| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * CPU frequency scaling support for Armada 37xx platform. |
| * |
| * Copyright (C) 2017 Marvell |
| * |
| * Gregory CLEMENT <gregory.clement@free-electrons.com> |
| */ |
| |
| #include <linux/clk.h> |
| #include <linux/cpu.h> |
| #include <linux/cpufreq.h> |
| #include <linux/err.h> |
| #include <linux/interrupt.h> |
| #include <linux/io.h> |
| #include <linux/mfd/syscon.h> |
| #include <linux/module.h> |
| #include <linux/of_address.h> |
| #include <linux/of_device.h> |
| #include <linux/of_irq.h> |
| #include <linux/platform_device.h> |
| #include <linux/pm_opp.h> |
| #include <linux/regmap.h> |
| #include <linux/slab.h> |
| |
| #include "cpufreq-dt.h" |
| |
| /* Clk register set */ |
| #define ARMADA_37XX_CLK_TBG_SEL 0 |
| #define ARMADA_37XX_CLK_TBG_SEL_CPU_OFF 22 |
| |
| /* Power management in North Bridge register set */ |
| #define ARMADA_37XX_NB_L0L1 0x18 |
| #define ARMADA_37XX_NB_L2L3 0x1C |
| #define ARMADA_37XX_NB_TBG_DIV_OFF 13 |
| #define ARMADA_37XX_NB_TBG_DIV_MASK 0x7 |
| #define ARMADA_37XX_NB_CLK_SEL_OFF 11 |
| #define ARMADA_37XX_NB_CLK_SEL_MASK 0x1 |
| #define ARMADA_37XX_NB_CLK_SEL_TBG 0x1 |
| #define ARMADA_37XX_NB_TBG_SEL_OFF 9 |
| #define ARMADA_37XX_NB_TBG_SEL_MASK 0x3 |
| #define ARMADA_37XX_NB_VDD_SEL_OFF 6 |
| #define ARMADA_37XX_NB_VDD_SEL_MASK 0x3 |
| #define ARMADA_37XX_NB_CONFIG_SHIFT 16 |
| #define ARMADA_37XX_NB_DYN_MOD 0x24 |
| #define ARMADA_37XX_NB_CLK_SEL_EN BIT(26) |
| #define ARMADA_37XX_NB_TBG_EN BIT(28) |
| #define ARMADA_37XX_NB_DIV_EN BIT(29) |
| #define ARMADA_37XX_NB_VDD_EN BIT(30) |
| #define ARMADA_37XX_NB_DFS_EN BIT(31) |
| #define ARMADA_37XX_NB_CPU_LOAD 0x30 |
| #define ARMADA_37XX_NB_CPU_LOAD_MASK 0x3 |
| #define ARMADA_37XX_DVFS_LOAD_0 0 |
| #define ARMADA_37XX_DVFS_LOAD_1 1 |
| #define ARMADA_37XX_DVFS_LOAD_2 2 |
| #define ARMADA_37XX_DVFS_LOAD_3 3 |
| |
| /* AVS register set */ |
| #define ARMADA_37XX_AVS_CTL0 0x0 |
| #define ARMADA_37XX_AVS_ENABLE BIT(30) |
| #define ARMADA_37XX_AVS_HIGH_VDD_LIMIT 16 |
| #define ARMADA_37XX_AVS_LOW_VDD_LIMIT 22 |
| #define ARMADA_37XX_AVS_VDD_MASK 0x3F |
| #define ARMADA_37XX_AVS_CTL2 0x8 |
| #define ARMADA_37XX_AVS_LOW_VDD_EN BIT(6) |
| #define ARMADA_37XX_AVS_VSET(x) (0x1C + 4 * (x)) |
| |
| /* |
| * On Armada 37xx the Power management manages 4 level of CPU load, |
| * each level can be associated with a CPU clock source, a CPU |
| * divider, a VDD level, etc... |
| */ |
| #define LOAD_LEVEL_NR 4 |
| |
| #define MIN_VOLT_MV 1000 |
| #define MIN_VOLT_MV_FOR_L1_1000MHZ 1108 |
| #define MIN_VOLT_MV_FOR_L1_1200MHZ 1155 |
| |
| /* AVS value for the corresponding voltage (in mV) */ |
| static int avs_map[] = { |
| 747, 758, 770, 782, 793, 805, 817, 828, 840, 852, 863, 875, 887, 898, |
| 910, 922, 933, 945, 957, 968, 980, 992, 1003, 1015, 1027, 1038, 1050, |
| 1062, 1073, 1085, 1097, 1108, 1120, 1132, 1143, 1155, 1167, 1178, 1190, |
| 1202, 1213, 1225, 1237, 1248, 1260, 1272, 1283, 1295, 1307, 1318, 1330, |
| 1342 |
| }; |
| |
| struct armada37xx_cpufreq_state { |
| struct platform_device *pdev; |
| struct device *cpu_dev; |
| struct regmap *regmap; |
| u32 nb_l0l1; |
| u32 nb_l2l3; |
| u32 nb_dyn_mod; |
| u32 nb_cpu_load; |
| }; |
| |
| static struct armada37xx_cpufreq_state *armada37xx_cpufreq_state; |
| |
| struct armada_37xx_dvfs { |
| u32 cpu_freq_max; |
| u8 divider[LOAD_LEVEL_NR]; |
| u32 avs[LOAD_LEVEL_NR]; |
| }; |
| |
| static struct armada_37xx_dvfs armada_37xx_dvfs[] = { |
| /* |
| * The cpufreq scaling for 1.2 GHz variant of the SOC is currently |
| * unstable because we do not know how to configure it properly. |
| */ |
| /* {.cpu_freq_max = 1200*1000*1000, .divider = {1, 2, 4, 6} }, */ |
| {.cpu_freq_max = 1000*1000*1000, .divider = {1, 2, 4, 5} }, |
| {.cpu_freq_max = 800*1000*1000, .divider = {1, 2, 3, 4} }, |
| {.cpu_freq_max = 600*1000*1000, .divider = {2, 4, 5, 6} }, |
| }; |
| |
| static struct armada_37xx_dvfs *armada_37xx_cpu_freq_info_get(u32 freq) |
| { |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(armada_37xx_dvfs); i++) { |
| if (freq == armada_37xx_dvfs[i].cpu_freq_max) |
| return &armada_37xx_dvfs[i]; |
| } |
| |
| pr_err("Unsupported CPU frequency %d MHz\n", freq/1000000); |
| return NULL; |
| } |
| |
| /* |
| * Setup the four level managed by the hardware. Once the four level |
| * will be configured then the DVFS will be enabled. |
| */ |
| static void __init armada37xx_cpufreq_dvfs_setup(struct regmap *base, |
| struct regmap *clk_base, u8 *divider) |
| { |
| u32 cpu_tbg_sel; |
| int load_lvl; |
| |
| /* Determine to which TBG clock is CPU connected */ |
| regmap_read(clk_base, ARMADA_37XX_CLK_TBG_SEL, &cpu_tbg_sel); |
| cpu_tbg_sel >>= ARMADA_37XX_CLK_TBG_SEL_CPU_OFF; |
| cpu_tbg_sel &= ARMADA_37XX_NB_TBG_SEL_MASK; |
| |
| for (load_lvl = 0; load_lvl < LOAD_LEVEL_NR; load_lvl++) { |
| unsigned int reg, mask, val, offset = 0; |
| |
| if (load_lvl <= ARMADA_37XX_DVFS_LOAD_1) |
| reg = ARMADA_37XX_NB_L0L1; |
| else |
| reg = ARMADA_37XX_NB_L2L3; |
| |
| if (load_lvl == ARMADA_37XX_DVFS_LOAD_0 || |
| load_lvl == ARMADA_37XX_DVFS_LOAD_2) |
| offset += ARMADA_37XX_NB_CONFIG_SHIFT; |
| |
| /* Set cpu clock source, for all the level we use TBG */ |
| val = ARMADA_37XX_NB_CLK_SEL_TBG << ARMADA_37XX_NB_CLK_SEL_OFF; |
| mask = (ARMADA_37XX_NB_CLK_SEL_MASK |
| << ARMADA_37XX_NB_CLK_SEL_OFF); |
| |
| /* Set TBG index, for all levels we use the same TBG */ |
| val = cpu_tbg_sel << ARMADA_37XX_NB_TBG_SEL_OFF; |
| mask = (ARMADA_37XX_NB_TBG_SEL_MASK |
| << ARMADA_37XX_NB_TBG_SEL_OFF); |
| |
| /* |
| * Set cpu divider based on the pre-computed array in |
| * order to have balanced step. |
| */ |
| val |= divider[load_lvl] << ARMADA_37XX_NB_TBG_DIV_OFF; |
| mask |= (ARMADA_37XX_NB_TBG_DIV_MASK |
| << ARMADA_37XX_NB_TBG_DIV_OFF); |
| |
| /* Set VDD divider which is actually the load level. */ |
| val |= load_lvl << ARMADA_37XX_NB_VDD_SEL_OFF; |
| mask |= (ARMADA_37XX_NB_VDD_SEL_MASK |
| << ARMADA_37XX_NB_VDD_SEL_OFF); |
| |
| val <<= offset; |
| mask <<= offset; |
| |
| regmap_update_bits(base, reg, mask, val); |
| } |
| } |
| |
| /* |
| * Find out the armada 37x supported AVS value whose voltage value is |
| * the round-up closest to the target voltage value. |
| */ |
| static u32 armada_37xx_avs_val_match(int target_vm) |
| { |
| u32 avs; |
| |
| /* Find out the round-up closest supported voltage value */ |
| for (avs = 0; avs < ARRAY_SIZE(avs_map); avs++) |
| if (avs_map[avs] >= target_vm) |
| break; |
| |
| /* |
| * If all supported voltages are smaller than target one, |
| * choose the largest supported voltage |
| */ |
| if (avs == ARRAY_SIZE(avs_map)) |
| avs = ARRAY_SIZE(avs_map) - 1; |
| |
| return avs; |
| } |
| |
| /* |
| * For Armada 37xx soc, L0(VSET0) VDD AVS value is set to SVC revision |
| * value or a default value when SVC is not supported. |
| * - L0 can be read out from the register of AVS_CTRL_0 and L0 voltage |
| * can be got from the mapping table of avs_map. |
| * - L1 voltage should be about 100mv smaller than L0 voltage |
| * - L2 & L3 voltage should be about 150mv smaller than L0 voltage. |
| * This function calculates L1 & L2 & L3 AVS values dynamically based |
| * on L0 voltage and fill all AVS values to the AVS value table. |
| * When base CPU frequency is 1000 or 1200 MHz then there is additional |
| * minimal avs value for load L1. |
| */ |
| static void __init armada37xx_cpufreq_avs_configure(struct regmap *base, |
| struct armada_37xx_dvfs *dvfs) |
| { |
| unsigned int target_vm; |
| int load_level = 0; |
| u32 l0_vdd_min; |
| |
| if (base == NULL) |
| return; |
| |
| /* Get L0 VDD min value */ |
| regmap_read(base, ARMADA_37XX_AVS_CTL0, &l0_vdd_min); |
| l0_vdd_min = (l0_vdd_min >> ARMADA_37XX_AVS_LOW_VDD_LIMIT) & |
| ARMADA_37XX_AVS_VDD_MASK; |
| if (l0_vdd_min >= ARRAY_SIZE(avs_map)) { |
| pr_err("L0 VDD MIN %d is not correct.\n", l0_vdd_min); |
| return; |
| } |
| dvfs->avs[0] = l0_vdd_min; |
| |
| if (avs_map[l0_vdd_min] <= MIN_VOLT_MV) { |
| /* |
| * If L0 voltage is smaller than 1000mv, then all VDD sets |
| * use L0 voltage; |
| */ |
| u32 avs_min = armada_37xx_avs_val_match(MIN_VOLT_MV); |
| |
| for (load_level = 1; load_level < LOAD_LEVEL_NR; load_level++) |
| dvfs->avs[load_level] = avs_min; |
| |
| /* |
| * Set the avs values for load L0 and L1 when base CPU frequency |
| * is 1000/1200 MHz to its typical initial values according to |
| * the Armada 3700 Hardware Specifications. |
| */ |
| if (dvfs->cpu_freq_max >= 1000*1000*1000) { |
| if (dvfs->cpu_freq_max >= 1200*1000*1000) |
| avs_min = armada_37xx_avs_val_match(MIN_VOLT_MV_FOR_L1_1200MHZ); |
| else |
| avs_min = armada_37xx_avs_val_match(MIN_VOLT_MV_FOR_L1_1000MHZ); |
| dvfs->avs[0] = dvfs->avs[1] = avs_min; |
| } |
| |
| return; |
| } |
| |
| /* |
| * L1 voltage is equal to L0 voltage - 100mv and it must be |
| * larger than 1000mv |
| */ |
| |
| target_vm = avs_map[l0_vdd_min] - 100; |
| target_vm = target_vm > MIN_VOLT_MV ? target_vm : MIN_VOLT_MV; |
| dvfs->avs[1] = armada_37xx_avs_val_match(target_vm); |
| |
| /* |
| * L2 & L3 voltage is equal to L0 voltage - 150mv and it must |
| * be larger than 1000mv |
| */ |
| target_vm = avs_map[l0_vdd_min] - 150; |
| target_vm = target_vm > MIN_VOLT_MV ? target_vm : MIN_VOLT_MV; |
| dvfs->avs[2] = dvfs->avs[3] = armada_37xx_avs_val_match(target_vm); |
| |
| /* |
| * Fix the avs value for load L1 when base CPU frequency is 1000/1200 MHz, |
| * otherwise the CPU gets stuck when switching from load L1 to load L0. |
| * Also ensure that avs value for load L1 is not higher than for L0. |
| */ |
| if (dvfs->cpu_freq_max >= 1000*1000*1000) { |
| u32 avs_min_l1; |
| |
| if (dvfs->cpu_freq_max >= 1200*1000*1000) |
| avs_min_l1 = armada_37xx_avs_val_match(MIN_VOLT_MV_FOR_L1_1200MHZ); |
| else |
| avs_min_l1 = armada_37xx_avs_val_match(MIN_VOLT_MV_FOR_L1_1000MHZ); |
| |
| if (avs_min_l1 > dvfs->avs[0]) |
| avs_min_l1 = dvfs->avs[0]; |
| |
| if (dvfs->avs[1] < avs_min_l1) |
| dvfs->avs[1] = avs_min_l1; |
| } |
| } |
| |
| static void __init armada37xx_cpufreq_avs_setup(struct regmap *base, |
| struct armada_37xx_dvfs *dvfs) |
| { |
| unsigned int avs_val = 0; |
| int load_level = 0; |
| |
| if (base == NULL) |
| return; |
| |
| /* Disable AVS before the configuration */ |
| regmap_update_bits(base, ARMADA_37XX_AVS_CTL0, |
| ARMADA_37XX_AVS_ENABLE, 0); |
| |
| |
| /* Enable low voltage mode */ |
| regmap_update_bits(base, ARMADA_37XX_AVS_CTL2, |
| ARMADA_37XX_AVS_LOW_VDD_EN, |
| ARMADA_37XX_AVS_LOW_VDD_EN); |
| |
| |
| for (load_level = 1; load_level < LOAD_LEVEL_NR; load_level++) { |
| avs_val = dvfs->avs[load_level]; |
| regmap_update_bits(base, ARMADA_37XX_AVS_VSET(load_level-1), |
| ARMADA_37XX_AVS_VDD_MASK << ARMADA_37XX_AVS_HIGH_VDD_LIMIT | |
| ARMADA_37XX_AVS_VDD_MASK << ARMADA_37XX_AVS_LOW_VDD_LIMIT, |
| avs_val << ARMADA_37XX_AVS_HIGH_VDD_LIMIT | |
| avs_val << ARMADA_37XX_AVS_LOW_VDD_LIMIT); |
| } |
| |
| /* Enable AVS after the configuration */ |
| regmap_update_bits(base, ARMADA_37XX_AVS_CTL0, |
| ARMADA_37XX_AVS_ENABLE, |
| ARMADA_37XX_AVS_ENABLE); |
| |
| } |
| |
| static void armada37xx_cpufreq_disable_dvfs(struct regmap *base) |
| { |
| unsigned int reg = ARMADA_37XX_NB_DYN_MOD, |
| mask = ARMADA_37XX_NB_DFS_EN; |
| |
| regmap_update_bits(base, reg, mask, 0); |
| } |
| |
| static void __init armada37xx_cpufreq_enable_dvfs(struct regmap *base) |
| { |
| unsigned int val, reg = ARMADA_37XX_NB_CPU_LOAD, |
| mask = ARMADA_37XX_NB_CPU_LOAD_MASK; |
| |
| /* Start with the highest load (0) */ |
| val = ARMADA_37XX_DVFS_LOAD_0; |
| regmap_update_bits(base, reg, mask, val); |
| |
| /* Now enable DVFS for the CPUs */ |
| reg = ARMADA_37XX_NB_DYN_MOD; |
| mask = ARMADA_37XX_NB_CLK_SEL_EN | ARMADA_37XX_NB_TBG_EN | |
| ARMADA_37XX_NB_DIV_EN | ARMADA_37XX_NB_VDD_EN | |
| ARMADA_37XX_NB_DFS_EN; |
| |
| regmap_update_bits(base, reg, mask, mask); |
| } |
| |
| static int armada37xx_cpufreq_suspend(struct cpufreq_policy *policy) |
| { |
| struct armada37xx_cpufreq_state *state = armada37xx_cpufreq_state; |
| |
| regmap_read(state->regmap, ARMADA_37XX_NB_L0L1, &state->nb_l0l1); |
| regmap_read(state->regmap, ARMADA_37XX_NB_L2L3, &state->nb_l2l3); |
| regmap_read(state->regmap, ARMADA_37XX_NB_CPU_LOAD, |
| &state->nb_cpu_load); |
| regmap_read(state->regmap, ARMADA_37XX_NB_DYN_MOD, &state->nb_dyn_mod); |
| |
| return 0; |
| } |
| |
| static int armada37xx_cpufreq_resume(struct cpufreq_policy *policy) |
| { |
| struct armada37xx_cpufreq_state *state = armada37xx_cpufreq_state; |
| |
| /* Ensure DVFS is disabled otherwise the following registers are RO */ |
| armada37xx_cpufreq_disable_dvfs(state->regmap); |
| |
| regmap_write(state->regmap, ARMADA_37XX_NB_L0L1, state->nb_l0l1); |
| regmap_write(state->regmap, ARMADA_37XX_NB_L2L3, state->nb_l2l3); |
| regmap_write(state->regmap, ARMADA_37XX_NB_CPU_LOAD, |
| state->nb_cpu_load); |
| |
| /* |
| * NB_DYN_MOD register is the one that actually enable back DVFS if it |
| * was enabled before the suspend operation. This must be done last |
| * otherwise other registers are not writable. |
| */ |
| regmap_write(state->regmap, ARMADA_37XX_NB_DYN_MOD, state->nb_dyn_mod); |
| |
| return 0; |
| } |
| |
| static int __init armada37xx_cpufreq_driver_init(void) |
| { |
| struct cpufreq_dt_platform_data pdata; |
| struct armada_37xx_dvfs *dvfs; |
| struct platform_device *pdev; |
| unsigned long freq; |
| unsigned int base_frequency; |
| struct regmap *nb_clk_base, *nb_pm_base, *avs_base; |
| struct device *cpu_dev; |
| int load_lvl, ret; |
| struct clk *clk, *parent; |
| |
| nb_clk_base = |
| syscon_regmap_lookup_by_compatible("marvell,armada-3700-periph-clock-nb"); |
| if (IS_ERR(nb_clk_base)) |
| return -ENODEV; |
| |
| nb_pm_base = |
| syscon_regmap_lookup_by_compatible("marvell,armada-3700-nb-pm"); |
| |
| if (IS_ERR(nb_pm_base)) |
| return -ENODEV; |
| |
| avs_base = |
| syscon_regmap_lookup_by_compatible("marvell,armada-3700-avs"); |
| |
| /* if AVS is not present don't use it but still try to setup dvfs */ |
| if (IS_ERR(avs_base)) { |
| pr_info("Syscon failed for Adapting Voltage Scaling: skip it\n"); |
| avs_base = NULL; |
| } |
| /* Before doing any configuration on the DVFS first, disable it */ |
| armada37xx_cpufreq_disable_dvfs(nb_pm_base); |
| |
| /* |
| * On CPU 0 register the operating points supported (which are |
| * the nominal CPU frequency and full integer divisions of |
| * it). |
| */ |
| cpu_dev = get_cpu_device(0); |
| if (!cpu_dev) { |
| dev_err(cpu_dev, "Cannot get CPU\n"); |
| return -ENODEV; |
| } |
| |
| clk = clk_get(cpu_dev, NULL); |
| if (IS_ERR(clk)) { |
| dev_err(cpu_dev, "Cannot get clock for CPU0\n"); |
| return PTR_ERR(clk); |
| } |
| |
| parent = clk_get_parent(clk); |
| if (IS_ERR(parent)) { |
| dev_err(cpu_dev, "Cannot get parent clock for CPU0\n"); |
| clk_put(clk); |
| return PTR_ERR(parent); |
| } |
| |
| /* Get parent CPU frequency */ |
| base_frequency = clk_get_rate(parent); |
| |
| if (!base_frequency) { |
| dev_err(cpu_dev, "Failed to get parent clock rate for CPU\n"); |
| clk_put(clk); |
| return -EINVAL; |
| } |
| |
| dvfs = armada_37xx_cpu_freq_info_get(base_frequency); |
| if (!dvfs) { |
| clk_put(clk); |
| return -EINVAL; |
| } |
| |
| armada37xx_cpufreq_state = kmalloc(sizeof(*armada37xx_cpufreq_state), |
| GFP_KERNEL); |
| if (!armada37xx_cpufreq_state) { |
| clk_put(clk); |
| return -ENOMEM; |
| } |
| |
| armada37xx_cpufreq_state->regmap = nb_pm_base; |
| |
| armada37xx_cpufreq_avs_configure(avs_base, dvfs); |
| armada37xx_cpufreq_avs_setup(avs_base, dvfs); |
| |
| armada37xx_cpufreq_dvfs_setup(nb_pm_base, nb_clk_base, dvfs->divider); |
| clk_put(clk); |
| |
| for (load_lvl = ARMADA_37XX_DVFS_LOAD_0; load_lvl < LOAD_LEVEL_NR; |
| load_lvl++) { |
| unsigned long u_volt = avs_map[dvfs->avs[load_lvl]] * 1000; |
| freq = base_frequency / dvfs->divider[load_lvl]; |
| ret = dev_pm_opp_add(cpu_dev, freq, u_volt); |
| if (ret) |
| goto remove_opp; |
| |
| |
| } |
| |
| /* Now that everything is setup, enable the DVFS at hardware level */ |
| armada37xx_cpufreq_enable_dvfs(nb_pm_base); |
| |
| memset(&pdata, 0, sizeof(pdata)); |
| pdata.suspend = armada37xx_cpufreq_suspend; |
| pdata.resume = armada37xx_cpufreq_resume; |
| |
| pdev = platform_device_register_data(NULL, "cpufreq-dt", -1, &pdata, |
| sizeof(pdata)); |
| ret = PTR_ERR_OR_ZERO(pdev); |
| if (ret) |
| goto disable_dvfs; |
| |
| armada37xx_cpufreq_state->cpu_dev = cpu_dev; |
| armada37xx_cpufreq_state->pdev = pdev; |
| platform_set_drvdata(pdev, dvfs); |
| return 0; |
| |
| disable_dvfs: |
| armada37xx_cpufreq_disable_dvfs(nb_pm_base); |
| remove_opp: |
| /* clean-up the already added opp before leaving */ |
| while (load_lvl-- > ARMADA_37XX_DVFS_LOAD_0) { |
| freq = base_frequency / dvfs->divider[load_lvl]; |
| dev_pm_opp_remove(cpu_dev, freq); |
| } |
| |
| kfree(armada37xx_cpufreq_state); |
| |
| return ret; |
| } |
| /* late_initcall, to guarantee the driver is loaded after A37xx clock driver */ |
| late_initcall(armada37xx_cpufreq_driver_init); |
| |
| static void __exit armada37xx_cpufreq_driver_exit(void) |
| { |
| struct platform_device *pdev = armada37xx_cpufreq_state->pdev; |
| struct armada_37xx_dvfs *dvfs = platform_get_drvdata(pdev); |
| unsigned long freq; |
| int load_lvl; |
| |
| platform_device_unregister(pdev); |
| |
| armada37xx_cpufreq_disable_dvfs(armada37xx_cpufreq_state->regmap); |
| |
| for (load_lvl = ARMADA_37XX_DVFS_LOAD_0; load_lvl < LOAD_LEVEL_NR; load_lvl++) { |
| freq = dvfs->cpu_freq_max / dvfs->divider[load_lvl]; |
| dev_pm_opp_remove(armada37xx_cpufreq_state->cpu_dev, freq); |
| } |
| |
| kfree(armada37xx_cpufreq_state); |
| } |
| module_exit(armada37xx_cpufreq_driver_exit); |
| |
| static const struct of_device_id __maybe_unused armada37xx_cpufreq_of_match[] = { |
| { .compatible = "marvell,armada-3700-nb-pm" }, |
| { }, |
| }; |
| MODULE_DEVICE_TABLE(of, armada37xx_cpufreq_of_match); |
| |
| MODULE_AUTHOR("Gregory CLEMENT <gregory.clement@free-electrons.com>"); |
| MODULE_DESCRIPTION("Armada 37xx cpufreq driver"); |
| MODULE_LICENSE("GPL"); |