| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * BPF JIT compiler for ARM64 |
| * |
| * Copyright (C) 2014-2016 Zi Shen Lim <zlim.lnx@gmail.com> |
| */ |
| |
| #define pr_fmt(fmt) "bpf_jit: " fmt |
| |
| #include <linux/bitfield.h> |
| #include <linux/bpf.h> |
| #include <linux/filter.h> |
| #include <linux/memory.h> |
| #include <linux/printk.h> |
| #include <linux/slab.h> |
| |
| #include <asm/asm-extable.h> |
| #include <asm/byteorder.h> |
| #include <asm/cacheflush.h> |
| #include <asm/debug-monitors.h> |
| #include <asm/insn.h> |
| #include <asm/patching.h> |
| #include <asm/set_memory.h> |
| |
| #include "bpf_jit.h" |
| |
| #define TMP_REG_1 (MAX_BPF_JIT_REG + 0) |
| #define TMP_REG_2 (MAX_BPF_JIT_REG + 1) |
| #define TCALL_CNT (MAX_BPF_JIT_REG + 2) |
| #define TMP_REG_3 (MAX_BPF_JIT_REG + 3) |
| #define FP_BOTTOM (MAX_BPF_JIT_REG + 4) |
| |
| #define check_imm(bits, imm) do { \ |
| if ((((imm) > 0) && ((imm) >> (bits))) || \ |
| (((imm) < 0) && (~(imm) >> (bits)))) { \ |
| pr_info("[%2d] imm=%d(0x%x) out of range\n", \ |
| i, imm, imm); \ |
| return -EINVAL; \ |
| } \ |
| } while (0) |
| #define check_imm19(imm) check_imm(19, imm) |
| #define check_imm26(imm) check_imm(26, imm) |
| |
| /* Map BPF registers to A64 registers */ |
| static const int bpf2a64[] = { |
| /* return value from in-kernel function, and exit value from eBPF */ |
| [BPF_REG_0] = A64_R(7), |
| /* arguments from eBPF program to in-kernel function */ |
| [BPF_REG_1] = A64_R(0), |
| [BPF_REG_2] = A64_R(1), |
| [BPF_REG_3] = A64_R(2), |
| [BPF_REG_4] = A64_R(3), |
| [BPF_REG_5] = A64_R(4), |
| /* callee saved registers that in-kernel function will preserve */ |
| [BPF_REG_6] = A64_R(19), |
| [BPF_REG_7] = A64_R(20), |
| [BPF_REG_8] = A64_R(21), |
| [BPF_REG_9] = A64_R(22), |
| /* read-only frame pointer to access stack */ |
| [BPF_REG_FP] = A64_R(25), |
| /* temporary registers for BPF JIT */ |
| [TMP_REG_1] = A64_R(10), |
| [TMP_REG_2] = A64_R(11), |
| [TMP_REG_3] = A64_R(12), |
| /* tail_call_cnt */ |
| [TCALL_CNT] = A64_R(26), |
| /* temporary register for blinding constants */ |
| [BPF_REG_AX] = A64_R(9), |
| [FP_BOTTOM] = A64_R(27), |
| }; |
| |
| struct jit_ctx { |
| const struct bpf_prog *prog; |
| int idx; |
| int epilogue_offset; |
| int *offset; |
| int exentry_idx; |
| __le32 *image; |
| u32 stack_size; |
| int fpb_offset; |
| }; |
| |
| struct bpf_plt { |
| u32 insn_ldr; /* load target */ |
| u32 insn_br; /* branch to target */ |
| u64 target; /* target value */ |
| }; |
| |
| #define PLT_TARGET_SIZE sizeof_field(struct bpf_plt, target) |
| #define PLT_TARGET_OFFSET offsetof(struct bpf_plt, target) |
| |
| static inline void emit(const u32 insn, struct jit_ctx *ctx) |
| { |
| if (ctx->image != NULL) |
| ctx->image[ctx->idx] = cpu_to_le32(insn); |
| |
| ctx->idx++; |
| } |
| |
| static inline void emit_a64_mov_i(const int is64, const int reg, |
| const s32 val, struct jit_ctx *ctx) |
| { |
| u16 hi = val >> 16; |
| u16 lo = val & 0xffff; |
| |
| if (hi & 0x8000) { |
| if (hi == 0xffff) { |
| emit(A64_MOVN(is64, reg, (u16)~lo, 0), ctx); |
| } else { |
| emit(A64_MOVN(is64, reg, (u16)~hi, 16), ctx); |
| if (lo != 0xffff) |
| emit(A64_MOVK(is64, reg, lo, 0), ctx); |
| } |
| } else { |
| emit(A64_MOVZ(is64, reg, lo, 0), ctx); |
| if (hi) |
| emit(A64_MOVK(is64, reg, hi, 16), ctx); |
| } |
| } |
| |
| static int i64_i16_blocks(const u64 val, bool inverse) |
| { |
| return (((val >> 0) & 0xffff) != (inverse ? 0xffff : 0x0000)) + |
| (((val >> 16) & 0xffff) != (inverse ? 0xffff : 0x0000)) + |
| (((val >> 32) & 0xffff) != (inverse ? 0xffff : 0x0000)) + |
| (((val >> 48) & 0xffff) != (inverse ? 0xffff : 0x0000)); |
| } |
| |
| static inline void emit_a64_mov_i64(const int reg, const u64 val, |
| struct jit_ctx *ctx) |
| { |
| u64 nrm_tmp = val, rev_tmp = ~val; |
| bool inverse; |
| int shift; |
| |
| if (!(nrm_tmp >> 32)) |
| return emit_a64_mov_i(0, reg, (u32)val, ctx); |
| |
| inverse = i64_i16_blocks(nrm_tmp, true) < i64_i16_blocks(nrm_tmp, false); |
| shift = max(round_down((inverse ? (fls64(rev_tmp) - 1) : |
| (fls64(nrm_tmp) - 1)), 16), 0); |
| if (inverse) |
| emit(A64_MOVN(1, reg, (rev_tmp >> shift) & 0xffff, shift), ctx); |
| else |
| emit(A64_MOVZ(1, reg, (nrm_tmp >> shift) & 0xffff, shift), ctx); |
| shift -= 16; |
| while (shift >= 0) { |
| if (((nrm_tmp >> shift) & 0xffff) != (inverse ? 0xffff : 0x0000)) |
| emit(A64_MOVK(1, reg, (nrm_tmp >> shift) & 0xffff, shift), ctx); |
| shift -= 16; |
| } |
| } |
| |
| static inline void emit_bti(u32 insn, struct jit_ctx *ctx) |
| { |
| if (IS_ENABLED(CONFIG_ARM64_BTI_KERNEL)) |
| emit(insn, ctx); |
| } |
| |
| /* |
| * Kernel addresses in the vmalloc space use at most 48 bits, and the |
| * remaining bits are guaranteed to be 0x1. So we can compose the address |
| * with a fixed length movn/movk/movk sequence. |
| */ |
| static inline void emit_addr_mov_i64(const int reg, const u64 val, |
| struct jit_ctx *ctx) |
| { |
| u64 tmp = val; |
| int shift = 0; |
| |
| emit(A64_MOVN(1, reg, ~tmp & 0xffff, shift), ctx); |
| while (shift < 32) { |
| tmp >>= 16; |
| shift += 16; |
| emit(A64_MOVK(1, reg, tmp & 0xffff, shift), ctx); |
| } |
| } |
| |
| static inline void emit_call(u64 target, struct jit_ctx *ctx) |
| { |
| u8 tmp = bpf2a64[TMP_REG_1]; |
| |
| emit_addr_mov_i64(tmp, target, ctx); |
| emit(A64_BLR(tmp), ctx); |
| } |
| |
| static inline int bpf2a64_offset(int bpf_insn, int off, |
| const struct jit_ctx *ctx) |
| { |
| /* BPF JMP offset is relative to the next instruction */ |
| bpf_insn++; |
| /* |
| * Whereas arm64 branch instructions encode the offset |
| * from the branch itself, so we must subtract 1 from the |
| * instruction offset. |
| */ |
| return ctx->offset[bpf_insn + off] - (ctx->offset[bpf_insn] - 1); |
| } |
| |
| static void jit_fill_hole(void *area, unsigned int size) |
| { |
| __le32 *ptr; |
| /* We are guaranteed to have aligned memory. */ |
| for (ptr = area; size >= sizeof(u32); size -= sizeof(u32)) |
| *ptr++ = cpu_to_le32(AARCH64_BREAK_FAULT); |
| } |
| |
| static inline int epilogue_offset(const struct jit_ctx *ctx) |
| { |
| int to = ctx->epilogue_offset; |
| int from = ctx->idx; |
| |
| return to - from; |
| } |
| |
| static bool is_addsub_imm(u32 imm) |
| { |
| /* Either imm12 or shifted imm12. */ |
| return !(imm & ~0xfff) || !(imm & ~0xfff000); |
| } |
| |
| /* |
| * There are 3 types of AArch64 LDR/STR (immediate) instruction: |
| * Post-index, Pre-index, Unsigned offset. |
| * |
| * For BPF ldr/str, the "unsigned offset" type is sufficient. |
| * |
| * "Unsigned offset" type LDR(immediate) format: |
| * |
| * 3 2 1 0 |
| * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 |
| * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| * |x x|1 1 1 0 0 1 0 1| imm12 | Rn | Rt | |
| * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| * scale |
| * |
| * "Unsigned offset" type STR(immediate) format: |
| * 3 2 1 0 |
| * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 |
| * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| * |x x|1 1 1 0 0 1 0 0| imm12 | Rn | Rt | |
| * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| * scale |
| * |
| * The offset is calculated from imm12 and scale in the following way: |
| * |
| * offset = (u64)imm12 << scale |
| */ |
| static bool is_lsi_offset(int offset, int scale) |
| { |
| if (offset < 0) |
| return false; |
| |
| if (offset > (0xFFF << scale)) |
| return false; |
| |
| if (offset & ((1 << scale) - 1)) |
| return false; |
| |
| return true; |
| } |
| |
| /* generated prologue: |
| * bti c // if CONFIG_ARM64_BTI_KERNEL |
| * mov x9, lr |
| * nop // POKE_OFFSET |
| * paciasp // if CONFIG_ARM64_PTR_AUTH_KERNEL |
| * stp x29, lr, [sp, #-16]! |
| * mov x29, sp |
| * stp x19, x20, [sp, #-16]! |
| * stp x21, x22, [sp, #-16]! |
| * stp x25, x26, [sp, #-16]! |
| * stp x27, x28, [sp, #-16]! |
| * mov x25, sp |
| * mov tcc, #0 |
| * // PROLOGUE_OFFSET |
| */ |
| |
| #define BTI_INSNS (IS_ENABLED(CONFIG_ARM64_BTI_KERNEL) ? 1 : 0) |
| #define PAC_INSNS (IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL) ? 1 : 0) |
| |
| /* Offset of nop instruction in bpf prog entry to be poked */ |
| #define POKE_OFFSET (BTI_INSNS + 1) |
| |
| /* Tail call offset to jump into */ |
| #define PROLOGUE_OFFSET (BTI_INSNS + 2 + PAC_INSNS + 8) |
| |
| static int build_prologue(struct jit_ctx *ctx, bool ebpf_from_cbpf) |
| { |
| const struct bpf_prog *prog = ctx->prog; |
| const bool is_main_prog = !bpf_is_subprog(prog); |
| const u8 r6 = bpf2a64[BPF_REG_6]; |
| const u8 r7 = bpf2a64[BPF_REG_7]; |
| const u8 r8 = bpf2a64[BPF_REG_8]; |
| const u8 r9 = bpf2a64[BPF_REG_9]; |
| const u8 fp = bpf2a64[BPF_REG_FP]; |
| const u8 tcc = bpf2a64[TCALL_CNT]; |
| const u8 fpb = bpf2a64[FP_BOTTOM]; |
| const int idx0 = ctx->idx; |
| int cur_offset; |
| |
| /* |
| * BPF prog stack layout |
| * |
| * high |
| * original A64_SP => 0:+-----+ BPF prologue |
| * |FP/LR| |
| * current A64_FP => -16:+-----+ |
| * | ... | callee saved registers |
| * BPF fp register => -64:+-----+ <= (BPF_FP) |
| * | | |
| * | ... | BPF prog stack |
| * | | |
| * +-----+ <= (BPF_FP - prog->aux->stack_depth) |
| * |RSVD | padding |
| * current A64_SP => +-----+ <= (BPF_FP - ctx->stack_size) |
| * | | |
| * | ... | Function call stack |
| * | | |
| * +-----+ |
| * low |
| * |
| */ |
| |
| /* bpf function may be invoked by 3 instruction types: |
| * 1. bl, attached via freplace to bpf prog via short jump |
| * 2. br, attached via freplace to bpf prog via long jump |
| * 3. blr, working as a function pointer, used by emit_call. |
| * So BTI_JC should used here to support both br and blr. |
| */ |
| emit_bti(A64_BTI_JC, ctx); |
| |
| emit(A64_MOV(1, A64_R(9), A64_LR), ctx); |
| emit(A64_NOP, ctx); |
| |
| /* Sign lr */ |
| if (IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL)) |
| emit(A64_PACIASP, ctx); |
| |
| /* Save FP and LR registers to stay align with ARM64 AAPCS */ |
| emit(A64_PUSH(A64_FP, A64_LR, A64_SP), ctx); |
| emit(A64_MOV(1, A64_FP, A64_SP), ctx); |
| |
| /* Save callee-saved registers */ |
| emit(A64_PUSH(r6, r7, A64_SP), ctx); |
| emit(A64_PUSH(r8, r9, A64_SP), ctx); |
| emit(A64_PUSH(fp, tcc, A64_SP), ctx); |
| emit(A64_PUSH(fpb, A64_R(28), A64_SP), ctx); |
| |
| /* Set up BPF prog stack base register */ |
| emit(A64_MOV(1, fp, A64_SP), ctx); |
| |
| if (!ebpf_from_cbpf && is_main_prog) { |
| /* Initialize tail_call_cnt */ |
| emit(A64_MOVZ(1, tcc, 0, 0), ctx); |
| |
| cur_offset = ctx->idx - idx0; |
| if (cur_offset != PROLOGUE_OFFSET) { |
| pr_err_once("PROLOGUE_OFFSET = %d, expected %d!\n", |
| cur_offset, PROLOGUE_OFFSET); |
| return -1; |
| } |
| |
| /* BTI landing pad for the tail call, done with a BR */ |
| emit_bti(A64_BTI_J, ctx); |
| } |
| |
| emit(A64_SUB_I(1, fpb, fp, ctx->fpb_offset), ctx); |
| |
| /* Stack must be multiples of 16B */ |
| ctx->stack_size = round_up(prog->aux->stack_depth, 16); |
| |
| /* Set up function call stack */ |
| emit(A64_SUB_I(1, A64_SP, A64_SP, ctx->stack_size), ctx); |
| return 0; |
| } |
| |
| static int out_offset = -1; /* initialized on the first pass of build_body() */ |
| static int emit_bpf_tail_call(struct jit_ctx *ctx) |
| { |
| /* bpf_tail_call(void *prog_ctx, struct bpf_array *array, u64 index) */ |
| const u8 r2 = bpf2a64[BPF_REG_2]; |
| const u8 r3 = bpf2a64[BPF_REG_3]; |
| |
| const u8 tmp = bpf2a64[TMP_REG_1]; |
| const u8 prg = bpf2a64[TMP_REG_2]; |
| const u8 tcc = bpf2a64[TCALL_CNT]; |
| const int idx0 = ctx->idx; |
| #define cur_offset (ctx->idx - idx0) |
| #define jmp_offset (out_offset - (cur_offset)) |
| size_t off; |
| |
| /* if (index >= array->map.max_entries) |
| * goto out; |
| */ |
| off = offsetof(struct bpf_array, map.max_entries); |
| emit_a64_mov_i64(tmp, off, ctx); |
| emit(A64_LDR32(tmp, r2, tmp), ctx); |
| emit(A64_MOV(0, r3, r3), ctx); |
| emit(A64_CMP(0, r3, tmp), ctx); |
| emit(A64_B_(A64_COND_CS, jmp_offset), ctx); |
| |
| /* |
| * if (tail_call_cnt >= MAX_TAIL_CALL_CNT) |
| * goto out; |
| * tail_call_cnt++; |
| */ |
| emit_a64_mov_i64(tmp, MAX_TAIL_CALL_CNT, ctx); |
| emit(A64_CMP(1, tcc, tmp), ctx); |
| emit(A64_B_(A64_COND_CS, jmp_offset), ctx); |
| emit(A64_ADD_I(1, tcc, tcc, 1), ctx); |
| |
| /* prog = array->ptrs[index]; |
| * if (prog == NULL) |
| * goto out; |
| */ |
| off = offsetof(struct bpf_array, ptrs); |
| emit_a64_mov_i64(tmp, off, ctx); |
| emit(A64_ADD(1, tmp, r2, tmp), ctx); |
| emit(A64_LSL(1, prg, r3, 3), ctx); |
| emit(A64_LDR64(prg, tmp, prg), ctx); |
| emit(A64_CBZ(1, prg, jmp_offset), ctx); |
| |
| /* goto *(prog->bpf_func + prologue_offset); */ |
| off = offsetof(struct bpf_prog, bpf_func); |
| emit_a64_mov_i64(tmp, off, ctx); |
| emit(A64_LDR64(tmp, prg, tmp), ctx); |
| emit(A64_ADD_I(1, tmp, tmp, sizeof(u32) * PROLOGUE_OFFSET), ctx); |
| emit(A64_ADD_I(1, A64_SP, A64_SP, ctx->stack_size), ctx); |
| emit(A64_BR(tmp), ctx); |
| |
| /* out: */ |
| if (out_offset == -1) |
| out_offset = cur_offset; |
| if (cur_offset != out_offset) { |
| pr_err_once("tail_call out_offset = %d, expected %d!\n", |
| cur_offset, out_offset); |
| return -1; |
| } |
| return 0; |
| #undef cur_offset |
| #undef jmp_offset |
| } |
| |
| #ifdef CONFIG_ARM64_LSE_ATOMICS |
| static int emit_lse_atomic(const struct bpf_insn *insn, struct jit_ctx *ctx) |
| { |
| const u8 code = insn->code; |
| const u8 dst = bpf2a64[insn->dst_reg]; |
| const u8 src = bpf2a64[insn->src_reg]; |
| const u8 tmp = bpf2a64[TMP_REG_1]; |
| const u8 tmp2 = bpf2a64[TMP_REG_2]; |
| const bool isdw = BPF_SIZE(code) == BPF_DW; |
| const s16 off = insn->off; |
| u8 reg; |
| |
| if (!off) { |
| reg = dst; |
| } else { |
| emit_a64_mov_i(1, tmp, off, ctx); |
| emit(A64_ADD(1, tmp, tmp, dst), ctx); |
| reg = tmp; |
| } |
| |
| switch (insn->imm) { |
| /* lock *(u32/u64 *)(dst_reg + off) <op>= src_reg */ |
| case BPF_ADD: |
| emit(A64_STADD(isdw, reg, src), ctx); |
| break; |
| case BPF_AND: |
| emit(A64_MVN(isdw, tmp2, src), ctx); |
| emit(A64_STCLR(isdw, reg, tmp2), ctx); |
| break; |
| case BPF_OR: |
| emit(A64_STSET(isdw, reg, src), ctx); |
| break; |
| case BPF_XOR: |
| emit(A64_STEOR(isdw, reg, src), ctx); |
| break; |
| /* src_reg = atomic_fetch_<op>(dst_reg + off, src_reg) */ |
| case BPF_ADD | BPF_FETCH: |
| emit(A64_LDADDAL(isdw, src, reg, src), ctx); |
| break; |
| case BPF_AND | BPF_FETCH: |
| emit(A64_MVN(isdw, tmp2, src), ctx); |
| emit(A64_LDCLRAL(isdw, src, reg, tmp2), ctx); |
| break; |
| case BPF_OR | BPF_FETCH: |
| emit(A64_LDSETAL(isdw, src, reg, src), ctx); |
| break; |
| case BPF_XOR | BPF_FETCH: |
| emit(A64_LDEORAL(isdw, src, reg, src), ctx); |
| break; |
| /* src_reg = atomic_xchg(dst_reg + off, src_reg); */ |
| case BPF_XCHG: |
| emit(A64_SWPAL(isdw, src, reg, src), ctx); |
| break; |
| /* r0 = atomic_cmpxchg(dst_reg + off, r0, src_reg); */ |
| case BPF_CMPXCHG: |
| emit(A64_CASAL(isdw, src, reg, bpf2a64[BPF_REG_0]), ctx); |
| break; |
| default: |
| pr_err_once("unknown atomic op code %02x\n", insn->imm); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| #else |
| static inline int emit_lse_atomic(const struct bpf_insn *insn, struct jit_ctx *ctx) |
| { |
| return -EINVAL; |
| } |
| #endif |
| |
| static int emit_ll_sc_atomic(const struct bpf_insn *insn, struct jit_ctx *ctx) |
| { |
| const u8 code = insn->code; |
| const u8 dst = bpf2a64[insn->dst_reg]; |
| const u8 src = bpf2a64[insn->src_reg]; |
| const u8 tmp = bpf2a64[TMP_REG_1]; |
| const u8 tmp2 = bpf2a64[TMP_REG_2]; |
| const u8 tmp3 = bpf2a64[TMP_REG_3]; |
| const int i = insn - ctx->prog->insnsi; |
| const s32 imm = insn->imm; |
| const s16 off = insn->off; |
| const bool isdw = BPF_SIZE(code) == BPF_DW; |
| u8 reg; |
| s32 jmp_offset; |
| |
| if (!off) { |
| reg = dst; |
| } else { |
| emit_a64_mov_i(1, tmp, off, ctx); |
| emit(A64_ADD(1, tmp, tmp, dst), ctx); |
| reg = tmp; |
| } |
| |
| if (imm == BPF_ADD || imm == BPF_AND || |
| imm == BPF_OR || imm == BPF_XOR) { |
| /* lock *(u32/u64 *)(dst_reg + off) <op>= src_reg */ |
| emit(A64_LDXR(isdw, tmp2, reg), ctx); |
| if (imm == BPF_ADD) |
| emit(A64_ADD(isdw, tmp2, tmp2, src), ctx); |
| else if (imm == BPF_AND) |
| emit(A64_AND(isdw, tmp2, tmp2, src), ctx); |
| else if (imm == BPF_OR) |
| emit(A64_ORR(isdw, tmp2, tmp2, src), ctx); |
| else |
| emit(A64_EOR(isdw, tmp2, tmp2, src), ctx); |
| emit(A64_STXR(isdw, tmp2, reg, tmp3), ctx); |
| jmp_offset = -3; |
| check_imm19(jmp_offset); |
| emit(A64_CBNZ(0, tmp3, jmp_offset), ctx); |
| } else if (imm == (BPF_ADD | BPF_FETCH) || |
| imm == (BPF_AND | BPF_FETCH) || |
| imm == (BPF_OR | BPF_FETCH) || |
| imm == (BPF_XOR | BPF_FETCH)) { |
| /* src_reg = atomic_fetch_<op>(dst_reg + off, src_reg) */ |
| const u8 ax = bpf2a64[BPF_REG_AX]; |
| |
| emit(A64_MOV(isdw, ax, src), ctx); |
| emit(A64_LDXR(isdw, src, reg), ctx); |
| if (imm == (BPF_ADD | BPF_FETCH)) |
| emit(A64_ADD(isdw, tmp2, src, ax), ctx); |
| else if (imm == (BPF_AND | BPF_FETCH)) |
| emit(A64_AND(isdw, tmp2, src, ax), ctx); |
| else if (imm == (BPF_OR | BPF_FETCH)) |
| emit(A64_ORR(isdw, tmp2, src, ax), ctx); |
| else |
| emit(A64_EOR(isdw, tmp2, src, ax), ctx); |
| emit(A64_STLXR(isdw, tmp2, reg, tmp3), ctx); |
| jmp_offset = -3; |
| check_imm19(jmp_offset); |
| emit(A64_CBNZ(0, tmp3, jmp_offset), ctx); |
| emit(A64_DMB_ISH, ctx); |
| } else if (imm == BPF_XCHG) { |
| /* src_reg = atomic_xchg(dst_reg + off, src_reg); */ |
| emit(A64_MOV(isdw, tmp2, src), ctx); |
| emit(A64_LDXR(isdw, src, reg), ctx); |
| emit(A64_STLXR(isdw, tmp2, reg, tmp3), ctx); |
| jmp_offset = -2; |
| check_imm19(jmp_offset); |
| emit(A64_CBNZ(0, tmp3, jmp_offset), ctx); |
| emit(A64_DMB_ISH, ctx); |
| } else if (imm == BPF_CMPXCHG) { |
| /* r0 = atomic_cmpxchg(dst_reg + off, r0, src_reg); */ |
| const u8 r0 = bpf2a64[BPF_REG_0]; |
| |
| emit(A64_MOV(isdw, tmp2, r0), ctx); |
| emit(A64_LDXR(isdw, r0, reg), ctx); |
| emit(A64_EOR(isdw, tmp3, r0, tmp2), ctx); |
| jmp_offset = 4; |
| check_imm19(jmp_offset); |
| emit(A64_CBNZ(isdw, tmp3, jmp_offset), ctx); |
| emit(A64_STLXR(isdw, src, reg, tmp3), ctx); |
| jmp_offset = -4; |
| check_imm19(jmp_offset); |
| emit(A64_CBNZ(0, tmp3, jmp_offset), ctx); |
| emit(A64_DMB_ISH, ctx); |
| } else { |
| pr_err_once("unknown atomic op code %02x\n", imm); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| void dummy_tramp(void); |
| |
| asm ( |
| " .pushsection .text, \"ax\", @progbits\n" |
| " .global dummy_tramp\n" |
| " .type dummy_tramp, %function\n" |
| "dummy_tramp:" |
| #if IS_ENABLED(CONFIG_ARM64_BTI_KERNEL) |
| " bti j\n" /* dummy_tramp is called via "br x10" */ |
| #endif |
| " mov x10, x30\n" |
| " mov x30, x9\n" |
| " ret x10\n" |
| " .size dummy_tramp, .-dummy_tramp\n" |
| " .popsection\n" |
| ); |
| |
| /* build a plt initialized like this: |
| * |
| * plt: |
| * ldr tmp, target |
| * br tmp |
| * target: |
| * .quad dummy_tramp |
| * |
| * when a long jump trampoline is attached, target is filled with the |
| * trampoline address, and when the trampoline is removed, target is |
| * restored to dummy_tramp address. |
| */ |
| static void build_plt(struct jit_ctx *ctx) |
| { |
| const u8 tmp = bpf2a64[TMP_REG_1]; |
| struct bpf_plt *plt = NULL; |
| |
| /* make sure target is 64-bit aligned */ |
| if ((ctx->idx + PLT_TARGET_OFFSET / AARCH64_INSN_SIZE) % 2) |
| emit(A64_NOP, ctx); |
| |
| plt = (struct bpf_plt *)(ctx->image + ctx->idx); |
| /* plt is called via bl, no BTI needed here */ |
| emit(A64_LDR64LIT(tmp, 2 * AARCH64_INSN_SIZE), ctx); |
| emit(A64_BR(tmp), ctx); |
| |
| if (ctx->image) |
| plt->target = (u64)&dummy_tramp; |
| } |
| |
| static void build_epilogue(struct jit_ctx *ctx) |
| { |
| const u8 r0 = bpf2a64[BPF_REG_0]; |
| const u8 r6 = bpf2a64[BPF_REG_6]; |
| const u8 r7 = bpf2a64[BPF_REG_7]; |
| const u8 r8 = bpf2a64[BPF_REG_8]; |
| const u8 r9 = bpf2a64[BPF_REG_9]; |
| const u8 fp = bpf2a64[BPF_REG_FP]; |
| const u8 fpb = bpf2a64[FP_BOTTOM]; |
| |
| /* We're done with BPF stack */ |
| emit(A64_ADD_I(1, A64_SP, A64_SP, ctx->stack_size), ctx); |
| |
| /* Restore x27 and x28 */ |
| emit(A64_POP(fpb, A64_R(28), A64_SP), ctx); |
| /* Restore fs (x25) and x26 */ |
| emit(A64_POP(fp, A64_R(26), A64_SP), ctx); |
| |
| /* Restore callee-saved register */ |
| emit(A64_POP(r8, r9, A64_SP), ctx); |
| emit(A64_POP(r6, r7, A64_SP), ctx); |
| |
| /* Restore FP/LR registers */ |
| emit(A64_POP(A64_FP, A64_LR, A64_SP), ctx); |
| |
| /* Set return value */ |
| emit(A64_MOV(1, A64_R(0), r0), ctx); |
| |
| /* Authenticate lr */ |
| if (IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL)) |
| emit(A64_AUTIASP, ctx); |
| |
| emit(A64_RET(A64_LR), ctx); |
| } |
| |
| #define BPF_FIXUP_OFFSET_MASK GENMASK(26, 0) |
| #define BPF_FIXUP_REG_MASK GENMASK(31, 27) |
| |
| bool ex_handler_bpf(const struct exception_table_entry *ex, |
| struct pt_regs *regs) |
| { |
| off_t offset = FIELD_GET(BPF_FIXUP_OFFSET_MASK, ex->fixup); |
| int dst_reg = FIELD_GET(BPF_FIXUP_REG_MASK, ex->fixup); |
| |
| regs->regs[dst_reg] = 0; |
| regs->pc = (unsigned long)&ex->fixup - offset; |
| return true; |
| } |
| |
| /* For accesses to BTF pointers, add an entry to the exception table */ |
| static int add_exception_handler(const struct bpf_insn *insn, |
| struct jit_ctx *ctx, |
| int dst_reg) |
| { |
| off_t offset; |
| unsigned long pc; |
| struct exception_table_entry *ex; |
| |
| if (!ctx->image) |
| /* First pass */ |
| return 0; |
| |
| if (BPF_MODE(insn->code) != BPF_PROBE_MEM && |
| BPF_MODE(insn->code) != BPF_PROBE_MEMSX) |
| return 0; |
| |
| if (!ctx->prog->aux->extable || |
| WARN_ON_ONCE(ctx->exentry_idx >= ctx->prog->aux->num_exentries)) |
| return -EINVAL; |
| |
| ex = &ctx->prog->aux->extable[ctx->exentry_idx]; |
| pc = (unsigned long)&ctx->image[ctx->idx - 1]; |
| |
| offset = pc - (long)&ex->insn; |
| if (WARN_ON_ONCE(offset >= 0 || offset < INT_MIN)) |
| return -ERANGE; |
| ex->insn = offset; |
| |
| /* |
| * Since the extable follows the program, the fixup offset is always |
| * negative and limited to BPF_JIT_REGION_SIZE. Store a positive value |
| * to keep things simple, and put the destination register in the upper |
| * bits. We don't need to worry about buildtime or runtime sort |
| * modifying the upper bits because the table is already sorted, and |
| * isn't part of the main exception table. |
| */ |
| offset = (long)&ex->fixup - (pc + AARCH64_INSN_SIZE); |
| if (!FIELD_FIT(BPF_FIXUP_OFFSET_MASK, offset)) |
| return -ERANGE; |
| |
| ex->fixup = FIELD_PREP(BPF_FIXUP_OFFSET_MASK, offset) | |
| FIELD_PREP(BPF_FIXUP_REG_MASK, dst_reg); |
| |
| ex->type = EX_TYPE_BPF; |
| |
| ctx->exentry_idx++; |
| return 0; |
| } |
| |
| /* JITs an eBPF instruction. |
| * Returns: |
| * 0 - successfully JITed an 8-byte eBPF instruction. |
| * >0 - successfully JITed a 16-byte eBPF instruction. |
| * <0 - failed to JIT. |
| */ |
| static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx, |
| bool extra_pass) |
| { |
| const u8 code = insn->code; |
| const u8 dst = bpf2a64[insn->dst_reg]; |
| const u8 src = bpf2a64[insn->src_reg]; |
| const u8 tmp = bpf2a64[TMP_REG_1]; |
| const u8 tmp2 = bpf2a64[TMP_REG_2]; |
| const u8 fp = bpf2a64[BPF_REG_FP]; |
| const u8 fpb = bpf2a64[FP_BOTTOM]; |
| const s16 off = insn->off; |
| const s32 imm = insn->imm; |
| const int i = insn - ctx->prog->insnsi; |
| const bool is64 = BPF_CLASS(code) == BPF_ALU64 || |
| BPF_CLASS(code) == BPF_JMP; |
| u8 jmp_cond; |
| s32 jmp_offset; |
| u32 a64_insn; |
| u8 src_adj; |
| u8 dst_adj; |
| int off_adj; |
| int ret; |
| bool sign_extend; |
| |
| switch (code) { |
| /* dst = src */ |
| case BPF_ALU | BPF_MOV | BPF_X: |
| case BPF_ALU64 | BPF_MOV | BPF_X: |
| switch (insn->off) { |
| case 0: |
| emit(A64_MOV(is64, dst, src), ctx); |
| break; |
| case 8: |
| emit(A64_SXTB(is64, dst, src), ctx); |
| break; |
| case 16: |
| emit(A64_SXTH(is64, dst, src), ctx); |
| break; |
| case 32: |
| emit(A64_SXTW(is64, dst, src), ctx); |
| break; |
| } |
| break; |
| /* dst = dst OP src */ |
| case BPF_ALU | BPF_ADD | BPF_X: |
| case BPF_ALU64 | BPF_ADD | BPF_X: |
| emit(A64_ADD(is64, dst, dst, src), ctx); |
| break; |
| case BPF_ALU | BPF_SUB | BPF_X: |
| case BPF_ALU64 | BPF_SUB | BPF_X: |
| emit(A64_SUB(is64, dst, dst, src), ctx); |
| break; |
| case BPF_ALU | BPF_AND | BPF_X: |
| case BPF_ALU64 | BPF_AND | BPF_X: |
| emit(A64_AND(is64, dst, dst, src), ctx); |
| break; |
| case BPF_ALU | BPF_OR | BPF_X: |
| case BPF_ALU64 | BPF_OR | BPF_X: |
| emit(A64_ORR(is64, dst, dst, src), ctx); |
| break; |
| case BPF_ALU | BPF_XOR | BPF_X: |
| case BPF_ALU64 | BPF_XOR | BPF_X: |
| emit(A64_EOR(is64, dst, dst, src), ctx); |
| break; |
| case BPF_ALU | BPF_MUL | BPF_X: |
| case BPF_ALU64 | BPF_MUL | BPF_X: |
| emit(A64_MUL(is64, dst, dst, src), ctx); |
| break; |
| case BPF_ALU | BPF_DIV | BPF_X: |
| case BPF_ALU64 | BPF_DIV | BPF_X: |
| if (!off) |
| emit(A64_UDIV(is64, dst, dst, src), ctx); |
| else |
| emit(A64_SDIV(is64, dst, dst, src), ctx); |
| break; |
| case BPF_ALU | BPF_MOD | BPF_X: |
| case BPF_ALU64 | BPF_MOD | BPF_X: |
| if (!off) |
| emit(A64_UDIV(is64, tmp, dst, src), ctx); |
| else |
| emit(A64_SDIV(is64, tmp, dst, src), ctx); |
| emit(A64_MSUB(is64, dst, dst, tmp, src), ctx); |
| break; |
| case BPF_ALU | BPF_LSH | BPF_X: |
| case BPF_ALU64 | BPF_LSH | BPF_X: |
| emit(A64_LSLV(is64, dst, dst, src), ctx); |
| break; |
| case BPF_ALU | BPF_RSH | BPF_X: |
| case BPF_ALU64 | BPF_RSH | BPF_X: |
| emit(A64_LSRV(is64, dst, dst, src), ctx); |
| break; |
| case BPF_ALU | BPF_ARSH | BPF_X: |
| case BPF_ALU64 | BPF_ARSH | BPF_X: |
| emit(A64_ASRV(is64, dst, dst, src), ctx); |
| break; |
| /* dst = -dst */ |
| case BPF_ALU | BPF_NEG: |
| case BPF_ALU64 | BPF_NEG: |
| emit(A64_NEG(is64, dst, dst), ctx); |
| break; |
| /* dst = BSWAP##imm(dst) */ |
| case BPF_ALU | BPF_END | BPF_FROM_LE: |
| case BPF_ALU | BPF_END | BPF_FROM_BE: |
| case BPF_ALU64 | BPF_END | BPF_FROM_LE: |
| #ifdef CONFIG_CPU_BIG_ENDIAN |
| if (BPF_CLASS(code) == BPF_ALU && BPF_SRC(code) == BPF_FROM_BE) |
| goto emit_bswap_uxt; |
| #else /* !CONFIG_CPU_BIG_ENDIAN */ |
| if (BPF_CLASS(code) == BPF_ALU && BPF_SRC(code) == BPF_FROM_LE) |
| goto emit_bswap_uxt; |
| #endif |
| switch (imm) { |
| case 16: |
| emit(A64_REV16(is64, dst, dst), ctx); |
| /* zero-extend 16 bits into 64 bits */ |
| emit(A64_UXTH(is64, dst, dst), ctx); |
| break; |
| case 32: |
| emit(A64_REV32(is64, dst, dst), ctx); |
| /* upper 32 bits already cleared */ |
| break; |
| case 64: |
| emit(A64_REV64(dst, dst), ctx); |
| break; |
| } |
| break; |
| emit_bswap_uxt: |
| switch (imm) { |
| case 16: |
| /* zero-extend 16 bits into 64 bits */ |
| emit(A64_UXTH(is64, dst, dst), ctx); |
| break; |
| case 32: |
| /* zero-extend 32 bits into 64 bits */ |
| emit(A64_UXTW(is64, dst, dst), ctx); |
| break; |
| case 64: |
| /* nop */ |
| break; |
| } |
| break; |
| /* dst = imm */ |
| case BPF_ALU | BPF_MOV | BPF_K: |
| case BPF_ALU64 | BPF_MOV | BPF_K: |
| emit_a64_mov_i(is64, dst, imm, ctx); |
| break; |
| /* dst = dst OP imm */ |
| case BPF_ALU | BPF_ADD | BPF_K: |
| case BPF_ALU64 | BPF_ADD | BPF_K: |
| if (is_addsub_imm(imm)) { |
| emit(A64_ADD_I(is64, dst, dst, imm), ctx); |
| } else if (is_addsub_imm(-imm)) { |
| emit(A64_SUB_I(is64, dst, dst, -imm), ctx); |
| } else { |
| emit_a64_mov_i(is64, tmp, imm, ctx); |
| emit(A64_ADD(is64, dst, dst, tmp), ctx); |
| } |
| break; |
| case BPF_ALU | BPF_SUB | BPF_K: |
| case BPF_ALU64 | BPF_SUB | BPF_K: |
| if (is_addsub_imm(imm)) { |
| emit(A64_SUB_I(is64, dst, dst, imm), ctx); |
| } else if (is_addsub_imm(-imm)) { |
| emit(A64_ADD_I(is64, dst, dst, -imm), ctx); |
| } else { |
| emit_a64_mov_i(is64, tmp, imm, ctx); |
| emit(A64_SUB(is64, dst, dst, tmp), ctx); |
| } |
| break; |
| case BPF_ALU | BPF_AND | BPF_K: |
| case BPF_ALU64 | BPF_AND | BPF_K: |
| a64_insn = A64_AND_I(is64, dst, dst, imm); |
| if (a64_insn != AARCH64_BREAK_FAULT) { |
| emit(a64_insn, ctx); |
| } else { |
| emit_a64_mov_i(is64, tmp, imm, ctx); |
| emit(A64_AND(is64, dst, dst, tmp), ctx); |
| } |
| break; |
| case BPF_ALU | BPF_OR | BPF_K: |
| case BPF_ALU64 | BPF_OR | BPF_K: |
| a64_insn = A64_ORR_I(is64, dst, dst, imm); |
| if (a64_insn != AARCH64_BREAK_FAULT) { |
| emit(a64_insn, ctx); |
| } else { |
| emit_a64_mov_i(is64, tmp, imm, ctx); |
| emit(A64_ORR(is64, dst, dst, tmp), ctx); |
| } |
| break; |
| case BPF_ALU | BPF_XOR | BPF_K: |
| case BPF_ALU64 | BPF_XOR | BPF_K: |
| a64_insn = A64_EOR_I(is64, dst, dst, imm); |
| if (a64_insn != AARCH64_BREAK_FAULT) { |
| emit(a64_insn, ctx); |
| } else { |
| emit_a64_mov_i(is64, tmp, imm, ctx); |
| emit(A64_EOR(is64, dst, dst, tmp), ctx); |
| } |
| break; |
| case BPF_ALU | BPF_MUL | BPF_K: |
| case BPF_ALU64 | BPF_MUL | BPF_K: |
| emit_a64_mov_i(is64, tmp, imm, ctx); |
| emit(A64_MUL(is64, dst, dst, tmp), ctx); |
| break; |
| case BPF_ALU | BPF_DIV | BPF_K: |
| case BPF_ALU64 | BPF_DIV | BPF_K: |
| emit_a64_mov_i(is64, tmp, imm, ctx); |
| if (!off) |
| emit(A64_UDIV(is64, dst, dst, tmp), ctx); |
| else |
| emit(A64_SDIV(is64, dst, dst, tmp), ctx); |
| break; |
| case BPF_ALU | BPF_MOD | BPF_K: |
| case BPF_ALU64 | BPF_MOD | BPF_K: |
| emit_a64_mov_i(is64, tmp2, imm, ctx); |
| if (!off) |
| emit(A64_UDIV(is64, tmp, dst, tmp2), ctx); |
| else |
| emit(A64_SDIV(is64, tmp, dst, tmp2), ctx); |
| emit(A64_MSUB(is64, dst, dst, tmp, tmp2), ctx); |
| break; |
| case BPF_ALU | BPF_LSH | BPF_K: |
| case BPF_ALU64 | BPF_LSH | BPF_K: |
| emit(A64_LSL(is64, dst, dst, imm), ctx); |
| break; |
| case BPF_ALU | BPF_RSH | BPF_K: |
| case BPF_ALU64 | BPF_RSH | BPF_K: |
| emit(A64_LSR(is64, dst, dst, imm), ctx); |
| break; |
| case BPF_ALU | BPF_ARSH | BPF_K: |
| case BPF_ALU64 | BPF_ARSH | BPF_K: |
| emit(A64_ASR(is64, dst, dst, imm), ctx); |
| break; |
| |
| /* JUMP off */ |
| case BPF_JMP | BPF_JA: |
| case BPF_JMP32 | BPF_JA: |
| if (BPF_CLASS(code) == BPF_JMP) |
| jmp_offset = bpf2a64_offset(i, off, ctx); |
| else |
| jmp_offset = bpf2a64_offset(i, imm, ctx); |
| check_imm26(jmp_offset); |
| emit(A64_B(jmp_offset), ctx); |
| break; |
| /* IF (dst COND src) JUMP off */ |
| case BPF_JMP | BPF_JEQ | BPF_X: |
| case BPF_JMP | BPF_JGT | BPF_X: |
| case BPF_JMP | BPF_JLT | BPF_X: |
| case BPF_JMP | BPF_JGE | BPF_X: |
| case BPF_JMP | BPF_JLE | BPF_X: |
| case BPF_JMP | BPF_JNE | BPF_X: |
| case BPF_JMP | BPF_JSGT | BPF_X: |
| case BPF_JMP | BPF_JSLT | BPF_X: |
| case BPF_JMP | BPF_JSGE | BPF_X: |
| case BPF_JMP | BPF_JSLE | BPF_X: |
| case BPF_JMP32 | BPF_JEQ | BPF_X: |
| case BPF_JMP32 | BPF_JGT | BPF_X: |
| case BPF_JMP32 | BPF_JLT | BPF_X: |
| case BPF_JMP32 | BPF_JGE | BPF_X: |
| case BPF_JMP32 | BPF_JLE | BPF_X: |
| case BPF_JMP32 | BPF_JNE | BPF_X: |
| case BPF_JMP32 | BPF_JSGT | BPF_X: |
| case BPF_JMP32 | BPF_JSLT | BPF_X: |
| case BPF_JMP32 | BPF_JSGE | BPF_X: |
| case BPF_JMP32 | BPF_JSLE | BPF_X: |
| emit(A64_CMP(is64, dst, src), ctx); |
| emit_cond_jmp: |
| jmp_offset = bpf2a64_offset(i, off, ctx); |
| check_imm19(jmp_offset); |
| switch (BPF_OP(code)) { |
| case BPF_JEQ: |
| jmp_cond = A64_COND_EQ; |
| break; |
| case BPF_JGT: |
| jmp_cond = A64_COND_HI; |
| break; |
| case BPF_JLT: |
| jmp_cond = A64_COND_CC; |
| break; |
| case BPF_JGE: |
| jmp_cond = A64_COND_CS; |
| break; |
| case BPF_JLE: |
| jmp_cond = A64_COND_LS; |
| break; |
| case BPF_JSET: |
| case BPF_JNE: |
| jmp_cond = A64_COND_NE; |
| break; |
| case BPF_JSGT: |
| jmp_cond = A64_COND_GT; |
| break; |
| case BPF_JSLT: |
| jmp_cond = A64_COND_LT; |
| break; |
| case BPF_JSGE: |
| jmp_cond = A64_COND_GE; |
| break; |
| case BPF_JSLE: |
| jmp_cond = A64_COND_LE; |
| break; |
| default: |
| return -EFAULT; |
| } |
| emit(A64_B_(jmp_cond, jmp_offset), ctx); |
| break; |
| case BPF_JMP | BPF_JSET | BPF_X: |
| case BPF_JMP32 | BPF_JSET | BPF_X: |
| emit(A64_TST(is64, dst, src), ctx); |
| goto emit_cond_jmp; |
| /* IF (dst COND imm) JUMP off */ |
| case BPF_JMP | BPF_JEQ | BPF_K: |
| case BPF_JMP | BPF_JGT | BPF_K: |
| case BPF_JMP | BPF_JLT | BPF_K: |
| case BPF_JMP | BPF_JGE | BPF_K: |
| case BPF_JMP | BPF_JLE | BPF_K: |
| case BPF_JMP | BPF_JNE | BPF_K: |
| case BPF_JMP | BPF_JSGT | BPF_K: |
| case BPF_JMP | BPF_JSLT | BPF_K: |
| case BPF_JMP | BPF_JSGE | BPF_K: |
| case BPF_JMP | BPF_JSLE | BPF_K: |
| case BPF_JMP32 | BPF_JEQ | BPF_K: |
| case BPF_JMP32 | BPF_JGT | BPF_K: |
| case BPF_JMP32 | BPF_JLT | BPF_K: |
| case BPF_JMP32 | BPF_JGE | BPF_K: |
| case BPF_JMP32 | BPF_JLE | BPF_K: |
| case BPF_JMP32 | BPF_JNE | BPF_K: |
| case BPF_JMP32 | BPF_JSGT | BPF_K: |
| case BPF_JMP32 | BPF_JSLT | BPF_K: |
| case BPF_JMP32 | BPF_JSGE | BPF_K: |
| case BPF_JMP32 | BPF_JSLE | BPF_K: |
| if (is_addsub_imm(imm)) { |
| emit(A64_CMP_I(is64, dst, imm), ctx); |
| } else if (is_addsub_imm(-imm)) { |
| emit(A64_CMN_I(is64, dst, -imm), ctx); |
| } else { |
| emit_a64_mov_i(is64, tmp, imm, ctx); |
| emit(A64_CMP(is64, dst, tmp), ctx); |
| } |
| goto emit_cond_jmp; |
| case BPF_JMP | BPF_JSET | BPF_K: |
| case BPF_JMP32 | BPF_JSET | BPF_K: |
| a64_insn = A64_TST_I(is64, dst, imm); |
| if (a64_insn != AARCH64_BREAK_FAULT) { |
| emit(a64_insn, ctx); |
| } else { |
| emit_a64_mov_i(is64, tmp, imm, ctx); |
| emit(A64_TST(is64, dst, tmp), ctx); |
| } |
| goto emit_cond_jmp; |
| /* function call */ |
| case BPF_JMP | BPF_CALL: |
| { |
| const u8 r0 = bpf2a64[BPF_REG_0]; |
| bool func_addr_fixed; |
| u64 func_addr; |
| |
| ret = bpf_jit_get_func_addr(ctx->prog, insn, extra_pass, |
| &func_addr, &func_addr_fixed); |
| if (ret < 0) |
| return ret; |
| emit_call(func_addr, ctx); |
| emit(A64_MOV(1, r0, A64_R(0)), ctx); |
| break; |
| } |
| /* tail call */ |
| case BPF_JMP | BPF_TAIL_CALL: |
| if (emit_bpf_tail_call(ctx)) |
| return -EFAULT; |
| break; |
| /* function return */ |
| case BPF_JMP | BPF_EXIT: |
| /* Optimization: when last instruction is EXIT, |
| simply fallthrough to epilogue. */ |
| if (i == ctx->prog->len - 1) |
| break; |
| jmp_offset = epilogue_offset(ctx); |
| check_imm26(jmp_offset); |
| emit(A64_B(jmp_offset), ctx); |
| break; |
| |
| /* dst = imm64 */ |
| case BPF_LD | BPF_IMM | BPF_DW: |
| { |
| const struct bpf_insn insn1 = insn[1]; |
| u64 imm64; |
| |
| imm64 = (u64)insn1.imm << 32 | (u32)imm; |
| if (bpf_pseudo_func(insn)) |
| emit_addr_mov_i64(dst, imm64, ctx); |
| else |
| emit_a64_mov_i64(dst, imm64, ctx); |
| |
| return 1; |
| } |
| |
| /* LDX: dst = (u64)*(unsigned size *)(src + off) */ |
| case BPF_LDX | BPF_MEM | BPF_W: |
| case BPF_LDX | BPF_MEM | BPF_H: |
| case BPF_LDX | BPF_MEM | BPF_B: |
| case BPF_LDX | BPF_MEM | BPF_DW: |
| case BPF_LDX | BPF_PROBE_MEM | BPF_DW: |
| case BPF_LDX | BPF_PROBE_MEM | BPF_W: |
| case BPF_LDX | BPF_PROBE_MEM | BPF_H: |
| case BPF_LDX | BPF_PROBE_MEM | BPF_B: |
| /* LDXS: dst_reg = (s64)*(signed size *)(src_reg + off) */ |
| case BPF_LDX | BPF_MEMSX | BPF_B: |
| case BPF_LDX | BPF_MEMSX | BPF_H: |
| case BPF_LDX | BPF_MEMSX | BPF_W: |
| case BPF_LDX | BPF_PROBE_MEMSX | BPF_B: |
| case BPF_LDX | BPF_PROBE_MEMSX | BPF_H: |
| case BPF_LDX | BPF_PROBE_MEMSX | BPF_W: |
| if (ctx->fpb_offset > 0 && src == fp) { |
| src_adj = fpb; |
| off_adj = off + ctx->fpb_offset; |
| } else { |
| src_adj = src; |
| off_adj = off; |
| } |
| sign_extend = (BPF_MODE(insn->code) == BPF_MEMSX || |
| BPF_MODE(insn->code) == BPF_PROBE_MEMSX); |
| switch (BPF_SIZE(code)) { |
| case BPF_W: |
| if (is_lsi_offset(off_adj, 2)) { |
| if (sign_extend) |
| emit(A64_LDRSWI(dst, src_adj, off_adj), ctx); |
| else |
| emit(A64_LDR32I(dst, src_adj, off_adj), ctx); |
| } else { |
| emit_a64_mov_i(1, tmp, off, ctx); |
| if (sign_extend) |
| emit(A64_LDRSW(dst, src_adj, off_adj), ctx); |
| else |
| emit(A64_LDR32(dst, src, tmp), ctx); |
| } |
| break; |
| case BPF_H: |
| if (is_lsi_offset(off_adj, 1)) { |
| if (sign_extend) |
| emit(A64_LDRSHI(dst, src_adj, off_adj), ctx); |
| else |
| emit(A64_LDRHI(dst, src_adj, off_adj), ctx); |
| } else { |
| emit_a64_mov_i(1, tmp, off, ctx); |
| if (sign_extend) |
| emit(A64_LDRSH(dst, src, tmp), ctx); |
| else |
| emit(A64_LDRH(dst, src, tmp), ctx); |
| } |
| break; |
| case BPF_B: |
| if (is_lsi_offset(off_adj, 0)) { |
| if (sign_extend) |
| emit(A64_LDRSBI(dst, src_adj, off_adj), ctx); |
| else |
| emit(A64_LDRBI(dst, src_adj, off_adj), ctx); |
| } else { |
| emit_a64_mov_i(1, tmp, off, ctx); |
| if (sign_extend) |
| emit(A64_LDRSB(dst, src, tmp), ctx); |
| else |
| emit(A64_LDRB(dst, src, tmp), ctx); |
| } |
| break; |
| case BPF_DW: |
| if (is_lsi_offset(off_adj, 3)) { |
| emit(A64_LDR64I(dst, src_adj, off_adj), ctx); |
| } else { |
| emit_a64_mov_i(1, tmp, off, ctx); |
| emit(A64_LDR64(dst, src, tmp), ctx); |
| } |
| break; |
| } |
| |
| ret = add_exception_handler(insn, ctx, dst); |
| if (ret) |
| return ret; |
| break; |
| |
| /* speculation barrier */ |
| case BPF_ST | BPF_NOSPEC: |
| /* |
| * Nothing required here. |
| * |
| * In case of arm64, we rely on the firmware mitigation of |
| * Speculative Store Bypass as controlled via the ssbd kernel |
| * parameter. Whenever the mitigation is enabled, it works |
| * for all of the kernel code with no need to provide any |
| * additional instructions. |
| */ |
| break; |
| |
| /* ST: *(size *)(dst + off) = imm */ |
| case BPF_ST | BPF_MEM | BPF_W: |
| case BPF_ST | BPF_MEM | BPF_H: |
| case BPF_ST | BPF_MEM | BPF_B: |
| case BPF_ST | BPF_MEM | BPF_DW: |
| if (ctx->fpb_offset > 0 && dst == fp) { |
| dst_adj = fpb; |
| off_adj = off + ctx->fpb_offset; |
| } else { |
| dst_adj = dst; |
| off_adj = off; |
| } |
| /* Load imm to a register then store it */ |
| emit_a64_mov_i(1, tmp, imm, ctx); |
| switch (BPF_SIZE(code)) { |
| case BPF_W: |
| if (is_lsi_offset(off_adj, 2)) { |
| emit(A64_STR32I(tmp, dst_adj, off_adj), ctx); |
| } else { |
| emit_a64_mov_i(1, tmp2, off, ctx); |
| emit(A64_STR32(tmp, dst, tmp2), ctx); |
| } |
| break; |
| case BPF_H: |
| if (is_lsi_offset(off_adj, 1)) { |
| emit(A64_STRHI(tmp, dst_adj, off_adj), ctx); |
| } else { |
| emit_a64_mov_i(1, tmp2, off, ctx); |
| emit(A64_STRH(tmp, dst, tmp2), ctx); |
| } |
| break; |
| case BPF_B: |
| if (is_lsi_offset(off_adj, 0)) { |
| emit(A64_STRBI(tmp, dst_adj, off_adj), ctx); |
| } else { |
| emit_a64_mov_i(1, tmp2, off, ctx); |
| emit(A64_STRB(tmp, dst, tmp2), ctx); |
| } |
| break; |
| case BPF_DW: |
| if (is_lsi_offset(off_adj, 3)) { |
| emit(A64_STR64I(tmp, dst_adj, off_adj), ctx); |
| } else { |
| emit_a64_mov_i(1, tmp2, off, ctx); |
| emit(A64_STR64(tmp, dst, tmp2), ctx); |
| } |
| break; |
| } |
| break; |
| |
| /* STX: *(size *)(dst + off) = src */ |
| case BPF_STX | BPF_MEM | BPF_W: |
| case BPF_STX | BPF_MEM | BPF_H: |
| case BPF_STX | BPF_MEM | BPF_B: |
| case BPF_STX | BPF_MEM | BPF_DW: |
| if (ctx->fpb_offset > 0 && dst == fp) { |
| dst_adj = fpb; |
| off_adj = off + ctx->fpb_offset; |
| } else { |
| dst_adj = dst; |
| off_adj = off; |
| } |
| switch (BPF_SIZE(code)) { |
| case BPF_W: |
| if (is_lsi_offset(off_adj, 2)) { |
| emit(A64_STR32I(src, dst_adj, off_adj), ctx); |
| } else { |
| emit_a64_mov_i(1, tmp, off, ctx); |
| emit(A64_STR32(src, dst, tmp), ctx); |
| } |
| break; |
| case BPF_H: |
| if (is_lsi_offset(off_adj, 1)) { |
| emit(A64_STRHI(src, dst_adj, off_adj), ctx); |
| } else { |
| emit_a64_mov_i(1, tmp, off, ctx); |
| emit(A64_STRH(src, dst, tmp), ctx); |
| } |
| break; |
| case BPF_B: |
| if (is_lsi_offset(off_adj, 0)) { |
| emit(A64_STRBI(src, dst_adj, off_adj), ctx); |
| } else { |
| emit_a64_mov_i(1, tmp, off, ctx); |
| emit(A64_STRB(src, dst, tmp), ctx); |
| } |
| break; |
| case BPF_DW: |
| if (is_lsi_offset(off_adj, 3)) { |
| emit(A64_STR64I(src, dst_adj, off_adj), ctx); |
| } else { |
| emit_a64_mov_i(1, tmp, off, ctx); |
| emit(A64_STR64(src, dst, tmp), ctx); |
| } |
| break; |
| } |
| break; |
| |
| case BPF_STX | BPF_ATOMIC | BPF_W: |
| case BPF_STX | BPF_ATOMIC | BPF_DW: |
| if (cpus_have_cap(ARM64_HAS_LSE_ATOMICS)) |
| ret = emit_lse_atomic(insn, ctx); |
| else |
| ret = emit_ll_sc_atomic(insn, ctx); |
| if (ret) |
| return ret; |
| break; |
| |
| default: |
| pr_err_once("unknown opcode %02x\n", code); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Return 0 if FP may change at runtime, otherwise find the minimum negative |
| * offset to FP, converts it to positive number, and align down to 8 bytes. |
| */ |
| static int find_fpb_offset(struct bpf_prog *prog) |
| { |
| int i; |
| int offset = 0; |
| |
| for (i = 0; i < prog->len; i++) { |
| const struct bpf_insn *insn = &prog->insnsi[i]; |
| const u8 class = BPF_CLASS(insn->code); |
| const u8 mode = BPF_MODE(insn->code); |
| const u8 src = insn->src_reg; |
| const u8 dst = insn->dst_reg; |
| const s32 imm = insn->imm; |
| const s16 off = insn->off; |
| |
| switch (class) { |
| case BPF_STX: |
| case BPF_ST: |
| /* fp holds atomic operation result */ |
| if (class == BPF_STX && mode == BPF_ATOMIC && |
| ((imm == BPF_XCHG || |
| imm == (BPF_FETCH | BPF_ADD) || |
| imm == (BPF_FETCH | BPF_AND) || |
| imm == (BPF_FETCH | BPF_XOR) || |
| imm == (BPF_FETCH | BPF_OR)) && |
| src == BPF_REG_FP)) |
| return 0; |
| |
| if (mode == BPF_MEM && dst == BPF_REG_FP && |
| off < offset) |
| offset = insn->off; |
| break; |
| |
| case BPF_JMP32: |
| case BPF_JMP: |
| break; |
| |
| case BPF_LDX: |
| case BPF_LD: |
| /* fp holds load result */ |
| if (dst == BPF_REG_FP) |
| return 0; |
| |
| if (class == BPF_LDX && mode == BPF_MEM && |
| src == BPF_REG_FP && off < offset) |
| offset = off; |
| break; |
| |
| case BPF_ALU: |
| case BPF_ALU64: |
| default: |
| /* fp holds ALU result */ |
| if (dst == BPF_REG_FP) |
| return 0; |
| } |
| } |
| |
| if (offset < 0) { |
| /* |
| * safely be converted to a positive 'int', since insn->off |
| * is 's16' |
| */ |
| offset = -offset; |
| /* align down to 8 bytes */ |
| offset = ALIGN_DOWN(offset, 8); |
| } |
| |
| return offset; |
| } |
| |
| static int build_body(struct jit_ctx *ctx, bool extra_pass) |
| { |
| const struct bpf_prog *prog = ctx->prog; |
| int i; |
| |
| /* |
| * - offset[0] offset of the end of prologue, |
| * start of the 1st instruction. |
| * - offset[1] - offset of the end of 1st instruction, |
| * start of the 2nd instruction |
| * [....] |
| * - offset[3] - offset of the end of 3rd instruction, |
| * start of 4th instruction |
| */ |
| for (i = 0; i < prog->len; i++) { |
| const struct bpf_insn *insn = &prog->insnsi[i]; |
| int ret; |
| |
| if (ctx->image == NULL) |
| ctx->offset[i] = ctx->idx; |
| ret = build_insn(insn, ctx, extra_pass); |
| if (ret > 0) { |
| i++; |
| if (ctx->image == NULL) |
| ctx->offset[i] = ctx->idx; |
| continue; |
| } |
| if (ret) |
| return ret; |
| } |
| /* |
| * offset is allocated with prog->len + 1 so fill in |
| * the last element with the offset after the last |
| * instruction (end of program) |
| */ |
| if (ctx->image == NULL) |
| ctx->offset[i] = ctx->idx; |
| |
| return 0; |
| } |
| |
| static int validate_code(struct jit_ctx *ctx) |
| { |
| int i; |
| |
| for (i = 0; i < ctx->idx; i++) { |
| u32 a64_insn = le32_to_cpu(ctx->image[i]); |
| |
| if (a64_insn == AARCH64_BREAK_FAULT) |
| return -1; |
| } |
| return 0; |
| } |
| |
| static int validate_ctx(struct jit_ctx *ctx) |
| { |
| if (validate_code(ctx)) |
| return -1; |
| |
| if (WARN_ON_ONCE(ctx->exentry_idx != ctx->prog->aux->num_exentries)) |
| return -1; |
| |
| return 0; |
| } |
| |
| static inline void bpf_flush_icache(void *start, void *end) |
| { |
| flush_icache_range((unsigned long)start, (unsigned long)end); |
| } |
| |
| struct arm64_jit_data { |
| struct bpf_binary_header *header; |
| u8 *image; |
| struct jit_ctx ctx; |
| }; |
| |
| struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog) |
| { |
| int image_size, prog_size, extable_size, extable_align, extable_offset; |
| struct bpf_prog *tmp, *orig_prog = prog; |
| struct bpf_binary_header *header; |
| struct arm64_jit_data *jit_data; |
| bool was_classic = bpf_prog_was_classic(prog); |
| bool tmp_blinded = false; |
| bool extra_pass = false; |
| struct jit_ctx ctx; |
| u8 *image_ptr; |
| |
| if (!prog->jit_requested) |
| return orig_prog; |
| |
| tmp = bpf_jit_blind_constants(prog); |
| /* If blinding was requested and we failed during blinding, |
| * we must fall back to the interpreter. |
| */ |
| if (IS_ERR(tmp)) |
| return orig_prog; |
| if (tmp != prog) { |
| tmp_blinded = true; |
| prog = tmp; |
| } |
| |
| jit_data = prog->aux->jit_data; |
| if (!jit_data) { |
| jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL); |
| if (!jit_data) { |
| prog = orig_prog; |
| goto out; |
| } |
| prog->aux->jit_data = jit_data; |
| } |
| if (jit_data->ctx.offset) { |
| ctx = jit_data->ctx; |
| image_ptr = jit_data->image; |
| header = jit_data->header; |
| extra_pass = true; |
| prog_size = sizeof(u32) * ctx.idx; |
| goto skip_init_ctx; |
| } |
| memset(&ctx, 0, sizeof(ctx)); |
| ctx.prog = prog; |
| |
| ctx.offset = kvcalloc(prog->len + 1, sizeof(int), GFP_KERNEL); |
| if (ctx.offset == NULL) { |
| prog = orig_prog; |
| goto out_off; |
| } |
| |
| ctx.fpb_offset = find_fpb_offset(prog); |
| |
| /* |
| * 1. Initial fake pass to compute ctx->idx and ctx->offset. |
| * |
| * BPF line info needs ctx->offset[i] to be the offset of |
| * instruction[i] in jited image, so build prologue first. |
| */ |
| if (build_prologue(&ctx, was_classic)) { |
| prog = orig_prog; |
| goto out_off; |
| } |
| |
| if (build_body(&ctx, extra_pass)) { |
| prog = orig_prog; |
| goto out_off; |
| } |
| |
| ctx.epilogue_offset = ctx.idx; |
| build_epilogue(&ctx); |
| build_plt(&ctx); |
| |
| extable_align = __alignof__(struct exception_table_entry); |
| extable_size = prog->aux->num_exentries * |
| sizeof(struct exception_table_entry); |
| |
| /* Now we know the actual image size. */ |
| prog_size = sizeof(u32) * ctx.idx; |
| /* also allocate space for plt target */ |
| extable_offset = round_up(prog_size + PLT_TARGET_SIZE, extable_align); |
| image_size = extable_offset + extable_size; |
| header = bpf_jit_binary_alloc(image_size, &image_ptr, |
| sizeof(u32), jit_fill_hole); |
| if (header == NULL) { |
| prog = orig_prog; |
| goto out_off; |
| } |
| |
| /* 2. Now, the actual pass. */ |
| |
| ctx.image = (__le32 *)image_ptr; |
| if (extable_size) |
| prog->aux->extable = (void *)image_ptr + extable_offset; |
| skip_init_ctx: |
| ctx.idx = 0; |
| ctx.exentry_idx = 0; |
| |
| build_prologue(&ctx, was_classic); |
| |
| if (build_body(&ctx, extra_pass)) { |
| bpf_jit_binary_free(header); |
| prog = orig_prog; |
| goto out_off; |
| } |
| |
| build_epilogue(&ctx); |
| build_plt(&ctx); |
| |
| /* 3. Extra pass to validate JITed code. */ |
| if (validate_ctx(&ctx)) { |
| bpf_jit_binary_free(header); |
| prog = orig_prog; |
| goto out_off; |
| } |
| |
| /* And we're done. */ |
| if (bpf_jit_enable > 1) |
| bpf_jit_dump(prog->len, prog_size, 2, ctx.image); |
| |
| bpf_flush_icache(header, ctx.image + ctx.idx); |
| |
| if (!prog->is_func || extra_pass) { |
| if (extra_pass && ctx.idx != jit_data->ctx.idx) { |
| pr_err_once("multi-func JIT bug %d != %d\n", |
| ctx.idx, jit_data->ctx.idx); |
| bpf_jit_binary_free(header); |
| prog->bpf_func = NULL; |
| prog->jited = 0; |
| prog->jited_len = 0; |
| goto out_off; |
| } |
| bpf_jit_binary_lock_ro(header); |
| } else { |
| jit_data->ctx = ctx; |
| jit_data->image = image_ptr; |
| jit_data->header = header; |
| } |
| prog->bpf_func = (void *)ctx.image; |
| prog->jited = 1; |
| prog->jited_len = prog_size; |
| |
| if (!prog->is_func || extra_pass) { |
| int i; |
| |
| /* offset[prog->len] is the size of program */ |
| for (i = 0; i <= prog->len; i++) |
| ctx.offset[i] *= AARCH64_INSN_SIZE; |
| bpf_prog_fill_jited_linfo(prog, ctx.offset + 1); |
| out_off: |
| kvfree(ctx.offset); |
| kfree(jit_data); |
| prog->aux->jit_data = NULL; |
| } |
| out: |
| if (tmp_blinded) |
| bpf_jit_prog_release_other(prog, prog == orig_prog ? |
| tmp : orig_prog); |
| return prog; |
| } |
| |
| bool bpf_jit_supports_kfunc_call(void) |
| { |
| return true; |
| } |
| |
| u64 bpf_jit_alloc_exec_limit(void) |
| { |
| return VMALLOC_END - VMALLOC_START; |
| } |
| |
| void *bpf_jit_alloc_exec(unsigned long size) |
| { |
| /* Memory is intended to be executable, reset the pointer tag. */ |
| return kasan_reset_tag(vmalloc(size)); |
| } |
| |
| void bpf_jit_free_exec(void *addr) |
| { |
| return vfree(addr); |
| } |
| |
| /* Indicate the JIT backend supports mixing bpf2bpf and tailcalls. */ |
| bool bpf_jit_supports_subprog_tailcalls(void) |
| { |
| return true; |
| } |
| |
| static void invoke_bpf_prog(struct jit_ctx *ctx, struct bpf_tramp_link *l, |
| int args_off, int retval_off, int run_ctx_off, |
| bool save_ret) |
| { |
| __le32 *branch; |
| u64 enter_prog; |
| u64 exit_prog; |
| struct bpf_prog *p = l->link.prog; |
| int cookie_off = offsetof(struct bpf_tramp_run_ctx, bpf_cookie); |
| |
| enter_prog = (u64)bpf_trampoline_enter(p); |
| exit_prog = (u64)bpf_trampoline_exit(p); |
| |
| if (l->cookie == 0) { |
| /* if cookie is zero, one instruction is enough to store it */ |
| emit(A64_STR64I(A64_ZR, A64_SP, run_ctx_off + cookie_off), ctx); |
| } else { |
| emit_a64_mov_i64(A64_R(10), l->cookie, ctx); |
| emit(A64_STR64I(A64_R(10), A64_SP, run_ctx_off + cookie_off), |
| ctx); |
| } |
| |
| /* save p to callee saved register x19 to avoid loading p with mov_i64 |
| * each time. |
| */ |
| emit_addr_mov_i64(A64_R(19), (const u64)p, ctx); |
| |
| /* arg1: prog */ |
| emit(A64_MOV(1, A64_R(0), A64_R(19)), ctx); |
| /* arg2: &run_ctx */ |
| emit(A64_ADD_I(1, A64_R(1), A64_SP, run_ctx_off), ctx); |
| |
| emit_call(enter_prog, ctx); |
| |
| /* if (__bpf_prog_enter(prog) == 0) |
| * goto skip_exec_of_prog; |
| */ |
| branch = ctx->image + ctx->idx; |
| emit(A64_NOP, ctx); |
| |
| /* save return value to callee saved register x20 */ |
| emit(A64_MOV(1, A64_R(20), A64_R(0)), ctx); |
| |
| emit(A64_ADD_I(1, A64_R(0), A64_SP, args_off), ctx); |
| if (!p->jited) |
| emit_addr_mov_i64(A64_R(1), (const u64)p->insnsi, ctx); |
| |
| emit_call((const u64)p->bpf_func, ctx); |
| |
| if (save_ret) |
| emit(A64_STR64I(A64_R(0), A64_SP, retval_off), ctx); |
| |
| if (ctx->image) { |
| int offset = &ctx->image[ctx->idx] - branch; |
| *branch = cpu_to_le32(A64_CBZ(1, A64_R(0), offset)); |
| } |
| |
| /* arg1: prog */ |
| emit(A64_MOV(1, A64_R(0), A64_R(19)), ctx); |
| /* arg2: start time */ |
| emit(A64_MOV(1, A64_R(1), A64_R(20)), ctx); |
| /* arg3: &run_ctx */ |
| emit(A64_ADD_I(1, A64_R(2), A64_SP, run_ctx_off), ctx); |
| |
| emit_call(exit_prog, ctx); |
| } |
| |
| static void invoke_bpf_mod_ret(struct jit_ctx *ctx, struct bpf_tramp_links *tl, |
| int args_off, int retval_off, int run_ctx_off, |
| __le32 **branches) |
| { |
| int i; |
| |
| /* The first fmod_ret program will receive a garbage return value. |
| * Set this to 0 to avoid confusing the program. |
| */ |
| emit(A64_STR64I(A64_ZR, A64_SP, retval_off), ctx); |
| for (i = 0; i < tl->nr_links; i++) { |
| invoke_bpf_prog(ctx, tl->links[i], args_off, retval_off, |
| run_ctx_off, true); |
| /* if (*(u64 *)(sp + retval_off) != 0) |
| * goto do_fexit; |
| */ |
| emit(A64_LDR64I(A64_R(10), A64_SP, retval_off), ctx); |
| /* Save the location of branch, and generate a nop. |
| * This nop will be replaced with a cbnz later. |
| */ |
| branches[i] = ctx->image + ctx->idx; |
| emit(A64_NOP, ctx); |
| } |
| } |
| |
| static void save_args(struct jit_ctx *ctx, int args_off, int nregs) |
| { |
| int i; |
| |
| for (i = 0; i < nregs; i++) { |
| emit(A64_STR64I(i, A64_SP, args_off), ctx); |
| args_off += 8; |
| } |
| } |
| |
| static void restore_args(struct jit_ctx *ctx, int args_off, int nregs) |
| { |
| int i; |
| |
| for (i = 0; i < nregs; i++) { |
| emit(A64_LDR64I(i, A64_SP, args_off), ctx); |
| args_off += 8; |
| } |
| } |
| |
| /* Based on the x86's implementation of arch_prepare_bpf_trampoline(). |
| * |
| * bpf prog and function entry before bpf trampoline hooked: |
| * mov x9, lr |
| * nop |
| * |
| * bpf prog and function entry after bpf trampoline hooked: |
| * mov x9, lr |
| * bl <bpf_trampoline or plt> |
| * |
| */ |
| static int prepare_trampoline(struct jit_ctx *ctx, struct bpf_tramp_image *im, |
| struct bpf_tramp_links *tlinks, void *func_addr, |
| int nregs, u32 flags) |
| { |
| int i; |
| int stack_size; |
| int retaddr_off; |
| int regs_off; |
| int retval_off; |
| int args_off; |
| int nregs_off; |
| int ip_off; |
| int run_ctx_off; |
| struct bpf_tramp_links *fentry = &tlinks[BPF_TRAMP_FENTRY]; |
| struct bpf_tramp_links *fexit = &tlinks[BPF_TRAMP_FEXIT]; |
| struct bpf_tramp_links *fmod_ret = &tlinks[BPF_TRAMP_MODIFY_RETURN]; |
| bool save_ret; |
| __le32 **branches = NULL; |
| |
| /* trampoline stack layout: |
| * [ parent ip ] |
| * [ FP ] |
| * SP + retaddr_off [ self ip ] |
| * [ FP ] |
| * |
| * [ padding ] align SP to multiples of 16 |
| * |
| * [ x20 ] callee saved reg x20 |
| * SP + regs_off [ x19 ] callee saved reg x19 |
| * |
| * SP + retval_off [ return value ] BPF_TRAMP_F_CALL_ORIG or |
| * BPF_TRAMP_F_RET_FENTRY_RET |
| * |
| * [ arg reg N ] |
| * [ ... ] |
| * SP + args_off [ arg reg 1 ] |
| * |
| * SP + nregs_off [ arg regs count ] |
| * |
| * SP + ip_off [ traced function ] BPF_TRAMP_F_IP_ARG flag |
| * |
| * SP + run_ctx_off [ bpf_tramp_run_ctx ] |
| */ |
| |
| stack_size = 0; |
| run_ctx_off = stack_size; |
| /* room for bpf_tramp_run_ctx */ |
| stack_size += round_up(sizeof(struct bpf_tramp_run_ctx), 8); |
| |
| ip_off = stack_size; |
| /* room for IP address argument */ |
| if (flags & BPF_TRAMP_F_IP_ARG) |
| stack_size += 8; |
| |
| nregs_off = stack_size; |
| /* room for args count */ |
| stack_size += 8; |
| |
| args_off = stack_size; |
| /* room for args */ |
| stack_size += nregs * 8; |
| |
| /* room for return value */ |
| retval_off = stack_size; |
| save_ret = flags & (BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_RET_FENTRY_RET); |
| if (save_ret) |
| stack_size += 8; |
| |
| /* room for callee saved registers, currently x19 and x20 are used */ |
| regs_off = stack_size; |
| stack_size += 16; |
| |
| /* round up to multiples of 16 to avoid SPAlignmentFault */ |
| stack_size = round_up(stack_size, 16); |
| |
| /* return address locates above FP */ |
| retaddr_off = stack_size + 8; |
| |
| /* bpf trampoline may be invoked by 3 instruction types: |
| * 1. bl, attached to bpf prog or kernel function via short jump |
| * 2. br, attached to bpf prog or kernel function via long jump |
| * 3. blr, working as a function pointer, used by struct_ops. |
| * So BTI_JC should used here to support both br and blr. |
| */ |
| emit_bti(A64_BTI_JC, ctx); |
| |
| /* frame for parent function */ |
| emit(A64_PUSH(A64_FP, A64_R(9), A64_SP), ctx); |
| emit(A64_MOV(1, A64_FP, A64_SP), ctx); |
| |
| /* frame for patched function */ |
| emit(A64_PUSH(A64_FP, A64_LR, A64_SP), ctx); |
| emit(A64_MOV(1, A64_FP, A64_SP), ctx); |
| |
| /* allocate stack space */ |
| emit(A64_SUB_I(1, A64_SP, A64_SP, stack_size), ctx); |
| |
| if (flags & BPF_TRAMP_F_IP_ARG) { |
| /* save ip address of the traced function */ |
| emit_addr_mov_i64(A64_R(10), (const u64)func_addr, ctx); |
| emit(A64_STR64I(A64_R(10), A64_SP, ip_off), ctx); |
| } |
| |
| /* save arg regs count*/ |
| emit(A64_MOVZ(1, A64_R(10), nregs, 0), ctx); |
| emit(A64_STR64I(A64_R(10), A64_SP, nregs_off), ctx); |
| |
| /* save arg regs */ |
| save_args(ctx, args_off, nregs); |
| |
| /* save callee saved registers */ |
| emit(A64_STR64I(A64_R(19), A64_SP, regs_off), ctx); |
| emit(A64_STR64I(A64_R(20), A64_SP, regs_off + 8), ctx); |
| |
| if (flags & BPF_TRAMP_F_CALL_ORIG) { |
| emit_addr_mov_i64(A64_R(0), (const u64)im, ctx); |
| emit_call((const u64)__bpf_tramp_enter, ctx); |
| } |
| |
| for (i = 0; i < fentry->nr_links; i++) |
| invoke_bpf_prog(ctx, fentry->links[i], args_off, |
| retval_off, run_ctx_off, |
| flags & BPF_TRAMP_F_RET_FENTRY_RET); |
| |
| if (fmod_ret->nr_links) { |
| branches = kcalloc(fmod_ret->nr_links, sizeof(__le32 *), |
| GFP_KERNEL); |
| if (!branches) |
| return -ENOMEM; |
| |
| invoke_bpf_mod_ret(ctx, fmod_ret, args_off, retval_off, |
| run_ctx_off, branches); |
| } |
| |
| if (flags & BPF_TRAMP_F_CALL_ORIG) { |
| restore_args(ctx, args_off, nregs); |
| /* call original func */ |
| emit(A64_LDR64I(A64_R(10), A64_SP, retaddr_off), ctx); |
| emit(A64_ADR(A64_LR, AARCH64_INSN_SIZE * 2), ctx); |
| emit(A64_RET(A64_R(10)), ctx); |
| /* store return value */ |
| emit(A64_STR64I(A64_R(0), A64_SP, retval_off), ctx); |
| /* reserve a nop for bpf_tramp_image_put */ |
| im->ip_after_call = ctx->image + ctx->idx; |
| emit(A64_NOP, ctx); |
| } |
| |
| /* update the branches saved in invoke_bpf_mod_ret with cbnz */ |
| for (i = 0; i < fmod_ret->nr_links && ctx->image != NULL; i++) { |
| int offset = &ctx->image[ctx->idx] - branches[i]; |
| *branches[i] = cpu_to_le32(A64_CBNZ(1, A64_R(10), offset)); |
| } |
| |
| for (i = 0; i < fexit->nr_links; i++) |
| invoke_bpf_prog(ctx, fexit->links[i], args_off, retval_off, |
| run_ctx_off, false); |
| |
| if (flags & BPF_TRAMP_F_CALL_ORIG) { |
| im->ip_epilogue = ctx->image + ctx->idx; |
| emit_addr_mov_i64(A64_R(0), (const u64)im, ctx); |
| emit_call((const u64)__bpf_tramp_exit, ctx); |
| } |
| |
| if (flags & BPF_TRAMP_F_RESTORE_REGS) |
| restore_args(ctx, args_off, nregs); |
| |
| /* restore callee saved register x19 and x20 */ |
| emit(A64_LDR64I(A64_R(19), A64_SP, regs_off), ctx); |
| emit(A64_LDR64I(A64_R(20), A64_SP, regs_off + 8), ctx); |
| |
| if (save_ret) |
| emit(A64_LDR64I(A64_R(0), A64_SP, retval_off), ctx); |
| |
| /* reset SP */ |
| emit(A64_MOV(1, A64_SP, A64_FP), ctx); |
| |
| /* pop frames */ |
| emit(A64_POP(A64_FP, A64_LR, A64_SP), ctx); |
| emit(A64_POP(A64_FP, A64_R(9), A64_SP), ctx); |
| |
| if (flags & BPF_TRAMP_F_SKIP_FRAME) { |
| /* skip patched function, return to parent */ |
| emit(A64_MOV(1, A64_LR, A64_R(9)), ctx); |
| emit(A64_RET(A64_R(9)), ctx); |
| } else { |
| /* return to patched function */ |
| emit(A64_MOV(1, A64_R(10), A64_LR), ctx); |
| emit(A64_MOV(1, A64_LR, A64_R(9)), ctx); |
| emit(A64_RET(A64_R(10)), ctx); |
| } |
| |
| if (ctx->image) |
| bpf_flush_icache(ctx->image, ctx->image + ctx->idx); |
| |
| kfree(branches); |
| |
| return ctx->idx; |
| } |
| |
| static int btf_func_model_nregs(const struct btf_func_model *m) |
| { |
| int nregs = m->nr_args; |
| int i; |
| |
| /* extra registers needed for struct argument */ |
| for (i = 0; i < MAX_BPF_FUNC_ARGS; i++) { |
| /* The arg_size is at most 16 bytes, enforced by the verifier. */ |
| if (m->arg_flags[i] & BTF_FMODEL_STRUCT_ARG) |
| nregs += (m->arg_size[i] + 7) / 8 - 1; |
| } |
| |
| return nregs; |
| } |
| |
| int arch_bpf_trampoline_size(const struct btf_func_model *m, u32 flags, |
| struct bpf_tramp_links *tlinks, void *func_addr) |
| { |
| struct jit_ctx ctx = { |
| .image = NULL, |
| .idx = 0, |
| }; |
| struct bpf_tramp_image im; |
| int nregs, ret; |
| |
| nregs = btf_func_model_nregs(m); |
| /* the first 8 registers are used for arguments */ |
| if (nregs > 8) |
| return -ENOTSUPP; |
| |
| ret = prepare_trampoline(&ctx, &im, tlinks, func_addr, nregs, flags); |
| if (ret < 0) |
| return ret; |
| |
| return ret < 0 ? ret : ret * AARCH64_INSN_SIZE; |
| } |
| |
| int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image, |
| void *image_end, const struct btf_func_model *m, |
| u32 flags, struct bpf_tramp_links *tlinks, |
| void *func_addr) |
| { |
| int ret, nregs; |
| struct jit_ctx ctx = { |
| .image = image, |
| .idx = 0, |
| }; |
| |
| nregs = btf_func_model_nregs(m); |
| /* the first 8 registers are used for arguments */ |
| if (nregs > 8) |
| return -ENOTSUPP; |
| |
| jit_fill_hole(image, (unsigned int)(image_end - image)); |
| ret = prepare_trampoline(&ctx, im, tlinks, func_addr, nregs, flags); |
| |
| if (ret > 0 && validate_code(&ctx) < 0) |
| ret = -EINVAL; |
| |
| if (ret > 0) |
| ret *= AARCH64_INSN_SIZE; |
| |
| return ret; |
| } |
| |
| static bool is_long_jump(void *ip, void *target) |
| { |
| long offset; |
| |
| /* NULL target means this is a NOP */ |
| if (!target) |
| return false; |
| |
| offset = (long)target - (long)ip; |
| return offset < -SZ_128M || offset >= SZ_128M; |
| } |
| |
| static int gen_branch_or_nop(enum aarch64_insn_branch_type type, void *ip, |
| void *addr, void *plt, u32 *insn) |
| { |
| void *target; |
| |
| if (!addr) { |
| *insn = aarch64_insn_gen_nop(); |
| return 0; |
| } |
| |
| if (is_long_jump(ip, addr)) |
| target = plt; |
| else |
| target = addr; |
| |
| *insn = aarch64_insn_gen_branch_imm((unsigned long)ip, |
| (unsigned long)target, |
| type); |
| |
| return *insn != AARCH64_BREAK_FAULT ? 0 : -EFAULT; |
| } |
| |
| /* Replace the branch instruction from @ip to @old_addr in a bpf prog or a bpf |
| * trampoline with the branch instruction from @ip to @new_addr. If @old_addr |
| * or @new_addr is NULL, the old or new instruction is NOP. |
| * |
| * When @ip is the bpf prog entry, a bpf trampoline is being attached or |
| * detached. Since bpf trampoline and bpf prog are allocated separately with |
| * vmalloc, the address distance may exceed 128MB, the maximum branch range. |
| * So long jump should be handled. |
| * |
| * When a bpf prog is constructed, a plt pointing to empty trampoline |
| * dummy_tramp is placed at the end: |
| * |
| * bpf_prog: |
| * mov x9, lr |
| * nop // patchsite |
| * ... |
| * ret |
| * |
| * plt: |
| * ldr x10, target |
| * br x10 |
| * target: |
| * .quad dummy_tramp // plt target |
| * |
| * This is also the state when no trampoline is attached. |
| * |
| * When a short-jump bpf trampoline is attached, the patchsite is patched |
| * to a bl instruction to the trampoline directly: |
| * |
| * bpf_prog: |
| * mov x9, lr |
| * bl <short-jump bpf trampoline address> // patchsite |
| * ... |
| * ret |
| * |
| * plt: |
| * ldr x10, target |
| * br x10 |
| * target: |
| * .quad dummy_tramp // plt target |
| * |
| * When a long-jump bpf trampoline is attached, the plt target is filled with |
| * the trampoline address and the patchsite is patched to a bl instruction to |
| * the plt: |
| * |
| * bpf_prog: |
| * mov x9, lr |
| * bl plt // patchsite |
| * ... |
| * ret |
| * |
| * plt: |
| * ldr x10, target |
| * br x10 |
| * target: |
| * .quad <long-jump bpf trampoline address> // plt target |
| * |
| * The dummy_tramp is used to prevent another CPU from jumping to unknown |
| * locations during the patching process, making the patching process easier. |
| */ |
| int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type poke_type, |
| void *old_addr, void *new_addr) |
| { |
| int ret; |
| u32 old_insn; |
| u32 new_insn; |
| u32 replaced; |
| struct bpf_plt *plt = NULL; |
| unsigned long size = 0UL; |
| unsigned long offset = ~0UL; |
| enum aarch64_insn_branch_type branch_type; |
| char namebuf[KSYM_NAME_LEN]; |
| void *image = NULL; |
| u64 plt_target = 0ULL; |
| bool poking_bpf_entry; |
| |
| if (!__bpf_address_lookup((unsigned long)ip, &size, &offset, namebuf)) |
| /* Only poking bpf text is supported. Since kernel function |
| * entry is set up by ftrace, we reply on ftrace to poke kernel |
| * functions. |
| */ |
| return -ENOTSUPP; |
| |
| image = ip - offset; |
| /* zero offset means we're poking bpf prog entry */ |
| poking_bpf_entry = (offset == 0UL); |
| |
| /* bpf prog entry, find plt and the real patchsite */ |
| if (poking_bpf_entry) { |
| /* plt locates at the end of bpf prog */ |
| plt = image + size - PLT_TARGET_OFFSET; |
| |
| /* skip to the nop instruction in bpf prog entry: |
| * bti c // if BTI enabled |
| * mov x9, x30 |
| * nop |
| */ |
| ip = image + POKE_OFFSET * AARCH64_INSN_SIZE; |
| } |
| |
| /* long jump is only possible at bpf prog entry */ |
| if (WARN_ON((is_long_jump(ip, new_addr) || is_long_jump(ip, old_addr)) && |
| !poking_bpf_entry)) |
| return -EINVAL; |
| |
| if (poke_type == BPF_MOD_CALL) |
| branch_type = AARCH64_INSN_BRANCH_LINK; |
| else |
| branch_type = AARCH64_INSN_BRANCH_NOLINK; |
| |
| if (gen_branch_or_nop(branch_type, ip, old_addr, plt, &old_insn) < 0) |
| return -EFAULT; |
| |
| if (gen_branch_or_nop(branch_type, ip, new_addr, plt, &new_insn) < 0) |
| return -EFAULT; |
| |
| if (is_long_jump(ip, new_addr)) |
| plt_target = (u64)new_addr; |
| else if (is_long_jump(ip, old_addr)) |
| /* if the old target is a long jump and the new target is not, |
| * restore the plt target to dummy_tramp, so there is always a |
| * legal and harmless address stored in plt target, and we'll |
| * never jump from plt to an unknown place. |
| */ |
| plt_target = (u64)&dummy_tramp; |
| |
| if (plt_target) { |
| /* non-zero plt_target indicates we're patching a bpf prog, |
| * which is read only. |
| */ |
| if (set_memory_rw(PAGE_MASK & ((uintptr_t)&plt->target), 1)) |
| return -EFAULT; |
| WRITE_ONCE(plt->target, plt_target); |
| set_memory_ro(PAGE_MASK & ((uintptr_t)&plt->target), 1); |
| /* since plt target points to either the new trampoline |
| * or dummy_tramp, even if another CPU reads the old plt |
| * target value before fetching the bl instruction to plt, |
| * it will be brought back by dummy_tramp, so no barrier is |
| * required here. |
| */ |
| } |
| |
| /* if the old target and the new target are both long jumps, no |
| * patching is required |
| */ |
| if (old_insn == new_insn) |
| return 0; |
| |
| mutex_lock(&text_mutex); |
| if (aarch64_insn_read(ip, &replaced)) { |
| ret = -EFAULT; |
| goto out; |
| } |
| |
| if (replaced != old_insn) { |
| ret = -EFAULT; |
| goto out; |
| } |
| |
| /* We call aarch64_insn_patch_text_nosync() to replace instruction |
| * atomically, so no other CPUs will fetch a half-new and half-old |
| * instruction. But there is chance that another CPU executes the |
| * old instruction after the patching operation finishes (e.g., |
| * pipeline not flushed, or icache not synchronized yet). |
| * |
| * 1. when a new trampoline is attached, it is not a problem for |
| * different CPUs to jump to different trampolines temporarily. |
| * |
| * 2. when an old trampoline is freed, we should wait for all other |
| * CPUs to exit the trampoline and make sure the trampoline is no |
| * longer reachable, since bpf_tramp_image_put() function already |
| * uses percpu_ref and task-based rcu to do the sync, no need to call |
| * the sync version here, see bpf_tramp_image_put() for details. |
| */ |
| ret = aarch64_insn_patch_text_nosync(ip, new_insn); |
| out: |
| mutex_unlock(&text_mutex); |
| |
| return ret; |
| } |