVAL; | 
|  |  | 
|  | ret = idr_alloc_u32(idr, ptr, &id, end > 0 ? end - 1 : INT_MAX, gfp); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | return id; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(idr_alloc); | 
|  |  | 
|  | /** | 
|  | * idr_alloc_cyclic() - Allocate an ID cyclically. | 
|  | * @idr: IDR handle. | 
|  | * @ptr: Pointer to be associated with the new ID. | 
|  | * @start: The minimum ID (inclusive). | 
|  | * @end: The maximum ID (exclusive). | 
|  | * @gfp: Memory allocation flags. | 
|  | * | 
|  | * Allocates an unused ID in the range specified by @nextid and @end.  If | 
|  | * @end is <= 0, it is treated as one larger than %INT_MAX.  This allows | 
|  | * callers to use @start + N as @end as long as N is within integer range. | 
|  | * The search for an unused ID will start at the last ID allocated and will | 
|  | * wrap around to @start if no free IDs are found before reaching @end. | 
|  | * | 
|  | * The caller should provide their own locking to ensure that two | 
|  | * concurrent modifications to the IDR are not possible.  Read-only | 
|  | * accesses to the IDR may be done under the RCU read lock or may | 
|  | * exclude simultaneous writers. | 
|  | * | 
|  | * Return: The newly allocated ID, -ENOMEM if memory allocation failed, | 
|  | * or -ENOSPC if no free IDs could be found. | 
|  | */ | 
|  | int idr_alloc_cyclic(struct idr *idr, void *ptr, int start, int end, gfp_t gfp) | 
|  | { | 
|  | u32 id = idr->idr_next; | 
|  | int err, max = end > 0 ? end - 1 : INT_MAX; | 
|  |  | 
|  | if ((int)id < start) | 
|  | id = start; | 
|  |  | 
|  | err = idr_alloc_u32(idr, ptr, &id, max, gfp); | 
|  | if ((err == -ENOSPC) && (id > start)) { | 
|  | id = start; | 
|  | err = idr_alloc_u32(idr, ptr, &id, max, gfp); | 
|  | } | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | idr->idr_next = id + 1; | 
|  | return id; | 
|  | } | 
|  | EXPORT_SYMBOL(idr_alloc_cyclic); | 
|  |  | 
|  | /** | 
|  | * idr_remove() - Remove an ID from the IDR. | 
|  | * @idr: IDR handle. | 
|  | * @id: Pointer ID. | 
|  | * | 
|  | * Removes this ID from the IDR.  If the ID was not previously in the IDR, | 
|  | * this function returns %NULL. | 
|  | * | 
|  | * Since this function modifies the IDR, the caller should provide their | 
|  | * own locking to ensure that concurrent modification of the same IDR is | 
|  | * not possible. | 
|  | * | 
|  | * Return: The pointer formerly associated with this ID. | 
|  | */ | 
|  | void *idr_remove(struct idr *idr, unsigned long id) | 
|  | { | 
|  | return radix_tree_delete_item(&idr->idr_rt, id - idr->idr_base, NULL); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(idr_remove); | 
|  |  | 
|  | /** | 
|  | * idr_find() - Return pointer for given ID. | 
|  | * @idr: IDR handle. | 
|  | * @id: Pointer ID. | 
|  | * | 
|  | * Looks up the pointer associated with this ID.  A %NULL pointer may | 
|  | * indicate that @id is not allocated or that the %NULL pointer was | 
|  | * associated with this ID. | 
|  | * | 
|  | * This function can be called under rcu_read_lock(), given that the leaf | 
|  | * pointers lifetimes are correctly managed. | 
|  | * | 
|  | * Return: The pointer associated with this ID. | 
|  | */ | 
|  | void *idr_find(const struct idr *idr, unsigned long id) | 
|  | { | 
|  | return radix_tree_lookup(&idr->idr_rt, id - idr->idr_base); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(idr_find); | 
|  |  | 
|  | /** | 
|  | * idr_for_each() - Iterate through all stored pointers. | 
|  | * @idr: IDR handle. | 
|  | * @fn: Function to be called for each pointer. | 
|  | * @data: Data passed to callback function. | 
|  | * | 
|  | * The callback function will be called for each entry in @idr, passing | 
|  | * the ID, the entry and @data. | 
|  | * | 
|  | * If @fn returns anything other than %0, the iteration stops and that | 
|  | * value is returned from this function. | 
|  | * | 
|  | * idr_for_each() can be called concurrently with idr_alloc() and | 
|  | * idr_remove() if protected by RCU.  Newly added entries may not be | 
|  | * seen and deleted entries may be seen, but adding and removing entries | 
|  | * will not cause other entries to be skipped, nor spurious ones to be seen. | 
|  | */ | 
|  | int idr_for_each(const struct idr *idr, | 
|  | int (*fn)(int id, void *p, void *data), void *data) | 
|  | { | 
|  | struct radix_tree_iter iter; | 
|  | void __rcu **slot; | 
|  | int base = idr->idr_base; | 
|  |  | 
|  | radix_tree_for_each_slot(slot, &idr->idr_rt, &iter, 0) { | 
|  | int ret; | 
|  | unsigned long id = iter.index + base; | 
|  |  | 
|  | if (WARN_ON_ONCE(id > INT_MAX)) | 
|  | break; | 
|  | ret = fn(id, rcu_dereference_raw(*slot), data); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(idr_for_each); | 
|  |  | 
|  | /** | 
|  | * idr_get_next_ul() - Find next populated entry. | 
|  | * @idr: IDR handle. | 
|  | * @nextid: Pointer to an ID. | 
|  | * | 
|  | * Returns the next populated entry in the tree with an ID greater than | 
|  | * or equal to the value pointed to by @nextid.  On exit, @nextid is updated | 
|  | * to the ID of the found value.  To use in a loop, the value pointed to by | 
|  | * nextid must be incremented by the user. | 
|  | */ | 
|  | void *idr_get_next_ul(struct idr *idr, unsigned long *nextid) | 
|  | { | 
|  | struct radix_tree_iter iter; | 
|  | void __rcu **slot; | 
|  | void *entry = NULL; | 
|  | unsigned long base = idr->idr_base; | 
|  | unsigned long id = *nextid; | 
|  |  | 
|  | id = (id < base) ? 0 : id - base; | 
|  | radix_tree_for_each_slot(slot, &idr->idr_rt, &iter, id) { | 
|  | entry = rcu_dereference_raw(*slot); | 
|  | if (!entry) | 
|  | continue; | 
|  | if (!xa_is_internal(entry)) | 
|  | break; | 
|  | if (slot != &idr->idr_rt.xa_head && !xa_is_retry(entry)) | 
|  | break; | 
|  | slot = radix_tree_iter_retry(&iter); | 
|  | } | 
|  | if (!slot) | 
|  | return NULL; | 
|  |  | 
|  | *nextid = iter.index + base; | 
|  | return entry; | 
|  | } | 
|  | EXPORT_SYMBOL(idr_get_next_ul); | 
|  |  | 
|  | /** | 
|  | * idr_get_next() - Find next populated entry. | 
|  | * @idr: IDR handle. | 
|  | * @nextid: Pointer to an ID. | 
|  | * | 
|  | * Returns the next populated entry in the tree with an ID greater than | 
|  | * or equal to the value pointed to by @nextid.  On exit, @nextid is updated | 
|  | * to the ID of the found value.  To use in a loop, the value pointed to by | 
|  | * nextid must be incremented by the user. | 
|  | */ | 
|  | void *idr_get_next(struct idr *idr, int *nextid) | 
|  | { | 
|  | unsigned long id = *nextid; | 
|  | void *entry = idr_get_next_ul(idr, &id); | 
|  |  | 
|  | if (WARN_ON_ONCE(id > INT_MAX)) | 
|  | return NULL; | 
|  | *nextid = id; | 
|  | return entry; | 
|  | } | 
|  | EXPORT_SYMBOL(idr_get_next); | 
|  |  | 
|  | /** | 
|  | * idr_replace() - replace pointer for given ID. | 
|  | * @idr: IDR handle. | 
|  | * @ptr: New pointer to associate with the ID. | 
|  | * @id: ID to change. | 
|  | * | 
|  | * Replace the pointer registered with an ID and return the old value. | 
|  | * This function can be called under the RCU read lock concurrently with | 
|  | * idr_alloc() and idr_remove() (as long as the ID being removed is not | 
|  | * the one being replaced!). | 
|  | * | 
|  | * Returns: the old value on success.  %-ENOENT indicates that @id was not | 
|  | * found.  %-EINVAL indicates that @ptr was not valid. | 
|  | */ | 
|  | void *idr_replace(struct idr *idr, void *ptr, unsigned long id) | 
|  | { | 
|  | struct radix_tree_node *node; | 
|  | void __rcu **slot = NULL; | 
|  | void *entry; | 
|  |  | 
|  | id -= idr->idr_base; | 
|  |  | 
|  | entry = __radix_tree_lookup(&idr->idr_rt, id, &node, &slot); | 
|  | if (!slot || radix_tree_tag_get(&idr->idr_rt, id, IDR_FREE)) | 
|  | return ERR_PTR(-ENOENT); | 
|  |  | 
|  | __radix_tree_replace(&idr->idr_rt, node, slot, ptr); | 
|  |  | 
|  | return entry; | 
|  | } | 
|  | EXPORT_SYMBOL(idr_replace); | 
|  |  | 
|  | /** | 
|  | * DOC: IDA description | 
|  | * | 
|  | * The IDA is an ID allocator which does not provide the ability to | 
|  | * associate an ID with a pointer.  As such, it only needs to store one | 
|  | * bit per ID, and so is more space efficient than an IDR.  To use an IDA, | 
|  | * define it using DEFINE_IDA() (or embed a &struct ida in a data structure, | 
|  | * then initialise it using ida_init()).  To allocate a new ID, call | 
|  | * ida_alloc(), ida_alloc_min(), ida_alloc_max() or ida_alloc_range(). | 
|  | * To free an ID, call ida_free(). | 
|  | * | 
|  | * ida_destroy() can be used to dispose of an IDA without needing to | 
|  | * free the individual IDs in it.  You can use ida_is_empty() to find | 
|  | * out whether the IDA has any IDs currently allocated. | 
|  | * | 
|  | * The IDA handles its own locking.  It is safe to call any of the IDA | 
|  | * functions without synchronisation in your code. | 
|  | * | 
|  | * IDs are currently limited to the range [0-INT_MAX].  If this is an awkward | 
|  | * limitation, it should be quite straightforward to raise the maximum. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Developer's notes: | 
|  | * | 
|  | * The IDA uses the functionality provided by the XArray to store bitmaps in | 
|  | * each entry.  The XA_FREE_MARK is only cleared when all bits in the bitmap | 
|  | * have been set. | 
|  | * | 
|  | * I considered telling the XArray that each slot is an order-10 node | 
|  | * and indexing by bit number, but the XArray can't allow a single multi-index | 
|  | * entry in the head, which would significantly increase memory consumption | 
|  | * for the IDA.  So instead we divide the index by the number of bits in the | 
|  | * leaf bitmap before doing a radix tree lookup. | 
|  | * | 
|  | * As an optimisation, if there are only a few low bits set in any given | 
|  | * leaf, instead of allocating a 128-byte bitmap, we store the bits | 
|  | * as a value entry.  Value entries never have the XA_FREE_MARK cleared | 
|  | * because we can always convert them into a bitmap entry. | 
|  | * | 
|  | * It would be possible to optimise further; once we've run out of a | 
|  | * single 128-byte bitmap, we currently switch to a 576-byte node, put | 
|  | * the 128-byte bitmap in the first entry and then start allocating extra | 
|  | * 128-byte entries.  We could instead use the 512 bytes of the node's | 
|  | * data as a bitmap before moving to that scheme.  I do not believe this | 
|  | * is a worthwhile optimisation; Rasmus Villemoes surveyed the current | 
|  | * users of the IDA and almost none of them use more than 1024 entries. | 
|  | * Those that do use more than the 8192 IDs that the 512 bytes would | 
|  | * provide. | 
|  | * | 
|  | * The IDA always uses a lock to alloc/free.  If we add a 'test_bit' | 
|  | * equivalent, it will still need locking.  Going to RCU lookup would require | 
|  | * using RCU to free bitmaps, and that's not trivial without embedding an | 
|  | * RCU head in the bitmap, which adds a 2-pointer overhead to each 128-byte | 
|  | * bitmap, which is excessive. | 
|  | */ | 
|  |  | 
|  | /** | 
|  | * ida_alloc_range() - Allocate an unused ID. | 
|  | * @ida: IDA handle. | 
|  | * @min: Lowest ID to allocate. | 
|  | * @max: Highest ID to allocate. | 
|  | * @gfp: Memory allocation flags. | 
|  | * | 
|  | * Allocate an ID between @min and @max, inclusive.  The allocated ID will | 
|  | * not exceed %INT_MAX, even if @max is larger. | 
|  | * | 
|  | * Context: Any context. It is safe to call this function without | 
|  | * locking in your code. | 
|  | * Return: The allocated ID, or %-ENOMEM if memory could not be allocated, | 
|  | * or %-ENOSPC if there are no free IDs. | 
|  | */ | 
|  | int ida_alloc_range(struct ida *ida, unsigned int min, unsigned int max, | 
|  | gfp_t gfp) | 
|  | { | 
|  | XA_STATE(xas, &ida->xa, min / IDA_BITMAP_BITS); | 
|  | unsigned bit = min % IDA_BITMAP_BITS; | 
|  | unsigned long flags; | 
|  | struct ida_bitmap *bitmap, *alloc = NULL; | 
|  |  | 
|  | if ((int)min < 0) | 
|  | return -ENOSPC; | 
|  |  | 
|  | if ((int)max < 0) | 
|  | max = INT_MAX; | 
|  |  | 
|  | retry: | 
|  | xas_lock_irqsave(&xas, flags); | 
|  | next: | 
|  | bitmap = xas_find_marked(&xas, max / IDA_BITMAP_BITS, XA_FREE_MARK); | 
|  | if (xas.xa_index > min / IDA_BITMAP_BITS) | 
|  | bit = 0; | 
|  | if (xas.xa_index * IDA_BITMAP_BITS + bit > max) | 
|  | goto nospc; | 
|  |  | 
|  | if (xa_is_value(bitmap)) { | 
|  | unsigned long tmp = xa_to_value(bitmap); | 
|  |  | 
|  | if (bit < BITS_PER_XA_VALUE) { | 
|  | bit = find_next_zero_bit(&tmp, BITS_PER_XA_VALUE, bit); | 
|  | if (xas.xa_index * IDA_BITMAP_BITS + bit > max) | 
|  | goto nospc; | 
|  | if (bit < BITS_PER_XA_VALUE) { | 
|  | tmp |= 1UL << bit; | 
|  | xas_store(&xas, xa_mk_value(tmp)); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | bitmap = alloc; | 
|  | if (!bitmap) | 
|  | bitmap = kzalloc(sizeof(*bitmap), GFP_NOWAIT); | 
|  | if (!bitmap) | 
|  | goto alloc; | 
|  | bitmap->bitmap[0] = tmp; | 
|  | xas_store(&xas, bitmap); | 
|  | if (xas_error(&xas)) { | 
|  | bitmap->bitmap[0] = 0; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (bitmap) { | 
|  | bit = find_next_zero_bit(bitmap->bitmap, IDA_BITMAP_BITS, bit); | 
|  | if (xas.xa_index * IDA_BITMAP_BITS + bit > max) | 
|  | goto nospc; | 
|  | if (bit == IDA_BITMAP_BITS) | 
|  | goto next; | 
|  |  | 
|  | __set_bit(bit, bitmap->bitmap); | 
|  | if (bitmap_full(bitmap->bitmap, IDA_BITMAP_BITS)) | 
|  | xas_clear_mark(&xas, XA_FREE_MARK); | 
|  | } else { | 
|  | if (bit < BITS_PER_XA_VALUE) { | 
|  | bitmap = xa_mk_value(1UL << bit); | 
|  | } else { | 
|  | bitmap = alloc; | 
|  | if (!bitmap) | 
|  | bitmap = kzalloc(sizeof(*bitmap), GFP_NOWAIT); | 
|  | if (!bitmap) | 
|  | goto alloc; | 
|  | __set_bit(bit, bitmap->bitmap); | 
|  | } | 
|  | xas_store(&xas, bitmap); | 
|  | } | 
|  | out: | 
|  | xas_unlock_irqrestore(&xas, flags); | 
|  | if (xas_nomem(&xas, gfp)) { | 
|  | xas.xa_index = min / IDA_BITMAP_BITS; | 
|  | bit = min % IDA_BITMAP_BITS; | 
|  | goto retry; | 
|  | } | 
|  | if (bitmap != alloc) | 
|  | kfree(alloc); | 
|  | if (xas_error(&xas)) | 
|  | return xas_error(&xas); | 
|  | return xas.xa_index * IDA_BITMAP_BITS + bit; | 
|  | alloc: | 
|  | xas_unlock_irqrestore(&xas, flags); | 
|  | alloc = kzalloc(sizeof(*bitmap), gfp); | 
|  | if (!alloc) | 
|  | return -ENOMEM; | 
|  | xas_set(&xas, min / IDA_BITMAP_BITS); | 
|  | bit = min % IDA_BITMAP_BITS; | 
|  | goto retry; | 
|  | nospc: | 
|  | xas_unlock_irqrestore(&xas, flags); | 
|  | kfree(alloc); | 
|  | return -ENOSPC; | 
|  | } | 
|  | EXPORT_SYMBOL(ida_alloc_range); | 
|  |  | 
|  | /** | 
|  | * ida_free() - Release an allocated ID. | 
|  | * @ida: IDA handle. | 
|  | * @id: Previously allocated ID. | 
|  | * | 
|  | * Context: Any context. It is safe to call this function without | 
|  | * locking in your code. | 
|  | */ | 
|  | void ida_free(struct ida *ida, unsigned int id) | 
|  | { | 
|  | XA_STATE(xas, &ida->xa, id / IDA_BITMAP_BITS); | 
|  | unsigned bit = id % IDA_BITMAP_BITS; | 
|  | struct ida_bitmap *bitmap; | 
|  | unsigned long flags; | 
|  |  | 
|  | if ((int)id < 0) | 
|  | return; | 
|  |  | 
|  | xas_lock_irqsave(&xas, flags); | 
|  | bitmap = xas_load(&xas); | 
|  |  | 
|  | if (xa_is_value(bitmap)) { | 
|  | unsigned long v = xa_to_value(bitmap); | 
|  | if (bit >= BITS_PER_XA_VALUE) | 
|  | goto err; | 
|  | if (!(v & (1UL << bit))) | 
|  | goto err; | 
|  | v &= ~(1UL << bit); | 
|  | if (!v) | 
|  | goto delete; | 
|  | xas_store(&xas, xa_mk_value(v)); | 
|  | } else { | 
|  | if (!test_bit(bit, bitmap->bitmap)) | 
|  | goto err; | 
|  | __clear_bit(bit, bitmap->bitmap); | 
|  | xas_set_mark(&xas, XA_FREE_MARK); | 
|  | if (bitmap_empty(bitmap->bitmap, IDA_BITMAP_BITS)) { | 
|  | kfree(bitmap); | 
|  | delete: | 
|  | xas_store(&xas, NULL); | 
|  | } | 
|  | } | 
|  | xas_unlock_irqrestore(&xas, flags); | 
|  | return; | 
|  | err: | 
|  | xas_unlock_irqrestore(&xas, flags); | 
|  | WARN(1, "ida_free called for id=%d which is not allocated.\n", id); | 
|  | } | 
|  | EXPORT_SYMBOL(ida_free); | 
|  |  | 
|  | /** | 
|  | * ida_destroy() - Free all IDs. | 
|  | * @ida: IDA handle. | 
|  | * | 
|  | * Calling this function frees all IDs and releases all resources used | 
|  | * by an IDA.  When this call returns, the IDA is empty and can be reused | 
|  | * or freed.  If the IDA is already empty, there is no need to call this | 
|  | * function. | 
|  | * | 
|  | * Context: Any context. It is safe to call this function without | 
|  | * locking in your code. | 
|  | */ | 
|  | void ida_destroy(struct ida *ida) | 
|  | { | 
|  | XA_STATE(xas, &ida->xa, 0); | 
|  | struct ida_bitmap *bitmap; | 
|  | unsigned long flags; | 
|  |  | 
|  | xas_lock_irqsave(&xas, flags); | 
|  | xas_for_each(&xas, bitmap, ULONG_MAX) { | 
|  | if (!xa_is_value(bitmap)) | 
|  | kfree(bitmap); | 
|  | xas_store(&xas, NULL); | 
|  | } | 
|  | xas_unlock_irqrestore(&xas, flags); | 
|  | } | 
|  | EXPORT_SYMBOL(ida_destroy); | 
|  |  | 
|  | #ifndef __KERNEL__ | 
|  | extern void xa_dump_index(unsigned long index, unsigned int shift); | 
|  | #define IDA_CHUNK_SHIFT		ilog2(IDA_BITMAP_BITS) | 
|  |  | 
|  | static void ida_dump_entry(void *entry, unsigned long index) | 
|  | { | 
|  | unsigned long i; | 
|  |  | 
|  | if (!entry) | 
|  | return; | 
|  |  | 
|  | if (xa_is_node(entry)) { | 
|  | struct xa_node *node = xa_to_node(entry); | 
|  | unsigned int shift = node->shift + IDA_CHUNK_SHIFT + | 
|  | XA_CHUNK_SHIFT; | 
|  |  | 
|  | xa_dump_index(index * IDA_BITMAP_BITS, shift); | 
|  | xa_dump_node(node); | 
|  | for (i = 0; i < XA_CHUNK_SIZE; i++) | 
|  | ida_dump_entry(node->slots[i], | 
|  | index | (i << node->shift)); | 
|  | } else if (xa_is_value(entry)) { | 
|  | xa_dump_index(index * IDA_BITMAP_BITS, ilog2(BITS_PER_LONG)); | 
|  | pr_cont("value: data %lx [%px]\n", xa_to_value(entry), entry); | 
|  | } else { | 
|  | struct ida_bitmap *bitmap = entry; | 
|  |  | 
|  | xa_dump_index(index * IDA_BITMAP_BITS, IDA_CHUNK_SHIFT); | 
|  | pr_cont("bitmap: %p data", bitmap); | 
|  | for (i = 0; i < IDA_BITMAP_LONGS; i++) | 
|  | pr_cont(" %lx", bitmap->bitmap[i]); | 
|  | pr_cont("\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void ida_dump(struct ida *ida) | 
|  | { | 
|  | struct xarray *xa = &ida->xa; | 
|  | pr_debug("ida: %p node %p free %d\n", ida, xa->xa_head, | 
|  | xa->xa_flags >> ROOT_TAG_SHIFT); | 
|  | ida_dump_entry(xa->xa_head, 0); | 
|  | } | 
|  | #endif |