|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com | 
|  | */ | 
|  | #include <linux/bpf.h> | 
|  | #include <linux/btf.h> | 
|  | #include <linux/bpf-cgroup.h> | 
|  | #include <linux/cgroup.h> | 
|  | #include <linux/rcupdate.h> | 
|  | #include <linux/random.h> | 
|  | #include <linux/smp.h> | 
|  | #include <linux/topology.h> | 
|  | #include <linux/ktime.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/uidgid.h> | 
|  | #include <linux/filter.h> | 
|  | #include <linux/ctype.h> | 
|  | #include <linux/jiffies.h> | 
|  | #include <linux/pid_namespace.h> | 
|  | #include <linux/poison.h> | 
|  | #include <linux/proc_ns.h> | 
|  | #include <linux/sched/task.h> | 
|  | #include <linux/security.h> | 
|  | #include <linux/btf_ids.h> | 
|  | #include <linux/bpf_mem_alloc.h> | 
|  | #include <linux/kasan.h> | 
|  |  | 
|  | #include "../../lib/kstrtox.h" | 
|  |  | 
|  | /* If kernel subsystem is allowing eBPF programs to call this function, | 
|  | * inside its own verifier_ops->get_func_proto() callback it should return | 
|  | * bpf_map_lookup_elem_proto, so that verifier can properly check the arguments | 
|  | * | 
|  | * Different map implementations will rely on rcu in map methods | 
|  | * lookup/update/delete, therefore eBPF programs must run under rcu lock | 
|  | * if program is allowed to access maps, so check rcu_read_lock_held() or | 
|  | * rcu_read_lock_trace_held() in all three functions. | 
|  | */ | 
|  | BPF_CALL_2(bpf_map_lookup_elem, struct bpf_map *, map, void *, key) | 
|  | { | 
|  | WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && | 
|  | !rcu_read_lock_bh_held()); | 
|  | return (unsigned long) map->ops->map_lookup_elem(map, key); | 
|  | } | 
|  |  | 
|  | const struct bpf_func_proto bpf_map_lookup_elem_proto = { | 
|  | .func		= bpf_map_lookup_elem, | 
|  | .gpl_only	= false, | 
|  | .pkt_access	= true, | 
|  | .ret_type	= RET_PTR_TO_MAP_VALUE_OR_NULL, | 
|  | .arg1_type	= ARG_CONST_MAP_PTR, | 
|  | .arg2_type	= ARG_PTR_TO_MAP_KEY, | 
|  | }; | 
|  |  | 
|  | BPF_CALL_4(bpf_map_update_elem, struct bpf_map *, map, void *, key, | 
|  | void *, value, u64, flags) | 
|  | { | 
|  | WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && | 
|  | !rcu_read_lock_bh_held()); | 
|  | return map->ops->map_update_elem(map, key, value, flags); | 
|  | } | 
|  |  | 
|  | const struct bpf_func_proto bpf_map_update_elem_proto = { | 
|  | .func		= bpf_map_update_elem, | 
|  | .gpl_only	= false, | 
|  | .pkt_access	= true, | 
|  | .ret_type	= RET_INTEGER, | 
|  | .arg1_type	= ARG_CONST_MAP_PTR, | 
|  | .arg2_type	= ARG_PTR_TO_MAP_KEY, | 
|  | .arg3_type	= ARG_PTR_TO_MAP_VALUE, | 
|  | .arg4_type	= ARG_ANYTHING, | 
|  | }; | 
|  |  | 
|  | BPF_CALL_2(bpf_map_delete_elem, struct bpf_map *, map, void *, key) | 
|  | { | 
|  | WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && | 
|  | !rcu_read_lock_bh_held()); | 
|  | return map->ops->map_delete_elem(map, key); | 
|  | } | 
|  |  | 
|  | const struct bpf_func_proto bpf_map_delete_elem_proto = { | 
|  | .func		= bpf_map_delete_elem, | 
|  | .gpl_only	= false, | 
|  | .pkt_access	= true, | 
|  | .ret_type	= RET_INTEGER, | 
|  | .arg1_type	= ARG_CONST_MAP_PTR, | 
|  | .arg2_type	= ARG_PTR_TO_MAP_KEY, | 
|  | }; | 
|  |  | 
|  | BPF_CALL_3(bpf_map_push_elem, struct bpf_map *, map, void *, value, u64, flags) | 
|  | { | 
|  | return map->ops->map_push_elem(map, value, flags); | 
|  | } | 
|  |  | 
|  | const struct bpf_func_proto bpf_map_push_elem_proto = { | 
|  | .func		= bpf_map_push_elem, | 
|  | .gpl_only	= false, | 
|  | .pkt_access	= true, | 
|  | .ret_type	= RET_INTEGER, | 
|  | .arg1_type	= ARG_CONST_MAP_PTR, | 
|  | .arg2_type	= ARG_PTR_TO_MAP_VALUE, | 
|  | .arg3_type	= ARG_ANYTHING, | 
|  | }; | 
|  |  | 
|  | BPF_CALL_2(bpf_map_pop_elem, struct bpf_map *, map, void *, value) | 
|  | { | 
|  | return map->ops->map_pop_elem(map, value); | 
|  | } | 
|  |  | 
|  | const struct bpf_func_proto bpf_map_pop_elem_proto = { | 
|  | .func		= bpf_map_pop_elem, | 
|  | .gpl_only	= false, | 
|  | .ret_type	= RET_INTEGER, | 
|  | .arg1_type	= ARG_CONST_MAP_PTR, | 
|  | .arg2_type	= ARG_PTR_TO_MAP_VALUE | MEM_UNINIT, | 
|  | }; | 
|  |  | 
|  | BPF_CALL_2(bpf_map_peek_elem, struct bpf_map *, map, void *, value) | 
|  | { | 
|  | return map->ops->map_peek_elem(map, value); | 
|  | } | 
|  |  | 
|  | const struct bpf_func_proto bpf_map_peek_elem_proto = { | 
|  | .func		= bpf_map_peek_elem, | 
|  | .gpl_only	= false, | 
|  | .ret_type	= RET_INTEGER, | 
|  | .arg1_type	= ARG_CONST_MAP_PTR, | 
|  | .arg2_type	= ARG_PTR_TO_MAP_VALUE | MEM_UNINIT, | 
|  | }; | 
|  |  | 
|  | BPF_CALL_3(bpf_map_lookup_percpu_elem, struct bpf_map *, map, void *, key, u32, cpu) | 
|  | { | 
|  | WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); | 
|  | return (unsigned long) map->ops->map_lookup_percpu_elem(map, key, cpu); | 
|  | } | 
|  |  | 
|  | const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto = { | 
|  | .func		= bpf_map_lookup_percpu_elem, | 
|  | .gpl_only	= false, | 
|  | .pkt_access	= true, | 
|  | .ret_type	= RET_PTR_TO_MAP_VALUE_OR_NULL, | 
|  | .arg1_type	= ARG_CONST_MAP_PTR, | 
|  | .arg2_type	= ARG_PTR_TO_MAP_KEY, | 
|  | .arg3_type	= ARG_ANYTHING, | 
|  | }; | 
|  |  | 
|  | const struct bpf_func_proto bpf_get_prandom_u32_proto = { | 
|  | .func		= bpf_user_rnd_u32, | 
|  | .gpl_only	= false, | 
|  | .ret_type	= RET_INTEGER, | 
|  | }; | 
|  |  | 
|  | BPF_CALL_0(bpf_get_smp_processor_id) | 
|  | { | 
|  | return smp_processor_id(); | 
|  | } | 
|  |  | 
|  | const struct bpf_func_proto bpf_get_smp_processor_id_proto = { | 
|  | .func		= bpf_get_smp_processor_id, | 
|  | .gpl_only	= false, | 
|  | .ret_type	= RET_INTEGER, | 
|  | }; | 
|  |  | 
|  | BPF_CALL_0(bpf_get_numa_node_id) | 
|  | { | 
|  | return numa_node_id(); | 
|  | } | 
|  |  | 
|  | const struct bpf_func_proto bpf_get_numa_node_id_proto = { | 
|  | .func		= bpf_get_numa_node_id, | 
|  | .gpl_only	= false, | 
|  | .ret_type	= RET_INTEGER, | 
|  | }; | 
|  |  | 
|  | BPF_CALL_0(bpf_ktime_get_ns) | 
|  | { | 
|  | /* NMI safe access to clock monotonic */ | 
|  | return ktime_get_mono_fast_ns(); | 
|  | } | 
|  |  | 
|  | const struct bpf_func_proto bpf_ktime_get_ns_proto = { | 
|  | .func		= bpf_ktime_get_ns, | 
|  | .gpl_only	= false, | 
|  | .ret_type	= RET_INTEGER, | 
|  | }; | 
|  |  | 
|  | BPF_CALL_0(bpf_ktime_get_boot_ns) | 
|  | { | 
|  | /* NMI safe access to clock boottime */ | 
|  | return ktime_get_boot_fast_ns(); | 
|  | } | 
|  |  | 
|  | const struct bpf_func_proto bpf_ktime_get_boot_ns_proto = { | 
|  | .func		= bpf_ktime_get_boot_ns, | 
|  | .gpl_only	= false, | 
|  | .ret_type	= RET_INTEGER, | 
|  | }; | 
|  |  | 
|  | BPF_CALL_0(bpf_ktime_get_coarse_ns) | 
|  | { | 
|  | return ktime_get_coarse_ns(); | 
|  | } | 
|  |  | 
|  | const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto = { | 
|  | .func		= bpf_ktime_get_coarse_ns, | 
|  | .gpl_only	= false, | 
|  | .ret_type	= RET_INTEGER, | 
|  | }; | 
|  |  | 
|  | BPF_CALL_0(bpf_ktime_get_tai_ns) | 
|  | { | 
|  | /* NMI safe access to clock tai */ | 
|  | return ktime_get_tai_fast_ns(); | 
|  | } | 
|  |  | 
|  | const struct bpf_func_proto bpf_ktime_get_tai_ns_proto = { | 
|  | .func		= bpf_ktime_get_tai_ns, | 
|  | .gpl_only	= false, | 
|  | .ret_type	= RET_INTEGER, | 
|  | }; | 
|  |  | 
|  | BPF_CALL_0(bpf_get_current_pid_tgid) | 
|  | { | 
|  | struct task_struct *task = current; | 
|  |  | 
|  | if (unlikely(!task)) | 
|  | return -EINVAL; | 
|  |  | 
|  | return (u64) task->tgid << 32 | task->pid; | 
|  | } | 
|  |  | 
|  | const struct bpf_func_proto bpf_get_current_pid_tgid_proto = { | 
|  | .func		= bpf_get_current_pid_tgid, | 
|  | .gpl_only	= false, | 
|  | .ret_type	= RET_INTEGER, | 
|  | }; | 
|  |  | 
|  | BPF_CALL_0(bpf_get_current_uid_gid) | 
|  | { | 
|  | struct task_struct *task = current; | 
|  | kuid_t uid; | 
|  | kgid_t gid; | 
|  |  | 
|  | if (unlikely(!task)) | 
|  | return -EINVAL; | 
|  |  | 
|  | current_uid_gid(&uid, &gid); | 
|  | return (u64) from_kgid(&init_user_ns, gid) << 32 | | 
|  | from_kuid(&init_user_ns, uid); | 
|  | } | 
|  |  | 
|  | const struct bpf_func_proto bpf_get_current_uid_gid_proto = { | 
|  | .func		= bpf_get_current_uid_gid, | 
|  | .gpl_only	= false, | 
|  | .ret_type	= RET_INTEGER, | 
|  | }; | 
|  |  | 
|  | BPF_CALL_2(bpf_get_current_comm, char *, buf, u32, size) | 
|  | { | 
|  | struct task_struct *task = current; | 
|  |  | 
|  | if (unlikely(!task)) | 
|  | goto err_clear; | 
|  |  | 
|  | /* Verifier guarantees that size > 0 */ | 
|  | strscpy_pad(buf, task->comm, size); | 
|  | return 0; | 
|  | err_clear: | 
|  | memset(buf, 0, size); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | const struct bpf_func_proto bpf_get_current_comm_proto = { | 
|  | .func		= bpf_get_current_comm, | 
|  | .gpl_only	= false, | 
|  | .ret_type	= RET_INTEGER, | 
|  | .arg1_type	= ARG_PTR_TO_UNINIT_MEM, | 
|  | .arg2_type	= ARG_CONST_SIZE, | 
|  | }; | 
|  |  | 
|  | #if defined(CONFIG_QUEUED_SPINLOCKS) || defined(CONFIG_BPF_ARCH_SPINLOCK) | 
|  |  | 
|  | static inline void __bpf_spin_lock(struct bpf_spin_lock *lock) | 
|  | { | 
|  | arch_spinlock_t *l = (void *)lock; | 
|  | union { | 
|  | __u32 val; | 
|  | arch_spinlock_t lock; | 
|  | } u = { .lock = __ARCH_SPIN_LOCK_UNLOCKED }; | 
|  |  | 
|  | compiletime_assert(u.val == 0, "__ARCH_SPIN_LOCK_UNLOCKED not 0"); | 
|  | BUILD_BUG_ON(sizeof(*l) != sizeof(__u32)); | 
|  | BUILD_BUG_ON(sizeof(*lock) != sizeof(__u32)); | 
|  | preempt_disable(); | 
|  | arch_spin_lock(l); | 
|  | } | 
|  |  | 
|  | static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock) | 
|  | { | 
|  | arch_spinlock_t *l = (void *)lock; | 
|  |  | 
|  | arch_spin_unlock(l); | 
|  | preempt_enable(); | 
|  | } | 
|  |  | 
|  | #else | 
|  |  | 
|  | static inline void __bpf_spin_lock(struct bpf_spin_lock *lock) | 
|  | { | 
|  | atomic_t *l = (void *)lock; | 
|  |  | 
|  | BUILD_BUG_ON(sizeof(*l) != sizeof(*lock)); | 
|  | do { | 
|  | atomic_cond_read_relaxed(l, !VAL); | 
|  | } while (atomic_xchg(l, 1)); | 
|  | } | 
|  |  | 
|  | static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock) | 
|  | { | 
|  | atomic_t *l = (void *)lock; | 
|  |  | 
|  | atomic_set_release(l, 0); | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | static DEFINE_PER_CPU(unsigned long, irqsave_flags); | 
|  |  | 
|  | static inline void __bpf_spin_lock_irqsave(struct bpf_spin_lock *lock) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | local_irq_save(flags); | 
|  | __bpf_spin_lock(lock); | 
|  | __this_cpu_write(irqsave_flags, flags); | 
|  | } | 
|  |  | 
|  | NOTRACE_BPF_CALL_1(bpf_spin_lock, struct bpf_spin_lock *, lock) | 
|  | { | 
|  | __bpf_spin_lock_irqsave(lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | const struct bpf_func_proto bpf_spin_lock_proto = { | 
|  | .func		= bpf_spin_lock, | 
|  | .gpl_only	= false, | 
|  | .ret_type	= RET_VOID, | 
|  | .arg1_type	= ARG_PTR_TO_SPIN_LOCK, | 
|  | .arg1_btf_id    = BPF_PTR_POISON, | 
|  | }; | 
|  |  | 
|  | static inline void __bpf_spin_unlock_irqrestore(struct bpf_spin_lock *lock) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | flags = __this_cpu_read(irqsave_flags); | 
|  | __bpf_spin_unlock(lock); | 
|  | local_irq_restore(flags); | 
|  | } | 
|  |  | 
|  | NOTRACE_BPF_CALL_1(bpf_spin_unlock, struct bpf_spin_lock *, lock) | 
|  | { | 
|  | __bpf_spin_unlock_irqrestore(lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | const struct bpf_func_proto bpf_spin_unlock_proto = { | 
|  | .func		= bpf_spin_unlock, | 
|  | .gpl_only	= false, | 
|  | .ret_type	= RET_VOID, | 
|  | .arg1_type	= ARG_PTR_TO_SPIN_LOCK, | 
|  | .arg1_btf_id    = BPF_PTR_POISON, | 
|  | }; | 
|  |  | 
|  | void copy_map_value_locked(struct bpf_map *map, void *dst, void *src, | 
|  | bool lock_src) | 
|  | { | 
|  | struct bpf_spin_lock *lock; | 
|  |  | 
|  | if (lock_src) | 
|  | lock = src + map->record->spin_lock_off; | 
|  | else | 
|  | lock = dst + map->record->spin_lock_off; | 
|  | preempt_disable(); | 
|  | __bpf_spin_lock_irqsave(lock); | 
|  | copy_map_value(map, dst, src); | 
|  | __bpf_spin_unlock_irqrestore(lock); | 
|  | preempt_enable(); | 
|  | } | 
|  |  | 
|  | BPF_CALL_0(bpf_jiffies64) | 
|  | { | 
|  | return get_jiffies_64(); | 
|  | } | 
|  |  | 
|  | const struct bpf_func_proto bpf_jiffies64_proto = { | 
|  | .func		= bpf_jiffies64, | 
|  | .gpl_only	= false, | 
|  | .ret_type	= RET_INTEGER, | 
|  | }; | 
|  |  | 
|  | #ifdef CONFIG_CGROUPS | 
|  | BPF_CALL_0(bpf_get_current_cgroup_id) | 
|  | { | 
|  | struct cgroup *cgrp; | 
|  | u64 cgrp_id; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | cgrp = task_dfl_cgroup(current); | 
|  | cgrp_id = cgroup_id(cgrp); | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return cgrp_id; | 
|  | } | 
|  |  | 
|  | const struct bpf_func_proto bpf_get_current_cgroup_id_proto = { | 
|  | .func		= bpf_get_current_cgroup_id, | 
|  | .gpl_only	= false, | 
|  | .ret_type	= RET_INTEGER, | 
|  | }; | 
|  |  | 
|  | BPF_CALL_1(bpf_get_current_ancestor_cgroup_id, int, ancestor_level) | 
|  | { | 
|  | struct cgroup *cgrp; | 
|  | struct cgroup *ancestor; | 
|  | u64 cgrp_id; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | cgrp = task_dfl_cgroup(current); | 
|  | ancestor = cgroup_ancestor(cgrp, ancestor_level); | 
|  | cgrp_id = ancestor ? cgroup_id(ancestor) : 0; | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return cgrp_id; | 
|  | } | 
|  |  | 
|  | const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto = { | 
|  | .func		= bpf_get_current_ancestor_cgroup_id, | 
|  | .gpl_only	= false, | 
|  | .ret_type	= RET_INTEGER, | 
|  | .arg1_type	= ARG_ANYTHING, | 
|  | }; | 
|  | #endif /* CONFIG_CGROUPS */ | 
|  |  | 
|  | #define BPF_STRTOX_BASE_MASK 0x1F | 
|  |  | 
|  | static int __bpf_strtoull(const char *buf, size_t buf_len, u64 flags, | 
|  | unsigned long long *res, bool *is_negative) | 
|  | { | 
|  | unsigned int base = flags & BPF_STRTOX_BASE_MASK; | 
|  | const char *cur_buf = buf; | 
|  | size_t cur_len = buf_len; | 
|  | unsigned int consumed; | 
|  | size_t val_len; | 
|  | char str[64]; | 
|  |  | 
|  | if (!buf || !buf_len || !res || !is_negative) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (base != 0 && base != 8 && base != 10 && base != 16) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (flags & ~BPF_STRTOX_BASE_MASK) | 
|  | return -EINVAL; | 
|  |  | 
|  | while (cur_buf < buf + buf_len && isspace(*cur_buf)) | 
|  | ++cur_buf; | 
|  |  | 
|  | *is_negative = (cur_buf < buf + buf_len && *cur_buf == '-'); | 
|  | if (*is_negative) | 
|  | ++cur_buf; | 
|  |  | 
|  | consumed = cur_buf - buf; | 
|  | cur_len -= consumed; | 
|  | if (!cur_len) | 
|  | return -EINVAL; | 
|  |  | 
|  | cur_len = min(cur_len, sizeof(str) - 1); | 
|  | memcpy(str, cur_buf, cur_len); | 
|  | str[cur_len] = '\0'; | 
|  | cur_buf = str; | 
|  |  | 
|  | cur_buf = _parse_integer_fixup_radix(cur_buf, &base); | 
|  | val_len = _parse_integer(cur_buf, base, res); | 
|  |  | 
|  | if (val_len & KSTRTOX_OVERFLOW) | 
|  | return -ERANGE; | 
|  |  | 
|  | if (val_len == 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | cur_buf += val_len; | 
|  | consumed += cur_buf - str; | 
|  |  | 
|  | return consumed; | 
|  | } | 
|  |  | 
|  | static int __bpf_strtoll(const char *buf, size_t buf_len, u64 flags, | 
|  | long long *res) | 
|  | { | 
|  | unsigned long long _res; | 
|  | bool is_negative; | 
|  | int err; | 
|  |  | 
|  | err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative); | 
|  | if (err < 0) | 
|  | return err; | 
|  | if (is_negative) { | 
|  | if ((long long)-_res > 0) | 
|  | return -ERANGE; | 
|  | *res = -_res; | 
|  | } else { | 
|  | if ((long long)_res < 0) | 
|  | return -ERANGE; | 
|  | *res = _res; | 
|  | } | 
|  | return err; | 
|  | } | 
|  |  | 
|  | BPF_CALL_4(bpf_strtol, const char *, buf, size_t, buf_len, u64, flags, | 
|  | long *, res) | 
|  | { | 
|  | long long _res; | 
|  | int err; | 
|  |  | 
|  | err = __bpf_strtoll(buf, buf_len, flags, &_res); | 
|  | if (err < 0) | 
|  | return err; | 
|  | if (_res != (long)_res) | 
|  | return -ERANGE; | 
|  | *res = _res; | 
|  | return err; | 
|  | } | 
|  |  | 
|  | const struct bpf_func_proto bpf_strtol_proto = { | 
|  | .func		= bpf_strtol, | 
|  | .gpl_only	= false, | 
|  | .ret_type	= RET_INTEGER, | 
|  | .arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY, | 
|  | .arg2_type	= ARG_CONST_SIZE, | 
|  | .arg3_type	= ARG_ANYTHING, | 
|  | .arg4_type	= ARG_PTR_TO_LONG, | 
|  | }; | 
|  |  | 
|  | BPF_CALL_4(bpf_strtoul, const char *, buf, size_t, buf_len, u64, flags, | 
|  | unsigned long *, res) | 
|  | { | 
|  | unsigned long long _res; | 
|  | bool is_negative; | 
|  | int err; | 
|  |  | 
|  | err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative); | 
|  | if (err < 0) | 
|  | return err; | 
|  | if (is_negative) | 
|  | return -EINVAL; | 
|  | if (_res != (unsigned long)_res) | 
|  | return -ERANGE; | 
|  | *res = _res; | 
|  | return err; | 
|  | } | 
|  |  | 
|  | const struct bpf_func_proto bpf_strtoul_proto = { | 
|  | .func		= bpf_strtoul, | 
|  | .gpl_only	= false, | 
|  | .ret_type	= RET_INTEGER, | 
|  | .arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY, | 
|  | .arg2_type	= ARG_CONST_SIZE, | 
|  | .arg3_type	= ARG_ANYTHING, | 
|  | .arg4_type	= ARG_PTR_TO_LONG, | 
|  | }; | 
|  |  | 
|  | BPF_CALL_3(bpf_strncmp, const char *, s1, u32, s1_sz, const char *, s2) | 
|  | { | 
|  | return strncmp(s1, s2, s1_sz); | 
|  | } | 
|  |  | 
|  | static const struct bpf_func_proto bpf_strncmp_proto = { | 
|  | .func		= bpf_strncmp, | 
|  | .gpl_only	= false, | 
|  | .ret_type	= RET_INTEGER, | 
|  | .arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY, | 
|  | .arg2_type	= ARG_CONST_SIZE, | 
|  | .arg3_type	= ARG_PTR_TO_CONST_STR, | 
|  | }; | 
|  |  | 
|  | BPF_CALL_4(bpf_get_ns_current_pid_tgid, u64, dev, u64, ino, | 
|  | struct bpf_pidns_info *, nsdata, u32, size) | 
|  | { | 
|  | struct task_struct *task = current; | 
|  | struct pid_namespace *pidns; | 
|  | int err = -EINVAL; | 
|  |  | 
|  | if (unlikely(size != sizeof(struct bpf_pidns_info))) | 
|  | goto clear; | 
|  |  | 
|  | if (unlikely((u64)(dev_t)dev != dev)) | 
|  | goto clear; | 
|  |  | 
|  | if (unlikely(!task)) | 
|  | goto clear; | 
|  |  | 
|  | pidns = task_active_pid_ns(task); | 
|  | if (unlikely(!pidns)) { | 
|  | err = -ENOENT; | 
|  | goto clear; | 
|  | } | 
|  |  | 
|  | if (!ns_match(&pidns->ns, (dev_t)dev, ino)) | 
|  | goto clear; | 
|  |  | 
|  | nsdata->pid = task_pid_nr_ns(task, pidns); | 
|  | nsdata->tgid = task_tgid_nr_ns(task, pidns); | 
|  | return 0; | 
|  | clear: | 
|  | memset((void *)nsdata, 0, (size_t) size); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto = { | 
|  | .func		= bpf_get_ns_current_pid_tgid, | 
|  | .gpl_only	= false, | 
|  | .ret_type	= RET_INTEGER, | 
|  | .arg1_type	= ARG_ANYTHING, | 
|  | .arg2_type	= ARG_ANYTHING, | 
|  | .arg3_type      = ARG_PTR_TO_UNINIT_MEM, | 
|  | .arg4_type      = ARG_CONST_SIZE, | 
|  | }; | 
|  |  | 
|  | static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = { | 
|  | .func		= bpf_get_raw_cpu_id, | 
|  | .gpl_only	= false, | 
|  | .ret_type	= RET_INTEGER, | 
|  | }; | 
|  |  | 
|  | BPF_CALL_5(bpf_event_output_data, void *, ctx, struct bpf_map *, map, | 
|  | u64, flags, void *, data, u64, size) | 
|  | { | 
|  | if (unlikely(flags & ~(BPF_F_INDEX_MASK))) | 
|  | return -EINVAL; | 
|  |  | 
|  | return bpf_event_output(map, flags, data, size, NULL, 0, NULL); | 
|  | } | 
|  |  | 
|  | const struct bpf_func_proto bpf_event_output_data_proto =  { | 
|  | .func		= bpf_event_output_data, | 
|  | .gpl_only       = true, | 
|  | .ret_type       = RET_INTEGER, | 
|  | .arg1_type      = ARG_PTR_TO_CTX, | 
|  | .arg2_type      = ARG_CONST_MAP_PTR, | 
|  | .arg3_type      = ARG_ANYTHING, | 
|  | .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY, | 
|  | .arg5_type      = ARG_CONST_SIZE_OR_ZERO, | 
|  | }; | 
|  |  | 
|  | BPF_CALL_3(bpf_copy_from_user, void *, dst, u32, size, | 
|  | const void __user *, user_ptr) | 
|  | { | 
|  | int ret = copy_from_user(dst, user_ptr, size); | 
|  |  | 
|  | if (unlikely(ret)) { | 
|  | memset(dst, 0, size); | 
|  | ret = -EFAULT; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | const struct bpf_func_proto bpf_copy_from_user_proto = { | 
|  | .func		= bpf_copy_from_user, | 
|  | .gpl_only	= false, | 
|  | .might_sleep	= true, | 
|  | .ret_type	= RET_INTEGER, | 
|  | .arg1_type	= ARG_PTR_TO_UNINIT_MEM, | 
|  | .arg2_type	= ARG_CONST_SIZE_OR_ZERO, | 
|  | .arg3_type	= ARG_ANYTHING, | 
|  | }; | 
|  |  | 
|  | BPF_CALL_5(bpf_copy_from_user_task, void *, dst, u32, size, | 
|  | const void __user *, user_ptr, struct task_struct *, tsk, u64, flags) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | /* flags is not used yet */ | 
|  | if (unlikely(flags)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (unlikely(!size)) | 
|  | return 0; | 
|  |  | 
|  | ret = access_process_vm(tsk, (unsigned long)user_ptr, dst, size, 0); | 
|  | if (ret == size) | 
|  | return 0; | 
|  |  | 
|  | memset(dst, 0, size); | 
|  | /* Return -EFAULT for partial read */ | 
|  | return ret < 0 ? ret : -EFAULT; | 
|  | } | 
|  |  | 
|  | const struct bpf_func_proto bpf_copy_from_user_task_proto = { | 
|  | .func		= bpf_copy_from_user_task, | 
|  | .gpl_only	= true, | 
|  | .might_sleep	= true, | 
|  | .ret_type	= RET_INTEGER, | 
|  | .arg1_type	= ARG_PTR_TO_UNINIT_MEM, | 
|  | .arg2_type	= ARG_CONST_SIZE_OR_ZERO, | 
|  | .arg3_type	= ARG_ANYTHING, | 
|  | .arg4_type	= ARG_PTR_TO_BTF_ID, | 
|  | .arg4_btf_id	= &btf_tracing_ids[BTF_TRACING_TYPE_TASK], | 
|  | .arg5_type	= ARG_ANYTHING | 
|  | }; | 
|  |  | 
|  | BPF_CALL_2(bpf_per_cpu_ptr, const void *, ptr, u32, cpu) | 
|  | { | 
|  | if (cpu >= nr_cpu_ids) | 
|  | return (unsigned long)NULL; | 
|  |  | 
|  | return (unsigned long)per_cpu_ptr((const void __percpu *)ptr, cpu); | 
|  | } | 
|  |  | 
|  | const struct bpf_func_proto bpf_per_cpu_ptr_proto = { | 
|  | .func		= bpf_per_cpu_ptr, | 
|  | .gpl_only	= false, | 
|  | .ret_type	= RET_PTR_TO_MEM_OR_BTF_ID | PTR_MAYBE_NULL | MEM_RDONLY, | 
|  | .arg1_type	= ARG_PTR_TO_PERCPU_BTF_ID, | 
|  | .arg2_type	= ARG_ANYTHING, | 
|  | }; | 
|  |  | 
|  | BPF_CALL_1(bpf_this_cpu_ptr, const void *, percpu_ptr) | 
|  | { | 
|  | return (unsigned long)this_cpu_ptr((const void __percpu *)percpu_ptr); | 
|  | } | 
|  |  | 
|  | const struct bpf_func_proto bpf_this_cpu_ptr_proto = { | 
|  | .func		= bpf_this_cpu_ptr, | 
|  | .gpl_only	= false, | 
|  | .ret_type	= RET_PTR_TO_MEM_OR_BTF_ID | MEM_RDONLY, | 
|  | .arg1_type	= ARG_PTR_TO_PERCPU_BTF_ID, | 
|  | }; | 
|  |  | 
|  | static int bpf_trace_copy_string(char *buf, void *unsafe_ptr, char fmt_ptype, | 
|  | size_t bufsz) | 
|  | { | 
|  | void __user *user_ptr = (__force void __user *)unsafe_ptr; | 
|  |  | 
|  | buf[0] = 0; | 
|  |  | 
|  | switch (fmt_ptype) { | 
|  | case 's': | 
|  | #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE | 
|  | if ((unsigned long)unsafe_ptr < TASK_SIZE) | 
|  | return strncpy_from_user_nofault(buf, user_ptr, bufsz); | 
|  | fallthrough; | 
|  | #endif | 
|  | case 'k': | 
|  | return strncpy_from_kernel_nofault(buf, unsafe_ptr, bufsz); | 
|  | case 'u': | 
|  | return strncpy_from_user_nofault(buf, user_ptr, bufsz); | 
|  | } | 
|  |  | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Per-cpu temp buffers used by printf-like helpers to store the bprintf binary | 
|  | * arguments representation. | 
|  | */ | 
|  | #define MAX_BPRINTF_BIN_ARGS	512 | 
|  |  | 
|  | /* Support executing three nested bprintf helper calls on a given CPU */ | 
|  | #define MAX_BPRINTF_NEST_LEVEL	3 | 
|  | struct bpf_bprintf_buffers { | 
|  | char bin_args[MAX_BPRINTF_BIN_ARGS]; | 
|  | char buf[MAX_BPRINTF_BUF]; | 
|  | }; | 
|  |  | 
|  | static DEFINE_PER_CPU(struct bpf_bprintf_buffers[MAX_BPRINTF_NEST_LEVEL], bpf_bprintf_bufs); | 
|  | static DEFINE_PER_CPU(int, bpf_bprintf_nest_level); | 
|  |  | 
|  | static int try_get_buffers(struct bpf_bprintf_buffers **bufs) | 
|  | { | 
|  | int nest_level; | 
|  |  | 
|  | preempt_disable(); | 
|  | nest_level = this_cpu_inc_return(bpf_bprintf_nest_level); | 
|  | if (WARN_ON_ONCE(nest_level > MAX_BPRINTF_NEST_LEVEL)) { | 
|  | this_cpu_dec(bpf_bprintf_nest_level); | 
|  | preempt_enable(); | 
|  | return -EBUSY; | 
|  | } | 
|  | *bufs = this_cpu_ptr(&bpf_bprintf_bufs[nest_level - 1]); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void bpf_bprintf_cleanup(struct bpf_bprintf_data *data) | 
|  | { | 
|  | if (!data->bin_args && !data->buf) | 
|  | return; | 
|  | if (WARN_ON_ONCE(this_cpu_read(bpf_bprintf_nest_level) == 0)) | 
|  | return; | 
|  | this_cpu_dec(bpf_bprintf_nest_level); | 
|  | preempt_enable(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * bpf_bprintf_prepare - Generic pass on format strings for bprintf-like helpers | 
|  | * | 
|  | * Returns a negative value if fmt is an invalid format string or 0 otherwise. | 
|  | * | 
|  | * This can be used in two ways: | 
|  | * - Format string verification only: when data->get_bin_args is false | 
|  | * - Arguments preparation: in addition to the above verification, it writes in | 
|  | *   data->bin_args a binary representation of arguments usable by bstr_printf | 
|  | *   where pointers from BPF have been sanitized. | 
|  | * | 
|  | * In argument preparation mode, if 0 is returned, safe temporary buffers are | 
|  | * allocated and bpf_bprintf_cleanup should be called to free them after use. | 
|  | */ | 
|  | int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args, | 
|  | u32 num_args, struct bpf_bprintf_data *data) | 
|  | { | 
|  | bool get_buffers = (data->get_bin_args && num_args) || data->get_buf; | 
|  | char *unsafe_ptr = NULL, *tmp_buf = NULL, *tmp_buf_end, *fmt_end; | 
|  | struct bpf_bprintf_buffers *buffers = NULL; | 
|  | size_t sizeof_cur_arg, sizeof_cur_ip; | 
|  | int err, i, num_spec = 0; | 
|  | u64 cur_arg; | 
|  | char fmt_ptype, cur_ip[16], ip_spec[] = "%pXX"; | 
|  |  | 
|  | fmt_end = strnchr(fmt, fmt_size, 0); | 
|  | if (!fmt_end) | 
|  | return -EINVAL; | 
|  | fmt_size = fmt_end - fmt; | 
|  |  | 
|  | if (get_buffers && try_get_buffers(&buffers)) | 
|  | return -EBUSY; | 
|  |  | 
|  | if (data->get_bin_args) { | 
|  | if (num_args) | 
|  | tmp_buf = buffers->bin_args; | 
|  | tmp_buf_end = tmp_buf + MAX_BPRINTF_BIN_ARGS; | 
|  | data->bin_args = (u32 *)tmp_buf; | 
|  | } | 
|  |  | 
|  | if (data->get_buf) | 
|  | data->buf = buffers->buf; | 
|  |  | 
|  | for (i = 0; i < fmt_size; i++) { | 
|  | if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) { | 
|  | err = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (fmt[i] != '%') | 
|  | continue; | 
|  |  | 
|  | if (fmt[i + 1] == '%') { | 
|  | i++; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (num_spec >= num_args) { | 
|  | err = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* The string is zero-terminated so if fmt[i] != 0, we can | 
|  | * always access fmt[i + 1], in the worst case it will be a 0 | 
|  | */ | 
|  | i++; | 
|  |  | 
|  | /* skip optional "[0 +-][num]" width formatting field */ | 
|  | while (fmt[i] == '0' || fmt[i] == '+'  || fmt[i] == '-' || | 
|  | fmt[i] == ' ') | 
|  | i++; | 
|  | if (fmt[i] >= '1' && fmt[i] <= '9') { | 
|  | i++; | 
|  | while (fmt[i] >= '0' && fmt[i] <= '9') | 
|  | i++; | 
|  | } | 
|  |  | 
|  | if (fmt[i] == 'p') { | 
|  | sizeof_cur_arg = sizeof(long); | 
|  |  | 
|  | if ((fmt[i + 1] == 'k' || fmt[i + 1] == 'u') && | 
|  | fmt[i + 2] == 's') { | 
|  | fmt_ptype = fmt[i + 1]; | 
|  | i += 2; | 
|  | goto fmt_str; | 
|  | } | 
|  |  | 
|  | if (fmt[i + 1] == 0 || isspace(fmt[i + 1]) || | 
|  | ispunct(fmt[i + 1]) || fmt[i + 1] == 'K' || | 
|  | fmt[i + 1] == 'x' || fmt[i + 1] == 's' || | 
|  | fmt[i + 1] == 'S') { | 
|  | /* just kernel pointers */ | 
|  | if (tmp_buf) | 
|  | cur_arg = raw_args[num_spec]; | 
|  | i++; | 
|  | goto nocopy_fmt; | 
|  | } | 
|  |  | 
|  | if (fmt[i + 1] == 'B') { | 
|  | if (tmp_buf)  { | 
|  | err = snprintf(tmp_buf, | 
|  | (tmp_buf_end - tmp_buf), | 
|  | "%pB", | 
|  | (void *)(long)raw_args[num_spec]); | 
|  | tmp_buf += (err + 1); | 
|  | } | 
|  |  | 
|  | i++; | 
|  | num_spec++; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* only support "%pI4", "%pi4", "%pI6" and "%pi6". */ | 
|  | if ((fmt[i + 1] != 'i' && fmt[i + 1] != 'I') || | 
|  | (fmt[i + 2] != '4' && fmt[i + 2] != '6')) { | 
|  | err = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | i += 2; | 
|  | if (!tmp_buf) | 
|  | goto nocopy_fmt; | 
|  |  | 
|  | sizeof_cur_ip = (fmt[i] == '4') ? 4 : 16; | 
|  | if (tmp_buf_end - tmp_buf < sizeof_cur_ip) { | 
|  | err = -ENOSPC; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | unsafe_ptr = (char *)(long)raw_args[num_spec]; | 
|  | err = copy_from_kernel_nofault(cur_ip, unsafe_ptr, | 
|  | sizeof_cur_ip); | 
|  | if (err < 0) | 
|  | memset(cur_ip, 0, sizeof_cur_ip); | 
|  |  | 
|  | /* hack: bstr_printf expects IP addresses to be | 
|  | * pre-formatted as strings, ironically, the easiest way | 
|  | * to do that is to call snprintf. | 
|  | */ | 
|  | ip_spec[2] = fmt[i - 1]; | 
|  | ip_spec[3] = fmt[i]; | 
|  | err = snprintf(tmp_buf, tmp_buf_end - tmp_buf, | 
|  | ip_spec, &cur_ip); | 
|  |  | 
|  | tmp_buf += err + 1; | 
|  | num_spec++; | 
|  |  | 
|  | continue; | 
|  | } else if (fmt[i] == 's') { | 
|  | fmt_ptype = fmt[i]; | 
|  | fmt_str: | 
|  | if (fmt[i + 1] != 0 && | 
|  | !isspace(fmt[i + 1]) && | 
|  | !ispunct(fmt[i + 1])) { | 
|  | err = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (!tmp_buf) | 
|  | goto nocopy_fmt; | 
|  |  | 
|  | if (tmp_buf_end == tmp_buf) { | 
|  | err = -ENOSPC; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | unsafe_ptr = (char *)(long)raw_args[num_spec]; | 
|  | err = bpf_trace_copy_string(tmp_buf, unsafe_ptr, | 
|  | fmt_ptype, | 
|  | tmp_buf_end - tmp_buf); | 
|  | if (err < 0) { | 
|  | tmp_buf[0] = '\0'; | 
|  | err = 1; | 
|  | } | 
|  |  | 
|  | tmp_buf += err; | 
|  | num_spec++; | 
|  |  | 
|  | continue; | 
|  | } else if (fmt[i] == 'c') { | 
|  | if (!tmp_buf) | 
|  | goto nocopy_fmt; | 
|  |  | 
|  | if (tmp_buf_end == tmp_buf) { | 
|  | err = -ENOSPC; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | *tmp_buf = raw_args[num_spec]; | 
|  | tmp_buf++; | 
|  | num_spec++; | 
|  |  | 
|  | continue; | 
|  | } | 
|  |  | 
|  | sizeof_cur_arg = sizeof(int); | 
|  |  | 
|  | if (fmt[i] == 'l') { | 
|  | sizeof_cur_arg = sizeof(long); | 
|  | i++; | 
|  | } | 
|  | if (fmt[i] == 'l') { | 
|  | sizeof_cur_arg = sizeof(long long); | 
|  | i++; | 
|  | } | 
|  |  | 
|  | if (fmt[i] != 'i' && fmt[i] != 'd' && fmt[i] != 'u' && | 
|  | fmt[i] != 'x' && fmt[i] != 'X') { | 
|  | err = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (tmp_buf) | 
|  | cur_arg = raw_args[num_spec]; | 
|  | nocopy_fmt: | 
|  | if (tmp_buf) { | 
|  | tmp_buf = PTR_ALIGN(tmp_buf, sizeof(u32)); | 
|  | if (tmp_buf_end - tmp_buf < sizeof_cur_arg) { | 
|  | err = -ENOSPC; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (sizeof_cur_arg == 8) { | 
|  | *(u32 *)tmp_buf = *(u32 *)&cur_arg; | 
|  | *(u32 *)(tmp_buf + 4) = *((u32 *)&cur_arg + 1); | 
|  | } else { | 
|  | *(u32 *)tmp_buf = (u32)(long)cur_arg; | 
|  | } | 
|  | tmp_buf += sizeof_cur_arg; | 
|  | } | 
|  | num_spec++; | 
|  | } | 
|  |  | 
|  | err = 0; | 
|  | out: | 
|  | if (err) | 
|  | bpf_bprintf_cleanup(data); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | BPF_CALL_5(bpf_snprintf, char *, str, u32, str_size, char *, fmt, | 
|  | const void *, args, u32, data_len) | 
|  | { | 
|  | struct bpf_bprintf_data data = { | 
|  | .get_bin_args	= true, | 
|  | }; | 
|  | int err, num_args; | 
|  |  | 
|  | if (data_len % 8 || data_len > MAX_BPRINTF_VARARGS * 8 || | 
|  | (data_len && !args)) | 
|  | return -EINVAL; | 
|  | num_args = data_len / 8; | 
|  |  | 
|  | /* ARG_PTR_TO_CONST_STR guarantees that fmt is zero-terminated so we | 
|  | * can safely give an unbounded size. | 
|  | */ | 
|  | err = bpf_bprintf_prepare(fmt, UINT_MAX, args, num_args, &data); | 
|  | if (err < 0) | 
|  | return err; | 
|  |  | 
|  | err = bstr_printf(str, str_size, fmt, data.bin_args); | 
|  |  | 
|  | bpf_bprintf_cleanup(&data); | 
|  |  | 
|  | return err + 1; | 
|  | } | 
|  |  | 
|  | const struct bpf_func_proto bpf_snprintf_proto = { | 
|  | .func		= bpf_snprintf, | 
|  | .gpl_only	= true, | 
|  | .ret_type	= RET_INTEGER, | 
|  | .arg1_type	= ARG_PTR_TO_MEM_OR_NULL, | 
|  | .arg2_type	= ARG_CONST_SIZE_OR_ZERO, | 
|  | .arg3_type	= ARG_PTR_TO_CONST_STR, | 
|  | .arg4_type	= ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY, | 
|  | .arg5_type	= ARG_CONST_SIZE_OR_ZERO, | 
|  | }; | 
|  |  | 
|  | struct bpf_async_cb { | 
|  | struct bpf_map *map; | 
|  | struct bpf_prog *prog; | 
|  | void __rcu *callback_fn; | 
|  | void *value; | 
|  | union { | 
|  | struct rcu_head rcu; | 
|  | struct work_struct delete_work; | 
|  | }; | 
|  | u64 flags; | 
|  | }; | 
|  |  | 
|  | /* BPF map elements can contain 'struct bpf_timer'. | 
|  | * Such map owns all of its BPF timers. | 
|  | * 'struct bpf_timer' is allocated as part of map element allocation | 
|  | * and it's zero initialized. | 
|  | * That space is used to keep 'struct bpf_async_kern'. | 
|  | * bpf_timer_init() allocates 'struct bpf_hrtimer', inits hrtimer, and | 
|  | * remembers 'struct bpf_map *' pointer it's part of. | 
|  | * bpf_timer_set_callback() increments prog refcnt and assign bpf callback_fn. | 
|  | * bpf_timer_start() arms the timer. | 
|  | * If user space reference to a map goes to zero at this point | 
|  | * ops->map_release_uref callback is responsible for cancelling the timers, | 
|  | * freeing their memory, and decrementing prog's refcnts. | 
|  | * bpf_timer_cancel() cancels the timer and decrements prog's refcnt. | 
|  | * Inner maps can contain bpf timers as well. ops->map_release_uref is | 
|  | * freeing the timers when inner map is replaced or deleted by user space. | 
|  | */ | 
|  | struct bpf_hrtimer { | 
|  | struct bpf_async_cb cb; | 
|  | struct hrtimer timer; | 
|  | atomic_t cancelling; | 
|  | }; | 
|  |  | 
|  | struct bpf_work { | 
|  | struct bpf_async_cb cb; | 
|  | struct work_struct work; | 
|  | struct work_struct delete_work; | 
|  | }; | 
|  |  | 
|  | /* the actual struct hidden inside uapi struct bpf_timer and bpf_wq */ | 
|  | struct bpf_async_kern { | 
|  | union { | 
|  | struct bpf_async_cb *cb; | 
|  | struct bpf_hrtimer *timer; | 
|  | struct bpf_work *work; | 
|  | }; | 
|  | /* bpf_spin_lock is used here instead of spinlock_t to make | 
|  | * sure that it always fits into space reserved by struct bpf_timer | 
|  | * regardless of LOCKDEP and spinlock debug flags. | 
|  | */ | 
|  | struct bpf_spin_lock lock; | 
|  | } __attribute__((aligned(8))); | 
|  |  | 
|  | enum bpf_async_type { | 
|  | BPF_ASYNC_TYPE_TIMER = 0, | 
|  | BPF_ASYNC_TYPE_WQ, | 
|  | }; | 
|  |  | 
|  | static DEFINE_PER_CPU(struct bpf_hrtimer *, hrtimer_running); | 
|  |  | 
|  | static enum hrtimer_restart bpf_timer_cb(struct hrtimer *hrtimer) | 
|  | { | 
|  | struct bpf_hrtimer *t = container_of(hrtimer, struct bpf_hrtimer, timer); | 
|  | struct bpf_map *map = t->cb.map; | 
|  | void *value = t->cb.value; | 
|  | bpf_callback_t callback_fn; | 
|  | void *key; | 
|  | u32 idx; | 
|  |  | 
|  | BTF_TYPE_EMIT(struct bpf_timer); | 
|  | callback_fn = rcu_dereference_check(t->cb.callback_fn, rcu_read_lock_bh_held()); | 
|  | if (!callback_fn) | 
|  | goto out; | 
|  |  | 
|  | /* bpf_timer_cb() runs in hrtimer_run_softirq. It doesn't migrate and | 
|  | * cannot be preempted by another bpf_timer_cb() on the same cpu. | 
|  | * Remember the timer this callback is servicing to prevent | 
|  | * deadlock if callback_fn() calls bpf_timer_cancel() or | 
|  | * bpf_map_delete_elem() on the same timer. | 
|  | */ | 
|  | this_cpu_write(hrtimer_running, t); | 
|  | if (map->map_type == BPF_MAP_TYPE_ARRAY) { | 
|  | struct bpf_array *array = container_of(map, struct bpf_array, map); | 
|  |  | 
|  | /* compute the key */ | 
|  | idx = ((char *)value - array->value) / array->elem_size; | 
|  | key = &idx; | 
|  | } else { /* hash or lru */ | 
|  | key = value - round_up(map->key_size, 8); | 
|  | } | 
|  |  | 
|  | callback_fn((u64)(long)map, (u64)(long)key, (u64)(long)value, 0, 0); | 
|  | /* The verifier checked that return value is zero. */ | 
|  |  | 
|  | this_cpu_write(hrtimer_running, NULL); | 
|  | out: | 
|  | return HRTIMER_NORESTART; | 
|  | } | 
|  |  | 
|  | static void bpf_wq_work(struct work_struct *work) | 
|  | { | 
|  | struct bpf_work *w = container_of(work, struct bpf_work, work); | 
|  | struct bpf_async_cb *cb = &w->cb; | 
|  | struct bpf_map *map = cb->map; | 
|  | bpf_callback_t callback_fn; | 
|  | void *value = cb->value; | 
|  | void *key; | 
|  | u32 idx; | 
|  |  | 
|  | BTF_TYPE_EMIT(struct bpf_wq); | 
|  |  | 
|  | callback_fn = READ_ONCE(cb->callback_fn); | 
|  | if (!callback_fn) | 
|  | return; | 
|  |  | 
|  | if (map->map_type == BPF_MAP_TYPE_ARRAY) { | 
|  | struct bpf_array *array = container_of(map, struct bpf_array, map); | 
|  |  | 
|  | /* compute the key */ | 
|  | idx = ((char *)value - array->value) / array->elem_size; | 
|  | key = &idx; | 
|  | } else { /* hash or lru */ | 
|  | key = value - round_up(map->key_size, 8); | 
|  | } | 
|  |  | 
|  | rcu_read_lock_trace(); | 
|  | migrate_disable(); | 
|  |  | 
|  | callback_fn((u64)(long)map, (u64)(long)key, (u64)(long)value, 0, 0); | 
|  |  | 
|  | migrate_enable(); | 
|  | rcu_read_unlock_trace(); | 
|  | } | 
|  |  | 
|  | static void bpf_wq_delete_work(struct work_struct *work) | 
|  | { | 
|  | struct bpf_work *w = container_of(work, struct bpf_work, delete_work); | 
|  |  | 
|  | cancel_work_sync(&w->work); | 
|  |  | 
|  | kfree_rcu(w, cb.rcu); | 
|  | } | 
|  |  | 
|  | static void bpf_timer_delete_work(struct work_struct *work) | 
|  | { | 
|  | struct bpf_hrtimer *t = container_of(work, struct bpf_hrtimer, cb.delete_work); | 
|  |  | 
|  | /* Cancel the timer and wait for callback to complete if it was running. | 
|  | * If hrtimer_cancel() can be safely called it's safe to call | 
|  | * kfree_rcu(t) right after for both preallocated and non-preallocated | 
|  | * maps.  The async->cb = NULL was already done and no code path can see | 
|  | * address 't' anymore. Timer if armed for existing bpf_hrtimer before | 
|  | * bpf_timer_cancel_and_free will have been cancelled. | 
|  | */ | 
|  | hrtimer_cancel(&t->timer); | 
|  | kfree_rcu(t, cb.rcu); | 
|  | } | 
|  |  | 
|  | static int __bpf_async_init(struct bpf_async_kern *async, struct bpf_map *map, u64 flags, | 
|  | enum bpf_async_type type) | 
|  | { | 
|  | struct bpf_async_cb *cb; | 
|  | struct bpf_hrtimer *t; | 
|  | struct bpf_work *w; | 
|  | clockid_t clockid; | 
|  | size_t size; | 
|  | int ret = 0; | 
|  |  | 
|  | if (in_nmi()) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | switch (type) { | 
|  | case BPF_ASYNC_TYPE_TIMER: | 
|  | size = sizeof(struct bpf_hrtimer); | 
|  | break; | 
|  | case BPF_ASYNC_TYPE_WQ: | 
|  | size = sizeof(struct bpf_work); | 
|  | break; | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | __bpf_spin_lock_irqsave(&async->lock); | 
|  | t = async->timer; | 
|  | if (t) { | 
|  | ret = -EBUSY; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* allocate hrtimer via map_kmalloc to use memcg accounting */ | 
|  | cb = bpf_map_kmalloc_node(map, size, GFP_ATOMIC, map->numa_node); | 
|  | if (!cb) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | switch (type) { | 
|  | case BPF_ASYNC_TYPE_TIMER: | 
|  | clockid = flags & (MAX_CLOCKS - 1); | 
|  | t = (struct bpf_hrtimer *)cb; | 
|  |  | 
|  | atomic_set(&t->cancelling, 0); | 
|  | INIT_WORK(&t->cb.delete_work, bpf_timer_delete_work); | 
|  | hrtimer_init(&t->timer, clockid, HRTIMER_MODE_REL_SOFT); | 
|  | t->timer.function = bpf_timer_cb; | 
|  | cb->value = (void *)async - map->record->timer_off; | 
|  | break; | 
|  | case BPF_ASYNC_TYPE_WQ: | 
|  | w = (struct bpf_work *)cb; | 
|  |  | 
|  | INIT_WORK(&w->work, bpf_wq_work); | 
|  | INIT_WORK(&w->delete_work, bpf_wq_delete_work); | 
|  | cb->value = (void *)async - map->record->wq_off; | 
|  | break; | 
|  | } | 
|  | cb->map = map; | 
|  | cb->prog = NULL; | 
|  | cb->flags = flags; | 
|  | rcu_assign_pointer(cb->callback_fn, NULL); | 
|  |  | 
|  | WRITE_ONCE(async->cb, cb); | 
|  | /* Guarantee the order between async->cb and map->usercnt. So | 
|  | * when there are concurrent uref release and bpf timer init, either | 
|  | * bpf_timer_cancel_and_free() called by uref release reads a no-NULL | 
|  | * timer or atomic64_read() below returns a zero usercnt. | 
|  | */ | 
|  | smp_mb(); | 
|  | if (!atomic64_read(&map->usercnt)) { | 
|  | /* maps with timers must be either held by user space | 
|  | * or pinned in bpffs. | 
|  | */ | 
|  | WRITE_ONCE(async->cb, NULL); | 
|  | kfree(cb); | 
|  | ret = -EPERM; | 
|  | } | 
|  | out: | 
|  | __bpf_spin_unlock_irqrestore(&async->lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | BPF_CALL_3(bpf_timer_init, struct bpf_async_kern *, timer, struct bpf_map *, map, | 
|  | u64, flags) | 
|  | { | 
|  | clock_t clockid = flags & (MAX_CLOCKS - 1); | 
|  |  | 
|  | BUILD_BUG_ON(MAX_CLOCKS != 16); | 
|  | BUILD_BUG_ON(sizeof(struct bpf_async_kern) > sizeof(struct bpf_timer)); | 
|  | BUILD_BUG_ON(__alignof__(struct bpf_async_kern) != __alignof__(struct bpf_timer)); | 
|  |  | 
|  | if (flags >= MAX_CLOCKS || | 
|  | /* similar to timerfd except _ALARM variants are not supported */ | 
|  | (clockid != CLOCK_MONOTONIC && | 
|  | clockid != CLOCK_REALTIME && | 
|  | clockid != CLOCK_BOOTTIME)) | 
|  | return -EINVAL; | 
|  |  | 
|  | return __bpf_async_init(timer, map, flags, BPF_ASYNC_TYPE_TIMER); | 
|  | } | 
|  |  | 
|  | static const struct bpf_func_proto bpf_timer_init_proto = { | 
|  | .func		= bpf_timer_init, | 
|  | .gpl_only	= true, | 
|  | .ret_type	= RET_INTEGER, | 
|  | .arg1_type	= ARG_PTR_TO_TIMER, | 
|  | .arg2_type	= ARG_CONST_MAP_PTR, | 
|  | .arg3_type	= ARG_ANYTHING, | 
|  | }; | 
|  |  | 
|  | static int __bpf_async_set_callback(struct bpf_async_kern *async, void *callback_fn, | 
|  | struct bpf_prog_aux *aux, unsigned int flags, | 
|  | enum bpf_async_type type) | 
|  | { | 
|  | struct bpf_prog *prev, *prog = aux->prog; | 
|  | struct bpf_async_cb *cb; | 
|  | int ret = 0; | 
|  |  | 
|  | if (in_nmi()) | 
|  | return -EOPNOTSUPP; | 
|  | __bpf_spin_lock_irqsave(&async->lock); | 
|  | cb = async->cb; | 
|  | if (!cb) { | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  | if (!atomic64_read(&cb->map->usercnt)) { | 
|  | /* maps with timers must be either held by user space | 
|  | * or pinned in bpffs. Otherwise timer might still be | 
|  | * running even when bpf prog is detached and user space | 
|  | * is gone, since map_release_uref won't ever be called. | 
|  | */ | 
|  | ret = -EPERM; | 
|  | goto out; | 
|  | } | 
|  | prev = cb->prog; | 
|  | if (prev != prog) { | 
|  | /* Bump prog refcnt once. Every bpf_timer_set_callback() | 
|  | * can pick different callback_fn-s within the same prog. | 
|  | */ | 
|  | prog = bpf_prog_inc_not_zero(prog); | 
|  | if (IS_ERR(prog)) { | 
|  | ret = PTR_ERR(prog); | 
|  | goto out; | 
|  | } | 
|  | if (prev) | 
|  | /* Drop prev prog refcnt when swapping with new prog */ | 
|  | bpf_prog_put(prev); | 
|  | cb->prog = prog; | 
|  | } | 
|  | rcu_assign_pointer(cb->callback_fn, callback_fn); | 
|  | out: | 
|  | __bpf_spin_unlock_irqrestore(&async->lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | BPF_CALL_3(bpf_timer_set_callback, struct bpf_async_kern *, timer, void *, callback_fn, | 
|  | struct bpf_prog_aux *, aux) | 
|  | { | 
|  | return __bpf_async_set_callback(timer, callback_fn, aux, 0, BPF_ASYNC_TYPE_TIMER); | 
|  | } | 
|  |  | 
|  | static const struct bpf_func_proto bpf_timer_set_callback_proto = { | 
|  | .func		= bpf_timer_set_callback, | 
|  | .gpl_only	= true, | 
|  | .ret_type	= RET_INTEGER, | 
|  | .arg1_type	= ARG_PTR_TO_TIMER, | 
|  | .arg2_type	= ARG_PTR_TO_FUNC, | 
|  | }; | 
|  |  | 
|  | BPF_CALL_3(bpf_timer_start, struct bpf_async_kern *, timer, u64, nsecs, u64, flags) | 
|  | { | 
|  | struct bpf_hrtimer *t; | 
|  | int ret = 0; | 
|  | enum hrtimer_mode mode; | 
|  |  | 
|  | if (in_nmi()) | 
|  | return -EOPNOTSUPP; | 
|  | if (flags & ~(BPF_F_TIMER_ABS | BPF_F_TIMER_CPU_PIN)) | 
|  | return -EINVAL; | 
|  | __bpf_spin_lock_irqsave(&timer->lock); | 
|  | t = timer->timer; | 
|  | if (!t || !t->cb.prog) { | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (flags & BPF_F_TIMER_ABS) | 
|  | mode = HRTIMER_MODE_ABS_SOFT; | 
|  | else | 
|  | mode = HRTIMER_MODE_REL_SOFT; | 
|  |  | 
|  | if (flags & BPF_F_TIMER_CPU_PIN) | 
|  | mode |= HRTIMER_MODE_PINNED; | 
|  |  | 
|  | hrtimer_start(&t->timer, ns_to_ktime(nsecs), mode); | 
|  | out: | 
|  | __bpf_spin_unlock_irqrestore(&timer->lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static const struct bpf_func_proto bpf_timer_start_proto = { | 
|  | .func		= bpf_timer_start, | 
|  | .gpl_only	= true, | 
|  | .ret_type	= RET_INTEGER, | 
|  | .arg1_type	= ARG_PTR_TO_TIMER, | 
|  | .arg2_type	= ARG_ANYTHING, | 
|  | .arg3_type	= ARG_ANYTHING, | 
|  | }; | 
|  |  | 
|  | static void drop_prog_refcnt(struct bpf_async_cb *async) | 
|  | { | 
|  | struct bpf_prog *prog = async->prog; | 
|  |  | 
|  | if (prog) { | 
|  | bpf_prog_put(prog); | 
|  | async->prog = NULL; | 
|  | rcu_assign_pointer(async->callback_fn, NULL); | 
|  | } | 
|  | } | 
|  |  | 
|  | BPF_CALL_1(bpf_timer_cancel, struct bpf_async_kern *, timer) | 
|  | { | 
|  | struct bpf_hrtimer *t, *cur_t; | 
|  | bool inc = false; | 
|  | int ret = 0; | 
|  |  | 
|  | if (in_nmi()) | 
|  | return -EOPNOTSUPP; | 
|  | rcu_read_lock(); | 
|  | __bpf_spin_lock_irqsave(&timer->lock); | 
|  | t = timer->timer; | 
|  | if (!t) { | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | cur_t = this_cpu_read(hrtimer_running); | 
|  | if (cur_t == t) { | 
|  | /* If bpf callback_fn is trying to bpf_timer_cancel() | 
|  | * its own timer the hrtimer_cancel() will deadlock | 
|  | * since it waits for callback_fn to finish. | 
|  | */ | 
|  | ret = -EDEADLK; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* Only account in-flight cancellations when invoked from a timer | 
|  | * callback, since we want to avoid waiting only if other _callbacks_ | 
|  | * are waiting on us, to avoid introducing lockups. Non-callback paths | 
|  | * are ok, since nobody would synchronously wait for their completion. | 
|  | */ | 
|  | if (!cur_t) | 
|  | goto drop; | 
|  | atomic_inc(&t->cancelling); | 
|  | /* Need full barrier after relaxed atomic_inc */ | 
|  | smp_mb__after_atomic(); | 
|  | inc = true; | 
|  | if (atomic_read(&cur_t->cancelling)) { | 
|  | /* We're cancelling timer t, while some other timer callback is | 
|  | * attempting to cancel us. In such a case, it might be possible | 
|  | * that timer t belongs to the other callback, or some other | 
|  | * callback waiting upon it (creating transitive dependencies | 
|  | * upon us), and we will enter a deadlock if we continue | 
|  | * cancelling and waiting for it synchronously, since it might | 
|  | * do the same. Bail! | 
|  | */ | 
|  | ret = -EDEADLK; | 
|  | goto out; | 
|  | } | 
|  | drop: | 
|  | drop_prog_refcnt(&t->cb); | 
|  | out: | 
|  | __bpf_spin_unlock_irqrestore(&timer->lock); | 
|  | /* Cancel the timer and wait for associated callback to finish | 
|  | * if it was running. | 
|  | */ | 
|  | ret = ret ?: hrtimer_cancel(&t->timer); | 
|  | if (inc) | 
|  | atomic_dec(&t->cancelling); | 
|  | rcu_read_unlock(); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static const struct bpf_func_proto bpf_timer_cancel_proto = { | 
|  | .func		= bpf_timer_cancel, | 
|  | .gpl_only	= true, | 
|  | .ret_type	= RET_INTEGER, | 
|  | .arg1_type	= ARG_PTR_TO_TIMER, | 
|  | }; | 
|  |  | 
|  | static struct bpf_async_cb *__bpf_async_cancel_and_free(struct bpf_async_kern *async) | 
|  | { | 
|  | struct bpf_async_cb *cb; | 
|  |  | 
|  | /* Performance optimization: read async->cb without lock first. */ | 
|  | if (!READ_ONCE(async->cb)) | 
|  | return NULL; | 
|  |  | 
|  | __bpf_spin_lock_irqsave(&async->lock); | 
|  | /* re-read it under lock */ | 
|  | cb = async->cb; | 
|  | if (!cb) | 
|  | goto out; | 
|  | drop_prog_refcnt(cb); | 
|  | /* The subsequent bpf_timer_start/cancel() helpers won't be able to use | 
|  | * this timer, since it won't be initialized. | 
|  | */ | 
|  | WRITE_ONCE(async->cb, NULL); | 
|  | out: | 
|  | __bpf_spin_unlock_irqrestore(&async->lock); | 
|  | return cb; | 
|  | } | 
|  |  | 
|  | /* This function is called by map_delete/update_elem for individual element and | 
|  | * by ops->map_release_uref when the user space reference to a map reaches zero. | 
|  | */ | 
|  | void bpf_timer_cancel_and_free(void *val) | 
|  | { | 
|  | struct bpf_hrtimer *t; | 
|  |  | 
|  | t = (struct bpf_hrtimer *)__bpf_async_cancel_and_free(val); | 
|  |  | 
|  | if (!t) | 
|  | return; | 
|  | /* We check that bpf_map_delete/update_elem() was called from timer | 
|  | * callback_fn. In such case we don't call hrtimer_cancel() (since it | 
|  | * will deadlock) and don't call hrtimer_try_to_cancel() (since it will | 
|  | * just return -1). Though callback_fn is still running on this cpu it's | 
|  | * safe to do kfree(t) because bpf_timer_cb() read everything it needed | 
|  | * from 't'. The bpf subprog callback_fn won't be able to access 't', | 
|  | * since async->cb = NULL was already done. The timer will be | 
|  | * effectively cancelled because bpf_timer_cb() will return | 
|  | * HRTIMER_NORESTART. | 
|  | * | 
|  | * However, it is possible the timer callback_fn calling us armed the | 
|  | * timer _before_ calling us, such that failing to cancel it here will | 
|  | * cause it to possibly use struct hrtimer after freeing bpf_hrtimer. | 
|  | * Therefore, we _need_ to cancel any outstanding timers before we do | 
|  | * kfree_rcu, even though no more timers can be armed. | 
|  | * | 
|  | * Moreover, we need to schedule work even if timer does not belong to | 
|  | * the calling callback_fn, as on two different CPUs, we can end up in a | 
|  | * situation where both sides run in parallel, try to cancel one | 
|  | * another, and we end up waiting on both sides in hrtimer_cancel | 
|  | * without making forward progress, since timer1 depends on time2 | 
|  | * callback to finish, and vice versa. | 
|  | * | 
|  | *  CPU 1 (timer1_cb)			CPU 2 (timer2_cb) | 
|  | *  bpf_timer_cancel_and_free(timer2)	bpf_timer_cancel_and_free(timer1) | 
|  | * | 
|  | * To avoid these issues, punt to workqueue context when we are in a | 
|  | * timer callback. | 
|  | */ | 
|  | if (this_cpu_read(hrtimer_running)) | 
|  | queue_work(system_unbound_wq, &t->cb.delete_work); | 
|  | else | 
|  | bpf_timer_delete_work(&t->cb.delete_work); | 
|  | } | 
|  |  | 
|  | /* This function is called by map_delete/update_elem for individual element and | 
|  | * by ops->map_release_uref when the user space reference to a map reaches zero. | 
|  | */ | 
|  | void bpf_wq_cancel_and_free(void *val) | 
|  | { | 
|  | struct bpf_work *work; | 
|  |  | 
|  | BTF_TYPE_EMIT(struct bpf_wq); | 
|  |  | 
|  | work = (struct bpf_work *)__bpf_async_cancel_and_free(val); | 
|  | if (!work) | 
|  | return; | 
|  | /* Trigger cancel of the sleepable work, but *do not* wait for | 
|  | * it to finish if it was running as we might not be in a | 
|  | * sleepable context. | 
|  | * kfree will be called once the work has finished. | 
|  | */ | 
|  | schedule_work(&work->delete_work); | 
|  | } | 
|  |  | 
|  | BPF_CALL_2(bpf_kptr_xchg, void *, map_value, void *, ptr) | 
|  | { | 
|  | unsigned long *kptr = map_value; | 
|  |  | 
|  | /* This helper may be inlined by verifier. */ | 
|  | return xchg(kptr, (unsigned long)ptr); | 
|  | } | 
|  |  | 
|  | /* Unlike other PTR_TO_BTF_ID helpers the btf_id in bpf_kptr_xchg() | 
|  | * helper is determined dynamically by the verifier. Use BPF_PTR_POISON to | 
|  | * denote type that verifier will determine. | 
|  | */ | 
|  | static const struct bpf_func_proto bpf_kptr_xchg_proto = { | 
|  | .func         = bpf_kptr_xchg, | 
|  | .gpl_only     = false, | 
|  | .ret_type     = RET_PTR_TO_BTF_ID_OR_NULL, | 
|  | .ret_btf_id   = BPF_PTR_POISON, | 
|  | .arg1_type    = ARG_PTR_TO_KPTR, | 
|  | .arg2_type    = ARG_PTR_TO_BTF_ID_OR_NULL | OBJ_RELEASE, | 
|  | .arg2_btf_id  = BPF_PTR_POISON, | 
|  | }; | 
|  |  | 
|  | /* Since the upper 8 bits of dynptr->size is reserved, the | 
|  | * maximum supported size is 2^24 - 1. | 
|  | */ | 
|  | #define DYNPTR_MAX_SIZE	((1UL << 24) - 1) | 
|  | #define DYNPTR_TYPE_SHIFT	28 | 
|  | #define DYNPTR_SIZE_MASK	0xFFFFFF | 
|  | #define DYNPTR_RDONLY_BIT	BIT(31) | 
|  |  | 
|  | bool __bpf_dynptr_is_rdonly(const struct bpf_dynptr_kern *ptr) | 
|  | { | 
|  | return ptr->size & DYNPTR_RDONLY_BIT; | 
|  | } | 
|  |  | 
|  | void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr) | 
|  | { | 
|  | ptr->size |= DYNPTR_RDONLY_BIT; | 
|  | } | 
|  |  | 
|  | static void bpf_dynptr_set_type(struct bpf_dynptr_kern *ptr, enum bpf_dynptr_type type) | 
|  | { | 
|  | ptr->size |= type << DYNPTR_TYPE_SHIFT; | 
|  | } | 
|  |  | 
|  | static enum bpf_dynptr_type bpf_dynptr_get_type(const struct bpf_dynptr_kern *ptr) | 
|  | { | 
|  | return (ptr->size & ~(DYNPTR_RDONLY_BIT)) >> DYNPTR_TYPE_SHIFT; | 
|  | } | 
|  |  | 
|  | u32 __bpf_dynptr_size(const struct bpf_dynptr_kern *ptr) | 
|  | { | 
|  | return ptr->size & DYNPTR_SIZE_MASK; | 
|  | } | 
|  |  | 
|  | static void bpf_dynptr_set_size(struct bpf_dynptr_kern *ptr, u32 new_size) | 
|  | { | 
|  | u32 metadata = ptr->size & ~DYNPTR_SIZE_MASK; | 
|  |  | 
|  | ptr->size = new_size | metadata; | 
|  | } | 
|  |  | 
|  | int bpf_dynptr_check_size(u32 size) | 
|  | { | 
|  | return size > DYNPTR_MAX_SIZE ? -E2BIG : 0; | 
|  | } | 
|  |  | 
|  | void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data, | 
|  | enum bpf_dynptr_type type, u32 offset, u32 size) | 
|  | { | 
|  | ptr->data = data; | 
|  | ptr->offset = offset; | 
|  | ptr->size = size; | 
|  | bpf_dynptr_set_type(ptr, type); | 
|  | } | 
|  |  | 
|  | void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr) | 
|  | { | 
|  | memset(ptr, 0, sizeof(*ptr)); | 
|  | } | 
|  |  | 
|  | static int bpf_dynptr_check_off_len(const struct bpf_dynptr_kern *ptr, u32 offset, u32 len) | 
|  | { | 
|  | u32 size = __bpf_dynptr_size(ptr); | 
|  |  | 
|  | if (len > size || offset > size - len) | 
|  | return -E2BIG; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | BPF_CALL_4(bpf_dynptr_from_mem, void *, data, u32, size, u64, flags, struct bpf_dynptr_kern *, ptr) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | BTF_TYPE_EMIT(struct bpf_dynptr); | 
|  |  | 
|  | err = bpf_dynptr_check_size(size); | 
|  | if (err) | 
|  | goto error; | 
|  |  | 
|  | /* flags is currently unsupported */ | 
|  | if (flags) { | 
|  | err = -EINVAL; | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | bpf_dynptr_init(ptr, data, BPF_DYNPTR_TYPE_LOCAL, 0, size); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | error: | 
|  | bpf_dynptr_set_null(ptr); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static const struct bpf_func_proto bpf_dynptr_from_mem_proto = { | 
|  | .func		= bpf_dynptr_from_mem, | 
|  | .gpl_only	= false, | 
|  | .ret_type	= RET_INTEGER, | 
|  | .arg1_type	= ARG_PTR_TO_UNINIT_MEM, | 
|  | .arg2_type	= ARG_CONST_SIZE_OR_ZERO, | 
|  | .arg3_type	= ARG_ANYTHING, | 
|  | .arg4_type	= ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL | MEM_UNINIT, | 
|  | }; | 
|  |  | 
|  | BPF_CALL_5(bpf_dynptr_read, void *, dst, u32, len, const struct bpf_dynptr_kern *, src, | 
|  | u32, offset, u64, flags) | 
|  | { | 
|  | enum bpf_dynptr_type type; | 
|  | int err; | 
|  |  | 
|  | if (!src->data || flags) | 
|  | return -EINVAL; | 
|  |  | 
|  | err = bpf_dynptr_check_off_len(src, offset, len); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | type = bpf_dynptr_get_type(src); | 
|  |  | 
|  | switch (type) { | 
|  | case BPF_DYNPTR_TYPE_LOCAL: | 
|  | case BPF_DYNPTR_TYPE_RINGBUF: | 
|  | /* Source and destination may possibly overlap, hence use memmove to | 
|  | * copy the data. E.g. bpf_dynptr_from_mem may create two dynptr | 
|  | * pointing to overlapping PTR_TO_MAP_VALUE regions. | 
|  | */ | 
|  | memmove(dst, src->data + src->offset + offset, len); | 
|  | return 0; | 
|  | case BPF_DYNPTR_TYPE_SKB: | 
|  | return __bpf_skb_load_bytes(src->data, src->offset + offset, dst, len); | 
|  | case BPF_DYNPTR_TYPE_XDP: | 
|  | return __bpf_xdp_load_bytes(src->data, src->offset + offset, dst, len); | 
|  | default: | 
|  | WARN_ONCE(true, "bpf_dynptr_read: unknown dynptr type %d\n", type); | 
|  | return -EFAULT; | 
|  | } | 
|  | } | 
|  |  | 
|  | static const struct bpf_func_proto bpf_dynptr_read_proto = { | 
|  | .func		= bpf_dynptr_read, | 
|  | .gpl_only	= false, | 
|  | .ret_type	= RET_INTEGER, | 
|  | .arg1_type	= ARG_PTR_TO_UNINIT_MEM, | 
|  | .arg2_type	= ARG_CONST_SIZE_OR_ZERO, | 
|  | .arg3_type	= ARG_PTR_TO_DYNPTR | MEM_RDONLY, | 
|  | .arg4_type	= ARG_ANYTHING, | 
|  | .arg5_type	= ARG_ANYTHING, | 
|  | }; | 
|  |  | 
|  | BPF_CALL_5(bpf_dynptr_write, const struct bpf_dynptr_kern *, dst, u32, offset, void *, src, | 
|  | u32, len, u64, flags) | 
|  | { | 
|  | enum bpf_dynptr_type type; | 
|  | int err; | 
|  |  | 
|  | if (!dst->data || __bpf_dynptr_is_rdonly(dst)) | 
|  | return -EINVAL; | 
|  |  | 
|  | err = bpf_dynptr_check_off_len(dst, offset, len); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | type = bpf_dynptr_get_type(dst); | 
|  |  | 
|  | switch (type) { | 
|  | case BPF_DYNPTR_TYPE_LOCAL: | 
|  | case BPF_DYNPTR_TYPE_RINGBUF: | 
|  | if (flags) | 
|  | return -EINVAL; | 
|  | /* Source and destination may possibly overlap, hence use memmove to | 
|  | * copy the data. E.g. bpf_dynptr_from_mem may create two dynptr | 
|  | * pointing to overlapping PTR_TO_MAP_VALUE regions. | 
|  | */ | 
|  | memmove(dst->data + dst->offset + offset, src, len); | 
|  | return 0; | 
|  | case BPF_DYNPTR_TYPE_SKB: | 
|  | return __bpf_skb_store_bytes(dst->data, dst->offset + offset, src, len, | 
|  | flags); | 
|  | case BPF_DYNPTR_TYPE_XDP: | 
|  | if (flags) | 
|  | return -EINVAL; | 
|  | return __bpf_xdp_store_bytes(dst->data, dst->offset + offset, src, len); | 
|  | default: | 
|  | WARN_ONCE(true, "bpf_dynptr_write: unknown dynptr type %d\n", type); | 
|  | return -EFAULT; | 
|  | } | 
|  | } | 
|  |  | 
|  | static const struct bpf_func_proto bpf_dynptr_write_proto = { | 
|  | .func		= bpf_dynptr_write, | 
|  | .gpl_only	= false, | 
|  | .ret_type	= RET_INTEGER, | 
|  | .arg1_type	= ARG_PTR_TO_DYNPTR | MEM_RDONLY, | 
|  | .arg2_type	= ARG_ANYTHING, | 
|  | .arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY, | 
|  | .arg4_type	= ARG_CONST_SIZE_OR_ZERO, | 
|  | .arg5_type	= ARG_ANYTHING, | 
|  | }; | 
|  |  | 
|  | BPF_CALL_3(bpf_dynptr_data, const struct bpf_dynptr_kern *, ptr, u32, offset, u32, len) | 
|  | { | 
|  | enum bpf_dynptr_type type; | 
|  | int err; | 
|  |  | 
|  | if (!ptr->data) | 
|  | return 0; | 
|  |  | 
|  | err = bpf_dynptr_check_off_len(ptr, offset, len); | 
|  | if (err) | 
|  | return 0; | 
|  |  | 
|  | if (__bpf_dynptr_is_rdonly(ptr)) | 
|  | return 0; | 
|  |  | 
|  | type = bpf_dynptr_get_type(ptr); | 
|  |  | 
|  | switch (type) { | 
|  | case BPF_DYNPTR_TYPE_LOCAL: | 
|  | case BPF_DYNPTR_TYPE_RINGBUF: | 
|  | return (unsigned long)(ptr->data + ptr->offset + offset); | 
|  | case BPF_DYNPTR_TYPE_SKB: | 
|  | case BPF_DYNPTR_TYPE_XDP: | 
|  | /* skb and xdp dynptrs should use bpf_dynptr_slice / bpf_dynptr_slice_rdwr */ | 
|  | return 0; | 
|  | default: | 
|  | WARN_ONCE(true, "bpf_dynptr_data: unknown dynptr type %d\n", type); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static const struct bpf_func_proto bpf_dynptr_data_proto = { | 
|  | .func		= bpf_dynptr_data, | 
|  | .gpl_only	= false, | 
|  | .ret_type	= RET_PTR_TO_DYNPTR_MEM_OR_NULL, | 
|  | .arg1_type	= ARG_PTR_TO_DYNPTR | MEM_RDONLY, | 
|  | .arg2_type	= ARG_ANYTHING, | 
|  | .arg3_type	= ARG_CONST_ALLOC_SIZE_OR_ZERO, | 
|  | }; | 
|  |  | 
|  | const struct bpf_func_proto bpf_get_current_task_proto __weak; | 
|  | const struct bpf_func_proto bpf_get_current_task_btf_proto __weak; | 
|  | const struct bpf_func_proto bpf_probe_read_user_proto __weak; | 
|  | const struct bpf_func_proto bpf_probe_read_user_str_proto __weak; | 
|  | const struct bpf_func_proto bpf_probe_read_kernel_proto __weak; | 
|  | const struct bpf_func_proto bpf_probe_read_kernel_str_proto __weak; | 
|  | const struct bpf_func_proto bpf_task_pt_regs_proto __weak; | 
|  |  | 
|  | const struct bpf_func_proto * | 
|  | bpf_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) | 
|  | { | 
|  | switch (func_id) { | 
|  | case BPF_FUNC_map_lookup_elem: | 
|  | return &bpf_map_lookup_elem_proto; | 
|  | case BPF_FUNC_map_update_elem: | 
|  | return &bpf_map_update_elem_proto; | 
|  | case BPF_FUNC_map_delete_elem: | 
|  | return &bpf_map_delete_elem_proto; | 
|  | case BPF_FUNC_map_push_elem: | 
|  | return &bpf_map_push_elem_proto; | 
|  | case BPF_FUNC_map_pop_elem: | 
|  | return &bpf_map_pop_elem_proto; | 
|  | case BPF_FUNC_map_peek_elem: | 
|  | return &bpf_map_peek_elem_proto; | 
|  | case BPF_FUNC_map_lookup_percpu_elem: | 
|  | return &bpf_map_lookup_percpu_elem_proto; | 
|  | case BPF_FUNC_get_prandom_u32: | 
|  | return &bpf_get_prandom_u32_proto; | 
|  | case BPF_FUNC_get_smp_processor_id: | 
|  | return &bpf_get_raw_smp_processor_id_proto; | 
|  | case BPF_FUNC_get_numa_node_id: | 
|  | return &bpf_get_numa_node_id_proto; | 
|  | case BPF_FUNC_tail_call: | 
|  | return &bpf_tail_call_proto; | 
|  | case BPF_FUNC_ktime_get_ns: | 
|  | return &bpf_ktime_get_ns_proto; | 
|  | case BPF_FUNC_ktime_get_boot_ns: | 
|  | return &bpf_ktime_get_boot_ns_proto; | 
|  | case BPF_FUNC_ktime_get_tai_ns: | 
|  | return &bpf_ktime_get_tai_ns_proto; | 
|  | case BPF_FUNC_ringbuf_output: | 
|  | return &bpf_ringbuf_output_proto; | 
|  | case BPF_FUNC_ringbuf_reserve: | 
|  | return &bpf_ringbuf_reserve_proto; | 
|  | case BPF_FUNC_ringbuf_submit: | 
|  | return &bpf_ringbuf_submit_proto; | 
|  | case BPF_FUNC_ringbuf_discard: | 
|  | return &bpf_ringbuf_discard_proto; | 
|  | case BPF_FUNC_ringbuf_query: | 
|  | return &bpf_ringbuf_query_proto; | 
|  | case BPF_FUNC_strncmp: | 
|  | return &bpf_strncmp_proto; | 
|  | case BPF_FUNC_strtol: | 
|  | return &bpf_strtol_proto; | 
|  | case BPF_FUNC_strtoul: | 
|  | return &bpf_strtoul_proto; | 
|  | case BPF_FUNC_get_current_pid_tgid: | 
|  | return &bpf_get_current_pid_tgid_proto; | 
|  | case BPF_FUNC_get_ns_current_pid_tgid: | 
|  | return &bpf_get_ns_current_pid_tgid_proto; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!bpf_token_capable(prog->aux->token, CAP_BPF)) | 
|  | return NULL; | 
|  |  | 
|  | switch (func_id) { | 
|  | case BPF_FUNC_spin_lock: | 
|  | return &bpf_spin_lock_proto; | 
|  | case BPF_FUNC_spin_unlock: | 
|  | return &bpf_spin_unlock_proto; | 
|  | case BPF_FUNC_jiffies64: | 
|  | return &bpf_jiffies64_proto; | 
|  | case BPF_FUNC_per_cpu_ptr: | 
|  | return &bpf_per_cpu_ptr_proto; | 
|  | case BPF_FUNC_this_cpu_ptr: | 
|  | return &bpf_this_cpu_ptr_proto; | 
|  | case BPF_FUNC_timer_init: | 
|  | return &bpf_timer_init_proto; | 
|  | case BPF_FUNC_timer_set_callback: | 
|  | return &bpf_timer_set_callback_proto; | 
|  | case BPF_FUNC_timer_start: | 
|  | return &bpf_timer_start_proto; | 
|  | case BPF_FUNC_timer_cancel: | 
|  | return &bpf_timer_cancel_proto; | 
|  | case BPF_FUNC_kptr_xchg: | 
|  | return &bpf_kptr_xchg_proto; | 
|  | case BPF_FUNC_for_each_map_elem: | 
|  | return &bpf_for_each_map_elem_proto; | 
|  | case BPF_FUNC_loop: | 
|  | return &bpf_loop_proto; | 
|  | case BPF_FUNC_user_ringbuf_drain: | 
|  | return &bpf_user_ringbuf_drain_proto; | 
|  | case BPF_FUNC_ringbuf_reserve_dynptr: | 
|  | return &bpf_ringbuf_reserve_dynptr_proto; | 
|  | case BPF_FUNC_ringbuf_submit_dynptr: | 
|  | return &bpf_ringbuf_submit_dynptr_proto; | 
|  | case BPF_FUNC_ringbuf_discard_dynptr: | 
|  | return &bpf_ringbuf_discard_dynptr_proto; | 
|  | case BPF_FUNC_dynptr_from_mem: | 
|  | return &bpf_dynptr_from_mem_proto; | 
|  | case BPF_FUNC_dynptr_read: | 
|  | return &bpf_dynptr_read_proto; | 
|  | case BPF_FUNC_dynptr_write: | 
|  | return &bpf_dynptr_write_proto; | 
|  | case BPF_FUNC_dynptr_data: | 
|  | return &bpf_dynptr_data_proto; | 
|  | #ifdef CONFIG_CGROUPS | 
|  | case BPF_FUNC_cgrp_storage_get: | 
|  | return &bpf_cgrp_storage_get_proto; | 
|  | case BPF_FUNC_cgrp_storage_delete: | 
|  | return &bpf_cgrp_storage_delete_proto; | 
|  | case BPF_FUNC_get_current_cgroup_id: | 
|  | return &bpf_get_current_cgroup_id_proto; | 
|  | case BPF_FUNC_get_current_ancestor_cgroup_id: | 
|  | return &bpf_get_current_ancestor_cgroup_id_proto; | 
|  | #endif | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!bpf_token_capable(prog->aux->token, CAP_PERFMON)) | 
|  | return NULL; | 
|  |  | 
|  | switch (func_id) { | 
|  | case BPF_FUNC_trace_printk: | 
|  | return bpf_get_trace_printk_proto(); | 
|  | case BPF_FUNC_get_current_task: | 
|  | return &bpf_get_current_task_proto; | 
|  | case BPF_FUNC_get_current_task_btf: | 
|  | return &bpf_get_current_task_btf_proto; | 
|  | case BPF_FUNC_probe_read_user: | 
|  | return &bpf_probe_read_user_proto; | 
|  | case BPF_FUNC_probe_read_kernel: | 
|  | return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ? | 
|  | NULL : &bpf_probe_read_kernel_proto; | 
|  | case BPF_FUNC_probe_read_user_str: | 
|  | return &bpf_probe_read_user_str_proto; | 
|  | case BPF_FUNC_probe_read_kernel_str: | 
|  | return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ? | 
|  | NULL : &bpf_probe_read_kernel_str_proto; | 
|  | case BPF_FUNC_snprintf_btf: | 
|  | return &bpf_snprintf_btf_proto; | 
|  | case BPF_FUNC_snprintf: | 
|  | return &bpf_snprintf_proto; | 
|  | case BPF_FUNC_task_pt_regs: | 
|  | return &bpf_task_pt_regs_proto; | 
|  | case BPF_FUNC_trace_vprintk: | 
|  | return bpf_get_trace_vprintk_proto(); | 
|  | default: | 
|  | return NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | void bpf_list_head_free(const struct btf_field *field, void *list_head, | 
|  | struct bpf_spin_lock *spin_lock) | 
|  | { | 
|  | struct list_head *head = list_head, *orig_head = list_head; | 
|  |  | 
|  | BUILD_BUG_ON(sizeof(struct list_head) > sizeof(struct bpf_list_head)); | 
|  | BUILD_BUG_ON(__alignof__(struct list_head) > __alignof__(struct bpf_list_head)); | 
|  |  | 
|  | /* Do the actual list draining outside the lock to not hold the lock for | 
|  | * too long, and also prevent deadlocks if tracing programs end up | 
|  | * executing on entry/exit of functions called inside the critical | 
|  | * section, and end up doing map ops that call bpf_list_head_free for | 
|  | * the same map value again. | 
|  | */ | 
|  | __bpf_spin_lock_irqsave(spin_lock); | 
|  | if (!head->next || list_empty(head)) | 
|  | goto unlock; | 
|  | head = head->next; | 
|  | unlock: | 
|  | INIT_LIST_HEAD(orig_head); | 
|  | __bpf_spin_unlock_irqrestore(spin_lock); | 
|  |  | 
|  | while (head != orig_head) { | 
|  | void *obj = head; | 
|  |  | 
|  | obj -= field->graph_root.node_offset; | 
|  | head = head->next; | 
|  | /* The contained type can also have resources, including a | 
|  | * bpf_list_head which needs to be freed. | 
|  | */ | 
|  | migrate_disable(); | 
|  | __bpf_obj_drop_impl(obj, field->graph_root.value_rec, false); | 
|  | migrate_enable(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Like rbtree_postorder_for_each_entry_safe, but 'pos' and 'n' are | 
|  | * 'rb_node *', so field name of rb_node within containing struct is not | 
|  | * needed. | 
|  | * | 
|  | * Since bpf_rb_tree's node type has a corresponding struct btf_field with | 
|  | * graph_root.node_offset, it's not necessary to know field name | 
|  | * or type of node struct | 
|  | */ | 
|  | #define bpf_rbtree_postorder_for_each_entry_safe(pos, n, root) \ | 
|  | for (pos = rb_first_postorder(root); \ | 
|  | pos && ({ n = rb_next_postorder(pos); 1; }); \ | 
|  | pos = n) | 
|  |  | 
|  | void bpf_rb_root_free(const struct btf_field *field, void *rb_root, | 
|  | struct bpf_spin_lock *spin_lock) | 
|  | { | 
|  | struct rb_root_cached orig_root, *root = rb_root; | 
|  | struct rb_node *pos, *n; | 
|  | void *obj; | 
|  |  | 
|  | BUILD_BUG_ON(sizeof(struct rb_root_cached) > sizeof(struct bpf_rb_root)); | 
|  | BUILD_BUG_ON(__alignof__(struct rb_root_cached) > __alignof__(struct bpf_rb_root)); | 
|  |  | 
|  | __bpf_spin_lock_irqsave(spin_lock); | 
|  | orig_root = *root; | 
|  | *root = RB_ROOT_CACHED; | 
|  | __bpf_spin_unlock_irqrestore(spin_lock); | 
|  |  | 
|  | bpf_rbtree_postorder_for_each_entry_safe(pos, n, &orig_root.rb_root) { | 
|  | obj = pos; | 
|  | obj -= field->graph_root.node_offset; | 
|  |  | 
|  |  | 
|  | migrate_disable(); | 
|  | __bpf_obj_drop_impl(obj, field->graph_root.value_rec, false); | 
|  | migrate_enable(); | 
|  | } | 
|  | } | 
|  |  | 
|  | __bpf_kfunc_start_defs(); | 
|  |  | 
|  | __bpf_kfunc void *bpf_obj_new_impl(u64 local_type_id__k, void *meta__ign) | 
|  | { | 
|  | struct btf_struct_meta *meta = meta__ign; | 
|  | u64 size = local_type_id__k; | 
|  | void *p; | 
|  |  | 
|  | p = bpf_mem_alloc(&bpf_global_ma, size); | 
|  | if (!p) | 
|  | return NULL; | 
|  | if (meta) | 
|  | bpf_obj_init(meta->record, p); | 
|  | return p; | 
|  | } | 
|  |  | 
|  | __bpf_kfunc void *bpf_percpu_obj_new_impl(u64 local_type_id__k, void *meta__ign) | 
|  | { | 
|  | u64 size = local_type_id__k; | 
|  |  | 
|  | /* The verifier has ensured that meta__ign must be NULL */ | 
|  | return bpf_mem_alloc(&bpf_global_percpu_ma, size); | 
|  | } | 
|  |  | 
|  | /* Must be called under migrate_disable(), as required by bpf_mem_free */ | 
|  | void __bpf_obj_drop_impl(void *p, const struct btf_record *rec, bool percpu) | 
|  | { | 
|  | struct bpf_mem_alloc *ma; | 
|  |  | 
|  | if (rec && rec->refcount_off >= 0 && | 
|  | !refcount_dec_and_test((refcount_t *)(p + rec->refcount_off))) { | 
|  | /* Object is refcounted and refcount_dec didn't result in 0 | 
|  | * refcount. Return without freeing the object | 
|  | */ | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (rec) | 
|  | bpf_obj_free_fields(rec, p); | 
|  |  | 
|  | if (percpu) | 
|  | ma = &bpf_global_percpu_ma; | 
|  | else | 
|  | ma = &bpf_global_ma; | 
|  | bpf_mem_free_rcu(ma, p); | 
|  | } | 
|  |  | 
|  | __bpf_kfunc void bpf_obj_drop_impl(void *p__alloc, void *meta__ign) | 
|  | { | 
|  | struct btf_struct_meta *meta = meta__ign; | 
|  | void *p = p__alloc; | 
|  |  | 
|  | __bpf_obj_drop_impl(p, meta ? meta->record : NULL, false); | 
|  | } | 
|  |  | 
|  | __bpf_kfunc void bpf_percpu_obj_drop_impl(void *p__alloc, void *meta__ign) | 
|  | { | 
|  | /* The verifier has ensured that meta__ign must be NULL */ | 
|  | bpf_mem_free_rcu(&bpf_global_percpu_ma, p__alloc); | 
|  | } | 
|  |  | 
|  | __bpf_kfunc void *bpf_refcount_acquire_impl(void *p__refcounted_kptr, void *meta__ign) | 
|  | { | 
|  | struct btf_struct_meta *meta = meta__ign; | 
|  | struct bpf_refcount *ref; | 
|  |  | 
|  | /* Could just cast directly to refcount_t *, but need some code using | 
|  | * bpf_refcount type so that it is emitted in vmlinux BTF | 
|  | */ | 
|  | ref = (struct bpf_refcount *)(p__refcounted_kptr + meta->record->refcount_off); | 
|  | if (!refcount_inc_not_zero((refcount_t *)ref)) | 
|  | return NULL; | 
|  |  | 
|  | /* Verifier strips KF_RET_NULL if input is owned ref, see is_kfunc_ret_null | 
|  | * in verifier.c | 
|  | */ | 
|  | return (void *)p__refcounted_kptr; | 
|  | } | 
|  |  | 
|  | static int __bpf_list_add(struct bpf_list_node_kern *node, | 
|  | struct bpf_list_head *head, | 
|  | bool tail, struct btf_record *rec, u64 off) | 
|  | { | 
|  | struct list_head *n = &node->list_head, *h = (void *)head; | 
|  |  | 
|  | /* If list_head was 0-initialized by map, bpf_obj_init_field wasn't | 
|  | * called on its fields, so init here | 
|  | */ | 
|  | if (unlikely(!h->next)) | 
|  | INIT_LIST_HEAD(h); | 
|  |  | 
|  | /* node->owner != NULL implies !list_empty(n), no need to separately | 
|  | * check the latter | 
|  | */ | 
|  | if (cmpxchg(&node->owner, NULL, BPF_PTR_POISON)) { | 
|  | /* Only called from BPF prog, no need to migrate_disable */ | 
|  | __bpf_obj_drop_impl((void *)n - off, rec, false); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | tail ? list_add_tail(n, h) : list_add(n, h); | 
|  | WRITE_ONCE(node->owner, head); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | __bpf_kfunc int bpf_list_push_front_impl(struct bpf_list_head *head, | 
|  | struct bpf_list_node *node, | 
|  | void *meta__ign, u64 off) | 
|  | { | 
|  | struct bpf_list_node_kern *n = (void *)node; | 
|  | struct btf_struct_meta *meta = meta__ign; | 
|  |  | 
|  | return __bpf_list_add(n, head, false, meta ? meta->record : NULL, off); | 
|  | } | 
|  |  | 
|  | __bpf_kfunc int bpf_list_push_back_impl(struct bpf_list_head *head, | 
|  | struct bpf_list_node *node, | 
|  | void *meta__ign, u64 off) | 
|  | { | 
|  | struct bpf_list_node_kern *n = (void *)node; | 
|  | struct btf_struct_meta *meta = meta__ign; | 
|  |  | 
|  | return __bpf_list_add(n, head, true, meta ? meta->record : NULL, off); | 
|  | } | 
|  |  | 
|  | static struct bpf_list_node *__bpf_list_del(struct bpf_list_head *head, bool tail) | 
|  | { | 
|  | struct list_head *n, *h = (void *)head; | 
|  | struct bpf_list_node_kern *node; | 
|  |  | 
|  | /* If list_head was 0-initialized by map, bpf_obj_init_field wasn't | 
|  | * called on its fields, so init here | 
|  | */ | 
|  | if (unlikely(!h->next)) | 
|  | INIT_LIST_HEAD(h); | 
|  | if (list_empty(h)) | 
|  | return NULL; | 
|  |  | 
|  | n = tail ? h->prev : h->next; | 
|  | node = container_of(n, struct bpf_list_node_kern, list_head); | 
|  | if (WARN_ON_ONCE(READ_ONCE(node->owner) != head)) | 
|  | return NULL; | 
|  |  | 
|  | list_del_init(n); | 
|  | WRITE_ONCE(node->owner, NULL); | 
|  | return (struct bpf_list_node *)n; | 
|  | } | 
|  |  | 
|  | __bpf_kfunc struct bpf_list_node *bpf_list_pop_front(struct bpf_list_head *head) | 
|  | { | 
|  | return __bpf_list_del(head, false); | 
|  | } | 
|  |  | 
|  | __bpf_kfunc struct bpf_list_node *bpf_list_pop_back(struct bpf_list_head *head) | 
|  | { | 
|  | return __bpf_list_del(head, true); | 
|  | } | 
|  |  | 
|  | __bpf_kfunc struct bpf_rb_node *bpf_rbtree_remove(struct bpf_rb_root *root, | 
|  | struct bpf_rb_node *node) | 
|  | { | 
|  | struct bpf_rb_node_kern *node_internal = (struct bpf_rb_node_kern *)node; | 
|  | struct rb_root_cached *r = (struct rb_root_cached *)root; | 
|  | struct rb_node *n = &node_internal->rb_node; | 
|  |  | 
|  | /* node_internal->owner != root implies either RB_EMPTY_NODE(n) or | 
|  | * n is owned by some other tree. No need to check RB_EMPTY_NODE(n) | 
|  | */ | 
|  | if (READ_ONCE(node_internal->owner) != root) | 
|  | return NULL; | 
|  |  | 
|  | rb_erase_cached(n, r); | 
|  | RB_CLEAR_NODE(n); | 
|  | WRITE_ONCE(node_internal->owner, NULL); | 
|  | return (struct bpf_rb_node *)n; | 
|  | } | 
|  |  | 
|  | /* Need to copy rbtree_add_cached's logic here because our 'less' is a BPF | 
|  | * program | 
|  | */ | 
|  | static int __bpf_rbtree_add(struct bpf_rb_root *root, | 
|  | struct bpf_rb_node_kern *node, | 
|  | void *less, struct btf_record *rec, u64 off) | 
|  | { | 
|  | struct rb_node **link = &((struct rb_root_cached *)root)->rb_root.rb_node; | 
|  | struct rb_node *parent = NULL, *n = &node->rb_node; | 
|  | bpf_callback_t cb = (bpf_callback_t)less; | 
|  | bool leftmost = true; | 
|  |  | 
|  | /* node->owner != NULL implies !RB_EMPTY_NODE(n), no need to separately | 
|  | * check the latter | 
|  | */ | 
|  | if (cmpxchg(&node->owner, NULL, BPF_PTR_POISON)) { | 
|  | /* Only called from BPF prog, no need to migrate_disable */ | 
|  | __bpf_obj_drop_impl((void *)n - off, rec, false); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | while (*link) { | 
|  | parent = *link; | 
|  | if (cb((uintptr_t)node, (uintptr_t)parent, 0, 0, 0)) { | 
|  | link = &parent->rb_left; | 
|  | } else { | 
|  | link = &parent->rb_right; | 
|  | leftmost = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | rb_link_node(n, parent, link); | 
|  | rb_insert_color_cached(n, (struct rb_root_cached *)root, leftmost); | 
|  | WRITE_ONCE(node->owner, root); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | __bpf_kfunc int bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node, | 
|  | bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b), | 
|  | void *meta__ign, u64 off) | 
|  | { | 
|  | struct btf_struct_meta *meta = meta__ign; | 
|  | struct bpf_rb_node_kern *n = (void *)node; | 
|  |  | 
|  | return __bpf_rbtree_add(root, n, (void *)less, meta ? meta->record : NULL, off); | 
|  | } | 
|  |  | 
|  | __bpf_kfunc struct bpf_rb_node *bpf_rbtree_first(struct bpf_rb_root *root) | 
|  | { | 
|  | struct rb_root_cached *r = (struct rb_root_cached *)root; | 
|  |  | 
|  | return (struct bpf_rb_node *)rb_first_cached(r); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * bpf_task_acquire - Acquire a reference to a task. A task acquired by this | 
|  | * kfunc which is not stored in a map as a kptr, must be released by calling | 
|  | * bpf_task_release(). | 
|  | * @p: The task on which a reference is being acquired. | 
|  | */ | 
|  | __bpf_kfunc struct task_struct *bpf_task_acquire(struct task_struct *p) | 
|  | { | 
|  | if (refcount_inc_not_zero(&p->rcu_users)) | 
|  | return p; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * bpf_task_release - Release the reference acquired on a task. | 
|  | * @p: The task on which a reference is being released. | 
|  | */ | 
|  | __bpf_kfunc void bpf_task_release(struct task_struct *p) | 
|  | { | 
|  | put_task_struct_rcu_user(p); | 
|  | } | 
|  |  | 
|  | __bpf_kfunc void bpf_task_release_dtor(void *p) | 
|  | { | 
|  | put_task_struct_rcu_user(p); | 
|  | } | 
|  | CFI_NOSEAL(bpf_task_release_dtor); | 
|  |  | 
|  | #ifdef CONFIG_CGROUPS | 
|  | /** | 
|  | * bpf_cgroup_acquire - Acquire a reference to a cgroup. A cgroup acquired by | 
|  | * this kfunc which is not stored in a map as a kptr, must be released by | 
|  | * calling bpf_cgroup_release(). | 
|  | * @cgrp: The cgroup on which a reference is being acquired. | 
|  | */ | 
|  | __bpf_kfunc struct cgroup *bpf_cgroup_acquire(struct cgroup *cgrp) | 
|  | { | 
|  | return cgroup_tryget(cgrp) ? cgrp : NULL; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * bpf_cgroup_release - Release the reference acquired on a cgroup. | 
|  | * If this kfunc is invoked in an RCU read region, the cgroup is guaranteed to | 
|  | * not be freed until the current grace period has ended, even if its refcount | 
|  | * drops to 0. | 
|  | * @cgrp: The cgroup on which a reference is being released. | 
|  | */ | 
|  | __bpf_kfunc void bpf_cgroup_release(struct cgroup *cgrp) | 
|  | { | 
|  | cgroup_put(cgrp); | 
|  | } | 
|  |  | 
|  | __bpf_kfunc void bpf_cgroup_release_dtor(void *cgrp) | 
|  | { | 
|  | cgroup_put(cgrp); | 
|  | } | 
|  | CFI_NOSEAL(bpf_cgroup_release_dtor); | 
|  |  | 
|  | /** | 
|  | * bpf_cgroup_ancestor - Perform a lookup on an entry in a cgroup's ancestor | 
|  | * array. A cgroup returned by this kfunc which is not subsequently stored in a | 
|  | * map, must be released by calling bpf_cgroup_release(). | 
|  | * @cgrp: The cgroup for which we're performing a lookup. | 
|  | * @level: The level of ancestor to look up. | 
|  | */ | 
|  | __bpf_kfunc struct cgroup *bpf_cgroup_ancestor(struct cgroup *cgrp, int level) | 
|  | { | 
|  | struct cgroup *ancestor; | 
|  |  | 
|  | if (level > cgrp->level || level < 0) | 
|  | return NULL; | 
|  |  | 
|  | /* cgrp's refcnt could be 0 here, but ancestors can still be accessed */ | 
|  | ancestor = cgrp->ancestors[level]; | 
|  | if (!cgroup_tryget(ancestor)) | 
|  | return NULL; | 
|  | return ancestor; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * bpf_cgroup_from_id - Find a cgroup from its ID. A cgroup returned by this | 
|  | * kfunc which is not subsequently stored in a map, must be released by calling | 
|  | * bpf_cgroup_release(). | 
|  | * @cgid: cgroup id. | 
|  | */ | 
|  | __bpf_kfunc struct cgroup *bpf_cgroup_from_id(u64 cgid) | 
|  | { | 
|  | struct cgroup *cgrp; | 
|  |  | 
|  | cgrp = cgroup_get_from_id(cgid); | 
|  | if (IS_ERR(cgrp)) | 
|  | return NULL; | 
|  | return cgrp; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * bpf_task_under_cgroup - wrap task_under_cgroup_hierarchy() as a kfunc, test | 
|  | * task's membership of cgroup ancestry. | 
|  | * @task: the task to be tested | 
|  | * @ancestor: possible ancestor of @task's cgroup | 
|  | * | 
|  | * Tests whether @task's default cgroup hierarchy is a descendant of @ancestor. | 
|  | * It follows all the same rules as cgroup_is_descendant, and only applies | 
|  | * to the default hierarchy. | 
|  | */ | 
|  | __bpf_kfunc long bpf_task_under_cgroup(struct task_struct *task, | 
|  | struct cgroup *ancestor) | 
|  | { | 
|  | long ret; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | ret = task_under_cgroup_hierarchy(task, ancestor); | 
|  | rcu_read_unlock(); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * bpf_task_get_cgroup1 - Acquires the associated cgroup of a task within a | 
|  | * specific cgroup1 hierarchy. The cgroup1 hierarchy is identified by its | 
|  | * hierarchy ID. | 
|  | * @task: The target task | 
|  | * @hierarchy_id: The ID of a cgroup1 hierarchy | 
|  | * | 
|  | * On success, the cgroup is returen. On failure, NULL is returned. | 
|  | */ | 
|  | __bpf_kfunc struct cgroup * | 
|  | bpf_task_get_cgroup1(struct task_struct *task, int hierarchy_id) | 
|  | { | 
|  | struct cgroup *cgrp = task_get_cgroup1(task, hierarchy_id); | 
|  |  | 
|  | if (IS_ERR(cgrp)) | 
|  | return NULL; | 
|  | return cgrp; | 
|  | } | 
|  | #endif /* CONFIG_CGROUPS */ | 
|  |  | 
|  | /** | 
|  | * bpf_task_from_pid - Find a struct task_struct from its pid by looking it up | 
|  | * in the root pid namespace idr. If a task is returned, it must either be | 
|  | * stored in a map, or released with bpf_task_release(). | 
|  | * @pid: The pid of the task being looked up. | 
|  | */ | 
|  | __bpf_kfunc struct task_struct *bpf_task_from_pid(s32 pid) | 
|  | { | 
|  | struct task_struct *p; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | p = find_task_by_pid_ns(pid, &init_pid_ns); | 
|  | if (p) | 
|  | p = bpf_task_acquire(p); | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return p; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * bpf_dynptr_slice() - Obtain a read-only pointer to the dynptr data. | 
|  | * @ptr: The dynptr whose data slice to retrieve | 
|  | * @offset: Offset into the dynptr | 
|  | * @buffer__opt: User-provided buffer to copy contents into.  May be NULL | 
|  | * @buffer__szk: Size (in bytes) of the buffer if present. This is the | 
|  | *               length of the requested slice. This must be a constant. | 
|  | * | 
|  | * For non-skb and non-xdp type dynptrs, there is no difference between | 
|  | * bpf_dynptr_slice and bpf_dynptr_data. | 
|  | * | 
|  | *  If buffer__opt is NULL, the call will fail if buffer_opt was needed. | 
|  | * | 
|  | * If the intention is to write to the data slice, please use | 
|  | * bpf_dynptr_slice_rdwr. | 
|  | * | 
|  | * The user must check that the returned pointer is not null before using it. | 
|  | * | 
|  | * Please note that in the case of skb and xdp dynptrs, bpf_dynptr_slice | 
|  | * does not change the underlying packet data pointers, so a call to | 
|  | * bpf_dynptr_slice will not invalidate any ctx->data/data_end pointers in | 
|  | * the bpf program. | 
|  | * | 
|  | * Return: NULL if the call failed (eg invalid dynptr), pointer to a read-only | 
|  | * data slice (can be either direct pointer to the data or a pointer to the user | 
|  | * provided buffer, with its contents containing the data, if unable to obtain | 
|  | * direct pointer) | 
|  | */ | 
|  | __bpf_kfunc void *bpf_dynptr_slice(const struct bpf_dynptr_kern *ptr, u32 offset, | 
|  | void *buffer__opt, u32 buffer__szk) | 
|  | { | 
|  | enum bpf_dynptr_type type; | 
|  | u32 len = buffer__szk; | 
|  | int err; | 
|  |  | 
|  | if (!ptr->data) | 
|  | return NULL; | 
|  |  | 
|  | err = bpf_dynptr_check_off_len(ptr, offset, len); | 
|  | if (err) | 
|  | return NULL; | 
|  |  | 
|  | type = bpf_dynptr_get_type(ptr); | 
|  |  | 
|  | switch (type) { | 
|  | case BPF_DYNPTR_TYPE_LOCAL: | 
|  | case BPF_DYNPTR_TYPE_RINGBUF: | 
|  | return ptr->data + ptr->offset + offset; | 
|  | case BPF_DYNPTR_TYPE_SKB: | 
|  | if (buffer__opt) | 
|  | return skb_header_pointer(ptr->data, ptr->offset + offset, len, buffer__opt); | 
|  | else | 
|  | return skb_pointer_if_linear(ptr->data, ptr->offset + offset, len); | 
|  | case BPF_DYNPTR_TYPE_XDP: | 
|  | { | 
|  | void *xdp_ptr = bpf_xdp_pointer(ptr->data, ptr->offset + offset, len); | 
|  | if (!IS_ERR_OR_NULL(xdp_ptr)) | 
|  | return xdp_ptr; | 
|  |  | 
|  | if (!buffer__opt) | 
|  | return NULL; | 
|  | bpf_xdp_copy_buf(ptr->data, ptr->offset + offset, buffer__opt, len, false); | 
|  | return buffer__opt; | 
|  | } | 
|  | default: | 
|  | WARN_ONCE(true, "unknown dynptr type %d\n", type); | 
|  | return NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * bpf_dynptr_slice_rdwr() - Obtain a writable pointer to the dynptr data. | 
|  | * @ptr: The dynptr whose data slice to retrieve | 
|  | * @offset: Offset into the dynptr | 
|  | * @buffer__opt: User-provided buffer to copy contents into. May be NULL | 
|  | * @buffer__szk: Size (in bytes) of the buffer if present. This is the | 
|  | *               length of the requested slice. This must be a constant. | 
|  | * | 
|  | * For non-skb and non-xdp type dynptrs, there is no difference between | 
|  | * bpf_dynptr_slice and bpf_dynptr_data. | 
|  | * | 
|  | * If buffer__opt is NULL, the call will fail if buffer_opt was needed. | 
|  | * | 
|  | * The returned pointer is writable and may point to either directly the dynptr | 
|  | * data at the requested offset or to the buffer if unable to obtain a direct | 
|  | * data pointer to (example: the requested slice is to the paged area of an skb | 
|  | * packet). In the case where the returned pointer is to the buffer, the user | 
|  | * is responsible for persisting writes through calling bpf_dynptr_write(). This | 
|  | * usually looks something like this pattern: | 
|  | * | 
|  | * struct eth_hdr *eth = bpf_dynptr_slice_rdwr(&dynptr, 0, buffer, sizeof(buffer)); | 
|  | * if (!eth) | 
|  | *	return TC_ACT_SHOT; | 
|  | * | 
|  | * // mutate eth header // | 
|  | * | 
|  | * if (eth == buffer) | 
|  | *	bpf_dynptr_write(&ptr, 0, buffer, sizeof(buffer), 0); | 
|  | * | 
|  | * Please note that, as in the example above, the user must check that the | 
|  | * returned pointer is not null before using it. | 
|  | * | 
|  | * Please also note that in the case of skb and xdp dynptrs, bpf_dynptr_slice_rdwr | 
|  | * does not change the underlying packet data pointers, so a call to | 
|  | * bpf_dynptr_slice_rdwr will not invalidate any ctx->data/data_end pointers in | 
|  | * the bpf program. | 
|  | * | 
|  | * Return: NULL if the call failed (eg invalid dynptr), pointer to a | 
|  | * data slice (can be either direct pointer to the data or a pointer to the user | 
|  | * provided buffer, with its contents containing the data, if unable to obtain | 
|  | * direct pointer) | 
|  | */ | 
|  | __bpf_kfunc void *bpf_dynptr_slice_rdwr(const struct bpf_dynptr_kern *ptr, u32 offset, | 
|  | void *buffer__opt, u32 buffer__szk) | 
|  | { | 
|  | if (!ptr->data || __bpf_dynptr_is_rdonly(ptr)) | 
|  | return NULL; | 
|  |  | 
|  | /* bpf_dynptr_slice_rdwr is the same logic as bpf_dynptr_slice. | 
|  | * | 
|  | * For skb-type dynptrs, it is safe to write into the returned pointer | 
|  | * if the bpf program allows skb data writes. There are two possibilities | 
|  | * that may occur when calling bpf_dynptr_slice_rdwr: | 
|  | * | 
|  | * 1) The requested slice is in the head of the skb. In this case, the | 
|  | * returned pointer is directly to skb data, and if the skb is cloned, the | 
|  | * verifier will have uncloned it (see bpf_unclone_prologue()) already. | 
|  | * The pointer can be directly written into. | 
|  | * | 
|  | * 2) Some portion of the requested slice is in the paged buffer area. | 
|  | * In this case, the requested data will be copied out into the buffer | 
|  | * and the returned pointer will be a pointer to the buffer. The skb | 
|  | * will not be pulled. To persist the write, the user will need to call | 
|  | * bpf_dynptr_write(), which will pull the skb and commit the write. | 
|  | * | 
|  | * Similarly for xdp programs, if the requested slice is not across xdp | 
|  | * fragments, then a direct pointer will be returned, otherwise the data | 
|  | * will be copied out into the buffer and the user will need to call | 
|  | * bpf_dynptr_write() to commit changes. | 
|  | */ | 
|  | return bpf_dynptr_slice(ptr, offset, buffer__opt, buffer__szk); | 
|  | } | 
|  |  | 
|  | __bpf_kfunc int bpf_dynptr_adjust(struct bpf_dynptr_kern *ptr, u32 start, u32 end) | 
|  | { | 
|  | u32 size; | 
|  |  | 
|  | if (!ptr->data || start > end) | 
|  | return -EINVAL; | 
|  |  | 
|  | size = __bpf_dynptr_size(ptr); | 
|  |  | 
|  | if (start > size || end > size) | 
|  | return -ERANGE; | 
|  |  | 
|  | ptr->offset += start; | 
|  | bpf_dynptr_set_size(ptr, end - start); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | __bpf_kfunc bool bpf_dynptr_is_null(struct bpf_dynptr_kern *ptr) | 
|  | { | 
|  | return !ptr->data; | 
|  | } | 
|  |  | 
|  | __bpf_kfunc bool bpf_dynptr_is_rdonly(struct bpf_dynptr_kern *ptr) | 
|  | { | 
|  | if (!ptr->data) | 
|  | return false; | 
|  |  | 
|  | return __bpf_dynptr_is_rdonly(ptr); | 
|  | } | 
|  |  | 
|  | __bpf_kfunc __u32 bpf_dynptr_size(const struct bpf_dynptr_kern *ptr) | 
|  | { | 
|  | if (!ptr->data) | 
|  | return -EINVAL; | 
|  |  | 
|  | return __bpf_dynptr_size(ptr); | 
|  | } | 
|  |  | 
|  | __bpf_kfunc int bpf_dynptr_clone(struct bpf_dynptr_kern *ptr, | 
|  | struct bpf_dynptr_kern *clone__uninit) | 
|  | { | 
|  | if (!ptr->data) { | 
|  | bpf_dynptr_set_null(clone__uninit); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | *clone__uninit = *ptr; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | __bpf_kfunc void *bpf_cast_to_kern_ctx(void *obj) | 
|  | { | 
|  | return obj; | 
|  | } | 
|  |  | 
|  | __bpf_kfunc void *bpf_rdonly_cast(const void *obj__ign, u32 btf_id__k) | 
|  | { | 
|  | return (void *)obj__ign; | 
|  | } | 
|  |  | 
|  | __bpf_kfunc void bpf_rcu_read_lock(void) | 
|  | { | 
|  | rcu_read_lock(); | 
|  | } | 
|  |  | 
|  | __bpf_kfunc void bpf_rcu_read_unlock(void) | 
|  | { | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | struct bpf_throw_ctx { | 
|  | struct bpf_prog_aux *aux; | 
|  | u64 sp; | 
|  | u64 bp; | 
|  | int cnt; | 
|  | }; | 
|  |  | 
|  | static bool bpf_stack_walker(void *cookie, u64 ip, u64 sp, u64 bp) | 
|  | { | 
|  | struct bpf_throw_ctx *ctx = cookie; | 
|  | struct bpf_prog *prog; | 
|  |  | 
|  | if (!is_bpf_text_address(ip)) | 
|  | return !ctx->cnt; | 
|  | prog = bpf_prog_ksym_find(ip); | 
|  | ctx->cnt++; | 
|  | if (bpf_is_subprog(prog)) | 
|  | return true; | 
|  | ctx->aux = prog->aux; | 
|  | ctx->sp = sp; | 
|  | ctx->bp = bp; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | __bpf_kfunc void bpf_throw(u64 cookie) | 
|  | { | 
|  | struct bpf_throw_ctx ctx = {}; | 
|  |  | 
|  | arch_bpf_stack_walk(bpf_stack_walker, &ctx); | 
|  | WARN_ON_ONCE(!ctx.aux); | 
|  | if (ctx.aux) | 
|  | WARN_ON_ONCE(!ctx.aux->exception_boundary); | 
|  | WARN_ON_ONCE(!ctx.bp); | 
|  | WARN_ON_ONCE(!ctx.cnt); | 
|  | /* Prevent KASAN false positives for CONFIG_KASAN_STACK by unpoisoning | 
|  | * deeper stack depths than ctx.sp as we do not return from bpf_throw, | 
|  | * which skips compiler generated instrumentation to do the same. | 
|  | */ | 
|  | kasan_unpoison_task_stack_below((void *)(long)ctx.sp); | 
|  | ctx.aux->bpf_exception_cb(cookie, ctx.sp, ctx.bp, 0, 0); | 
|  | WARN(1, "A call to BPF exception callback should never return\n"); | 
|  | } | 
|  |  | 
|  | __bpf_kfunc int bpf_wq_init(struct bpf_wq *wq, void *p__map, unsigned int flags) | 
|  | { | 
|  | struct bpf_async_kern *async = (struct bpf_async_kern *)wq; | 
|  | struct bpf_map *map = p__map; | 
|  |  | 
|  | BUILD_BUG_ON(sizeof(struct bpf_async_kern) > sizeof(struct bpf_wq)); | 
|  | BUILD_BUG_ON(__alignof__(struct bpf_async_kern) != __alignof__(struct bpf_wq)); | 
|  |  | 
|  | if (flags) | 
|  | return -EINVAL; | 
|  |  | 
|  | return __bpf_async_init(async, map, flags, BPF_ASYNC_TYPE_WQ); | 
|  | } | 
|  |  | 
|  | __bpf_kfunc int bpf_wq_start(struct bpf_wq *wq, unsigned int flags) | 
|  | { | 
|  | struct bpf_async_kern *async = (struct bpf_async_kern *)wq; | 
|  | struct bpf_work *w; | 
|  |  | 
|  | if (in_nmi()) | 
|  | return -EOPNOTSUPP; | 
|  | if (flags) | 
|  | return -EINVAL; | 
|  | w = READ_ONCE(async->work); | 
|  | if (!w || !READ_ONCE(w->cb.prog)) | 
|  | return -EINVAL; | 
|  |  | 
|  | schedule_work(&w->work); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | __bpf_kfunc int bpf_wq_set_callback_impl(struct bpf_wq *wq, | 
|  | int (callback_fn)(void *map, int *key, struct bpf_wq *wq), | 
|  | unsigned int flags, | 
|  | void *aux__ign) | 
|  | { | 
|  | struct bpf_prog_aux *aux = (struct bpf_prog_aux *)aux__ign; | 
|  | struct bpf_async_kern *async = (struct bpf_async_kern *)wq; | 
|  |  | 
|  | if (flags) | 
|  | return -EINVAL; | 
|  |  | 
|  | return __bpf_async_set_callback(async, callback_fn, aux, flags, BPF_ASYNC_TYPE_WQ); | 
|  | } | 
|  |  | 
|  | __bpf_kfunc void bpf_preempt_disable(void) | 
|  | { | 
|  | preempt_disable(); | 
|  | } | 
|  |  | 
|  | __bpf_kfunc void bpf_preempt_enable(void) | 
|  | { | 
|  | preempt_enable(); | 
|  | } | 
|  |  | 
|  | __bpf_kfunc_end_defs(); | 
|  |  | 
|  | BTF_KFUNCS_START(generic_btf_ids) | 
|  | #ifdef CONFIG_CRASH_DUMP | 
|  | BTF_ID_FLAGS(func, crash_kexec, KF_DESTRUCTIVE) | 
|  | #endif | 
|  | BTF_ID_FLAGS(func, bpf_obj_new_impl, KF_ACQUIRE | KF_RET_NULL) | 
|  | BTF_ID_FLAGS(func, bpf_percpu_obj_new_impl, KF_ACQUIRE | KF_RET_NULL) | 
|  | BTF_ID_FLAGS(func, bpf_obj_drop_impl, KF_RELEASE) | 
|  | BTF_ID_FLAGS(func, bpf_percpu_obj_drop_impl, KF_RELEASE) | 
|  | BTF_ID_FLAGS(func, bpf_refcount_acquire_impl, KF_ACQUIRE | KF_RET_NULL | KF_RCU) | 
|  | BTF_ID_FLAGS(func, bpf_list_push_front_impl) | 
|  | BTF_ID_FLAGS(func, bpf_list_push_back_impl) | 
|  | BTF_ID_FLAGS(func, bpf_list_pop_front, KF_ACQUIRE | KF_RET_NULL) | 
|  | BTF_ID_FLAGS(func, bpf_list_pop_back, KF_ACQUIRE | KF_RET_NULL) | 
|  | BTF_ID_FLAGS(func, bpf_task_acquire, KF_ACQUIRE | KF_RCU | KF_RET_NULL) | 
|  | BTF_ID_FLAGS(func, bpf_task_release, KF_RELEASE) | 
|  | BTF_ID_FLAGS(func, bpf_rbtree_remove, KF_ACQUIRE | KF_RET_NULL) | 
|  | BTF_ID_FLAGS(func, bpf_rbtree_add_impl) | 
|  | BTF_ID_FLAGS(func, bpf_rbtree_first, KF_RET_NULL) | 
|  |  | 
|  | #ifdef CONFIG_CGROUPS | 
|  | BTF_ID_FLAGS(func, bpf_cgroup_acquire, KF_ACQUIRE | KF_RCU | KF_RET_NULL) | 
|  | BTF_ID_FLAGS(func, bpf_cgroup_release, KF_RELEASE) | 
|  | BTF_ID_FLAGS(func, bpf_cgroup_ancestor, KF_ACQUIRE | KF_RCU | KF_RET_NULL) | 
|  | BTF_ID_FLAGS(func, bpf_cgroup_from_id, KF_ACQUIRE | KF_RET_NULL) | 
|  | BTF_ID_FLAGS(func, bpf_task_under_cgroup, KF_RCU) | 
|  | BTF_ID_FLAGS(func, bpf_task_get_cgroup1, KF_ACQUIRE | KF_RCU | KF_RET_NULL) | 
|  | #endif | 
|  | BTF_ID_FLAGS(func, bpf_task_from_pid, KF_ACQUIRE | KF_RET_NULL) | 
|  | BTF_ID_FLAGS(func, bpf_throw) | 
|  | BTF_KFUNCS_END(generic_btf_ids) | 
|  |  | 
|  | static const struct btf_kfunc_id_set generic_kfunc_set = { | 
|  | .owner = THIS_MODULE, | 
|  | .set   = &generic_btf_ids, | 
|  | }; | 
|  |  | 
|  |  | 
|  | BTF_ID_LIST(generic_dtor_ids) | 
|  | BTF_ID(struct, task_struct) | 
|  | BTF_ID(func, bpf_task_release_dtor) | 
|  | #ifdef CONFIG_CGROUPS | 
|  | BTF_ID(struct, cgroup) | 
|  | BTF_ID(func, bpf_cgroup_release_dtor) | 
|  | #endif | 
|  |  | 
|  | BTF_KFUNCS_START(common_btf_ids) | 
|  | BTF_ID_FLAGS(func, bpf_cast_to_kern_ctx) | 
|  | BTF_ID_FLAGS(func, bpf_rdonly_cast) | 
|  | BTF_ID_FLAGS(func, bpf_rcu_read_lock) | 
|  | BTF_ID_FLAGS(func, bpf_rcu_read_unlock) | 
|  | BTF_ID_FLAGS(func, bpf_dynptr_slice, KF_RET_NULL) | 
|  | BTF_ID_FLAGS(func, bpf_dynptr_slice_rdwr, KF_RET_NULL) | 
|  | BTF_ID_FLAGS(func, bpf_iter_num_new, KF_ITER_NEW) | 
|  | BTF_ID_FLAGS(func, bpf_iter_num_next, KF_ITER_NEXT | KF_RET_NULL) | 
|  | BTF_ID_FLAGS(func, bpf_iter_num_destroy, KF_ITER_DESTROY) | 
|  | BTF_ID_FLAGS(func, bpf_iter_task_vma_new, KF_ITER_NEW | KF_RCU) | 
|  | BTF_ID_FLAGS(func, bpf_iter_task_vma_next, KF_ITER_NEXT | KF_RET_NULL) | 
|  | BTF_ID_FLAGS(func, bpf_iter_task_vma_destroy, KF_ITER_DESTROY) | 
|  | #ifdef CONFIG_CGROUPS | 
|  | BTF_ID_FLAGS(func, bpf_iter_css_task_new, KF_ITER_NEW | KF_TRUSTED_ARGS) | 
|  | BTF_ID_FLAGS(func, bpf_iter_css_task_next, KF_ITER_NEXT | KF_RET_NULL) | 
|  | BTF_ID_FLAGS(func, bpf_iter_css_task_destroy, KF_ITER_DESTROY) | 
|  | BTF_ID_FLAGS(func, bpf_iter_css_new, KF_ITER_NEW | KF_TRUSTED_ARGS | KF_RCU_PROTECTED) | 
|  | BTF_ID_FLAGS(func, bpf_iter_css_next, KF_ITER_NEXT | KF_RET_NULL) | 
|  | BTF_ID_FLAGS(func, bpf_iter_css_destroy, KF_ITER_DESTROY) | 
|  | #endif | 
|  | BTF_ID_FLAGS(func, bpf_iter_task_new, KF_ITER_NEW | KF_TRUSTED_ARGS | KF_RCU_PROTECTED) | 
|  | BTF_ID_FLAGS(func, bpf_iter_task_next, KF_ITER_NEXT | KF_RET_NULL) | 
|  | BTF_ID_FLAGS(func, bpf_iter_task_destroy, KF_ITER_DESTROY) | 
|  | BTF_ID_FLAGS(func, bpf_dynptr_adjust) | 
|  | BTF_ID_FLAGS(func, bpf_dynptr_is_null) | 
|  | BTF_ID_FLAGS(func, bpf_dynptr_is_rdonly) | 
|  | BTF_ID_FLAGS(func, bpf_dynptr_size) | 
|  | BTF_ID_FLAGS(func, bpf_dynptr_clone) | 
|  | BTF_ID_FLAGS(func, bpf_modify_return_test_tp) | 
|  | BTF_ID_FLAGS(func, bpf_wq_init) | 
|  | BTF_ID_FLAGS(func, bpf_wq_set_callback_impl) | 
|  | BTF_ID_FLAGS(func, bpf_wq_start) | 
|  | BTF_ID_FLAGS(func, bpf_preempt_disable) | 
|  | BTF_ID_FLAGS(func, bpf_preempt_enable) | 
|  | BTF_KFUNCS_END(common_btf_ids) | 
|  |  | 
|  | static const struct btf_kfunc_id_set common_kfunc_set = { | 
|  | .owner = THIS_MODULE, | 
|  | .set   = &common_btf_ids, | 
|  | }; | 
|  |  | 
|  | static int __init kfunc_init(void) | 
|  | { | 
|  | int ret; | 
|  | const struct btf_id_dtor_kfunc generic_dtors[] = { | 
|  | { | 
|  | .btf_id       = generic_dtor_ids[0], | 
|  | .kfunc_btf_id = generic_dtor_ids[1] | 
|  | }, | 
|  | #ifdef CONFIG_CGROUPS | 
|  | { | 
|  | .btf_id       = generic_dtor_ids[2], | 
|  | .kfunc_btf_id = generic_dtor_ids[3] | 
|  | }, | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &generic_kfunc_set); | 
|  | ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &generic_kfunc_set); | 
|  | ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_XDP, &generic_kfunc_set); | 
|  | ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, &generic_kfunc_set); | 
|  | ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL, &generic_kfunc_set); | 
|  | ret = ret ?: register_btf_id_dtor_kfuncs(generic_dtors, | 
|  | ARRAY_SIZE(generic_dtors), | 
|  | THIS_MODULE); | 
|  | return ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_UNSPEC, &common_kfunc_set); | 
|  | } | 
|  |  | 
|  | late_initcall(kfunc_init); | 
|  |  | 
|  | /* Get a pointer to dynptr data up to len bytes for read only access. If | 
|  | * the dynptr doesn't have continuous data up to len bytes, return NULL. | 
|  | */ | 
|  | const void *__bpf_dynptr_data(const struct bpf_dynptr_kern *ptr, u32 len) | 
|  | { | 
|  | return bpf_dynptr_slice(ptr, 0, NULL, len); | 
|  | } | 
|  |  | 
|  | /* Get a pointer to dynptr data up to len bytes for read write access. If | 
|  | * the dynptr doesn't have continuous data up to len bytes, or the dynptr | 
|  | * is read only, return NULL. | 
|  | */ | 
|  | void *__bpf_dynptr_data_rw(const struct bpf_dynptr_kern *ptr, u32 len) | 
|  | { | 
|  | if (__bpf_dynptr_is_rdonly(ptr)) | 
|  | return NULL; | 
|  | return (void *)__bpf_dynptr_data(ptr, len); | 
|  | } |