| // SPDX-License-Identifier: GPL-2.0 |
| // (C) 2017-2018 Synopsys, Inc. (www.synopsys.com) |
| |
| /* |
| * Synopsys DesignWare AXI DMA Controller driver. |
| * |
| * Author: Eugeniy Paltsev <Eugeniy.Paltsev@synopsys.com> |
| */ |
| |
| #include <linux/bitops.h> |
| #include <linux/delay.h> |
| #include <linux/device.h> |
| #include <linux/dmaengine.h> |
| #include <linux/dmapool.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/err.h> |
| #include <linux/interrupt.h> |
| #include <linux/io.h> |
| #include <linux/iopoll.h> |
| #include <linux/io-64-nonatomic-lo-hi.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/of.h> |
| #include <linux/of_device.h> |
| #include <linux/of_dma.h> |
| #include <linux/platform_device.h> |
| #include <linux/pm_runtime.h> |
| #include <linux/property.h> |
| #include <linux/reset.h> |
| #include <linux/slab.h> |
| #include <linux/types.h> |
| |
| #include "dw-axi-dmac.h" |
| #include "../dmaengine.h" |
| #include "../virt-dma.h" |
| |
| /* |
| * The set of bus widths supported by the DMA controller. DW AXI DMAC supports |
| * master data bus width up to 512 bits (for both AXI master interfaces), but |
| * it depends on IP block configuration. |
| */ |
| #define AXI_DMA_BUSWIDTHS \ |
| (DMA_SLAVE_BUSWIDTH_1_BYTE | \ |
| DMA_SLAVE_BUSWIDTH_2_BYTES | \ |
| DMA_SLAVE_BUSWIDTH_4_BYTES | \ |
| DMA_SLAVE_BUSWIDTH_8_BYTES | \ |
| DMA_SLAVE_BUSWIDTH_16_BYTES | \ |
| DMA_SLAVE_BUSWIDTH_32_BYTES | \ |
| DMA_SLAVE_BUSWIDTH_64_BYTES) |
| |
| #define AXI_DMA_FLAG_HAS_APB_REGS BIT(0) |
| #define AXI_DMA_FLAG_HAS_RESETS BIT(1) |
| #define AXI_DMA_FLAG_USE_CFG2 BIT(2) |
| |
| static inline void |
| axi_dma_iowrite32(struct axi_dma_chip *chip, u32 reg, u32 val) |
| { |
| iowrite32(val, chip->regs + reg); |
| } |
| |
| static inline u32 axi_dma_ioread32(struct axi_dma_chip *chip, u32 reg) |
| { |
| return ioread32(chip->regs + reg); |
| } |
| |
| static inline void |
| axi_chan_iowrite32(struct axi_dma_chan *chan, u32 reg, u32 val) |
| { |
| iowrite32(val, chan->chan_regs + reg); |
| } |
| |
| static inline u32 axi_chan_ioread32(struct axi_dma_chan *chan, u32 reg) |
| { |
| return ioread32(chan->chan_regs + reg); |
| } |
| |
| static inline void |
| axi_chan_iowrite64(struct axi_dma_chan *chan, u32 reg, u64 val) |
| { |
| /* |
| * We split one 64 bit write for two 32 bit write as some HW doesn't |
| * support 64 bit access. |
| */ |
| iowrite32(lower_32_bits(val), chan->chan_regs + reg); |
| iowrite32(upper_32_bits(val), chan->chan_regs + reg + 4); |
| } |
| |
| static inline void axi_chan_config_write(struct axi_dma_chan *chan, |
| struct axi_dma_chan_config *config) |
| { |
| u32 cfg_lo, cfg_hi; |
| |
| cfg_lo = (config->dst_multblk_type << CH_CFG_L_DST_MULTBLK_TYPE_POS | |
| config->src_multblk_type << CH_CFG_L_SRC_MULTBLK_TYPE_POS); |
| if (chan->chip->dw->hdata->reg_map_8_channels && |
| !chan->chip->dw->hdata->use_cfg2) { |
| cfg_hi = config->tt_fc << CH_CFG_H_TT_FC_POS | |
| config->hs_sel_src << CH_CFG_H_HS_SEL_SRC_POS | |
| config->hs_sel_dst << CH_CFG_H_HS_SEL_DST_POS | |
| config->src_per << CH_CFG_H_SRC_PER_POS | |
| config->dst_per << CH_CFG_H_DST_PER_POS | |
| config->prior << CH_CFG_H_PRIORITY_POS; |
| } else { |
| cfg_lo |= config->src_per << CH_CFG2_L_SRC_PER_POS | |
| config->dst_per << CH_CFG2_L_DST_PER_POS; |
| cfg_hi = config->tt_fc << CH_CFG2_H_TT_FC_POS | |
| config->hs_sel_src << CH_CFG2_H_HS_SEL_SRC_POS | |
| config->hs_sel_dst << CH_CFG2_H_HS_SEL_DST_POS | |
| config->prior << CH_CFG2_H_PRIORITY_POS; |
| } |
| axi_chan_iowrite32(chan, CH_CFG_L, cfg_lo); |
| axi_chan_iowrite32(chan, CH_CFG_H, cfg_hi); |
| } |
| |
| static inline void axi_dma_disable(struct axi_dma_chip *chip) |
| { |
| u32 val; |
| |
| val = axi_dma_ioread32(chip, DMAC_CFG); |
| val &= ~DMAC_EN_MASK; |
| axi_dma_iowrite32(chip, DMAC_CFG, val); |
| } |
| |
| static inline void axi_dma_enable(struct axi_dma_chip *chip) |
| { |
| u32 val; |
| |
| val = axi_dma_ioread32(chip, DMAC_CFG); |
| val |= DMAC_EN_MASK; |
| axi_dma_iowrite32(chip, DMAC_CFG, val); |
| } |
| |
| static inline void axi_dma_irq_disable(struct axi_dma_chip *chip) |
| { |
| u32 val; |
| |
| val = axi_dma_ioread32(chip, DMAC_CFG); |
| val &= ~INT_EN_MASK; |
| axi_dma_iowrite32(chip, DMAC_CFG, val); |
| } |
| |
| static inline void axi_dma_irq_enable(struct axi_dma_chip *chip) |
| { |
| u32 val; |
| |
| val = axi_dma_ioread32(chip, DMAC_CFG); |
| val |= INT_EN_MASK; |
| axi_dma_iowrite32(chip, DMAC_CFG, val); |
| } |
| |
| static inline void axi_chan_irq_disable(struct axi_dma_chan *chan, u32 irq_mask) |
| { |
| u32 val; |
| |
| if (likely(irq_mask == DWAXIDMAC_IRQ_ALL)) { |
| axi_chan_iowrite32(chan, CH_INTSTATUS_ENA, DWAXIDMAC_IRQ_NONE); |
| } else { |
| val = axi_chan_ioread32(chan, CH_INTSTATUS_ENA); |
| val &= ~irq_mask; |
| axi_chan_iowrite32(chan, CH_INTSTATUS_ENA, val); |
| } |
| } |
| |
| static inline void axi_chan_irq_set(struct axi_dma_chan *chan, u32 irq_mask) |
| { |
| axi_chan_iowrite32(chan, CH_INTSTATUS_ENA, irq_mask); |
| } |
| |
| static inline void axi_chan_irq_sig_set(struct axi_dma_chan *chan, u32 irq_mask) |
| { |
| axi_chan_iowrite32(chan, CH_INTSIGNAL_ENA, irq_mask); |
| } |
| |
| static inline void axi_chan_irq_clear(struct axi_dma_chan *chan, u32 irq_mask) |
| { |
| axi_chan_iowrite32(chan, CH_INTCLEAR, irq_mask); |
| } |
| |
| static inline u32 axi_chan_irq_read(struct axi_dma_chan *chan) |
| { |
| return axi_chan_ioread32(chan, CH_INTSTATUS); |
| } |
| |
| static inline void axi_chan_disable(struct axi_dma_chan *chan) |
| { |
| u32 val; |
| |
| val = axi_dma_ioread32(chan->chip, DMAC_CHEN); |
| val &= ~(BIT(chan->id) << DMAC_CHAN_EN_SHIFT); |
| if (chan->chip->dw->hdata->reg_map_8_channels) |
| val |= BIT(chan->id) << DMAC_CHAN_EN_WE_SHIFT; |
| else |
| val |= BIT(chan->id) << DMAC_CHAN_EN2_WE_SHIFT; |
| axi_dma_iowrite32(chan->chip, DMAC_CHEN, val); |
| } |
| |
| static inline void axi_chan_enable(struct axi_dma_chan *chan) |
| { |
| u32 val; |
| |
| val = axi_dma_ioread32(chan->chip, DMAC_CHEN); |
| if (chan->chip->dw->hdata->reg_map_8_channels) |
| val |= BIT(chan->id) << DMAC_CHAN_EN_SHIFT | |
| BIT(chan->id) << DMAC_CHAN_EN_WE_SHIFT; |
| else |
| val |= BIT(chan->id) << DMAC_CHAN_EN_SHIFT | |
| BIT(chan->id) << DMAC_CHAN_EN2_WE_SHIFT; |
| axi_dma_iowrite32(chan->chip, DMAC_CHEN, val); |
| } |
| |
| static inline bool axi_chan_is_hw_enable(struct axi_dma_chan *chan) |
| { |
| u32 val; |
| |
| val = axi_dma_ioread32(chan->chip, DMAC_CHEN); |
| |
| return !!(val & (BIT(chan->id) << DMAC_CHAN_EN_SHIFT)); |
| } |
| |
| static void axi_dma_hw_init(struct axi_dma_chip *chip) |
| { |
| int ret; |
| u32 i; |
| |
| for (i = 0; i < chip->dw->hdata->nr_channels; i++) { |
| axi_chan_irq_disable(&chip->dw->chan[i], DWAXIDMAC_IRQ_ALL); |
| axi_chan_disable(&chip->dw->chan[i]); |
| } |
| ret = dma_set_mask_and_coherent(chip->dev, DMA_BIT_MASK(64)); |
| if (ret) |
| dev_warn(chip->dev, "Unable to set coherent mask\n"); |
| } |
| |
| static u32 axi_chan_get_xfer_width(struct axi_dma_chan *chan, dma_addr_t src, |
| dma_addr_t dst, size_t len) |
| { |
| u32 max_width = chan->chip->dw->hdata->m_data_width; |
| |
| return __ffs(src | dst | len | BIT(max_width)); |
| } |
| |
| static inline const char *axi_chan_name(struct axi_dma_chan *chan) |
| { |
| return dma_chan_name(&chan->vc.chan); |
| } |
| |
| static struct axi_dma_desc *axi_desc_alloc(u32 num) |
| { |
| struct axi_dma_desc *desc; |
| |
| desc = kzalloc(sizeof(*desc), GFP_NOWAIT); |
| if (!desc) |
| return NULL; |
| |
| desc->hw_desc = kcalloc(num, sizeof(*desc->hw_desc), GFP_NOWAIT); |
| if (!desc->hw_desc) { |
| kfree(desc); |
| return NULL; |
| } |
| |
| return desc; |
| } |
| |
| static struct axi_dma_lli *axi_desc_get(struct axi_dma_chan *chan, |
| dma_addr_t *addr) |
| { |
| struct axi_dma_lli *lli; |
| dma_addr_t phys; |
| |
| lli = dma_pool_zalloc(chan->desc_pool, GFP_NOWAIT, &phys); |
| if (unlikely(!lli)) { |
| dev_err(chan2dev(chan), "%s: not enough descriptors available\n", |
| axi_chan_name(chan)); |
| return NULL; |
| } |
| |
| atomic_inc(&chan->descs_allocated); |
| *addr = phys; |
| |
| return lli; |
| } |
| |
| static void axi_desc_put(struct axi_dma_desc *desc) |
| { |
| struct axi_dma_chan *chan = desc->chan; |
| int count = atomic_read(&chan->descs_allocated); |
| struct axi_dma_hw_desc *hw_desc; |
| int descs_put; |
| |
| for (descs_put = 0; descs_put < count; descs_put++) { |
| hw_desc = &desc->hw_desc[descs_put]; |
| dma_pool_free(chan->desc_pool, hw_desc->lli, hw_desc->llp); |
| } |
| |
| kfree(desc->hw_desc); |
| kfree(desc); |
| atomic_sub(descs_put, &chan->descs_allocated); |
| dev_vdbg(chan2dev(chan), "%s: %d descs put, %d still allocated\n", |
| axi_chan_name(chan), descs_put, |
| atomic_read(&chan->descs_allocated)); |
| } |
| |
| static void vchan_desc_put(struct virt_dma_desc *vdesc) |
| { |
| axi_desc_put(vd_to_axi_desc(vdesc)); |
| } |
| |
| static enum dma_status |
| dma_chan_tx_status(struct dma_chan *dchan, dma_cookie_t cookie, |
| struct dma_tx_state *txstate) |
| { |
| struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan); |
| struct virt_dma_desc *vdesc; |
| enum dma_status status; |
| u32 completed_length; |
| unsigned long flags; |
| u32 completed_blocks; |
| size_t bytes = 0; |
| u32 length; |
| u32 len; |
| |
| status = dma_cookie_status(dchan, cookie, txstate); |
| if (status == DMA_COMPLETE || !txstate) |
| return status; |
| |
| spin_lock_irqsave(&chan->vc.lock, flags); |
| |
| vdesc = vchan_find_desc(&chan->vc, cookie); |
| if (vdesc) { |
| length = vd_to_axi_desc(vdesc)->length; |
| completed_blocks = vd_to_axi_desc(vdesc)->completed_blocks; |
| len = vd_to_axi_desc(vdesc)->hw_desc[0].len; |
| completed_length = completed_blocks * len; |
| bytes = length - completed_length; |
| } |
| |
| spin_unlock_irqrestore(&chan->vc.lock, flags); |
| dma_set_residue(txstate, bytes); |
| |
| return status; |
| } |
| |
| static void write_desc_llp(struct axi_dma_hw_desc *desc, dma_addr_t adr) |
| { |
| desc->lli->llp = cpu_to_le64(adr); |
| } |
| |
| static void write_chan_llp(struct axi_dma_chan *chan, dma_addr_t adr) |
| { |
| axi_chan_iowrite64(chan, CH_LLP, adr); |
| } |
| |
| static void dw_axi_dma_set_byte_halfword(struct axi_dma_chan *chan, bool set) |
| { |
| u32 offset = DMAC_APB_BYTE_WR_CH_EN; |
| u32 reg_width, val; |
| |
| if (!chan->chip->apb_regs) { |
| dev_dbg(chan->chip->dev, "apb_regs not initialized\n"); |
| return; |
| } |
| |
| reg_width = __ffs(chan->config.dst_addr_width); |
| if (reg_width == DWAXIDMAC_TRANS_WIDTH_16) |
| offset = DMAC_APB_HALFWORD_WR_CH_EN; |
| |
| val = ioread32(chan->chip->apb_regs + offset); |
| |
| if (set) |
| val |= BIT(chan->id); |
| else |
| val &= ~BIT(chan->id); |
| |
| iowrite32(val, chan->chip->apb_regs + offset); |
| } |
| /* Called in chan locked context */ |
| static void axi_chan_block_xfer_start(struct axi_dma_chan *chan, |
| struct axi_dma_desc *first) |
| { |
| u32 priority = chan->chip->dw->hdata->priority[chan->id]; |
| struct axi_dma_chan_config config = {}; |
| u32 irq_mask; |
| u8 lms = 0; /* Select AXI0 master for LLI fetching */ |
| |
| if (unlikely(axi_chan_is_hw_enable(chan))) { |
| dev_err(chan2dev(chan), "%s is non-idle!\n", |
| axi_chan_name(chan)); |
| |
| return; |
| } |
| |
| axi_dma_enable(chan->chip); |
| |
| config.dst_multblk_type = DWAXIDMAC_MBLK_TYPE_LL; |
| config.src_multblk_type = DWAXIDMAC_MBLK_TYPE_LL; |
| config.tt_fc = DWAXIDMAC_TT_FC_MEM_TO_MEM_DMAC; |
| config.prior = priority; |
| config.hs_sel_dst = DWAXIDMAC_HS_SEL_HW; |
| config.hs_sel_src = DWAXIDMAC_HS_SEL_HW; |
| switch (chan->direction) { |
| case DMA_MEM_TO_DEV: |
| dw_axi_dma_set_byte_halfword(chan, true); |
| config.tt_fc = chan->config.device_fc ? |
| DWAXIDMAC_TT_FC_MEM_TO_PER_DST : |
| DWAXIDMAC_TT_FC_MEM_TO_PER_DMAC; |
| if (chan->chip->apb_regs) |
| config.dst_per = chan->id; |
| else |
| config.dst_per = chan->hw_handshake_num; |
| break; |
| case DMA_DEV_TO_MEM: |
| config.tt_fc = chan->config.device_fc ? |
| DWAXIDMAC_TT_FC_PER_TO_MEM_SRC : |
| DWAXIDMAC_TT_FC_PER_TO_MEM_DMAC; |
| if (chan->chip->apb_regs) |
| config.src_per = chan->id; |
| else |
| config.src_per = chan->hw_handshake_num; |
| break; |
| default: |
| break; |
| } |
| axi_chan_config_write(chan, &config); |
| |
| write_chan_llp(chan, first->hw_desc[0].llp | lms); |
| |
| irq_mask = DWAXIDMAC_IRQ_DMA_TRF | DWAXIDMAC_IRQ_ALL_ERR; |
| axi_chan_irq_sig_set(chan, irq_mask); |
| |
| /* Generate 'suspend' status but don't generate interrupt */ |
| irq_mask |= DWAXIDMAC_IRQ_SUSPENDED; |
| axi_chan_irq_set(chan, irq_mask); |
| |
| axi_chan_enable(chan); |
| } |
| |
| static void axi_chan_start_first_queued(struct axi_dma_chan *chan) |
| { |
| struct axi_dma_desc *desc; |
| struct virt_dma_desc *vd; |
| |
| vd = vchan_next_desc(&chan->vc); |
| if (!vd) |
| return; |
| |
| desc = vd_to_axi_desc(vd); |
| dev_vdbg(chan2dev(chan), "%s: started %u\n", axi_chan_name(chan), |
| vd->tx.cookie); |
| axi_chan_block_xfer_start(chan, desc); |
| } |
| |
| static void dma_chan_issue_pending(struct dma_chan *dchan) |
| { |
| struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&chan->vc.lock, flags); |
| if (vchan_issue_pending(&chan->vc)) |
| axi_chan_start_first_queued(chan); |
| spin_unlock_irqrestore(&chan->vc.lock, flags); |
| } |
| |
| static void dw_axi_dma_synchronize(struct dma_chan *dchan) |
| { |
| struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan); |
| |
| vchan_synchronize(&chan->vc); |
| } |
| |
| static int dma_chan_alloc_chan_resources(struct dma_chan *dchan) |
| { |
| struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan); |
| |
| /* ASSERT: channel is idle */ |
| if (axi_chan_is_hw_enable(chan)) { |
| dev_err(chan2dev(chan), "%s is non-idle!\n", |
| axi_chan_name(chan)); |
| return -EBUSY; |
| } |
| |
| /* LLI address must be aligned to a 64-byte boundary */ |
| chan->desc_pool = dma_pool_create(dev_name(chan2dev(chan)), |
| chan->chip->dev, |
| sizeof(struct axi_dma_lli), |
| 64, 0); |
| if (!chan->desc_pool) { |
| dev_err(chan2dev(chan), "No memory for descriptors\n"); |
| return -ENOMEM; |
| } |
| dev_vdbg(dchan2dev(dchan), "%s: allocating\n", axi_chan_name(chan)); |
| |
| pm_runtime_get(chan->chip->dev); |
| |
| return 0; |
| } |
| |
| static void dma_chan_free_chan_resources(struct dma_chan *dchan) |
| { |
| struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan); |
| |
| /* ASSERT: channel is idle */ |
| if (axi_chan_is_hw_enable(chan)) |
| dev_err(dchan2dev(dchan), "%s is non-idle!\n", |
| axi_chan_name(chan)); |
| |
| axi_chan_disable(chan); |
| axi_chan_irq_disable(chan, DWAXIDMAC_IRQ_ALL); |
| |
| vchan_free_chan_resources(&chan->vc); |
| |
| dma_pool_destroy(chan->desc_pool); |
| chan->desc_pool = NULL; |
| dev_vdbg(dchan2dev(dchan), |
| "%s: free resources, descriptor still allocated: %u\n", |
| axi_chan_name(chan), atomic_read(&chan->descs_allocated)); |
| |
| pm_runtime_put(chan->chip->dev); |
| } |
| |
| static void dw_axi_dma_set_hw_channel(struct axi_dma_chan *chan, bool set) |
| { |
| struct axi_dma_chip *chip = chan->chip; |
| unsigned long reg_value, val; |
| |
| if (!chip->apb_regs) { |
| dev_err(chip->dev, "apb_regs not initialized\n"); |
| return; |
| } |
| |
| /* |
| * An unused DMA channel has a default value of 0x3F. |
| * Lock the DMA channel by assign a handshake number to the channel. |
| * Unlock the DMA channel by assign 0x3F to the channel. |
| */ |
| if (set) |
| val = chan->hw_handshake_num; |
| else |
| val = UNUSED_CHANNEL; |
| |
| reg_value = lo_hi_readq(chip->apb_regs + DMAC_APB_HW_HS_SEL_0); |
| |
| /* Channel is already allocated, set handshake as per channel ID */ |
| /* 64 bit write should handle for 8 channels */ |
| |
| reg_value &= ~(DMA_APB_HS_SEL_MASK << |
| (chan->id * DMA_APB_HS_SEL_BIT_SIZE)); |
| reg_value |= (val << (chan->id * DMA_APB_HS_SEL_BIT_SIZE)); |
| lo_hi_writeq(reg_value, chip->apb_regs + DMAC_APB_HW_HS_SEL_0); |
| |
| return; |
| } |
| |
| /* |
| * If DW_axi_dmac sees CHx_CTL.ShadowReg_Or_LLI_Last bit of the fetched LLI |
| * as 1, it understands that the current block is the final block in the |
| * transfer and completes the DMA transfer operation at the end of current |
| * block transfer. |
| */ |
| static void set_desc_last(struct axi_dma_hw_desc *desc) |
| { |
| u32 val; |
| |
| val = le32_to_cpu(desc->lli->ctl_hi); |
| val |= CH_CTL_H_LLI_LAST; |
| desc->lli->ctl_hi = cpu_to_le32(val); |
| } |
| |
| static void write_desc_sar(struct axi_dma_hw_desc *desc, dma_addr_t adr) |
| { |
| desc->lli->sar = cpu_to_le64(adr); |
| } |
| |
| static void write_desc_dar(struct axi_dma_hw_desc *desc, dma_addr_t adr) |
| { |
| desc->lli->dar = cpu_to_le64(adr); |
| } |
| |
| static void set_desc_src_master(struct axi_dma_hw_desc *desc) |
| { |
| u32 val; |
| |
| /* Select AXI0 for source master */ |
| val = le32_to_cpu(desc->lli->ctl_lo); |
| val &= ~CH_CTL_L_SRC_MAST; |
| desc->lli->ctl_lo = cpu_to_le32(val); |
| } |
| |
| static void set_desc_dest_master(struct axi_dma_hw_desc *hw_desc, |
| struct axi_dma_desc *desc) |
| { |
| u32 val; |
| |
| /* Select AXI1 for source master if available */ |
| val = le32_to_cpu(hw_desc->lli->ctl_lo); |
| if (desc->chan->chip->dw->hdata->nr_masters > 1) |
| val |= CH_CTL_L_DST_MAST; |
| else |
| val &= ~CH_CTL_L_DST_MAST; |
| |
| hw_desc->lli->ctl_lo = cpu_to_le32(val); |
| } |
| |
| static int dw_axi_dma_set_hw_desc(struct axi_dma_chan *chan, |
| struct axi_dma_hw_desc *hw_desc, |
| dma_addr_t mem_addr, size_t len) |
| { |
| unsigned int data_width = BIT(chan->chip->dw->hdata->m_data_width); |
| unsigned int reg_width; |
| unsigned int mem_width; |
| dma_addr_t device_addr; |
| size_t axi_block_ts; |
| size_t block_ts; |
| u32 ctllo, ctlhi; |
| u32 burst_len; |
| |
| axi_block_ts = chan->chip->dw->hdata->block_size[chan->id]; |
| |
| mem_width = __ffs(data_width | mem_addr | len); |
| if (mem_width > DWAXIDMAC_TRANS_WIDTH_32) |
| mem_width = DWAXIDMAC_TRANS_WIDTH_32; |
| |
| if (!IS_ALIGNED(mem_addr, 4)) { |
| dev_err(chan->chip->dev, "invalid buffer alignment\n"); |
| return -EINVAL; |
| } |
| |
| switch (chan->direction) { |
| case DMA_MEM_TO_DEV: |
| reg_width = __ffs(chan->config.dst_addr_width); |
| device_addr = chan->config.dst_addr; |
| ctllo = reg_width << CH_CTL_L_DST_WIDTH_POS | |
| mem_width << CH_CTL_L_SRC_WIDTH_POS | |
| DWAXIDMAC_CH_CTL_L_NOINC << CH_CTL_L_DST_INC_POS | |
| DWAXIDMAC_CH_CTL_L_INC << CH_CTL_L_SRC_INC_POS; |
| block_ts = len >> mem_width; |
| break; |
| case DMA_DEV_TO_MEM: |
| reg_width = __ffs(chan->config.src_addr_width); |
| device_addr = chan->config.src_addr; |
| ctllo = reg_width << CH_CTL_L_SRC_WIDTH_POS | |
| mem_width << CH_CTL_L_DST_WIDTH_POS | |
| DWAXIDMAC_CH_CTL_L_INC << CH_CTL_L_DST_INC_POS | |
| DWAXIDMAC_CH_CTL_L_NOINC << CH_CTL_L_SRC_INC_POS; |
| block_ts = len >> reg_width; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| if (block_ts > axi_block_ts) |
| return -EINVAL; |
| |
| hw_desc->lli = axi_desc_get(chan, &hw_desc->llp); |
| if (unlikely(!hw_desc->lli)) |
| return -ENOMEM; |
| |
| ctlhi = CH_CTL_H_LLI_VALID; |
| |
| if (chan->chip->dw->hdata->restrict_axi_burst_len) { |
| burst_len = chan->chip->dw->hdata->axi_rw_burst_len; |
| ctlhi |= CH_CTL_H_ARLEN_EN | CH_CTL_H_AWLEN_EN | |
| burst_len << CH_CTL_H_ARLEN_POS | |
| burst_len << CH_CTL_H_AWLEN_POS; |
| } |
| |
| hw_desc->lli->ctl_hi = cpu_to_le32(ctlhi); |
| |
| if (chan->direction == DMA_MEM_TO_DEV) { |
| write_desc_sar(hw_desc, mem_addr); |
| write_desc_dar(hw_desc, device_addr); |
| } else { |
| write_desc_sar(hw_desc, device_addr); |
| write_desc_dar(hw_desc, mem_addr); |
| } |
| |
| hw_desc->lli->block_ts_lo = cpu_to_le32(block_ts - 1); |
| |
| ctllo |= DWAXIDMAC_BURST_TRANS_LEN_4 << CH_CTL_L_DST_MSIZE_POS | |
| DWAXIDMAC_BURST_TRANS_LEN_4 << CH_CTL_L_SRC_MSIZE_POS; |
| hw_desc->lli->ctl_lo = cpu_to_le32(ctllo); |
| |
| set_desc_src_master(hw_desc); |
| |
| hw_desc->len = len; |
| return 0; |
| } |
| |
| static size_t calculate_block_len(struct axi_dma_chan *chan, |
| dma_addr_t dma_addr, size_t buf_len, |
| enum dma_transfer_direction direction) |
| { |
| u32 data_width, reg_width, mem_width; |
| size_t axi_block_ts, block_len; |
| |
| axi_block_ts = chan->chip->dw->hdata->block_size[chan->id]; |
| |
| switch (direction) { |
| case DMA_MEM_TO_DEV: |
| data_width = BIT(chan->chip->dw->hdata->m_data_width); |
| mem_width = __ffs(data_width | dma_addr | buf_len); |
| if (mem_width > DWAXIDMAC_TRANS_WIDTH_32) |
| mem_width = DWAXIDMAC_TRANS_WIDTH_32; |
| |
| block_len = axi_block_ts << mem_width; |
| break; |
| case DMA_DEV_TO_MEM: |
| reg_width = __ffs(chan->config.src_addr_width); |
| block_len = axi_block_ts << reg_width; |
| break; |
| default: |
| block_len = 0; |
| } |
| |
| return block_len; |
| } |
| |
| static struct dma_async_tx_descriptor * |
| dw_axi_dma_chan_prep_cyclic(struct dma_chan *dchan, dma_addr_t dma_addr, |
| size_t buf_len, size_t period_len, |
| enum dma_transfer_direction direction, |
| unsigned long flags) |
| { |
| struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan); |
| struct axi_dma_hw_desc *hw_desc = NULL; |
| struct axi_dma_desc *desc = NULL; |
| dma_addr_t src_addr = dma_addr; |
| u32 num_periods, num_segments; |
| size_t axi_block_len; |
| u32 total_segments; |
| u32 segment_len; |
| unsigned int i; |
| int status; |
| u64 llp = 0; |
| u8 lms = 0; /* Select AXI0 master for LLI fetching */ |
| |
| num_periods = buf_len / period_len; |
| |
| axi_block_len = calculate_block_len(chan, dma_addr, buf_len, direction); |
| if (axi_block_len == 0) |
| return NULL; |
| |
| num_segments = DIV_ROUND_UP(period_len, axi_block_len); |
| segment_len = DIV_ROUND_UP(period_len, num_segments); |
| |
| total_segments = num_periods * num_segments; |
| |
| desc = axi_desc_alloc(total_segments); |
| if (unlikely(!desc)) |
| goto err_desc_get; |
| |
| chan->direction = direction; |
| desc->chan = chan; |
| chan->cyclic = true; |
| desc->length = 0; |
| desc->period_len = period_len; |
| |
| for (i = 0; i < total_segments; i++) { |
| hw_desc = &desc->hw_desc[i]; |
| |
| status = dw_axi_dma_set_hw_desc(chan, hw_desc, src_addr, |
| segment_len); |
| if (status < 0) |
| goto err_desc_get; |
| |
| desc->length += hw_desc->len; |
| /* Set end-of-link to the linked descriptor, so that cyclic |
| * callback function can be triggered during interrupt. |
| */ |
| set_desc_last(hw_desc); |
| |
| src_addr += segment_len; |
| } |
| |
| llp = desc->hw_desc[0].llp; |
| |
| /* Managed transfer list */ |
| do { |
| hw_desc = &desc->hw_desc[--total_segments]; |
| write_desc_llp(hw_desc, llp | lms); |
| llp = hw_desc->llp; |
| } while (total_segments); |
| |
| dw_axi_dma_set_hw_channel(chan, true); |
| |
| return vchan_tx_prep(&chan->vc, &desc->vd, flags); |
| |
| err_desc_get: |
| if (desc) |
| axi_desc_put(desc); |
| |
| return NULL; |
| } |
| |
| static struct dma_async_tx_descriptor * |
| dw_axi_dma_chan_prep_slave_sg(struct dma_chan *dchan, struct scatterlist *sgl, |
| unsigned int sg_len, |
| enum dma_transfer_direction direction, |
| unsigned long flags, void *context) |
| { |
| struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan); |
| struct axi_dma_hw_desc *hw_desc = NULL; |
| struct axi_dma_desc *desc = NULL; |
| u32 num_segments, segment_len; |
| unsigned int loop = 0; |
| struct scatterlist *sg; |
| size_t axi_block_len; |
| u32 len, num_sgs = 0; |
| unsigned int i; |
| dma_addr_t mem; |
| int status; |
| u64 llp = 0; |
| u8 lms = 0; /* Select AXI0 master for LLI fetching */ |
| |
| if (unlikely(!is_slave_direction(direction) || !sg_len)) |
| return NULL; |
| |
| mem = sg_dma_address(sgl); |
| len = sg_dma_len(sgl); |
| |
| axi_block_len = calculate_block_len(chan, mem, len, direction); |
| if (axi_block_len == 0) |
| return NULL; |
| |
| for_each_sg(sgl, sg, sg_len, i) |
| num_sgs += DIV_ROUND_UP(sg_dma_len(sg), axi_block_len); |
| |
| desc = axi_desc_alloc(num_sgs); |
| if (unlikely(!desc)) |
| goto err_desc_get; |
| |
| desc->chan = chan; |
| desc->length = 0; |
| chan->direction = direction; |
| |
| for_each_sg(sgl, sg, sg_len, i) { |
| mem = sg_dma_address(sg); |
| len = sg_dma_len(sg); |
| num_segments = DIV_ROUND_UP(sg_dma_len(sg), axi_block_len); |
| segment_len = DIV_ROUND_UP(sg_dma_len(sg), num_segments); |
| |
| do { |
| hw_desc = &desc->hw_desc[loop++]; |
| status = dw_axi_dma_set_hw_desc(chan, hw_desc, mem, segment_len); |
| if (status < 0) |
| goto err_desc_get; |
| |
| desc->length += hw_desc->len; |
| len -= segment_len; |
| mem += segment_len; |
| } while (len >= segment_len); |
| } |
| |
| /* Set end-of-link to the last link descriptor of list */ |
| set_desc_last(&desc->hw_desc[num_sgs - 1]); |
| |
| /* Managed transfer list */ |
| do { |
| hw_desc = &desc->hw_desc[--num_sgs]; |
| write_desc_llp(hw_desc, llp | lms); |
| llp = hw_desc->llp; |
| } while (num_sgs); |
| |
| dw_axi_dma_set_hw_channel(chan, true); |
| |
| return vchan_tx_prep(&chan->vc, &desc->vd, flags); |
| |
| err_desc_get: |
| if (desc) |
| axi_desc_put(desc); |
| |
| return NULL; |
| } |
| |
| static struct dma_async_tx_descriptor * |
| dma_chan_prep_dma_memcpy(struct dma_chan *dchan, dma_addr_t dst_adr, |
| dma_addr_t src_adr, size_t len, unsigned long flags) |
| { |
| struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan); |
| size_t block_ts, max_block_ts, xfer_len; |
| struct axi_dma_hw_desc *hw_desc = NULL; |
| struct axi_dma_desc *desc = NULL; |
| u32 xfer_width, reg, num; |
| u64 llp = 0; |
| u8 lms = 0; /* Select AXI0 master for LLI fetching */ |
| |
| dev_dbg(chan2dev(chan), "%s: memcpy: src: %pad dst: %pad length: %zd flags: %#lx", |
| axi_chan_name(chan), &src_adr, &dst_adr, len, flags); |
| |
| max_block_ts = chan->chip->dw->hdata->block_size[chan->id]; |
| xfer_width = axi_chan_get_xfer_width(chan, src_adr, dst_adr, len); |
| num = DIV_ROUND_UP(len, max_block_ts << xfer_width); |
| desc = axi_desc_alloc(num); |
| if (unlikely(!desc)) |
| goto err_desc_get; |
| |
| desc->chan = chan; |
| num = 0; |
| desc->length = 0; |
| while (len) { |
| xfer_len = len; |
| |
| hw_desc = &desc->hw_desc[num]; |
| /* |
| * Take care for the alignment. |
| * Actually source and destination widths can be different, but |
| * make them same to be simpler. |
| */ |
| xfer_width = axi_chan_get_xfer_width(chan, src_adr, dst_adr, xfer_len); |
| |
| /* |
| * block_ts indicates the total number of data of width |
| * to be transferred in a DMA block transfer. |
| * BLOCK_TS register should be set to block_ts - 1 |
| */ |
| block_ts = xfer_len >> xfer_width; |
| if (block_ts > max_block_ts) { |
| block_ts = max_block_ts; |
| xfer_len = max_block_ts << xfer_width; |
| } |
| |
| hw_desc->lli = axi_desc_get(chan, &hw_desc->llp); |
| if (unlikely(!hw_desc->lli)) |
| goto err_desc_get; |
| |
| write_desc_sar(hw_desc, src_adr); |
| write_desc_dar(hw_desc, dst_adr); |
| hw_desc->lli->block_ts_lo = cpu_to_le32(block_ts - 1); |
| |
| reg = CH_CTL_H_LLI_VALID; |
| if (chan->chip->dw->hdata->restrict_axi_burst_len) { |
| u32 burst_len = chan->chip->dw->hdata->axi_rw_burst_len; |
| |
| reg |= (CH_CTL_H_ARLEN_EN | |
| burst_len << CH_CTL_H_ARLEN_POS | |
| CH_CTL_H_AWLEN_EN | |
| burst_len << CH_CTL_H_AWLEN_POS); |
| } |
| hw_desc->lli->ctl_hi = cpu_to_le32(reg); |
| |
| reg = (DWAXIDMAC_BURST_TRANS_LEN_4 << CH_CTL_L_DST_MSIZE_POS | |
| DWAXIDMAC_BURST_TRANS_LEN_4 << CH_CTL_L_SRC_MSIZE_POS | |
| xfer_width << CH_CTL_L_DST_WIDTH_POS | |
| xfer_width << CH_CTL_L_SRC_WIDTH_POS | |
| DWAXIDMAC_CH_CTL_L_INC << CH_CTL_L_DST_INC_POS | |
| DWAXIDMAC_CH_CTL_L_INC << CH_CTL_L_SRC_INC_POS); |
| hw_desc->lli->ctl_lo = cpu_to_le32(reg); |
| |
| set_desc_src_master(hw_desc); |
| set_desc_dest_master(hw_desc, desc); |
| |
| hw_desc->len = xfer_len; |
| desc->length += hw_desc->len; |
| /* update the length and addresses for the next loop cycle */ |
| len -= xfer_len; |
| dst_adr += xfer_len; |
| src_adr += xfer_len; |
| num++; |
| } |
| |
| /* Set end-of-link to the last link descriptor of list */ |
| set_desc_last(&desc->hw_desc[num - 1]); |
| /* Managed transfer list */ |
| do { |
| hw_desc = &desc->hw_desc[--num]; |
| write_desc_llp(hw_desc, llp | lms); |
| llp = hw_desc->llp; |
| } while (num); |
| |
| return vchan_tx_prep(&chan->vc, &desc->vd, flags); |
| |
| err_desc_get: |
| if (desc) |
| axi_desc_put(desc); |
| return NULL; |
| } |
| |
| static int dw_axi_dma_chan_slave_config(struct dma_chan *dchan, |
| struct dma_slave_config *config) |
| { |
| struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan); |
| |
| memcpy(&chan->config, config, sizeof(*config)); |
| |
| return 0; |
| } |
| |
| static void axi_chan_dump_lli(struct axi_dma_chan *chan, |
| struct axi_dma_hw_desc *desc) |
| { |
| if (!desc->lli) { |
| dev_err(dchan2dev(&chan->vc.chan), "NULL LLI\n"); |
| return; |
| } |
| |
| dev_err(dchan2dev(&chan->vc.chan), |
| "SAR: 0x%llx DAR: 0x%llx LLP: 0x%llx BTS 0x%x CTL: 0x%x:%08x", |
| le64_to_cpu(desc->lli->sar), |
| le64_to_cpu(desc->lli->dar), |
| le64_to_cpu(desc->lli->llp), |
| le32_to_cpu(desc->lli->block_ts_lo), |
| le32_to_cpu(desc->lli->ctl_hi), |
| le32_to_cpu(desc->lli->ctl_lo)); |
| } |
| |
| static void axi_chan_list_dump_lli(struct axi_dma_chan *chan, |
| struct axi_dma_desc *desc_head) |
| { |
| int count = atomic_read(&chan->descs_allocated); |
| int i; |
| |
| for (i = 0; i < count; i++) |
| axi_chan_dump_lli(chan, &desc_head->hw_desc[i]); |
| } |
| |
| static noinline void axi_chan_handle_err(struct axi_dma_chan *chan, u32 status) |
| { |
| struct virt_dma_desc *vd; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&chan->vc.lock, flags); |
| |
| axi_chan_disable(chan); |
| |
| /* The bad descriptor currently is in the head of vc list */ |
| vd = vchan_next_desc(&chan->vc); |
| if (!vd) { |
| dev_err(chan2dev(chan), "BUG: %s, IRQ with no descriptors\n", |
| axi_chan_name(chan)); |
| goto out; |
| } |
| /* Remove the completed descriptor from issued list */ |
| list_del(&vd->node); |
| |
| /* WARN about bad descriptor */ |
| dev_err(chan2dev(chan), |
| "Bad descriptor submitted for %s, cookie: %d, irq: 0x%08x\n", |
| axi_chan_name(chan), vd->tx.cookie, status); |
| axi_chan_list_dump_lli(chan, vd_to_axi_desc(vd)); |
| |
| vchan_cookie_complete(vd); |
| |
| /* Try to restart the controller */ |
| axi_chan_start_first_queued(chan); |
| |
| out: |
| spin_unlock_irqrestore(&chan->vc.lock, flags); |
| } |
| |
| static void axi_chan_block_xfer_complete(struct axi_dma_chan *chan) |
| { |
| int count = atomic_read(&chan->descs_allocated); |
| struct axi_dma_hw_desc *hw_desc; |
| struct axi_dma_desc *desc; |
| struct virt_dma_desc *vd; |
| unsigned long flags; |
| u64 llp; |
| int i; |
| |
| spin_lock_irqsave(&chan->vc.lock, flags); |
| if (unlikely(axi_chan_is_hw_enable(chan))) { |
| dev_err(chan2dev(chan), "BUG: %s caught DWAXIDMAC_IRQ_DMA_TRF, but channel not idle!\n", |
| axi_chan_name(chan)); |
| axi_chan_disable(chan); |
| } |
| |
| /* The completed descriptor currently is in the head of vc list */ |
| vd = vchan_next_desc(&chan->vc); |
| if (!vd) { |
| dev_err(chan2dev(chan), "BUG: %s, IRQ with no descriptors\n", |
| axi_chan_name(chan)); |
| goto out; |
| } |
| |
| if (chan->cyclic) { |
| desc = vd_to_axi_desc(vd); |
| if (desc) { |
| llp = lo_hi_readq(chan->chan_regs + CH_LLP); |
| for (i = 0; i < count; i++) { |
| hw_desc = &desc->hw_desc[i]; |
| if (hw_desc->llp == llp) { |
| axi_chan_irq_clear(chan, hw_desc->lli->status_lo); |
| hw_desc->lli->ctl_hi |= CH_CTL_H_LLI_VALID; |
| desc->completed_blocks = i; |
| |
| if (((hw_desc->len * (i + 1)) % desc->period_len) == 0) |
| vchan_cyclic_callback(vd); |
| break; |
| } |
| } |
| |
| axi_chan_enable(chan); |
| } |
| } else { |
| /* Remove the completed descriptor from issued list before completing */ |
| list_del(&vd->node); |
| vchan_cookie_complete(vd); |
| |
| /* Submit queued descriptors after processing the completed ones */ |
| axi_chan_start_first_queued(chan); |
| } |
| |
| out: |
| spin_unlock_irqrestore(&chan->vc.lock, flags); |
| } |
| |
| static irqreturn_t dw_axi_dma_interrupt(int irq, void *dev_id) |
| { |
| struct axi_dma_chip *chip = dev_id; |
| struct dw_axi_dma *dw = chip->dw; |
| struct axi_dma_chan *chan; |
| |
| u32 status, i; |
| |
| /* Disable DMAC interrupts. We'll enable them after processing channels */ |
| axi_dma_irq_disable(chip); |
| |
| /* Poll, clear and process every channel interrupt status */ |
| for (i = 0; i < dw->hdata->nr_channels; i++) { |
| chan = &dw->chan[i]; |
| status = axi_chan_irq_read(chan); |
| axi_chan_irq_clear(chan, status); |
| |
| dev_vdbg(chip->dev, "%s %u IRQ status: 0x%08x\n", |
| axi_chan_name(chan), i, status); |
| |
| if (status & DWAXIDMAC_IRQ_ALL_ERR) |
| axi_chan_handle_err(chan, status); |
| else if (status & DWAXIDMAC_IRQ_DMA_TRF) |
| axi_chan_block_xfer_complete(chan); |
| } |
| |
| /* Re-enable interrupts */ |
| axi_dma_irq_enable(chip); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static int dma_chan_terminate_all(struct dma_chan *dchan) |
| { |
| struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan); |
| u32 chan_active = BIT(chan->id) << DMAC_CHAN_EN_SHIFT; |
| unsigned long flags; |
| u32 val; |
| int ret; |
| LIST_HEAD(head); |
| |
| axi_chan_disable(chan); |
| |
| ret = readl_poll_timeout_atomic(chan->chip->regs + DMAC_CHEN, val, |
| !(val & chan_active), 1000, 50000); |
| if (ret == -ETIMEDOUT) |
| dev_warn(dchan2dev(dchan), |
| "%s failed to stop\n", axi_chan_name(chan)); |
| |
| if (chan->direction != DMA_MEM_TO_MEM) |
| dw_axi_dma_set_hw_channel(chan, false); |
| if (chan->direction == DMA_MEM_TO_DEV) |
| dw_axi_dma_set_byte_halfword(chan, false); |
| |
| spin_lock_irqsave(&chan->vc.lock, flags); |
| |
| vchan_get_all_descriptors(&chan->vc, &head); |
| |
| chan->cyclic = false; |
| spin_unlock_irqrestore(&chan->vc.lock, flags); |
| |
| vchan_dma_desc_free_list(&chan->vc, &head); |
| |
| dev_vdbg(dchan2dev(dchan), "terminated: %s\n", axi_chan_name(chan)); |
| |
| return 0; |
| } |
| |
| static int dma_chan_pause(struct dma_chan *dchan) |
| { |
| struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan); |
| unsigned long flags; |
| unsigned int timeout = 20; /* timeout iterations */ |
| u32 val; |
| |
| spin_lock_irqsave(&chan->vc.lock, flags); |
| |
| if (chan->chip->dw->hdata->reg_map_8_channels) { |
| val = axi_dma_ioread32(chan->chip, DMAC_CHEN); |
| val |= BIT(chan->id) << DMAC_CHAN_SUSP_SHIFT | |
| BIT(chan->id) << DMAC_CHAN_SUSP_WE_SHIFT; |
| axi_dma_iowrite32(chan->chip, DMAC_CHEN, val); |
| } else { |
| val = axi_dma_ioread32(chan->chip, DMAC_CHSUSPREG); |
| val |= BIT(chan->id) << DMAC_CHAN_SUSP2_SHIFT | |
| BIT(chan->id) << DMAC_CHAN_SUSP2_WE_SHIFT; |
| axi_dma_iowrite32(chan->chip, DMAC_CHSUSPREG, val); |
| } |
| |
| do { |
| if (axi_chan_irq_read(chan) & DWAXIDMAC_IRQ_SUSPENDED) |
| break; |
| |
| udelay(2); |
| } while (--timeout); |
| |
| axi_chan_irq_clear(chan, DWAXIDMAC_IRQ_SUSPENDED); |
| |
| chan->is_paused = true; |
| |
| spin_unlock_irqrestore(&chan->vc.lock, flags); |
| |
| return timeout ? 0 : -EAGAIN; |
| } |
| |
| /* Called in chan locked context */ |
| static inline void axi_chan_resume(struct axi_dma_chan *chan) |
| { |
| u32 val; |
| |
| if (chan->chip->dw->hdata->reg_map_8_channels) { |
| val = axi_dma_ioread32(chan->chip, DMAC_CHEN); |
| val &= ~(BIT(chan->id) << DMAC_CHAN_SUSP_SHIFT); |
| val |= (BIT(chan->id) << DMAC_CHAN_SUSP_WE_SHIFT); |
| axi_dma_iowrite32(chan->chip, DMAC_CHEN, val); |
| } else { |
| val = axi_dma_ioread32(chan->chip, DMAC_CHSUSPREG); |
| val &= ~(BIT(chan->id) << DMAC_CHAN_SUSP2_SHIFT); |
| val |= (BIT(chan->id) << DMAC_CHAN_SUSP2_WE_SHIFT); |
| axi_dma_iowrite32(chan->chip, DMAC_CHSUSPREG, val); |
| } |
| |
| chan->is_paused = false; |
| } |
| |
| static int dma_chan_resume(struct dma_chan *dchan) |
| { |
| struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&chan->vc.lock, flags); |
| |
| if (chan->is_paused) |
| axi_chan_resume(chan); |
| |
| spin_unlock_irqrestore(&chan->vc.lock, flags); |
| |
| return 0; |
| } |
| |
| static int axi_dma_suspend(struct axi_dma_chip *chip) |
| { |
| axi_dma_irq_disable(chip); |
| axi_dma_disable(chip); |
| |
| clk_disable_unprepare(chip->core_clk); |
| clk_disable_unprepare(chip->cfgr_clk); |
| |
| return 0; |
| } |
| |
| static int axi_dma_resume(struct axi_dma_chip *chip) |
| { |
| int ret; |
| |
| ret = clk_prepare_enable(chip->cfgr_clk); |
| if (ret < 0) |
| return ret; |
| |
| ret = clk_prepare_enable(chip->core_clk); |
| if (ret < 0) |
| return ret; |
| |
| axi_dma_enable(chip); |
| axi_dma_irq_enable(chip); |
| |
| return 0; |
| } |
| |
| static int __maybe_unused axi_dma_runtime_suspend(struct device *dev) |
| { |
| struct axi_dma_chip *chip = dev_get_drvdata(dev); |
| |
| return axi_dma_suspend(chip); |
| } |
| |
| static int __maybe_unused axi_dma_runtime_resume(struct device *dev) |
| { |
| struct axi_dma_chip *chip = dev_get_drvdata(dev); |
| |
| return axi_dma_resume(chip); |
| } |
| |
| static struct dma_chan *dw_axi_dma_of_xlate(struct of_phandle_args *dma_spec, |
| struct of_dma *ofdma) |
| { |
| struct dw_axi_dma *dw = ofdma->of_dma_data; |
| struct axi_dma_chan *chan; |
| struct dma_chan *dchan; |
| |
| dchan = dma_get_any_slave_channel(&dw->dma); |
| if (!dchan) |
| return NULL; |
| |
| chan = dchan_to_axi_dma_chan(dchan); |
| chan->hw_handshake_num = dma_spec->args[0]; |
| return dchan; |
| } |
| |
| static int parse_device_properties(struct axi_dma_chip *chip) |
| { |
| struct device *dev = chip->dev; |
| u32 tmp, carr[DMAC_MAX_CHANNELS]; |
| int ret; |
| |
| ret = device_property_read_u32(dev, "dma-channels", &tmp); |
| if (ret) |
| return ret; |
| if (tmp == 0 || tmp > DMAC_MAX_CHANNELS) |
| return -EINVAL; |
| |
| chip->dw->hdata->nr_channels = tmp; |
| if (tmp <= DMA_REG_MAP_CH_REF) |
| chip->dw->hdata->reg_map_8_channels = true; |
| |
| ret = device_property_read_u32(dev, "snps,dma-masters", &tmp); |
| if (ret) |
| return ret; |
| if (tmp == 0 || tmp > DMAC_MAX_MASTERS) |
| return -EINVAL; |
| |
| chip->dw->hdata->nr_masters = tmp; |
| |
| ret = device_property_read_u32(dev, "snps,data-width", &tmp); |
| if (ret) |
| return ret; |
| if (tmp > DWAXIDMAC_TRANS_WIDTH_MAX) |
| return -EINVAL; |
| |
| chip->dw->hdata->m_data_width = tmp; |
| |
| ret = device_property_read_u32_array(dev, "snps,block-size", carr, |
| chip->dw->hdata->nr_channels); |
| if (ret) |
| return ret; |
| for (tmp = 0; tmp < chip->dw->hdata->nr_channels; tmp++) { |
| if (carr[tmp] == 0 || carr[tmp] > DMAC_MAX_BLK_SIZE) |
| return -EINVAL; |
| |
| chip->dw->hdata->block_size[tmp] = carr[tmp]; |
| } |
| |
| ret = device_property_read_u32_array(dev, "snps,priority", carr, |
| chip->dw->hdata->nr_channels); |
| if (ret) |
| return ret; |
| /* Priority value must be programmed within [0:nr_channels-1] range */ |
| for (tmp = 0; tmp < chip->dw->hdata->nr_channels; tmp++) { |
| if (carr[tmp] >= chip->dw->hdata->nr_channels) |
| return -EINVAL; |
| |
| chip->dw->hdata->priority[tmp] = carr[tmp]; |
| } |
| |
| /* axi-max-burst-len is optional property */ |
| ret = device_property_read_u32(dev, "snps,axi-max-burst-len", &tmp); |
| if (!ret) { |
| if (tmp > DWAXIDMAC_ARWLEN_MAX + 1) |
| return -EINVAL; |
| if (tmp < DWAXIDMAC_ARWLEN_MIN + 1) |
| return -EINVAL; |
| |
| chip->dw->hdata->restrict_axi_burst_len = true; |
| chip->dw->hdata->axi_rw_burst_len = tmp; |
| } |
| |
| return 0; |
| } |
| |
| static int dw_probe(struct platform_device *pdev) |
| { |
| struct axi_dma_chip *chip; |
| struct dw_axi_dma *dw; |
| struct dw_axi_dma_hcfg *hdata; |
| struct reset_control *resets; |
| unsigned int flags; |
| u32 i; |
| int ret; |
| |
| chip = devm_kzalloc(&pdev->dev, sizeof(*chip), GFP_KERNEL); |
| if (!chip) |
| return -ENOMEM; |
| |
| dw = devm_kzalloc(&pdev->dev, sizeof(*dw), GFP_KERNEL); |
| if (!dw) |
| return -ENOMEM; |
| |
| hdata = devm_kzalloc(&pdev->dev, sizeof(*hdata), GFP_KERNEL); |
| if (!hdata) |
| return -ENOMEM; |
| |
| chip->dw = dw; |
| chip->dev = &pdev->dev; |
| chip->dw->hdata = hdata; |
| |
| chip->irq = platform_get_irq(pdev, 0); |
| if (chip->irq < 0) |
| return chip->irq; |
| |
| chip->regs = devm_platform_ioremap_resource(pdev, 0); |
| if (IS_ERR(chip->regs)) |
| return PTR_ERR(chip->regs); |
| |
| flags = (uintptr_t)of_device_get_match_data(&pdev->dev); |
| if (flags & AXI_DMA_FLAG_HAS_APB_REGS) { |
| chip->apb_regs = devm_platform_ioremap_resource(pdev, 1); |
| if (IS_ERR(chip->apb_regs)) |
| return PTR_ERR(chip->apb_regs); |
| } |
| |
| if (flags & AXI_DMA_FLAG_HAS_RESETS) { |
| resets = devm_reset_control_array_get_exclusive(&pdev->dev); |
| if (IS_ERR(resets)) |
| return PTR_ERR(resets); |
| |
| ret = reset_control_deassert(resets); |
| if (ret) |
| return ret; |
| } |
| |
| chip->dw->hdata->use_cfg2 = !!(flags & AXI_DMA_FLAG_USE_CFG2); |
| |
| chip->core_clk = devm_clk_get(chip->dev, "core-clk"); |
| if (IS_ERR(chip->core_clk)) |
| return PTR_ERR(chip->core_clk); |
| |
| chip->cfgr_clk = devm_clk_get(chip->dev, "cfgr-clk"); |
| if (IS_ERR(chip->cfgr_clk)) |
| return PTR_ERR(chip->cfgr_clk); |
| |
| ret = parse_device_properties(chip); |
| if (ret) |
| return ret; |
| |
| dw->chan = devm_kcalloc(chip->dev, hdata->nr_channels, |
| sizeof(*dw->chan), GFP_KERNEL); |
| if (!dw->chan) |
| return -ENOMEM; |
| |
| ret = devm_request_irq(chip->dev, chip->irq, dw_axi_dma_interrupt, |
| IRQF_SHARED, KBUILD_MODNAME, chip); |
| if (ret) |
| return ret; |
| |
| INIT_LIST_HEAD(&dw->dma.channels); |
| for (i = 0; i < hdata->nr_channels; i++) { |
| struct axi_dma_chan *chan = &dw->chan[i]; |
| |
| chan->chip = chip; |
| chan->id = i; |
| chan->chan_regs = chip->regs + COMMON_REG_LEN + i * CHAN_REG_LEN; |
| atomic_set(&chan->descs_allocated, 0); |
| |
| chan->vc.desc_free = vchan_desc_put; |
| vchan_init(&chan->vc, &dw->dma); |
| } |
| |
| /* Set capabilities */ |
| dma_cap_set(DMA_MEMCPY, dw->dma.cap_mask); |
| dma_cap_set(DMA_SLAVE, dw->dma.cap_mask); |
| dma_cap_set(DMA_CYCLIC, dw->dma.cap_mask); |
| |
| /* DMA capabilities */ |
| dw->dma.chancnt = hdata->nr_channels; |
| dw->dma.max_burst = hdata->axi_rw_burst_len; |
| dw->dma.src_addr_widths = AXI_DMA_BUSWIDTHS; |
| dw->dma.dst_addr_widths = AXI_DMA_BUSWIDTHS; |
| dw->dma.directions = BIT(DMA_MEM_TO_MEM); |
| dw->dma.directions |= BIT(DMA_MEM_TO_DEV) | BIT(DMA_DEV_TO_MEM); |
| dw->dma.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; |
| |
| dw->dma.dev = chip->dev; |
| dw->dma.device_tx_status = dma_chan_tx_status; |
| dw->dma.device_issue_pending = dma_chan_issue_pending; |
| dw->dma.device_terminate_all = dma_chan_terminate_all; |
| dw->dma.device_pause = dma_chan_pause; |
| dw->dma.device_resume = dma_chan_resume; |
| |
| dw->dma.device_alloc_chan_resources = dma_chan_alloc_chan_resources; |
| dw->dma.device_free_chan_resources = dma_chan_free_chan_resources; |
| |
| dw->dma.device_prep_dma_memcpy = dma_chan_prep_dma_memcpy; |
| dw->dma.device_synchronize = dw_axi_dma_synchronize; |
| dw->dma.device_config = dw_axi_dma_chan_slave_config; |
| dw->dma.device_prep_slave_sg = dw_axi_dma_chan_prep_slave_sg; |
| dw->dma.device_prep_dma_cyclic = dw_axi_dma_chan_prep_cyclic; |
| |
| /* |
| * Synopsis DesignWare AxiDMA datasheet mentioned Maximum |
| * supported blocks is 1024. Device register width is 4 bytes. |
| * Therefore, set constraint to 1024 * 4. |
| */ |
| dw->dma.dev->dma_parms = &dw->dma_parms; |
| dma_set_max_seg_size(&pdev->dev, MAX_BLOCK_SIZE); |
| platform_set_drvdata(pdev, chip); |
| |
| pm_runtime_enable(chip->dev); |
| |
| /* |
| * We can't just call pm_runtime_get here instead of |
| * pm_runtime_get_noresume + axi_dma_resume because we need |
| * driver to work also without Runtime PM. |
| */ |
| pm_runtime_get_noresume(chip->dev); |
| ret = axi_dma_resume(chip); |
| if (ret < 0) |
| goto err_pm_disable; |
| |
| axi_dma_hw_init(chip); |
| |
| pm_runtime_put(chip->dev); |
| |
| ret = dmaenginem_async_device_register(&dw->dma); |
| if (ret) |
| goto err_pm_disable; |
| |
| /* Register with OF helpers for DMA lookups */ |
| ret = of_dma_controller_register(pdev->dev.of_node, |
| dw_axi_dma_of_xlate, dw); |
| if (ret < 0) |
| dev_warn(&pdev->dev, |
| "Failed to register OF DMA controller, fallback to MEM_TO_MEM mode\n"); |
| |
| dev_info(chip->dev, "DesignWare AXI DMA Controller, %d channels\n", |
| dw->hdata->nr_channels); |
| |
| return 0; |
| |
| err_pm_disable: |
| pm_runtime_disable(chip->dev); |
| |
| return ret; |
| } |
| |
| static int dw_remove(struct platform_device *pdev) |
| { |
| struct axi_dma_chip *chip = platform_get_drvdata(pdev); |
| struct dw_axi_dma *dw = chip->dw; |
| struct axi_dma_chan *chan, *_chan; |
| u32 i; |
| |
| /* Enable clk before accessing to registers */ |
| clk_prepare_enable(chip->cfgr_clk); |
| clk_prepare_enable(chip->core_clk); |
| axi_dma_irq_disable(chip); |
| for (i = 0; i < dw->hdata->nr_channels; i++) { |
| axi_chan_disable(&chip->dw->chan[i]); |
| axi_chan_irq_disable(&chip->dw->chan[i], DWAXIDMAC_IRQ_ALL); |
| } |
| axi_dma_disable(chip); |
| |
| pm_runtime_disable(chip->dev); |
| axi_dma_suspend(chip); |
| |
| devm_free_irq(chip->dev, chip->irq, chip); |
| |
| of_dma_controller_free(chip->dev->of_node); |
| |
| list_for_each_entry_safe(chan, _chan, &dw->dma.channels, |
| vc.chan.device_node) { |
| list_del(&chan->vc.chan.device_node); |
| tasklet_kill(&chan->vc.task); |
| } |
| |
| return 0; |
| } |
| |
| static const struct dev_pm_ops dw_axi_dma_pm_ops = { |
| SET_RUNTIME_PM_OPS(axi_dma_runtime_suspend, axi_dma_runtime_resume, NULL) |
| }; |
| |
| static const struct of_device_id dw_dma_of_id_table[] = { |
| { |
| .compatible = "snps,axi-dma-1.01a" |
| }, { |
| .compatible = "intel,kmb-axi-dma", |
| .data = (void *)AXI_DMA_FLAG_HAS_APB_REGS, |
| }, { |
| .compatible = "starfive,jh7110-axi-dma", |
| .data = (void *)(AXI_DMA_FLAG_HAS_RESETS | AXI_DMA_FLAG_USE_CFG2), |
| }, |
| {} |
| }; |
| MODULE_DEVICE_TABLE(of, dw_dma_of_id_table); |
| |
| static struct platform_driver dw_driver = { |
| .probe = dw_probe, |
| .remove = dw_remove, |
| .driver = { |
| .name = KBUILD_MODNAME, |
| .of_match_table = dw_dma_of_id_table, |
| .pm = &dw_axi_dma_pm_ops, |
| }, |
| }; |
| module_platform_driver(dw_driver); |
| |
| MODULE_LICENSE("GPL v2"); |
| MODULE_DESCRIPTION("Synopsys DesignWare AXI DMA Controller platform driver"); |
| MODULE_AUTHOR("Eugeniy Paltsev <Eugeniy.Paltsev@synopsys.com>"); |