| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (C) 2007 Oracle. All rights reserved. |
| */ |
| |
| #include <crypto/hash.h> |
| #include <linux/kernel.h> |
| #include <linux/bio.h> |
| #include <linux/blk-cgroup.h> |
| #include <linux/file.h> |
| #include <linux/fs.h> |
| #include <linux/pagemap.h> |
| #include <linux/highmem.h> |
| #include <linux/time.h> |
| #include <linux/init.h> |
| #include <linux/string.h> |
| #include <linux/backing-dev.h> |
| #include <linux/writeback.h> |
| #include <linux/compat.h> |
| #include <linux/xattr.h> |
| #include <linux/posix_acl.h> |
| #include <linux/falloc.h> |
| #include <linux/slab.h> |
| #include <linux/ratelimit.h> |
| #include <linux/btrfs.h> |
| #include <linux/blkdev.h> |
| #include <linux/posix_acl_xattr.h> |
| #include <linux/uio.h> |
| #include <linux/magic.h> |
| #include <linux/iversion.h> |
| #include <linux/swap.h> |
| #include <linux/migrate.h> |
| #include <linux/sched/mm.h> |
| #include <linux/iomap.h> |
| #include <asm/unaligned.h> |
| #include <linux/fsverity.h> |
| #include "misc.h" |
| #include "ctree.h" |
| #include "disk-io.h" |
| #include "transaction.h" |
| #include "btrfs_inode.h" |
| #include "print-tree.h" |
| #include "ordered-data.h" |
| #include "xattr.h" |
| #include "tree-log.h" |
| #include "bio.h" |
| #include "compression.h" |
| #include "locking.h" |
| #include "free-space-cache.h" |
| #include "props.h" |
| #include "qgroup.h" |
| #include "delalloc-space.h" |
| #include "block-group.h" |
| #include "space-info.h" |
| #include "zoned.h" |
| #include "subpage.h" |
| #include "inode-item.h" |
| #include "fs.h" |
| #include "accessors.h" |
| #include "extent-tree.h" |
| #include "root-tree.h" |
| #include "defrag.h" |
| #include "dir-item.h" |
| #include "file-item.h" |
| #include "uuid-tree.h" |
| #include "ioctl.h" |
| #include "file.h" |
| #include "acl.h" |
| #include "relocation.h" |
| #include "verity.h" |
| #include "super.h" |
| #include "orphan.h" |
| |
| struct btrfs_iget_args { |
| u64 ino; |
| struct btrfs_root *root; |
| }; |
| |
| struct btrfs_dio_data { |
| ssize_t submitted; |
| struct extent_changeset *data_reserved; |
| bool data_space_reserved; |
| bool nocow_done; |
| }; |
| |
| struct btrfs_dio_private { |
| /* Range of I/O */ |
| u64 file_offset; |
| u32 bytes; |
| |
| /* This must be last */ |
| struct btrfs_bio bbio; |
| }; |
| |
| static struct bio_set btrfs_dio_bioset; |
| |
| struct btrfs_rename_ctx { |
| /* Output field. Stores the index number of the old directory entry. */ |
| u64 index; |
| }; |
| |
| static const struct inode_operations btrfs_dir_inode_operations; |
| static const struct inode_operations btrfs_symlink_inode_operations; |
| static const struct inode_operations btrfs_special_inode_operations; |
| static const struct inode_operations btrfs_file_inode_operations; |
| static const struct address_space_operations btrfs_aops; |
| static const struct file_operations btrfs_dir_file_operations; |
| |
| static struct kmem_cache *btrfs_inode_cachep; |
| |
| static int btrfs_setsize(struct inode *inode, struct iattr *attr); |
| static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback); |
| static noinline int cow_file_range(struct btrfs_inode *inode, |
| struct page *locked_page, |
| u64 start, u64 end, int *page_started, |
| unsigned long *nr_written, int unlock, |
| u64 *done_offset); |
| static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start, |
| u64 len, u64 orig_start, u64 block_start, |
| u64 block_len, u64 orig_block_len, |
| u64 ram_bytes, int compress_type, |
| int type); |
| |
| static void __cold btrfs_print_data_csum_error(struct btrfs_inode *inode, |
| u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num) |
| { |
| struct btrfs_root *root = inode->root; |
| const u32 csum_size = root->fs_info->csum_size; |
| |
| /* Output without objectid, which is more meaningful */ |
| if (root->root_key.objectid >= BTRFS_LAST_FREE_OBJECTID) { |
| btrfs_warn_rl(root->fs_info, |
| "csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", |
| root->root_key.objectid, btrfs_ino(inode), |
| logical_start, |
| CSUM_FMT_VALUE(csum_size, csum), |
| CSUM_FMT_VALUE(csum_size, csum_expected), |
| mirror_num); |
| } else { |
| btrfs_warn_rl(root->fs_info, |
| "csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", |
| root->root_key.objectid, btrfs_ino(inode), |
| logical_start, |
| CSUM_FMT_VALUE(csum_size, csum), |
| CSUM_FMT_VALUE(csum_size, csum_expected), |
| mirror_num); |
| } |
| } |
| |
| /* |
| * btrfs_inode_lock - lock inode i_rwsem based on arguments passed |
| * |
| * ilock_flags can have the following bit set: |
| * |
| * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode |
| * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt |
| * return -EAGAIN |
| * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock |
| */ |
| int btrfs_inode_lock(struct btrfs_inode *inode, unsigned int ilock_flags) |
| { |
| if (ilock_flags & BTRFS_ILOCK_SHARED) { |
| if (ilock_flags & BTRFS_ILOCK_TRY) { |
| if (!inode_trylock_shared(&inode->vfs_inode)) |
| return -EAGAIN; |
| else |
| return 0; |
| } |
| inode_lock_shared(&inode->vfs_inode); |
| } else { |
| if (ilock_flags & BTRFS_ILOCK_TRY) { |
| if (!inode_trylock(&inode->vfs_inode)) |
| return -EAGAIN; |
| else |
| return 0; |
| } |
| inode_lock(&inode->vfs_inode); |
| } |
| if (ilock_flags & BTRFS_ILOCK_MMAP) |
| down_write(&inode->i_mmap_lock); |
| return 0; |
| } |
| |
| /* |
| * btrfs_inode_unlock - unock inode i_rwsem |
| * |
| * ilock_flags should contain the same bits set as passed to btrfs_inode_lock() |
| * to decide whether the lock acquired is shared or exclusive. |
| */ |
| void btrfs_inode_unlock(struct btrfs_inode *inode, unsigned int ilock_flags) |
| { |
| if (ilock_flags & BTRFS_ILOCK_MMAP) |
| up_write(&inode->i_mmap_lock); |
| if (ilock_flags & BTRFS_ILOCK_SHARED) |
| inode_unlock_shared(&inode->vfs_inode); |
| else |
| inode_unlock(&inode->vfs_inode); |
| } |
| |
| /* |
| * Cleanup all submitted ordered extents in specified range to handle errors |
| * from the btrfs_run_delalloc_range() callback. |
| * |
| * NOTE: caller must ensure that when an error happens, it can not call |
| * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING |
| * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata |
| * to be released, which we want to happen only when finishing the ordered |
| * extent (btrfs_finish_ordered_io()). |
| */ |
| static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode, |
| struct page *locked_page, |
| u64 offset, u64 bytes) |
| { |
| unsigned long index = offset >> PAGE_SHIFT; |
| unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT; |
| u64 page_start = 0, page_end = 0; |
| struct page *page; |
| |
| if (locked_page) { |
| page_start = page_offset(locked_page); |
| page_end = page_start + PAGE_SIZE - 1; |
| } |
| |
| while (index <= end_index) { |
| /* |
| * For locked page, we will call end_extent_writepage() on it |
| * in run_delalloc_range() for the error handling. That |
| * end_extent_writepage() function will call |
| * btrfs_mark_ordered_io_finished() to clear page Ordered and |
| * run the ordered extent accounting. |
| * |
| * Here we can't just clear the Ordered bit, or |
| * btrfs_mark_ordered_io_finished() would skip the accounting |
| * for the page range, and the ordered extent will never finish. |
| */ |
| if (locked_page && index == (page_start >> PAGE_SHIFT)) { |
| index++; |
| continue; |
| } |
| page = find_get_page(inode->vfs_inode.i_mapping, index); |
| index++; |
| if (!page) |
| continue; |
| |
| /* |
| * Here we just clear all Ordered bits for every page in the |
| * range, then btrfs_mark_ordered_io_finished() will handle |
| * the ordered extent accounting for the range. |
| */ |
| btrfs_page_clamp_clear_ordered(inode->root->fs_info, page, |
| offset, bytes); |
| put_page(page); |
| } |
| |
| if (locked_page) { |
| /* The locked page covers the full range, nothing needs to be done */ |
| if (bytes + offset <= page_start + PAGE_SIZE) |
| return; |
| /* |
| * In case this page belongs to the delalloc range being |
| * instantiated then skip it, since the first page of a range is |
| * going to be properly cleaned up by the caller of |
| * run_delalloc_range |
| */ |
| if (page_start >= offset && page_end <= (offset + bytes - 1)) { |
| bytes = offset + bytes - page_offset(locked_page) - PAGE_SIZE; |
| offset = page_offset(locked_page) + PAGE_SIZE; |
| } |
| } |
| |
| return btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes, false); |
| } |
| |
| static int btrfs_dirty_inode(struct btrfs_inode *inode); |
| |
| static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, |
| struct btrfs_new_inode_args *args) |
| { |
| int err; |
| |
| if (args->default_acl) { |
| err = __btrfs_set_acl(trans, args->inode, args->default_acl, |
| ACL_TYPE_DEFAULT); |
| if (err) |
| return err; |
| } |
| if (args->acl) { |
| err = __btrfs_set_acl(trans, args->inode, args->acl, ACL_TYPE_ACCESS); |
| if (err) |
| return err; |
| } |
| if (!args->default_acl && !args->acl) |
| cache_no_acl(args->inode); |
| return btrfs_xattr_security_init(trans, args->inode, args->dir, |
| &args->dentry->d_name); |
| } |
| |
| /* |
| * this does all the hard work for inserting an inline extent into |
| * the btree. The caller should have done a btrfs_drop_extents so that |
| * no overlapping inline items exist in the btree |
| */ |
| static int insert_inline_extent(struct btrfs_trans_handle *trans, |
| struct btrfs_path *path, |
| struct btrfs_inode *inode, bool extent_inserted, |
| size_t size, size_t compressed_size, |
| int compress_type, |
| struct page **compressed_pages, |
| bool update_i_size) |
| { |
| struct btrfs_root *root = inode->root; |
| struct extent_buffer *leaf; |
| struct page *page = NULL; |
| char *kaddr; |
| unsigned long ptr; |
| struct btrfs_file_extent_item *ei; |
| int ret; |
| size_t cur_size = size; |
| u64 i_size; |
| |
| ASSERT((compressed_size > 0 && compressed_pages) || |
| (compressed_size == 0 && !compressed_pages)); |
| |
| if (compressed_size && compressed_pages) |
| cur_size = compressed_size; |
| |
| if (!extent_inserted) { |
| struct btrfs_key key; |
| size_t datasize; |
| |
| key.objectid = btrfs_ino(inode); |
| key.offset = 0; |
| key.type = BTRFS_EXTENT_DATA_KEY; |
| |
| datasize = btrfs_file_extent_calc_inline_size(cur_size); |
| ret = btrfs_insert_empty_item(trans, root, path, &key, |
| datasize); |
| if (ret) |
| goto fail; |
| } |
| leaf = path->nodes[0]; |
| ei = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_file_extent_item); |
| btrfs_set_file_extent_generation(leaf, ei, trans->transid); |
| btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); |
| btrfs_set_file_extent_encryption(leaf, ei, 0); |
| btrfs_set_file_extent_other_encoding(leaf, ei, 0); |
| btrfs_set_file_extent_ram_bytes(leaf, ei, size); |
| ptr = btrfs_file_extent_inline_start(ei); |
| |
| if (compress_type != BTRFS_COMPRESS_NONE) { |
| struct page *cpage; |
| int i = 0; |
| while (compressed_size > 0) { |
| cpage = compressed_pages[i]; |
| cur_size = min_t(unsigned long, compressed_size, |
| PAGE_SIZE); |
| |
| kaddr = kmap_local_page(cpage); |
| write_extent_buffer(leaf, kaddr, ptr, cur_size); |
| kunmap_local(kaddr); |
| |
| i++; |
| ptr += cur_size; |
| compressed_size -= cur_size; |
| } |
| btrfs_set_file_extent_compression(leaf, ei, |
| compress_type); |
| } else { |
| page = find_get_page(inode->vfs_inode.i_mapping, 0); |
| btrfs_set_file_extent_compression(leaf, ei, 0); |
| kaddr = kmap_local_page(page); |
| write_extent_buffer(leaf, kaddr, ptr, size); |
| kunmap_local(kaddr); |
| put_page(page); |
| } |
| btrfs_mark_buffer_dirty(leaf); |
| btrfs_release_path(path); |
| |
| /* |
| * We align size to sectorsize for inline extents just for simplicity |
| * sake. |
| */ |
| ret = btrfs_inode_set_file_extent_range(inode, 0, |
| ALIGN(size, root->fs_info->sectorsize)); |
| if (ret) |
| goto fail; |
| |
| /* |
| * We're an inline extent, so nobody can extend the file past i_size |
| * without locking a page we already have locked. |
| * |
| * We must do any i_size and inode updates before we unlock the pages. |
| * Otherwise we could end up racing with unlink. |
| */ |
| i_size = i_size_read(&inode->vfs_inode); |
| if (update_i_size && size > i_size) { |
| i_size_write(&inode->vfs_inode, size); |
| i_size = size; |
| } |
| inode->disk_i_size = i_size; |
| |
| fail: |
| return ret; |
| } |
| |
| |
| /* |
| * conditionally insert an inline extent into the file. This |
| * does the checks required to make sure the data is small enough |
| * to fit as an inline extent. |
| */ |
| static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 size, |
| size_t compressed_size, |
| int compress_type, |
| struct page **compressed_pages, |
| bool update_i_size) |
| { |
| struct btrfs_drop_extents_args drop_args = { 0 }; |
| struct btrfs_root *root = inode->root; |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct btrfs_trans_handle *trans; |
| u64 data_len = (compressed_size ?: size); |
| int ret; |
| struct btrfs_path *path; |
| |
| /* |
| * We can create an inline extent if it ends at or beyond the current |
| * i_size, is no larger than a sector (decompressed), and the (possibly |
| * compressed) data fits in a leaf and the configured maximum inline |
| * size. |
| */ |
| if (size < i_size_read(&inode->vfs_inode) || |
| size > fs_info->sectorsize || |
| data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) || |
| data_len > fs_info->max_inline) |
| return 1; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| trans = btrfs_join_transaction(root); |
| if (IS_ERR(trans)) { |
| btrfs_free_path(path); |
| return PTR_ERR(trans); |
| } |
| trans->block_rsv = &inode->block_rsv; |
| |
| drop_args.path = path; |
| drop_args.start = 0; |
| drop_args.end = fs_info->sectorsize; |
| drop_args.drop_cache = true; |
| drop_args.replace_extent = true; |
| drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len); |
| ret = btrfs_drop_extents(trans, root, inode, &drop_args); |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| goto out; |
| } |
| |
| ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted, |
| size, compressed_size, compress_type, |
| compressed_pages, update_i_size); |
| if (ret && ret != -ENOSPC) { |
| btrfs_abort_transaction(trans, ret); |
| goto out; |
| } else if (ret == -ENOSPC) { |
| ret = 1; |
| goto out; |
| } |
| |
| btrfs_update_inode_bytes(inode, size, drop_args.bytes_found); |
| ret = btrfs_update_inode(trans, root, inode); |
| if (ret && ret != -ENOSPC) { |
| btrfs_abort_transaction(trans, ret); |
| goto out; |
| } else if (ret == -ENOSPC) { |
| ret = 1; |
| goto out; |
| } |
| |
| btrfs_set_inode_full_sync(inode); |
| out: |
| /* |
| * Don't forget to free the reserved space, as for inlined extent |
| * it won't count as data extent, free them directly here. |
| * And at reserve time, it's always aligned to page size, so |
| * just free one page here. |
| */ |
| btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE); |
| btrfs_free_path(path); |
| btrfs_end_transaction(trans); |
| return ret; |
| } |
| |
| struct async_extent { |
| u64 start; |
| u64 ram_size; |
| u64 compressed_size; |
| struct page **pages; |
| unsigned long nr_pages; |
| int compress_type; |
| struct list_head list; |
| }; |
| |
| struct async_chunk { |
| struct btrfs_inode *inode; |
| struct page *locked_page; |
| u64 start; |
| u64 end; |
| blk_opf_t write_flags; |
| struct list_head extents; |
| struct cgroup_subsys_state *blkcg_css; |
| struct btrfs_work work; |
| struct async_cow *async_cow; |
| }; |
| |
| struct async_cow { |
| atomic_t num_chunks; |
| struct async_chunk chunks[]; |
| }; |
| |
| static noinline int add_async_extent(struct async_chunk *cow, |
| u64 start, u64 ram_size, |
| u64 compressed_size, |
| struct page **pages, |
| unsigned long nr_pages, |
| int compress_type) |
| { |
| struct async_extent *async_extent; |
| |
| async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); |
| BUG_ON(!async_extent); /* -ENOMEM */ |
| async_extent->start = start; |
| async_extent->ram_size = ram_size; |
| async_extent->compressed_size = compressed_size; |
| async_extent->pages = pages; |
| async_extent->nr_pages = nr_pages; |
| async_extent->compress_type = compress_type; |
| list_add_tail(&async_extent->list, &cow->extents); |
| return 0; |
| } |
| |
| /* |
| * Check if the inode needs to be submitted to compression, based on mount |
| * options, defragmentation, properties or heuristics. |
| */ |
| static inline int inode_need_compress(struct btrfs_inode *inode, u64 start, |
| u64 end) |
| { |
| struct btrfs_fs_info *fs_info = inode->root->fs_info; |
| |
| if (!btrfs_inode_can_compress(inode)) { |
| WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), |
| KERN_ERR "BTRFS: unexpected compression for ino %llu\n", |
| btrfs_ino(inode)); |
| return 0; |
| } |
| /* |
| * Special check for subpage. |
| * |
| * We lock the full page then run each delalloc range in the page, thus |
| * for the following case, we will hit some subpage specific corner case: |
| * |
| * 0 32K 64K |
| * | |///////| |///////| |
| * \- A \- B |
| * |
| * In above case, both range A and range B will try to unlock the full |
| * page [0, 64K), causing the one finished later will have page |
| * unlocked already, triggering various page lock requirement BUG_ON()s. |
| * |
| * So here we add an artificial limit that subpage compression can only |
| * if the range is fully page aligned. |
| * |
| * In theory we only need to ensure the first page is fully covered, but |
| * the tailing partial page will be locked until the full compression |
| * finishes, delaying the write of other range. |
| * |
| * TODO: Make btrfs_run_delalloc_range() to lock all delalloc range |
| * first to prevent any submitted async extent to unlock the full page. |
| * By this, we can ensure for subpage case that only the last async_cow |
| * will unlock the full page. |
| */ |
| if (fs_info->sectorsize < PAGE_SIZE) { |
| if (!PAGE_ALIGNED(start) || |
| !PAGE_ALIGNED(end + 1)) |
| return 0; |
| } |
| |
| /* force compress */ |
| if (btrfs_test_opt(fs_info, FORCE_COMPRESS)) |
| return 1; |
| /* defrag ioctl */ |
| if (inode->defrag_compress) |
| return 1; |
| /* bad compression ratios */ |
| if (inode->flags & BTRFS_INODE_NOCOMPRESS) |
| return 0; |
| if (btrfs_test_opt(fs_info, COMPRESS) || |
| inode->flags & BTRFS_INODE_COMPRESS || |
| inode->prop_compress) |
| return btrfs_compress_heuristic(&inode->vfs_inode, start, end); |
| return 0; |
| } |
| |
| static inline void inode_should_defrag(struct btrfs_inode *inode, |
| u64 start, u64 end, u64 num_bytes, u32 small_write) |
| { |
| /* If this is a small write inside eof, kick off a defrag */ |
| if (num_bytes < small_write && |
| (start > 0 || end + 1 < inode->disk_i_size)) |
| btrfs_add_inode_defrag(NULL, inode, small_write); |
| } |
| |
| /* |
| * we create compressed extents in two phases. The first |
| * phase compresses a range of pages that have already been |
| * locked (both pages and state bits are locked). |
| * |
| * This is done inside an ordered work queue, and the compression |
| * is spread across many cpus. The actual IO submission is step |
| * two, and the ordered work queue takes care of making sure that |
| * happens in the same order things were put onto the queue by |
| * writepages and friends. |
| * |
| * If this code finds it can't get good compression, it puts an |
| * entry onto the work queue to write the uncompressed bytes. This |
| * makes sure that both compressed inodes and uncompressed inodes |
| * are written in the same order that the flusher thread sent them |
| * down. |
| */ |
| static noinline int compress_file_range(struct async_chunk *async_chunk) |
| { |
| struct btrfs_inode *inode = async_chunk->inode; |
| struct btrfs_fs_info *fs_info = inode->root->fs_info; |
| u64 blocksize = fs_info->sectorsize; |
| u64 start = async_chunk->start; |
| u64 end = async_chunk->end; |
| u64 actual_end; |
| u64 i_size; |
| int ret = 0; |
| struct page **pages = NULL; |
| unsigned long nr_pages; |
| unsigned long total_compressed = 0; |
| unsigned long total_in = 0; |
| int i; |
| int will_compress; |
| int compress_type = fs_info->compress_type; |
| int compressed_extents = 0; |
| int redirty = 0; |
| |
| inode_should_defrag(inode, start, end, end - start + 1, SZ_16K); |
| |
| /* |
| * We need to save i_size before now because it could change in between |
| * us evaluating the size and assigning it. This is because we lock and |
| * unlock the page in truncate and fallocate, and then modify the i_size |
| * later on. |
| * |
| * The barriers are to emulate READ_ONCE, remove that once i_size_read |
| * does that for us. |
| */ |
| barrier(); |
| i_size = i_size_read(&inode->vfs_inode); |
| barrier(); |
| actual_end = min_t(u64, i_size, end + 1); |
| again: |
| will_compress = 0; |
| nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; |
| nr_pages = min_t(unsigned long, nr_pages, |
| BTRFS_MAX_COMPRESSED / PAGE_SIZE); |
| |
| /* |
| * we don't want to send crud past the end of i_size through |
| * compression, that's just a waste of CPU time. So, if the |
| * end of the file is before the start of our current |
| * requested range of bytes, we bail out to the uncompressed |
| * cleanup code that can deal with all of this. |
| * |
| * It isn't really the fastest way to fix things, but this is a |
| * very uncommon corner. |
| */ |
| if (actual_end <= start) |
| goto cleanup_and_bail_uncompressed; |
| |
| total_compressed = actual_end - start; |
| |
| /* |
| * Skip compression for a small file range(<=blocksize) that |
| * isn't an inline extent, since it doesn't save disk space at all. |
| */ |
| if (total_compressed <= blocksize && |
| (start > 0 || end + 1 < inode->disk_i_size)) |
| goto cleanup_and_bail_uncompressed; |
| |
| /* |
| * For subpage case, we require full page alignment for the sector |
| * aligned range. |
| * Thus we must also check against @actual_end, not just @end. |
| */ |
| if (blocksize < PAGE_SIZE) { |
| if (!PAGE_ALIGNED(start) || |
| !PAGE_ALIGNED(round_up(actual_end, blocksize))) |
| goto cleanup_and_bail_uncompressed; |
| } |
| |
| total_compressed = min_t(unsigned long, total_compressed, |
| BTRFS_MAX_UNCOMPRESSED); |
| total_in = 0; |
| ret = 0; |
| |
| /* |
| * we do compression for mount -o compress and when the |
| * inode has not been flagged as nocompress. This flag can |
| * change at any time if we discover bad compression ratios. |
| */ |
| if (inode_need_compress(inode, start, end)) { |
| WARN_ON(pages); |
| pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); |
| if (!pages) { |
| /* just bail out to the uncompressed code */ |
| nr_pages = 0; |
| goto cont; |
| } |
| |
| if (inode->defrag_compress) |
| compress_type = inode->defrag_compress; |
| else if (inode->prop_compress) |
| compress_type = inode->prop_compress; |
| |
| /* |
| * we need to call clear_page_dirty_for_io on each |
| * page in the range. Otherwise applications with the file |
| * mmap'd can wander in and change the page contents while |
| * we are compressing them. |
| * |
| * If the compression fails for any reason, we set the pages |
| * dirty again later on. |
| * |
| * Note that the remaining part is redirtied, the start pointer |
| * has moved, the end is the original one. |
| */ |
| if (!redirty) { |
| extent_range_clear_dirty_for_io(&inode->vfs_inode, start, end); |
| redirty = 1; |
| } |
| |
| /* Compression level is applied here and only here */ |
| ret = btrfs_compress_pages( |
| compress_type | (fs_info->compress_level << 4), |
| inode->vfs_inode.i_mapping, start, |
| pages, |
| &nr_pages, |
| &total_in, |
| &total_compressed); |
| |
| if (!ret) { |
| unsigned long offset = offset_in_page(total_compressed); |
| struct page *page = pages[nr_pages - 1]; |
| |
| /* zero the tail end of the last page, we might be |
| * sending it down to disk |
| */ |
| if (offset) |
| memzero_page(page, offset, PAGE_SIZE - offset); |
| will_compress = 1; |
| } |
| } |
| cont: |
| /* |
| * Check cow_file_range() for why we don't even try to create inline |
| * extent for subpage case. |
| */ |
| if (start == 0 && fs_info->sectorsize == PAGE_SIZE) { |
| /* lets try to make an inline extent */ |
| if (ret || total_in < actual_end) { |
| /* we didn't compress the entire range, try |
| * to make an uncompressed inline extent. |
| */ |
| ret = cow_file_range_inline(inode, actual_end, |
| 0, BTRFS_COMPRESS_NONE, |
| NULL, false); |
| } else { |
| /* try making a compressed inline extent */ |
| ret = cow_file_range_inline(inode, actual_end, |
| total_compressed, |
| compress_type, pages, |
| false); |
| } |
| if (ret <= 0) { |
| unsigned long clear_flags = EXTENT_DELALLOC | |
| EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | |
| EXTENT_DO_ACCOUNTING; |
| unsigned long page_error_op; |
| |
| page_error_op = ret < 0 ? PAGE_SET_ERROR : 0; |
| |
| /* |
| * inline extent creation worked or returned error, |
| * we don't need to create any more async work items. |
| * Unlock and free up our temp pages. |
| * |
| * We use DO_ACCOUNTING here because we need the |
| * delalloc_release_metadata to be done _after_ we drop |
| * our outstanding extent for clearing delalloc for this |
| * range. |
| */ |
| extent_clear_unlock_delalloc(inode, start, end, |
| NULL, |
| clear_flags, |
| PAGE_UNLOCK | |
| PAGE_START_WRITEBACK | |
| page_error_op | |
| PAGE_END_WRITEBACK); |
| |
| /* |
| * Ensure we only free the compressed pages if we have |
| * them allocated, as we can still reach here with |
| * inode_need_compress() == false. |
| */ |
| if (pages) { |
| for (i = 0; i < nr_pages; i++) { |
| WARN_ON(pages[i]->mapping); |
| put_page(pages[i]); |
| } |
| kfree(pages); |
| } |
| return 0; |
| } |
| } |
| |
| if (will_compress) { |
| /* |
| * we aren't doing an inline extent round the compressed size |
| * up to a block size boundary so the allocator does sane |
| * things |
| */ |
| total_compressed = ALIGN(total_compressed, blocksize); |
| |
| /* |
| * one last check to make sure the compression is really a |
| * win, compare the page count read with the blocks on disk, |
| * compression must free at least one sector size |
| */ |
| total_in = round_up(total_in, fs_info->sectorsize); |
| if (total_compressed + blocksize <= total_in) { |
| compressed_extents++; |
| |
| /* |
| * The async work queues will take care of doing actual |
| * allocation on disk for these compressed pages, and |
| * will submit them to the elevator. |
| */ |
| add_async_extent(async_chunk, start, total_in, |
| total_compressed, pages, nr_pages, |
| compress_type); |
| |
| if (start + total_in < end) { |
| start += total_in; |
| pages = NULL; |
| cond_resched(); |
| goto again; |
| } |
| return compressed_extents; |
| } |
| } |
| if (pages) { |
| /* |
| * the compression code ran but failed to make things smaller, |
| * free any pages it allocated and our page pointer array |
| */ |
| for (i = 0; i < nr_pages; i++) { |
| WARN_ON(pages[i]->mapping); |
| put_page(pages[i]); |
| } |
| kfree(pages); |
| pages = NULL; |
| total_compressed = 0; |
| nr_pages = 0; |
| |
| /* flag the file so we don't compress in the future */ |
| if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && |
| !(inode->prop_compress)) { |
| inode->flags |= BTRFS_INODE_NOCOMPRESS; |
| } |
| } |
| cleanup_and_bail_uncompressed: |
| /* |
| * No compression, but we still need to write the pages in the file |
| * we've been given so far. redirty the locked page if it corresponds |
| * to our extent and set things up for the async work queue to run |
| * cow_file_range to do the normal delalloc dance. |
| */ |
| if (async_chunk->locked_page && |
| (page_offset(async_chunk->locked_page) >= start && |
| page_offset(async_chunk->locked_page)) <= end) { |
| __set_page_dirty_nobuffers(async_chunk->locked_page); |
| /* unlocked later on in the async handlers */ |
| } |
| |
| if (redirty) |
| extent_range_redirty_for_io(&inode->vfs_inode, start, end); |
| add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0, |
| BTRFS_COMPRESS_NONE); |
| compressed_extents++; |
| |
| return compressed_extents; |
| } |
| |
| static void free_async_extent_pages(struct async_extent *async_extent) |
| { |
| int i; |
| |
| if (!async_extent->pages) |
| return; |
| |
| for (i = 0; i < async_extent->nr_pages; i++) { |
| WARN_ON(async_extent->pages[i]->mapping); |
| put_page(async_extent->pages[i]); |
| } |
| kfree(async_extent->pages); |
| async_extent->nr_pages = 0; |
| async_extent->pages = NULL; |
| } |
| |
| static int submit_uncompressed_range(struct btrfs_inode *inode, |
| struct async_extent *async_extent, |
| struct page *locked_page) |
| { |
| u64 start = async_extent->start; |
| u64 end = async_extent->start + async_extent->ram_size - 1; |
| unsigned long nr_written = 0; |
| int page_started = 0; |
| int ret; |
| |
| /* |
| * Call cow_file_range() to run the delalloc range directly, since we |
| * won't go to NOCOW or async path again. |
| * |
| * Also we call cow_file_range() with @unlock_page == 0, so that we |
| * can directly submit them without interruption. |
| */ |
| ret = cow_file_range(inode, locked_page, start, end, &page_started, |
| &nr_written, 0, NULL); |
| /* Inline extent inserted, page gets unlocked and everything is done */ |
| if (page_started) { |
| ret = 0; |
| goto out; |
| } |
| if (ret < 0) { |
| btrfs_cleanup_ordered_extents(inode, locked_page, start, end - start + 1); |
| if (locked_page) { |
| const u64 page_start = page_offset(locked_page); |
| const u64 page_end = page_start + PAGE_SIZE - 1; |
| |
| btrfs_page_set_error(inode->root->fs_info, locked_page, |
| page_start, PAGE_SIZE); |
| set_page_writeback(locked_page); |
| end_page_writeback(locked_page); |
| end_extent_writepage(locked_page, ret, page_start, page_end); |
| unlock_page(locked_page); |
| } |
| goto out; |
| } |
| |
| ret = extent_write_locked_range(&inode->vfs_inode, start, end); |
| /* All pages will be unlocked, including @locked_page */ |
| out: |
| kfree(async_extent); |
| return ret; |
| } |
| |
| static int submit_one_async_extent(struct btrfs_inode *inode, |
| struct async_chunk *async_chunk, |
| struct async_extent *async_extent, |
| u64 *alloc_hint) |
| { |
| struct extent_io_tree *io_tree = &inode->io_tree; |
| struct btrfs_root *root = inode->root; |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct btrfs_key ins; |
| struct page *locked_page = NULL; |
| struct extent_map *em; |
| int ret = 0; |
| u64 start = async_extent->start; |
| u64 end = async_extent->start + async_extent->ram_size - 1; |
| |
| /* |
| * If async_chunk->locked_page is in the async_extent range, we need to |
| * handle it. |
| */ |
| if (async_chunk->locked_page) { |
| u64 locked_page_start = page_offset(async_chunk->locked_page); |
| u64 locked_page_end = locked_page_start + PAGE_SIZE - 1; |
| |
| if (!(start >= locked_page_end || end <= locked_page_start)) |
| locked_page = async_chunk->locked_page; |
| } |
| lock_extent(io_tree, start, end, NULL); |
| |
| /* We have fall back to uncompressed write */ |
| if (!async_extent->pages) |
| return submit_uncompressed_range(inode, async_extent, locked_page); |
| |
| ret = btrfs_reserve_extent(root, async_extent->ram_size, |
| async_extent->compressed_size, |
| async_extent->compressed_size, |
| 0, *alloc_hint, &ins, 1, 1); |
| if (ret) { |
| free_async_extent_pages(async_extent); |
| /* |
| * Here we used to try again by going back to non-compressed |
| * path for ENOSPC. But we can't reserve space even for |
| * compressed size, how could it work for uncompressed size |
| * which requires larger size? So here we directly go error |
| * path. |
| */ |
| goto out_free; |
| } |
| |
| /* Here we're doing allocation and writeback of the compressed pages */ |
| em = create_io_em(inode, start, |
| async_extent->ram_size, /* len */ |
| start, /* orig_start */ |
| ins.objectid, /* block_start */ |
| ins.offset, /* block_len */ |
| ins.offset, /* orig_block_len */ |
| async_extent->ram_size, /* ram_bytes */ |
| async_extent->compress_type, |
| BTRFS_ORDERED_COMPRESSED); |
| if (IS_ERR(em)) { |
| ret = PTR_ERR(em); |
| goto out_free_reserve; |
| } |
| free_extent_map(em); |
| |
| ret = btrfs_add_ordered_extent(inode, start, /* file_offset */ |
| async_extent->ram_size, /* num_bytes */ |
| async_extent->ram_size, /* ram_bytes */ |
| ins.objectid, /* disk_bytenr */ |
| ins.offset, /* disk_num_bytes */ |
| 0, /* offset */ |
| 1 << BTRFS_ORDERED_COMPRESSED, |
| async_extent->compress_type); |
| if (ret) { |
| btrfs_drop_extent_map_range(inode, start, end, false); |
| goto out_free_reserve; |
| } |
| btrfs_dec_block_group_reservations(fs_info, ins.objectid); |
| |
| /* Clear dirty, set writeback and unlock the pages. */ |
| extent_clear_unlock_delalloc(inode, start, end, |
| NULL, EXTENT_LOCKED | EXTENT_DELALLOC, |
| PAGE_UNLOCK | PAGE_START_WRITEBACK); |
| if (btrfs_submit_compressed_write(inode, start, /* file_offset */ |
| async_extent->ram_size, /* num_bytes */ |
| ins.objectid, /* disk_bytenr */ |
| ins.offset, /* compressed_len */ |
| async_extent->pages, /* compressed_pages */ |
| async_extent->nr_pages, |
| async_chunk->write_flags, |
| async_chunk->blkcg_css, true)) { |
| const u64 start = async_extent->start; |
| const u64 end = start + async_extent->ram_size - 1; |
| |
| btrfs_writepage_endio_finish_ordered(inode, NULL, start, end, 0); |
| |
| extent_clear_unlock_delalloc(inode, start, end, NULL, 0, |
| PAGE_END_WRITEBACK | PAGE_SET_ERROR); |
| free_async_extent_pages(async_extent); |
| } |
| *alloc_hint = ins.objectid + ins.offset; |
| kfree(async_extent); |
| return ret; |
| |
| out_free_reserve: |
| btrfs_dec_block_group_reservations(fs_info, ins.objectid); |
| btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); |
| out_free: |
| extent_clear_unlock_delalloc(inode, start, end, |
| NULL, EXTENT_LOCKED | EXTENT_DELALLOC | |
| EXTENT_DELALLOC_NEW | |
| EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, |
| PAGE_UNLOCK | PAGE_START_WRITEBACK | |
| PAGE_END_WRITEBACK | PAGE_SET_ERROR); |
| free_async_extent_pages(async_extent); |
| kfree(async_extent); |
| return ret; |
| } |
| |
| /* |
| * Phase two of compressed writeback. This is the ordered portion of the code, |
| * which only gets called in the order the work was queued. We walk all the |
| * async extents created by compress_file_range and send them down to the disk. |
| */ |
| static noinline void submit_compressed_extents(struct async_chunk *async_chunk) |
| { |
| struct btrfs_inode *inode = async_chunk->inode; |
| struct btrfs_fs_info *fs_info = inode->root->fs_info; |
| struct async_extent *async_extent; |
| u64 alloc_hint = 0; |
| int ret = 0; |
| |
| while (!list_empty(&async_chunk->extents)) { |
| u64 extent_start; |
| u64 ram_size; |
| |
| async_extent = list_entry(async_chunk->extents.next, |
| struct async_extent, list); |
| list_del(&async_extent->list); |
| extent_start = async_extent->start; |
| ram_size = async_extent->ram_size; |
| |
| ret = submit_one_async_extent(inode, async_chunk, async_extent, |
| &alloc_hint); |
| btrfs_debug(fs_info, |
| "async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d", |
| inode->root->root_key.objectid, |
| btrfs_ino(inode), extent_start, ram_size, ret); |
| } |
| } |
| |
| static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start, |
| u64 num_bytes) |
| { |
| struct extent_map_tree *em_tree = &inode->extent_tree; |
| struct extent_map *em; |
| u64 alloc_hint = 0; |
| |
| read_lock(&em_tree->lock); |
| em = search_extent_mapping(em_tree, start, num_bytes); |
| if (em) { |
| /* |
| * if block start isn't an actual block number then find the |
| * first block in this inode and use that as a hint. If that |
| * block is also bogus then just don't worry about it. |
| */ |
| if (em->block_start >= EXTENT_MAP_LAST_BYTE) { |
| free_extent_map(em); |
| em = search_extent_mapping(em_tree, 0, 0); |
| if (em && em->block_start < EXTENT_MAP_LAST_BYTE) |
| alloc_hint = em->block_start; |
| if (em) |
| free_extent_map(em); |
| } else { |
| alloc_hint = em->block_start; |
| free_extent_map(em); |
| } |
| } |
| read_unlock(&em_tree->lock); |
| |
| return alloc_hint; |
| } |
| |
| /* |
| * when extent_io.c finds a delayed allocation range in the file, |
| * the call backs end up in this code. The basic idea is to |
| * allocate extents on disk for the range, and create ordered data structs |
| * in ram to track those extents. |
| * |
| * locked_page is the page that writepage had locked already. We use |
| * it to make sure we don't do extra locks or unlocks. |
| * |
| * *page_started is set to one if we unlock locked_page and do everything |
| * required to start IO on it. It may be clean and already done with |
| * IO when we return. |
| * |
| * When unlock == 1, we unlock the pages in successfully allocated regions. |
| * When unlock == 0, we leave them locked for writing them out. |
| * |
| * However, we unlock all the pages except @locked_page in case of failure. |
| * |
| * In summary, page locking state will be as follow: |
| * |
| * - page_started == 1 (return value) |
| * - All the pages are unlocked. IO is started. |
| * - Note that this can happen only on success |
| * - unlock == 1 |
| * - All the pages except @locked_page are unlocked in any case |
| * - unlock == 0 |
| * - On success, all the pages are locked for writing out them |
| * - On failure, all the pages except @locked_page are unlocked |
| * |
| * When a failure happens in the second or later iteration of the |
| * while-loop, the ordered extents created in previous iterations are kept |
| * intact. So, the caller must clean them up by calling |
| * btrfs_cleanup_ordered_extents(). See btrfs_run_delalloc_range() for |
| * example. |
| */ |
| static noinline int cow_file_range(struct btrfs_inode *inode, |
| struct page *locked_page, |
| u64 start, u64 end, int *page_started, |
| unsigned long *nr_written, int unlock, |
| u64 *done_offset) |
| { |
| struct btrfs_root *root = inode->root; |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| u64 alloc_hint = 0; |
| u64 orig_start = start; |
| u64 num_bytes; |
| unsigned long ram_size; |
| u64 cur_alloc_size = 0; |
| u64 min_alloc_size; |
| u64 blocksize = fs_info->sectorsize; |
| struct btrfs_key ins; |
| struct extent_map *em; |
| unsigned clear_bits; |
| unsigned long page_ops; |
| bool extent_reserved = false; |
| int ret = 0; |
| |
| if (btrfs_is_free_space_inode(inode)) { |
| ret = -EINVAL; |
| goto out_unlock; |
| } |
| |
| num_bytes = ALIGN(end - start + 1, blocksize); |
| num_bytes = max(blocksize, num_bytes); |
| ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy)); |
| |
| inode_should_defrag(inode, start, end, num_bytes, SZ_64K); |
| |
| /* |
| * Due to the page size limit, for subpage we can only trigger the |
| * writeback for the dirty sectors of page, that means data writeback |
| * is doing more writeback than what we want. |
| * |
| * This is especially unexpected for some call sites like fallocate, |
| * where we only increase i_size after everything is done. |
| * This means we can trigger inline extent even if we didn't want to. |
| * So here we skip inline extent creation completely. |
| */ |
| if (start == 0 && fs_info->sectorsize == PAGE_SIZE) { |
| u64 actual_end = min_t(u64, i_size_read(&inode->vfs_inode), |
| end + 1); |
| |
| /* lets try to make an inline extent */ |
| ret = cow_file_range_inline(inode, actual_end, 0, |
| BTRFS_COMPRESS_NONE, NULL, false); |
| if (ret == 0) { |
| /* |
| * We use DO_ACCOUNTING here because we need the |
| * delalloc_release_metadata to be run _after_ we drop |
| * our outstanding extent for clearing delalloc for this |
| * range. |
| */ |
| extent_clear_unlock_delalloc(inode, start, end, |
| locked_page, |
| EXTENT_LOCKED | EXTENT_DELALLOC | |
| EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | |
| EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | |
| PAGE_START_WRITEBACK | PAGE_END_WRITEBACK); |
| *nr_written = *nr_written + |
| (end - start + PAGE_SIZE) / PAGE_SIZE; |
| *page_started = 1; |
| /* |
| * locked_page is locked by the caller of |
| * writepage_delalloc(), not locked by |
| * __process_pages_contig(). |
| * |
| * We can't let __process_pages_contig() to unlock it, |
| * as it doesn't have any subpage::writers recorded. |
| * |
| * Here we manually unlock the page, since the caller |
| * can't use page_started to determine if it's an |
| * inline extent or a compressed extent. |
| */ |
| unlock_page(locked_page); |
| goto out; |
| } else if (ret < 0) { |
| goto out_unlock; |
| } |
| } |
| |
| alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); |
| |
| /* |
| * Relocation relies on the relocated extents to have exactly the same |
| * size as the original extents. Normally writeback for relocation data |
| * extents follows a NOCOW path because relocation preallocates the |
| * extents. However, due to an operation such as scrub turning a block |
| * group to RO mode, it may fallback to COW mode, so we must make sure |
| * an extent allocated during COW has exactly the requested size and can |
| * not be split into smaller extents, otherwise relocation breaks and |
| * fails during the stage where it updates the bytenr of file extent |
| * items. |
| */ |
| if (btrfs_is_data_reloc_root(root)) |
| min_alloc_size = num_bytes; |
| else |
| min_alloc_size = fs_info->sectorsize; |
| |
| while (num_bytes > 0) { |
| cur_alloc_size = num_bytes; |
| ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size, |
| min_alloc_size, 0, alloc_hint, |
| &ins, 1, 1); |
| if (ret < 0) |
| goto out_unlock; |
| cur_alloc_size = ins.offset; |
| extent_reserved = true; |
| |
| ram_size = ins.offset; |
| em = create_io_em(inode, start, ins.offset, /* len */ |
| start, /* orig_start */ |
| ins.objectid, /* block_start */ |
| ins.offset, /* block_len */ |
| ins.offset, /* orig_block_len */ |
| ram_size, /* ram_bytes */ |
| BTRFS_COMPRESS_NONE, /* compress_type */ |
| BTRFS_ORDERED_REGULAR /* type */); |
| if (IS_ERR(em)) { |
| ret = PTR_ERR(em); |
| goto out_reserve; |
| } |
| free_extent_map(em); |
| |
| ret = btrfs_add_ordered_extent(inode, start, ram_size, ram_size, |
| ins.objectid, cur_alloc_size, 0, |
| 1 << BTRFS_ORDERED_REGULAR, |
| BTRFS_COMPRESS_NONE); |
| if (ret) |
| goto out_drop_extent_cache; |
| |
| if (btrfs_is_data_reloc_root(root)) { |
| ret = btrfs_reloc_clone_csums(inode, start, |
| cur_alloc_size); |
| /* |
| * Only drop cache here, and process as normal. |
| * |
| * We must not allow extent_clear_unlock_delalloc() |
| * at out_unlock label to free meta of this ordered |
| * extent, as its meta should be freed by |
| * btrfs_finish_ordered_io(). |
| * |
| * So we must continue until @start is increased to |
| * skip current ordered extent. |
| */ |
| if (ret) |
| btrfs_drop_extent_map_range(inode, start, |
| start + ram_size - 1, |
| false); |
| } |
| |
| btrfs_dec_block_group_reservations(fs_info, ins.objectid); |
| |
| /* |
| * We're not doing compressed IO, don't unlock the first page |
| * (which the caller expects to stay locked), don't clear any |
| * dirty bits and don't set any writeback bits |
| * |
| * Do set the Ordered (Private2) bit so we know this page was |
| * properly setup for writepage. |
| */ |
| page_ops = unlock ? PAGE_UNLOCK : 0; |
| page_ops |= PAGE_SET_ORDERED; |
| |
| extent_clear_unlock_delalloc(inode, start, start + ram_size - 1, |
| locked_page, |
| EXTENT_LOCKED | EXTENT_DELALLOC, |
| page_ops); |
| if (num_bytes < cur_alloc_size) |
| num_bytes = 0; |
| else |
| num_bytes -= cur_alloc_size; |
| alloc_hint = ins.objectid + ins.offset; |
| start += cur_alloc_size; |
| extent_reserved = false; |
| |
| /* |
| * btrfs_reloc_clone_csums() error, since start is increased |
| * extent_clear_unlock_delalloc() at out_unlock label won't |
| * free metadata of current ordered extent, we're OK to exit. |
| */ |
| if (ret) |
| goto out_unlock; |
| } |
| out: |
| return ret; |
| |
| out_drop_extent_cache: |
| btrfs_drop_extent_map_range(inode, start, start + ram_size - 1, false); |
| out_reserve: |
| btrfs_dec_block_group_reservations(fs_info, ins.objectid); |
| btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); |
| out_unlock: |
| /* |
| * If done_offset is non-NULL and ret == -EAGAIN, we expect the |
| * caller to write out the successfully allocated region and retry. |
| */ |
| if (done_offset && ret == -EAGAIN) { |
| if (orig_start < start) |
| *done_offset = start - 1; |
| else |
| *done_offset = start; |
| return ret; |
| } else if (ret == -EAGAIN) { |
| /* Convert to -ENOSPC since the caller cannot retry. */ |
| ret = -ENOSPC; |
| } |
| |
| /* |
| * Now, we have three regions to clean up: |
| * |
| * |-------(1)----|---(2)---|-------------(3)----------| |
| * `- orig_start `- start `- start + cur_alloc_size `- end |
| * |
| * We process each region below. |
| */ |
| |
| clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | |
| EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV; |
| page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK; |
| |
| /* |
| * For the range (1). We have already instantiated the ordered extents |
| * for this region. They are cleaned up by |
| * btrfs_cleanup_ordered_extents() in e.g, |
| * btrfs_run_delalloc_range(). EXTENT_LOCKED | EXTENT_DELALLOC are |
| * already cleared in the above loop. And, EXTENT_DELALLOC_NEW | |
| * EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV are handled by the cleanup |
| * function. |
| * |
| * However, in case of unlock == 0, we still need to unlock the pages |
| * (except @locked_page) to ensure all the pages are unlocked. |
| */ |
| if (!unlock && orig_start < start) { |
| if (!locked_page) |
| mapping_set_error(inode->vfs_inode.i_mapping, ret); |
| extent_clear_unlock_delalloc(inode, orig_start, start - 1, |
| locked_page, 0, page_ops); |
| } |
| |
| /* |
| * For the range (2). If we reserved an extent for our delalloc range |
| * (or a subrange) and failed to create the respective ordered extent, |
| * then it means that when we reserved the extent we decremented the |
| * extent's size from the data space_info's bytes_may_use counter and |
| * incremented the space_info's bytes_reserved counter by the same |
| * amount. We must make sure extent_clear_unlock_delalloc() does not try |
| * to decrement again the data space_info's bytes_may_use counter, |
| * therefore we do not pass it the flag EXTENT_CLEAR_DATA_RESV. |
| */ |
| if (extent_reserved) { |
| extent_clear_unlock_delalloc(inode, start, |
| start + cur_alloc_size - 1, |
| locked_page, |
| clear_bits, |
| page_ops); |
| start += cur_alloc_size; |
| if (start >= end) |
| return ret; |
| } |
| |
| /* |
| * For the range (3). We never touched the region. In addition to the |
| * clear_bits above, we add EXTENT_CLEAR_DATA_RESV to release the data |
| * space_info's bytes_may_use counter, reserved in |
| * btrfs_check_data_free_space(). |
| */ |
| extent_clear_unlock_delalloc(inode, start, end, locked_page, |
| clear_bits | EXTENT_CLEAR_DATA_RESV, |
| page_ops); |
| return ret; |
| } |
| |
| /* |
| * work queue call back to started compression on a file and pages |
| */ |
| static noinline void async_cow_start(struct btrfs_work *work) |
| { |
| struct async_chunk *async_chunk; |
| int compressed_extents; |
| |
| async_chunk = container_of(work, struct async_chunk, work); |
| |
| compressed_extents = compress_file_range(async_chunk); |
| if (compressed_extents == 0) { |
| btrfs_add_delayed_iput(async_chunk->inode); |
| async_chunk->inode = NULL; |
| } |
| } |
| |
| /* |
| * work queue call back to submit previously compressed pages |
| */ |
| static noinline void async_cow_submit(struct btrfs_work *work) |
| { |
| struct async_chunk *async_chunk = container_of(work, struct async_chunk, |
| work); |
| struct btrfs_fs_info *fs_info = btrfs_work_owner(work); |
| unsigned long nr_pages; |
| |
| nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >> |
| PAGE_SHIFT; |
| |
| /* |
| * ->inode could be NULL if async_chunk_start has failed to compress, |
| * in which case we don't have anything to submit, yet we need to |
| * always adjust ->async_delalloc_pages as its paired with the init |
| * happening in cow_file_range_async |
| */ |
| if (async_chunk->inode) |
| submit_compressed_extents(async_chunk); |
| |
| /* atomic_sub_return implies a barrier */ |
| if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) < |
| 5 * SZ_1M) |
| cond_wake_up_nomb(&fs_info->async_submit_wait); |
| } |
| |
| static noinline void async_cow_free(struct btrfs_work *work) |
| { |
| struct async_chunk *async_chunk; |
| struct async_cow *async_cow; |
| |
| async_chunk = container_of(work, struct async_chunk, work); |
| if (async_chunk->inode) |
| btrfs_add_delayed_iput(async_chunk->inode); |
| if (async_chunk->blkcg_css) |
| css_put(async_chunk->blkcg_css); |
| |
| async_cow = async_chunk->async_cow; |
| if (atomic_dec_and_test(&async_cow->num_chunks)) |
| kvfree(async_cow); |
| } |
| |
| static int cow_file_range_async(struct btrfs_inode *inode, |
| struct writeback_control *wbc, |
| struct page *locked_page, |
| u64 start, u64 end, int *page_started, |
| unsigned long *nr_written) |
| { |
| struct btrfs_fs_info *fs_info = inode->root->fs_info; |
| struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc); |
| struct async_cow *ctx; |
| struct async_chunk *async_chunk; |
| unsigned long nr_pages; |
| u64 cur_end; |
| u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K); |
| int i; |
| bool should_compress; |
| unsigned nofs_flag; |
| const blk_opf_t write_flags = wbc_to_write_flags(wbc); |
| |
| unlock_extent(&inode->io_tree, start, end, NULL); |
| |
| if (inode->flags & BTRFS_INODE_NOCOMPRESS && |
| !btrfs_test_opt(fs_info, FORCE_COMPRESS)) { |
| num_chunks = 1; |
| should_compress = false; |
| } else { |
| should_compress = true; |
| } |
| |
| nofs_flag = memalloc_nofs_save(); |
| ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL); |
| memalloc_nofs_restore(nofs_flag); |
| |
| if (!ctx) { |
| unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | |
| EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | |
| EXTENT_DO_ACCOUNTING; |
| unsigned long page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | |
| PAGE_END_WRITEBACK | PAGE_SET_ERROR; |
| |
| extent_clear_unlock_delalloc(inode, start, end, locked_page, |
| clear_bits, page_ops); |
| return -ENOMEM; |
| } |
| |
| async_chunk = ctx->chunks; |
| atomic_set(&ctx->num_chunks, num_chunks); |
| |
| for (i = 0; i < num_chunks; i++) { |
| if (should_compress) |
| cur_end = min(end, start + SZ_512K - 1); |
| else |
| cur_end = end; |
| |
| /* |
| * igrab is called higher up in the call chain, take only the |
| * lightweight reference for the callback lifetime |
| */ |
| ihold(&inode->vfs_inode); |
| async_chunk[i].async_cow = ctx; |
| async_chunk[i].inode = inode; |
| async_chunk[i].start = start; |
| async_chunk[i].end = cur_end; |
| async_chunk[i].write_flags = write_flags; |
| INIT_LIST_HEAD(&async_chunk[i].extents); |
| |
| /* |
| * The locked_page comes all the way from writepage and its |
| * the original page we were actually given. As we spread |
| * this large delalloc region across multiple async_chunk |
| * structs, only the first struct needs a pointer to locked_page |
| * |
| * This way we don't need racey decisions about who is supposed |
| * to unlock it. |
| */ |
| if (locked_page) { |
| /* |
| * Depending on the compressibility, the pages might or |
| * might not go through async. We want all of them to |
| * be accounted against wbc once. Let's do it here |
| * before the paths diverge. wbc accounting is used |
| * only for foreign writeback detection and doesn't |
| * need full accuracy. Just account the whole thing |
| * against the first page. |
| */ |
| wbc_account_cgroup_owner(wbc, locked_page, |
| cur_end - start); |
| async_chunk[i].locked_page = locked_page; |
| locked_page = NULL; |
| } else { |
| async_chunk[i].locked_page = NULL; |
| } |
| |
| if (blkcg_css != blkcg_root_css) { |
| css_get(blkcg_css); |
| async_chunk[i].blkcg_css = blkcg_css; |
| } else { |
| async_chunk[i].blkcg_css = NULL; |
| } |
| |
| btrfs_init_work(&async_chunk[i].work, async_cow_start, |
| async_cow_submit, async_cow_free); |
| |
| nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE); |
| atomic_add(nr_pages, &fs_info->async_delalloc_pages); |
| |
| btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work); |
| |
| *nr_written += nr_pages; |
| start = cur_end + 1; |
| } |
| *page_started = 1; |
| return 0; |
| } |
| |
| static noinline int run_delalloc_zoned(struct btrfs_inode *inode, |
| struct page *locked_page, u64 start, |
| u64 end, int *page_started, |
| unsigned long *nr_written) |
| { |
| u64 done_offset = end; |
| int ret; |
| bool locked_page_done = false; |
| |
| while (start <= end) { |
| ret = cow_file_range(inode, locked_page, start, end, page_started, |
| nr_written, 0, &done_offset); |
| if (ret && ret != -EAGAIN) |
| return ret; |
| |
| if (*page_started) { |
| ASSERT(ret == 0); |
| return 0; |
| } |
| |
| if (ret == 0) |
| done_offset = end; |
| |
| if (done_offset == start) { |
| wait_on_bit_io(&inode->root->fs_info->flags, |
| BTRFS_FS_NEED_ZONE_FINISH, |
| TASK_UNINTERRUPTIBLE); |
| continue; |
| } |
| |
| if (!locked_page_done) { |
| __set_page_dirty_nobuffers(locked_page); |
| account_page_redirty(locked_page); |
| } |
| locked_page_done = true; |
| extent_write_locked_range(&inode->vfs_inode, start, done_offset); |
| |
| start = done_offset + 1; |
| } |
| |
| *page_started = 1; |
| |
| return 0; |
| } |
| |
| static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info, |
| u64 bytenr, u64 num_bytes, bool nowait) |
| { |
| struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bytenr); |
| struct btrfs_ordered_sum *sums; |
| int ret; |
| LIST_HEAD(list); |
| |
| ret = btrfs_lookup_csums_list(csum_root, bytenr, bytenr + num_bytes - 1, |
| &list, 0, nowait); |
| if (ret == 0 && list_empty(&list)) |
| return 0; |
| |
| while (!list_empty(&list)) { |
| sums = list_entry(list.next, struct btrfs_ordered_sum, list); |
| list_del(&sums->list); |
| kfree(sums); |
| } |
| if (ret < 0) |
| return ret; |
| return 1; |
| } |
| |
| static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page, |
| const u64 start, const u64 end, |
| int *page_started, unsigned long *nr_written) |
| { |
| const bool is_space_ino = btrfs_is_free_space_inode(inode); |
| const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root); |
| const u64 range_bytes = end + 1 - start; |
| struct extent_io_tree *io_tree = &inode->io_tree; |
| u64 range_start = start; |
| u64 count; |
| |
| /* |
| * If EXTENT_NORESERVE is set it means that when the buffered write was |
| * made we had not enough available data space and therefore we did not |
| * reserve data space for it, since we though we could do NOCOW for the |
| * respective file range (either there is prealloc extent or the inode |
| * has the NOCOW bit set). |
| * |
| * However when we need to fallback to COW mode (because for example the |
| * block group for the corresponding extent was turned to RO mode by a |
| * scrub or relocation) we need to do the following: |
| * |
| * 1) We increment the bytes_may_use counter of the data space info. |
| * If COW succeeds, it allocates a new data extent and after doing |
| * that it decrements the space info's bytes_may_use counter and |
| * increments its bytes_reserved counter by the same amount (we do |
| * this at btrfs_add_reserved_bytes()). So we need to increment the |
| * bytes_may_use counter to compensate (when space is reserved at |
| * buffered write time, the bytes_may_use counter is incremented); |
| * |
| * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so |
| * that if the COW path fails for any reason, it decrements (through |
| * extent_clear_unlock_delalloc()) the bytes_may_use counter of the |
| * data space info, which we incremented in the step above. |
| * |
| * If we need to fallback to cow and the inode corresponds to a free |
| * space cache inode or an inode of the data relocation tree, we must |
| * also increment bytes_may_use of the data space_info for the same |
| * reason. Space caches and relocated data extents always get a prealloc |
| * extent for them, however scrub or balance may have set the block |
| * group that contains that extent to RO mode and therefore force COW |
| * when starting writeback. |
| */ |
| count = count_range_bits(io_tree, &range_start, end, range_bytes, |
| EXTENT_NORESERVE, 0, NULL); |
| if (count > 0 || is_space_ino || is_reloc_ino) { |
| u64 bytes = count; |
| struct btrfs_fs_info *fs_info = inode->root->fs_info; |
| struct btrfs_space_info *sinfo = fs_info->data_sinfo; |
| |
| if (is_space_ino || is_reloc_ino) |
| bytes = range_bytes; |
| |
| spin_lock(&sinfo->lock); |
| btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes); |
| spin_unlock(&sinfo->lock); |
| |
| if (count > 0) |
| clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE, |
| NULL); |
| } |
| |
| return cow_file_range(inode, locked_page, start, end, page_started, |
| nr_written, 1, NULL); |
| } |
| |
| struct can_nocow_file_extent_args { |
| /* Input fields. */ |
| |
| /* Start file offset of the range we want to NOCOW. */ |
| u64 start; |
| /* End file offset (inclusive) of the range we want to NOCOW. */ |
| u64 end; |
| bool writeback_path; |
| bool strict; |
| /* |
| * Free the path passed to can_nocow_file_extent() once it's not needed |
| * anymore. |
| */ |
| bool free_path; |
| |
| /* Output fields. Only set when can_nocow_file_extent() returns 1. */ |
| |
| u64 disk_bytenr; |
| u64 disk_num_bytes; |
| u64 extent_offset; |
| /* Number of bytes that can be written to in NOCOW mode. */ |
| u64 num_bytes; |
| }; |
| |
| /* |
| * Check if we can NOCOW the file extent that the path points to. |
| * This function may return with the path released, so the caller should check |
| * if path->nodes[0] is NULL or not if it needs to use the path afterwards. |
| * |
| * Returns: < 0 on error |
| * 0 if we can not NOCOW |
| * 1 if we can NOCOW |
| */ |
| static int can_nocow_file_extent(struct btrfs_path *path, |
| struct btrfs_key *key, |
| struct btrfs_inode *inode, |
| struct can_nocow_file_extent_args *args) |
| { |
| const bool is_freespace_inode = btrfs_is_free_space_inode(inode); |
| struct extent_buffer *leaf = path->nodes[0]; |
| struct btrfs_root *root = inode->root; |
| struct btrfs_file_extent_item *fi; |
| u64 extent_end; |
| u8 extent_type; |
| int can_nocow = 0; |
| int ret = 0; |
| bool nowait = path->nowait; |
| |
| fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); |
| extent_type = btrfs_file_extent_type(leaf, fi); |
| |
| if (extent_type == BTRFS_FILE_EXTENT_INLINE) |
| goto out; |
| |
| /* Can't access these fields unless we know it's not an inline extent. */ |
| args->disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); |
| args->disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); |
| args->extent_offset = btrfs_file_extent_offset(leaf, fi); |
| |
| if (!(inode->flags & BTRFS_INODE_NODATACOW) && |
| extent_type == BTRFS_FILE_EXTENT_REG) |
| goto out; |
| |
| /* |
| * If the extent was created before the generation where the last snapshot |
| * for its subvolume was created, then this implies the extent is shared, |
| * hence we must COW. |
| */ |
| if (!args->strict && |
| btrfs_file_extent_generation(leaf, fi) <= |
| btrfs_root_last_snapshot(&root->root_item)) |
| goto out; |
| |
| /* An explicit hole, must COW. */ |
| if (args->disk_bytenr == 0) |
| goto out; |
| |
| /* Compressed/encrypted/encoded extents must be COWed. */ |
| if (btrfs_file_extent_compression(leaf, fi) || |
| btrfs_file_extent_encryption(leaf, fi) || |
| btrfs_file_extent_other_encoding(leaf, fi)) |
| goto out; |
| |
| extent_end = btrfs_file_extent_end(path); |
| |
| /* |
| * The following checks can be expensive, as they need to take other |
| * locks and do btree or rbtree searches, so release the path to avoid |
| * blocking other tasks for too long. |
| */ |
| btrfs_release_path(path); |
| |
| ret = btrfs_cross_ref_exist(root, btrfs_ino(inode), |
| key->offset - args->extent_offset, |
| args->disk_bytenr, false, path); |
| WARN_ON_ONCE(ret > 0 && is_freespace_inode); |
| if (ret != 0) |
| goto out; |
| |
| if (args->free_path) { |
| /* |
| * We don't need the path anymore, plus through the |
| * csum_exist_in_range() call below we will end up allocating |
| * another path. So free the path to avoid unnecessary extra |
| * memory usage. |
| */ |
| btrfs_free_path(path); |
| path = NULL; |
| } |
| |
| /* If there are pending snapshots for this root, we must COW. */ |
| if (args->writeback_path && !is_freespace_inode && |
| atomic_read(&root->snapshot_force_cow)) |
| goto out; |
| |
| args->disk_bytenr += args->extent_offset; |
| args->disk_bytenr += args->start - key->offset; |
| args->num_bytes = min(args->end + 1, extent_end) - args->start; |
| |
| /* |
| * Force COW if csums exist in the range. This ensures that csums for a |
| * given extent are either valid or do not exist. |
| */ |
| ret = csum_exist_in_range(root->fs_info, args->disk_bytenr, args->num_bytes, |
| nowait); |
| WARN_ON_ONCE(ret > 0 && is_freespace_inode); |
| if (ret != 0) |
| goto out; |
| |
| can_nocow = 1; |
| out: |
| if (args->free_path && path) |
| btrfs_free_path(path); |
| |
| return ret < 0 ? ret : can_nocow; |
| } |
| |
| /* |
| * when nowcow writeback call back. This checks for snapshots or COW copies |
| * of the extents that exist in the file, and COWs the file as required. |
| * |
| * If no cow copies or snapshots exist, we write directly to the existing |
| * blocks on disk |
| */ |
| static noinline int run_delalloc_nocow(struct btrfs_inode *inode, |
| struct page *locked_page, |
| const u64 start, const u64 end, |
| int *page_started, |
| unsigned long *nr_written) |
| { |
| struct btrfs_fs_info *fs_info = inode->root->fs_info; |
| struct btrfs_root *root = inode->root; |
| struct btrfs_path *path; |
| u64 cow_start = (u64)-1; |
| u64 cur_offset = start; |
| int ret; |
| bool check_prev = true; |
| u64 ino = btrfs_ino(inode); |
| struct btrfs_block_group *bg; |
| bool nocow = false; |
| struct can_nocow_file_extent_args nocow_args = { 0 }; |
| |
| path = btrfs_alloc_path(); |
| if (!path) { |
| extent_clear_unlock_delalloc(inode, start, end, locked_page, |
| EXTENT_LOCKED | EXTENT_DELALLOC | |
| EXTENT_DO_ACCOUNTING | |
| EXTENT_DEFRAG, PAGE_UNLOCK | |
| PAGE_START_WRITEBACK | |
| PAGE_END_WRITEBACK); |
| return -ENOMEM; |
| } |
| |
| nocow_args.end = end; |
| nocow_args.writeback_path = true; |
| |
| while (1) { |
| struct btrfs_key found_key; |
| struct btrfs_file_extent_item *fi; |
| struct extent_buffer *leaf; |
| u64 extent_end; |
| u64 ram_bytes; |
| u64 nocow_end; |
| int extent_type; |
| |
| nocow = false; |
| |
| ret = btrfs_lookup_file_extent(NULL, root, path, ino, |
| cur_offset, 0); |
| if (ret < 0) |
| goto error; |
| |
| /* |
| * If there is no extent for our range when doing the initial |
| * search, then go back to the previous slot as it will be the |
| * one containing the search offset |
| */ |
| if (ret > 0 && path->slots[0] > 0 && check_prev) { |
| leaf = path->nodes[0]; |
| btrfs_item_key_to_cpu(leaf, &found_key, |
| path->slots[0] - 1); |
| if (found_key.objectid == ino && |
| found_key.type == BTRFS_EXTENT_DATA_KEY) |
| path->slots[0]--; |
| } |
| check_prev = false; |
| next_slot: |
| /* Go to next leaf if we have exhausted the current one */ |
| leaf = path->nodes[0]; |
| if (path->slots[0] >= btrfs_header_nritems(leaf)) { |
| ret = btrfs_next_leaf(root, path); |
| if (ret < 0) { |
| if (cow_start != (u64)-1) |
| cur_offset = cow_start; |
| goto error; |
| } |
| if (ret > 0) |
| break; |
| leaf = path->nodes[0]; |
| } |
| |
| btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); |
| |
| /* Didn't find anything for our INO */ |
| if (found_key.objectid > ino) |
| break; |
| /* |
| * Keep searching until we find an EXTENT_ITEM or there are no |
| * more extents for this inode |
| */ |
| if (WARN_ON_ONCE(found_key.objectid < ino) || |
| found_key.type < BTRFS_EXTENT_DATA_KEY) { |
| path->slots[0]++; |
| goto next_slot; |
| } |
| |
| /* Found key is not EXTENT_DATA_KEY or starts after req range */ |
| if (found_key.type > BTRFS_EXTENT_DATA_KEY || |
| found_key.offset > end) |
| break; |
| |
| /* |
| * If the found extent starts after requested offset, then |
| * adjust extent_end to be right before this extent begins |
| */ |
| if (found_key.offset > cur_offset) { |
| extent_end = found_key.offset; |
| extent_type = 0; |
| goto out_check; |
| } |
| |
| /* |
| * Found extent which begins before our range and potentially |
| * intersect it |
| */ |
| fi = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_file_extent_item); |
| extent_type = btrfs_file_extent_type(leaf, fi); |
| /* If this is triggered then we have a memory corruption. */ |
| ASSERT(extent_type < BTRFS_NR_FILE_EXTENT_TYPES); |
| if (WARN_ON(extent_type >= BTRFS_NR_FILE_EXTENT_TYPES)) { |
| ret = -EUCLEAN; |
| goto error; |
| } |
| ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); |
| extent_end = btrfs_file_extent_end(path); |
| |
| /* |
| * If the extent we got ends before our current offset, skip to |
| * the next extent. |
| */ |
| if (extent_end <= cur_offset) { |
| path->slots[0]++; |
| goto next_slot; |
| } |
| |
| nocow_args.start = cur_offset; |
| ret = can_nocow_file_extent(path, &found_key, inode, &nocow_args); |
| if (ret < 0) { |
| if (cow_start != (u64)-1) |
| cur_offset = cow_start; |
| goto error; |
| } else if (ret == 0) { |
| goto out_check; |
| } |
| |
| ret = 0; |
| bg = btrfs_inc_nocow_writers(fs_info, nocow_args.disk_bytenr); |
| if (bg) |
| nocow = true; |
| out_check: |
| /* |
| * If nocow is false then record the beginning of the range |
| * that needs to be COWed |
| */ |
| if (!nocow) { |
| if (cow_start == (u64)-1) |
| cow_start = cur_offset; |
| cur_offset = extent_end; |
| if (cur_offset > end) |
| break; |
| if (!path->nodes[0]) |
| continue; |
| path->slots[0]++; |
| goto next_slot; |
| } |
| |
| /* |
| * COW range from cow_start to found_key.offset - 1. As the key |
| * will contain the beginning of the first extent that can be |
| * NOCOW, following one which needs to be COW'ed |
| */ |
| if (cow_start != (u64)-1) { |
| ret = fallback_to_cow(inode, locked_page, |
| cow_start, found_key.offset - 1, |
| page_started, nr_written); |
| if (ret) |
| goto error; |
| cow_start = (u64)-1; |
| } |
| |
| nocow_end = cur_offset + nocow_args.num_bytes - 1; |
| |
| if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { |
| u64 orig_start = found_key.offset - nocow_args.extent_offset; |
| struct extent_map *em; |
| |
| em = create_io_em(inode, cur_offset, nocow_args.num_bytes, |
| orig_start, |
| nocow_args.disk_bytenr, /* block_start */ |
| nocow_args.num_bytes, /* block_len */ |
| nocow_args.disk_num_bytes, /* orig_block_len */ |
| ram_bytes, BTRFS_COMPRESS_NONE, |
| BTRFS_ORDERED_PREALLOC); |
| if (IS_ERR(em)) { |
| ret = PTR_ERR(em); |
| goto error; |
| } |
| free_extent_map(em); |
| ret = btrfs_add_ordered_extent(inode, |
| cur_offset, nocow_args.num_bytes, |
| nocow_args.num_bytes, |
| nocow_args.disk_bytenr, |
| nocow_args.num_bytes, 0, |
| 1 << BTRFS_ORDERED_PREALLOC, |
| BTRFS_COMPRESS_NONE); |
| if (ret) { |
| btrfs_drop_extent_map_range(inode, cur_offset, |
| nocow_end, false); |
| goto error; |
| } |
| } else { |
| ret = btrfs_add_ordered_extent(inode, cur_offset, |
| nocow_args.num_bytes, |
| nocow_args.num_bytes, |
| nocow_args.disk_bytenr, |
| nocow_args.num_bytes, |
| 0, |
| 1 << BTRFS_ORDERED_NOCOW, |
| BTRFS_COMPRESS_NONE); |
| if (ret) |
| goto error; |
| } |
| |
| if (nocow) { |
| btrfs_dec_nocow_writers(bg); |
| nocow = false; |
| } |
| |
| if (btrfs_is_data_reloc_root(root)) |
| /* |
| * Error handled later, as we must prevent |
| * extent_clear_unlock_delalloc() in error handler |
| * from freeing metadata of created ordered extent. |
| */ |
| ret = btrfs_reloc_clone_csums(inode, cur_offset, |
| nocow_args.num_bytes); |
| |
| extent_clear_unlock_delalloc(inode, cur_offset, nocow_end, |
| locked_page, EXTENT_LOCKED | |
| EXTENT_DELALLOC | |
| EXTENT_CLEAR_DATA_RESV, |
| PAGE_UNLOCK | PAGE_SET_ORDERED); |
| |
| cur_offset = extent_end; |
| |
| /* |
| * btrfs_reloc_clone_csums() error, now we're OK to call error |
| * handler, as metadata for created ordered extent will only |
| * be freed by btrfs_finish_ordered_io(). |
| */ |
| if (ret) |
| goto error; |
| if (cur_offset > end) |
| break; |
| } |
| btrfs_release_path(path); |
| |
| if (cur_offset <= end && cow_start == (u64)-1) |
| cow_start = cur_offset; |
| |
| if (cow_start != (u64)-1) { |
| cur_offset = end; |
| ret = fallback_to_cow(inode, locked_page, cow_start, end, |
| page_started, nr_written); |
| if (ret) |
| goto error; |
| } |
| |
| error: |
| if (nocow) |
| btrfs_dec_nocow_writers(bg); |
| |
| if (ret && cur_offset < end) |
| extent_clear_unlock_delalloc(inode, cur_offset, end, |
| locked_page, EXTENT_LOCKED | |
| EXTENT_DELALLOC | EXTENT_DEFRAG | |
| EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | |
| PAGE_START_WRITEBACK | |
| PAGE_END_WRITEBACK); |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end) |
| { |
| if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) { |
| if (inode->defrag_bytes && |
| test_range_bit(&inode->io_tree, start, end, EXTENT_DEFRAG, |
| 0, NULL)) |
| return false; |
| return true; |
| } |
| return false; |
| } |
| |
| /* |
| * Function to process delayed allocation (create CoW) for ranges which are |
| * being touched for the first time. |
| */ |
| int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page, |
| u64 start, u64 end, int *page_started, unsigned long *nr_written, |
| struct writeback_control *wbc) |
| { |
| int ret; |
| const bool zoned = btrfs_is_zoned(inode->root->fs_info); |
| |
| /* |
| * The range must cover part of the @locked_page, or the returned |
| * @page_started can confuse the caller. |
| */ |
| ASSERT(!(end <= page_offset(locked_page) || |
| start >= page_offset(locked_page) + PAGE_SIZE)); |
| |
| if (should_nocow(inode, start, end)) { |
| /* |
| * Normally on a zoned device we're only doing COW writes, but |
| * in case of relocation on a zoned filesystem we have taken |
| * precaution, that we're only writing sequentially. It's safe |
| * to use run_delalloc_nocow() here, like for regular |
| * preallocated inodes. |
| */ |
| ASSERT(!zoned || btrfs_is_data_reloc_root(inode->root)); |
| ret = run_delalloc_nocow(inode, locked_page, start, end, |
| page_started, nr_written); |
| } else if (!btrfs_inode_can_compress(inode) || |
| !inode_need_compress(inode, start, end)) { |
| if (zoned) |
| ret = run_delalloc_zoned(inode, locked_page, start, end, |
| page_started, nr_written); |
| else |
| ret = cow_file_range(inode, locked_page, start, end, |
| page_started, nr_written, 1, NULL); |
| } else { |
| set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags); |
| ret = cow_file_range_async(inode, wbc, locked_page, start, end, |
| page_started, nr_written); |
| } |
| ASSERT(ret <= 0); |
| if (ret) |
| btrfs_cleanup_ordered_extents(inode, locked_page, start, |
| end - start + 1); |
| return ret; |
| } |
| |
| void btrfs_split_delalloc_extent(struct btrfs_inode *inode, |
| struct extent_state *orig, u64 split) |
| { |
| struct btrfs_fs_info *fs_info = inode->root->fs_info; |
| u64 size; |
| |
| /* not delalloc, ignore it */ |
| if (!(orig->state & EXTENT_DELALLOC)) |
| return; |
| |
| size = orig->end - orig->start + 1; |
| if (size > fs_info->max_extent_size) { |
| u32 num_extents; |
| u64 new_size; |
| |
| /* |
| * See the explanation in btrfs_merge_delalloc_extent, the same |
| * applies here, just in reverse. |
| */ |
| new_size = orig->end - split + 1; |
| num_extents = count_max_extents(fs_info, new_size); |
| new_size = split - orig->start; |
| num_extents += count_max_extents(fs_info, new_size); |
| if (count_max_extents(fs_info, size) >= num_extents) |
| return; |
| } |
| |
| spin_lock(&inode->lock); |
| btrfs_mod_outstanding_extents(inode, 1); |
| spin_unlock(&inode->lock); |
| } |
| |
| /* |
| * Handle merged delayed allocation extents so we can keep track of new extents |
| * that are just merged onto old extents, such as when we are doing sequential |
| * writes, so we can properly account for the metadata space we'll need. |
| */ |
| void btrfs_merge_delalloc_extent(struct btrfs_inode *inode, struct extent_state *new, |
| struct extent_state *other) |
| { |
| struct btrfs_fs_info *fs_info = inode->root->fs_info; |
| u64 new_size, old_size; |
| u32 num_extents; |
| |
| /* not delalloc, ignore it */ |
| if (!(other->state & EXTENT_DELALLOC)) |
| return; |
| |
| if (new->start > other->start) |
| new_size = new->end - other->start + 1; |
| else |
| new_size = other->end - new->start + 1; |
| |
| /* we're not bigger than the max, unreserve the space and go */ |
| if (new_size <= fs_info->max_extent_size) { |
| spin_lock(&inode->lock); |
| btrfs_mod_outstanding_extents(inode, -1); |
| spin_unlock(&inode->lock); |
| return; |
| } |
| |
| /* |
| * We have to add up either side to figure out how many extents were |
| * accounted for before we merged into one big extent. If the number of |
| * extents we accounted for is <= the amount we need for the new range |
| * then we can return, otherwise drop. Think of it like this |
| * |
| * [ 4k][MAX_SIZE] |
| * |
| * So we've grown the extent by a MAX_SIZE extent, this would mean we |
| * need 2 outstanding extents, on one side we have 1 and the other side |
| * we have 1 so they are == and we can return. But in this case |
| * |
| * [MAX_SIZE+4k][MAX_SIZE+4k] |
| * |
| * Each range on their own accounts for 2 extents, but merged together |
| * they are only 3 extents worth of accounting, so we need to drop in |
| * this case. |
| */ |
| old_size = other->end - other->start + 1; |
| num_extents = count_max_extents(fs_info, old_size); |
| old_size = new->end - new->start + 1; |
| num_extents += count_max_extents(fs_info, old_size); |
| if (count_max_extents(fs_info, new_size) >= num_extents) |
| return; |
| |
| spin_lock(&inode->lock); |
| btrfs_mod_outstanding_extents(inode, -1); |
| spin_unlock(&inode->lock); |
| } |
| |
| static void btrfs_add_delalloc_inodes(struct btrfs_root *root, |
| struct btrfs_inode *inode) |
| { |
| struct btrfs_fs_info *fs_info = inode->root->fs_info; |
| |
| spin_lock(&root->delalloc_lock); |
| if (list_empty(&inode->delalloc_inodes)) { |
| list_add_tail(&inode->delalloc_inodes, &root->delalloc_inodes); |
| set_bit(BTRFS_INODE_IN_DELALLOC_LIST, &inode->runtime_flags); |
| root->nr_delalloc_inodes++; |
| if (root->nr_delalloc_inodes == 1) { |
| spin_lock(&fs_info->delalloc_root_lock); |
| BUG_ON(!list_empty(&root->delalloc_root)); |
| list_add_tail(&root->delalloc_root, |
| &fs_info->delalloc_roots); |
| spin_unlock(&fs_info->delalloc_root_lock); |
| } |
| } |
| spin_unlock(&root->delalloc_lock); |
| } |
| |
| void __btrfs_del_delalloc_inode(struct btrfs_root *root, |
| struct btrfs_inode *inode) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| |
| if (!list_empty(&inode->delalloc_inodes)) { |
| list_del_init(&inode->delalloc_inodes); |
| clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, |
| &inode->runtime_flags); |
| root->nr_delalloc_inodes--; |
| if (!root->nr_delalloc_inodes) { |
| ASSERT(list_empty(&root->delalloc_inodes)); |
| spin_lock(&fs_info->delalloc_root_lock); |
| BUG_ON(list_empty(&root->delalloc_root)); |
| list_del_init(&root->delalloc_root); |
| spin_unlock(&fs_info->delalloc_root_lock); |
| } |
| } |
| } |
| |
| static void btrfs_del_delalloc_inode(struct btrfs_root *root, |
| struct btrfs_inode *inode) |
| { |
| spin_lock(&root->delalloc_lock); |
| __btrfs_del_delalloc_inode(root, inode); |
| spin_unlock(&root->delalloc_lock); |
| } |
| |
| /* |
| * Properly track delayed allocation bytes in the inode and to maintain the |
| * list of inodes that have pending delalloc work to be done. |
| */ |
| void btrfs_set_delalloc_extent(struct btrfs_inode *inode, struct extent_state *state, |
| u32 bits) |
| { |
| struct btrfs_fs_info *fs_info = inode->root->fs_info; |
| |
| if ((bits & EXTENT_DEFRAG) && !(bits & EXTENT_DELALLOC)) |
| WARN_ON(1); |
| /* |
| * set_bit and clear bit hooks normally require _irqsave/restore |
| * but in this case, we are only testing for the DELALLOC |
| * bit, which is only set or cleared with irqs on |
| */ |
| if (!(state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) { |
| struct btrfs_root *root = inode->root; |
| u64 len = state->end + 1 - state->start; |
| u32 num_extents = count_max_extents(fs_info, len); |
| bool do_list = !btrfs_is_free_space_inode(inode); |
| |
| spin_lock(&inode->lock); |
| btrfs_mod_outstanding_extents(inode, num_extents); |
| spin_unlock(&inode->lock); |
| |
| /* For sanity tests */ |
| if (btrfs_is_testing(fs_info)) |
| return; |
| |
| percpu_counter_add_batch(&fs_info->delalloc_bytes, len, |
| fs_info->delalloc_batch); |
| spin_lock(&inode->lock); |
| inode->delalloc_bytes += len; |
| if (bits & EXTENT_DEFRAG) |
| inode->defrag_bytes += len; |
| if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST, |
| &inode->runtime_flags)) |
| btrfs_add_delalloc_inodes(root, inode); |
| spin_unlock(&inode->lock); |
| } |
| |
| if (!(state->state & EXTENT_DELALLOC_NEW) && |
| (bits & EXTENT_DELALLOC_NEW)) { |
| spin_lock(&inode->lock); |
| inode->new_delalloc_bytes += state->end + 1 - state->start; |
| spin_unlock(&inode->lock); |
| } |
| } |
| |
| /* |
| * Once a range is no longer delalloc this function ensures that proper |
| * accounting happens. |
| */ |
| void btrfs_clear_delalloc_extent(struct btrfs_inode *inode, |
| struct extent_state *state, u32 bits) |
| { |
| struct btrfs_fs_info *fs_info = inode->root->fs_info; |
| u64 len = state->end + 1 - state->start; |
| u32 num_extents = count_max_extents(fs_info, len); |
| |
| if ((state->state & EXTENT_DEFRAG) && (bits & EXTENT_DEFRAG)) { |
| spin_lock(&inode->lock); |
| inode->defrag_bytes -= len; |
| spin_unlock(&inode->lock); |
| } |
| |
| /* |
| * set_bit and clear bit hooks normally require _irqsave/restore |
| * but in this case, we are only testing for the DELALLOC |
| * bit, which is only set or cleared with irqs on |
| */ |
| if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) { |
| struct btrfs_root *root = inode->root; |
| bool do_list = !btrfs_is_free_space_inode(inode); |
| |
| spin_lock(&inode->lock); |
| btrfs_mod_outstanding_extents(inode, -num_extents); |
| spin_unlock(&inode->lock); |
| |
| /* |
| * We don't reserve metadata space for space cache inodes so we |
| * don't need to call delalloc_release_metadata if there is an |
| * error. |
| */ |
| if (bits & EXTENT_CLEAR_META_RESV && |
| root != fs_info->tree_root) |
| btrfs_delalloc_release_metadata(inode, len, false); |
| |
| /* For sanity tests. */ |
| if (btrfs_is_testing(fs_info)) |
| return; |
| |
| if (!btrfs_is_data_reloc_root(root) && |
| do_list && !(state->state & EXTENT_NORESERVE) && |
| (bits & EXTENT_CLEAR_DATA_RESV)) |
| btrfs_free_reserved_data_space_noquota(fs_info, len); |
| |
| percpu_counter_add_batch(&fs_info->delalloc_bytes, -len, |
| fs_info->delalloc_batch); |
| spin_lock(&inode->lock); |
| inode->delalloc_bytes -= len; |
| if (do_list && inode->delalloc_bytes == 0 && |
| test_bit(BTRFS_INODE_IN_DELALLOC_LIST, |
| &inode->runtime_flags)) |
| btrfs_del_delalloc_inode(root, inode); |
| spin_unlock(&inode->lock); |
| } |
| |
| if ((state->state & EXTENT_DELALLOC_NEW) && |
| (bits & EXTENT_DELALLOC_NEW)) { |
| spin_lock(&inode->lock); |
| ASSERT(inode->new_delalloc_bytes >= len); |
| inode->new_delalloc_bytes -= len; |
| if (bits & EXTENT_ADD_INODE_BYTES) |
| inode_add_bytes(&inode->vfs_inode, len); |
| spin_unlock(&inode->lock); |
| } |
| } |
| |
| /* |
| * Split an extent_map at [start, start + len] |
| * |
| * This function is intended to be used only for extract_ordered_extent(). |
| */ |
| static int split_zoned_em(struct btrfs_inode *inode, u64 start, u64 len, |
| u64 pre, u64 post) |
| { |
| struct extent_map_tree *em_tree = &inode->extent_tree; |
| struct extent_map *em; |
| struct extent_map *split_pre = NULL; |
| struct extent_map *split_mid = NULL; |
| struct extent_map *split_post = NULL; |
| int ret = 0; |
| unsigned long flags; |
| |
| /* Sanity check */ |
| if (pre == 0 && post == 0) |
| return 0; |
| |
| split_pre = alloc_extent_map(); |
| if (pre) |
| split_mid = alloc_extent_map(); |
| if (post) |
| split_post = alloc_extent_map(); |
| if (!split_pre || (pre && !split_mid) || (post && !split_post)) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| ASSERT(pre + post < len); |
| |
| lock_extent(&inode->io_tree, start, start + len - 1, NULL); |
| write_lock(&em_tree->lock); |
| em = lookup_extent_mapping(em_tree, start, len); |
| if (!em) { |
| ret = -EIO; |
| goto out_unlock; |
| } |
| |
| ASSERT(em->len == len); |
| ASSERT(!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)); |
| ASSERT(em->block_start < EXTENT_MAP_LAST_BYTE); |
| ASSERT(test_bit(EXTENT_FLAG_PINNED, &em->flags)); |
| ASSERT(!test_bit(EXTENT_FLAG_LOGGING, &em->flags)); |
| ASSERT(!list_empty(&em->list)); |
| |
| flags = em->flags; |
| clear_bit(EXTENT_FLAG_PINNED, &em->flags); |
| |
| /* First, replace the em with a new extent_map starting from * em->start */ |
| split_pre->start = em->start; |
| split_pre->len = (pre ? pre : em->len - post); |
| split_pre->orig_start = split_pre->start; |
| split_pre->block_start = em->block_start; |
| split_pre->block_len = split_pre->len; |
| split_pre->orig_block_len = split_pre->block_len; |
| split_pre->ram_bytes = split_pre->len; |
| split_pre->flags = flags; |
| split_pre->compress_type = em->compress_type; |
| split_pre->generation = em->generation; |
| |
| replace_extent_mapping(em_tree, em, split_pre, 1); |
| |
| /* |
| * Now we only have an extent_map at: |
| * [em->start, em->start + pre] if pre != 0 |
| * [em->start, em->start + em->len - post] if pre == 0 |
| */ |
| |
| if (pre) { |
| /* Insert the middle extent_map */ |
| split_mid->start = em->start + pre; |
| split_mid->len = em->len - pre - post; |
| split_mid->orig_start = split_mid->start; |
| split_mid->block_start = em->block_start + pre; |
| split_mid->block_len = split_mid->len; |
| split_mid->orig_block_len = split_mid->block_len; |
| split_mid->ram_bytes = split_mid->len; |
| split_mid->flags = flags; |
| split_mid->compress_type = em->compress_type; |
| split_mid->generation = em->generation; |
| add_extent_mapping(em_tree, split_mid, 1); |
| } |
| |
| if (post) { |
| split_post->start = em->start + em->len - post; |
| split_post->len = post; |
| split_post->orig_start = split_post->start; |
| split_post->block_start = em->block_start + em->len - post; |
| split_post->block_len = split_post->len; |
| split_post->orig_block_len = split_post->block_len; |
| split_post->ram_bytes = split_post->len; |
| split_post->flags = flags; |
| split_post->compress_type = em->compress_type; |
| split_post->generation = em->generation; |
| add_extent_mapping(em_tree, split_post, 1); |
| } |
| |
| /* Once for us */ |
| free_extent_map(em); |
| /* Once for the tree */ |
| free_extent_map(em); |
| |
| out_unlock: |
| write_unlock(&em_tree->lock); |
| unlock_extent(&inode->io_tree, start, start + len - 1, NULL); |
| out: |
| free_extent_map(split_pre); |
| free_extent_map(split_mid); |
| free_extent_map(split_post); |
| |
| return ret; |
| } |
| |
| blk_status_t btrfs_extract_ordered_extent(struct btrfs_bio *bbio) |
| { |
| u64 start = (u64)bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT; |
| u64 len = bbio->bio.bi_iter.bi_size; |
| struct btrfs_inode *inode = bbio->inode; |
| struct btrfs_ordered_extent *ordered; |
| u64 file_len; |
| u64 end = start + len; |
| u64 ordered_end; |
| u64 pre, post; |
| int ret = 0; |
| |
| ordered = btrfs_lookup_ordered_extent(inode, bbio->file_offset); |
| if (WARN_ON_ONCE(!ordered)) |
| return BLK_STS_IOERR; |
| |
| /* No need to split */ |
| if (ordered->disk_num_bytes == len) |
| goto out; |
| |
| /* We cannot split once end_bio'd ordered extent */ |
| if (WARN_ON_ONCE(ordered->bytes_left != ordered->disk_num_bytes)) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| /* We cannot split a compressed ordered extent */ |
| if (WARN_ON_ONCE(ordered->disk_num_bytes != ordered->num_bytes)) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| ordered_end = ordered->disk_bytenr + ordered->disk_num_bytes; |
| /* bio must be in one ordered extent */ |
| if (WARN_ON_ONCE(start < ordered->disk_bytenr || end > ordered_end)) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| /* Checksum list should be empty */ |
| if (WARN_ON_ONCE(!list_empty(&ordered->list))) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| file_len = ordered->num_bytes; |
| pre = start - ordered->disk_bytenr; |
| post = ordered_end - end; |
| |
| ret = btrfs_split_ordered_extent(ordered, pre, post); |
| if (ret) |
| goto out; |
| ret = split_zoned_em(inode, bbio->file_offset, file_len, pre, post); |
| |
| out: |
| btrfs_put_ordered_extent(ordered); |
| |
| return errno_to_blk_status(ret); |
| } |
| |
| /* |
| * given a list of ordered sums record them in the inode. This happens |
| * at IO completion time based on sums calculated at bio submission time. |
| */ |
| static int add_pending_csums(struct btrfs_trans_handle *trans, |
| struct list_head *list) |
| { |
| struct btrfs_ordered_sum *sum; |
| struct btrfs_root *csum_root = NULL; |
| int ret; |
| |
| list_for_each_entry(sum, list, list) { |
| trans->adding_csums = true; |
| if (!csum_root) |
| csum_root = btrfs_csum_root(trans->fs_info, |
| sum->bytenr); |
| ret = btrfs_csum_file_blocks(trans, csum_root, sum); |
| trans->adding_csums = false; |
| if (ret) |
| return ret; |
| } |
| return 0; |
| } |
| |
| static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode, |
| const u64 start, |
| const u64 len, |
| struct extent_state **cached_state) |
| { |
| u64 search_start = start; |
| const u64 end = start + len - 1; |
| |
| while (search_start < end) { |
| const u64 search_len = end - search_start + 1; |
| struct extent_map *em; |
| u64 em_len; |
| int ret = 0; |
| |
| em = btrfs_get_extent(inode, NULL, 0, search_start, search_len); |
| if (IS_ERR(em)) |
| return PTR_ERR(em); |
| |
| if (em->block_start != EXTENT_MAP_HOLE) |
| goto next; |
| |
| em_len = em->len; |
| if (em->start < search_start) |
| em_len -= search_start - em->start; |
| if (em_len > search_len) |
| em_len = search_len; |
| |
| ret = set_extent_bit(&inode->io_tree, search_start, |
| search_start + em_len - 1, |
| EXTENT_DELALLOC_NEW, cached_state, |
| GFP_NOFS); |
| next: |
| search_start = extent_map_end(em); |
| free_extent_map(em); |
| if (ret) |
| return ret; |
| } |
| return 0; |
| } |
| |
| int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end, |
| unsigned int extra_bits, |
| struct extent_state **cached_state) |
| { |
| WARN_ON(PAGE_ALIGNED(end)); |
| |
| if (start >= i_size_read(&inode->vfs_inode) && |
| !(inode->flags & BTRFS_INODE_PREALLOC)) { |
| /* |
| * There can't be any extents following eof in this case so just |
| * set the delalloc new bit for the range directly. |
| */ |
| extra_bits |= EXTENT_DELALLOC_NEW; |
| } else { |
| int ret; |
| |
| ret = btrfs_find_new_delalloc_bytes(inode, start, |
| end + 1 - start, |
| cached_state); |
| if (ret) |
| return ret; |
| } |
| |
| return set_extent_delalloc(&inode->io_tree, start, end, extra_bits, |
| cached_state); |
| } |
| |
| /* see btrfs_writepage_start_hook for details on why this is required */ |
| struct btrfs_writepage_fixup { |
| struct page *page; |
| struct btrfs_inode *inode; |
| struct btrfs_work work; |
| }; |
| |
| static void btrfs_writepage_fixup_worker(struct btrfs_work *work) |
| { |
| struct btrfs_writepage_fixup *fixup; |
| struct btrfs_ordered_extent *ordered; |
| struct extent_state *cached_state = NULL; |
| struct extent_changeset *data_reserved = NULL; |
| struct page *page; |
| struct btrfs_inode *inode; |
| u64 page_start; |
| u64 page_end; |
| int ret = 0; |
| bool free_delalloc_space = true; |
| |
| fixup = container_of(work, struct btrfs_writepage_fixup, work); |
| page = fixup->page; |
| inode = fixup->inode; |
| page_start = page_offset(page); |
| page_end = page_offset(page) + PAGE_SIZE - 1; |
| |
| /* |
| * This is similar to page_mkwrite, we need to reserve the space before |
| * we take the page lock. |
| */ |
| ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, |
| PAGE_SIZE); |
| again: |
| lock_page(page); |
| |
| /* |
| * Before we queued this fixup, we took a reference on the page. |
| * page->mapping may go NULL, but it shouldn't be moved to a different |
| * address space. |
| */ |
| if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { |
| /* |
| * Unfortunately this is a little tricky, either |
| * |
| * 1) We got here and our page had already been dealt with and |
| * we reserved our space, thus ret == 0, so we need to just |
| * drop our space reservation and bail. This can happen the |
| * first time we come into the fixup worker, or could happen |
| * while waiting for the ordered extent. |
| * 2) Our page was already dealt with, but we happened to get an |
| * ENOSPC above from the btrfs_delalloc_reserve_space. In |
| * this case we obviously don't have anything to release, but |
| * because the page was already dealt with we don't want to |
| * mark the page with an error, so make sure we're resetting |
| * ret to 0. This is why we have this check _before_ the ret |
| * check, because we do not want to have a surprise ENOSPC |
| * when the page was already properly dealt with. |
| */ |
| if (!ret) { |
| btrfs_delalloc_release_extents(inode, PAGE_SIZE); |
| btrfs_delalloc_release_space(inode, data_reserved, |
| page_start, PAGE_SIZE, |
| true); |
| } |
| ret = 0; |
| goto out_page; |
| } |
| |
| /* |
| * We can't mess with the page state unless it is locked, so now that |
| * it is locked bail if we failed to make our space reservation. |
| */ |
| if (ret) |
| goto out_page; |
| |
| lock_extent(&inode->io_tree, page_start, page_end, &cached_state); |
| |
| /* already ordered? We're done */ |
| if (PageOrdered(page)) |
| goto out_reserved; |
| |
| ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE); |
| if (ordered) { |
| unlock_extent(&inode->io_tree, page_start, page_end, |
| &cached_state); |
| unlock_page(page); |
| btrfs_start_ordered_extent(ordered); |
| btrfs_put_ordered_extent(ordered); |
| goto again; |
| } |
| |
| ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0, |
| &cached_state); |
| if (ret) |
| goto out_reserved; |
| |
| /* |
| * Everything went as planned, we're now the owner of a dirty page with |
| * delayed allocation bits set and space reserved for our COW |
| * destination. |
| * |
| * The page was dirty when we started, nothing should have cleaned it. |
| */ |
| BUG_ON(!PageDirty(page)); |
| free_delalloc_space = false; |
| out_reserved: |
| btrfs_delalloc_release_extents(inode, PAGE_SIZE); |
| if (free_delalloc_space) |
| btrfs_delalloc_release_space(inode, data_reserved, page_start, |
| PAGE_SIZE, true); |
| unlock_extent(&inode->io_tree, page_start, page_end, &cached_state); |
| out_page: |
| if (ret) { |
| /* |
| * We hit ENOSPC or other errors. Update the mapping and page |
| * to reflect the errors and clean the page. |
| */ |
| mapping_set_error(page->mapping, ret); |
| end_extent_writepage(page, ret, page_start, page_end); |
| clear_page_dirty_for_io(page); |
| SetPageError(page); |
| } |
| btrfs_page_clear_checked(inode->root->fs_info, page, page_start, PAGE_SIZE); |
| unlock_page(page); |
| put_page(page); |
| kfree(fixup); |
| extent_changeset_free(data_reserved); |
| /* |
| * As a precaution, do a delayed iput in case it would be the last iput |
| * that could need flushing space. Recursing back to fixup worker would |
| * deadlock. |
| */ |
| btrfs_add_delayed_iput(inode); |
| } |
| |
| /* |
| * There are a few paths in the higher layers of the kernel that directly |
| * set the page dirty bit without asking the filesystem if it is a |
| * good idea. This causes problems because we want to make sure COW |
| * properly happens and the data=ordered rules are followed. |
| * |
| * In our case any range that doesn't have the ORDERED bit set |
| * hasn't been properly setup for IO. We kick off an async process |
| * to fix it up. The async helper will wait for ordered extents, set |
| * the delalloc bit and make it safe to write the page. |
| */ |
| int btrfs_writepage_cow_fixup(struct page *page) |
| { |
| struct inode *inode = page->mapping->host; |
| struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
| struct btrfs_writepage_fixup *fixup; |
| |
| /* This page has ordered extent covering it already */ |
| if (PageOrdered(page)) |
| return 0; |
| |
| /* |
| * PageChecked is set below when we create a fixup worker for this page, |
| * don't try to create another one if we're already PageChecked() |
| * |
| * The extent_io writepage code will redirty the page if we send back |
| * EAGAIN. |
| */ |
| if (PageChecked(page)) |
| return -EAGAIN; |
| |
| fixup = kzalloc(sizeof(*fixup), GFP_NOFS); |
| if (!fixup) |
| return -EAGAIN; |
| |
| /* |
| * We are already holding a reference to this inode from |
| * write_cache_pages. We need to hold it because the space reservation |
| * takes place outside of the page lock, and we can't trust |
| * page->mapping outside of the page lock. |
| */ |
| ihold(inode); |
| btrfs_page_set_checked(fs_info, page, page_offset(page), PAGE_SIZE); |
| get_page(page); |
| btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL); |
| fixup->page = page; |
| fixup->inode = BTRFS_I(inode); |
| btrfs_queue_work(fs_info->fixup_workers, &fixup->work); |
| |
| return -EAGAIN; |
| } |
| |
| static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, |
| struct btrfs_inode *inode, u64 file_pos, |
| struct btrfs_file_extent_item *stack_fi, |
| const bool update_inode_bytes, |
| u64 qgroup_reserved) |
| { |
| struct btrfs_root *root = inode->root; |
| const u64 sectorsize = root->fs_info->sectorsize; |
| struct btrfs_path *path; |
| struct extent_buffer *leaf; |
| struct btrfs_key ins; |
| u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi); |
| u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi); |
| u64 offset = btrfs_stack_file_extent_offset(stack_fi); |
| u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi); |
| u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi); |
| struct btrfs_drop_extents_args drop_args = { 0 }; |
| int ret; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| /* |
| * we may be replacing one extent in the tree with another. |
| * The new extent is pinned in the extent map, and we don't want |
| * to drop it from the cache until it is completely in the btree. |
| * |
| * So, tell btrfs_drop_extents to leave this extent in the cache. |
| * the caller is expected to unpin it and allow it to be merged |
| * with the others. |
| */ |
| drop_args.path = path; |
| drop_args.start = file_pos; |
| drop_args.end = file_pos + num_bytes; |
| drop_args.replace_extent = true; |
| drop_args.extent_item_size = sizeof(*stack_fi); |
| ret = btrfs_drop_extents(trans, root, inode, &drop_args); |
| if (ret) |
| goto out; |
| |
| if (!drop_args.extent_inserted) { |
| ins.objectid = btrfs_ino(inode); |
| ins.offset = file_pos; |
| ins.type = BTRFS_EXTENT_DATA_KEY; |
| |
| ret = btrfs_insert_empty_item(trans, root, path, &ins, |
| sizeof(*stack_fi)); |
| if (ret) |
| goto out; |
| } |
| leaf = path->nodes[0]; |
| btrfs_set_stack_file_extent_generation(stack_fi, trans->transid); |
| write_extent_buffer(leaf, stack_fi, |
| btrfs_item_ptr_offset(leaf, path->slots[0]), |
| sizeof(struct btrfs_file_extent_item)); |
| |
| btrfs_mark_buffer_dirty(leaf); |
| btrfs_release_path(path); |
| |
| /* |
| * If we dropped an inline extent here, we know the range where it is |
| * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the |
| * number of bytes only for that range containing the inline extent. |
| * The remaining of the range will be processed when clearning the |
| * EXTENT_DELALLOC_BIT bit through the ordered extent completion. |
| */ |
| if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) { |
| u64 inline_size = round_down(drop_args.bytes_found, sectorsize); |
| |
| inline_size = drop_args.bytes_found - inline_size; |
| btrfs_update_inode_bytes(inode, sectorsize, inline_size); |
| drop_args.bytes_found -= inline_size; |
| num_bytes -= sectorsize; |
| } |
| |
| if (update_inode_bytes) |
| btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found); |
| |
| ins.objectid = disk_bytenr; |
| ins.offset = disk_num_bytes; |
| ins.type = BTRFS_EXTENT_ITEM_KEY; |
| |
| ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes); |
| if (ret) |
| goto out; |
| |
| ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode), |
| file_pos - offset, |
| qgroup_reserved, &ins); |
| out: |
| btrfs_free_path(path); |
| |
| return ret; |
| } |
| |
| static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info, |
| u64 start, u64 len) |
| { |
| struct btrfs_block_group *cache; |
| |
| cache = btrfs_lookup_block_group(fs_info, start); |
| ASSERT(cache); |
| |
| spin_lock(&cache->lock); |
| cache->delalloc_bytes -= len; |
| spin_unlock(&cache->lock); |
| |
| btrfs_put_block_group(cache); |
| } |
| |
| static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans, |
| struct btrfs_ordered_extent *oe) |
| { |
| struct btrfs_file_extent_item stack_fi; |
| bool update_inode_bytes; |
| u64 num_bytes = oe->num_bytes; |
| u64 ram_bytes = oe->ram_bytes; |
| |
| memset(&stack_fi, 0, sizeof(stack_fi)); |
| btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG); |
| btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr); |
| btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, |
| oe->disk_num_bytes); |
| btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset); |
| if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags)) { |
| num_bytes = oe->truncated_len; |
| ram_bytes = num_bytes; |
| } |
| btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes); |
| btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes); |
| btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type); |
| /* Encryption and other encoding is reserved and all 0 */ |
| |
| /* |
| * For delalloc, when completing an ordered extent we update the inode's |
| * bytes when clearing the range in the inode's io tree, so pass false |
| * as the argument 'update_inode_bytes' to insert_reserved_file_extent(), |
| * except if the ordered extent was truncated. |
| */ |
| update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) || |
| test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) || |
| test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags); |
| |
| return insert_reserved_file_extent(trans, BTRFS_I(oe->inode), |
| oe->file_offset, &stack_fi, |
| update_inode_bytes, oe->qgroup_rsv); |
| } |
| |
| /* |
| * As ordered data IO finishes, this gets called so we can finish |
| * an ordered extent if the range of bytes in the file it covers are |
| * fully written. |
| */ |
| int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent) |
| { |
| struct btrfs_inode *inode = BTRFS_I(ordered_extent->inode); |
| struct btrfs_root *root = inode->root; |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct btrfs_trans_handle *trans = NULL; |
| struct extent_io_tree *io_tree = &inode->io_tree; |
| struct extent_state *cached_state = NULL; |
| u64 start, end; |
| int compress_type = 0; |
| int ret = 0; |
| u64 logical_len = ordered_extent->num_bytes; |
| bool freespace_inode; |
| bool truncated = false; |
| bool clear_reserved_extent = true; |
| unsigned int clear_bits = EXTENT_DEFRAG; |
| |
| start = ordered_extent->file_offset; |
| end = start + ordered_extent->num_bytes - 1; |
| |
| if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && |
| !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) && |
| !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) && |
| !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags)) |
| clear_bits |= EXTENT_DELALLOC_NEW; |
| |
| freespace_inode = btrfs_is_free_space_inode(inode); |
| if (!freespace_inode) |
| btrfs_lockdep_acquire(fs_info, btrfs_ordered_extent); |
| |
| if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { |
| ret = -EIO; |
| goto out; |
| } |
| |
| /* A valid ->physical implies a write on a sequential zone. */ |
| if (ordered_extent->physical != (u64)-1) { |
| btrfs_rewrite_logical_zoned(ordered_extent); |
| btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr, |
| ordered_extent->disk_num_bytes); |
| } |
| |
| if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { |
| truncated = true; |
| logical_len = ordered_extent->truncated_len; |
| /* Truncated the entire extent, don't bother adding */ |
| if (!logical_len) |
| goto out; |
| } |
| |
| if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { |
| BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ |
| |
| btrfs_inode_safe_disk_i_size_write(inode, 0); |
| if (freespace_inode) |
| trans = btrfs_join_transaction_spacecache(root); |
| else |
| trans = btrfs_join_transaction(root); |
| if (IS_ERR(trans)) { |
| ret = PTR_ERR(trans); |
| trans = NULL; |
| goto out; |
| } |
| trans->block_rsv = &inode->block_rsv; |
| ret = btrfs_update_inode_fallback(trans, root, inode); |
| if (ret) /* -ENOMEM or corruption */ |
| btrfs_abort_transaction(trans, ret); |
| goto out; |
| } |
| |
| clear_bits |= EXTENT_LOCKED; |
| lock_extent(io_tree, start, end, &cached_state); |
| |
| if (freespace_inode) |
| trans = btrfs_join_transaction_spacecache(root); |
| else |
| trans = btrfs_join_transaction(root); |
| if (IS_ERR(trans)) { |
| ret = PTR_ERR(trans); |
| trans = NULL; |
| goto out; |
| } |
| |
| trans->block_rsv = &inode->block_rsv; |
| |
| if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) |
| compress_type = ordered_extent->compress_type; |
| if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { |
| BUG_ON(compress_type); |
| ret = btrfs_mark_extent_written(trans, inode, |
| ordered_extent->file_offset, |
| ordered_extent->file_offset + |
| logical_len); |
| btrfs_zoned_release_data_reloc_bg(fs_info, ordered_extent->disk_bytenr, |
| ordered_extent->disk_num_bytes); |
| } else { |
| BUG_ON(root == fs_info->tree_root); |
| ret = insert_ordered_extent_file_extent(trans, ordered_extent); |
| if (!ret) { |
| clear_reserved_extent = false; |
| btrfs_release_delalloc_bytes(fs_info, |
| ordered_extent->disk_bytenr, |
| ordered_extent->disk_num_bytes); |
| } |
| } |
| unpin_extent_cache(&inode->extent_tree, ordered_extent->file_offset, |
| ordered_extent->num_bytes, trans->transid); |
| if (ret < 0) { |
| btrfs_abort_transaction(trans, ret); |
| goto out; |
| } |
| |
| ret = add_pending_csums(trans, &ordered_extent->list); |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| goto out; |
| } |
| |
| /* |
| * If this is a new delalloc range, clear its new delalloc flag to |
| * update the inode's number of bytes. This needs to be done first |
| * before updating the inode item. |
| */ |
| if ((clear_bits & EXTENT_DELALLOC_NEW) && |
| !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) |
| clear_extent_bit(&inode->io_tree, start, end, |
| EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES, |
| &cached_state); |
| |
| btrfs_inode_safe_disk_i_size_write(inode, 0); |
| ret = btrfs_update_inode_fallback(trans, root, inode); |
| if (ret) { /* -ENOMEM or corruption */ |
| btrfs_abort_transaction(trans, ret); |
| goto out; |
| } |
| ret = 0; |
| out: |
| clear_extent_bit(&inode->io_tree, start, end, clear_bits, |
| &cached_state); |
| |
| if (trans) |
| btrfs_end_transaction(trans); |
| |
| if (ret || truncated) { |
| u64 unwritten_start = start; |
| |
| /* |
| * If we failed to finish this ordered extent for any reason we |
| * need to make sure BTRFS_ORDERED_IOERR is set on the ordered |
| * extent, and mark the inode with the error if it wasn't |
| * already set. Any error during writeback would have already |
| * set the mapping error, so we need to set it if we're the ones |
| * marking this ordered extent as failed. |
| */ |
| if (ret && !test_and_set_bit(BTRFS_ORDERED_IOERR, |
| &ordered_extent->flags)) |
| mapping_set_error(ordered_extent->inode->i_mapping, -EIO); |
| |
| if (truncated) |
| unwritten_start += logical_len; |
| clear_extent_uptodate(io_tree, unwritten_start, end, NULL); |
| |
| /* Drop extent maps for the part of the extent we didn't write. */ |
| btrfs_drop_extent_map_range(inode, unwritten_start, end, false); |
| |
| /* |
| * If the ordered extent had an IOERR or something else went |
| * wrong we need to return the space for this ordered extent |
| * back to the allocator. We only free the extent in the |
| * truncated case if we didn't write out the extent at all. |
| * |
| * If we made it past insert_reserved_file_extent before we |
| * errored out then we don't need to do this as the accounting |
| * has already been done. |
| */ |
| if ((ret || !logical_len) && |
| clear_reserved_extent && |
| !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && |
| !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { |
| /* |
| * Discard the range before returning it back to the |
| * free space pool |
| */ |
| if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC)) |
| btrfs_discard_extent(fs_info, |
| ordered_extent->disk_bytenr, |
| ordered_extent->disk_num_bytes, |
| NULL); |
| btrfs_free_reserved_extent(fs_info, |
| ordered_extent->disk_bytenr, |
| ordered_extent->disk_num_bytes, 1); |
| } |
| } |
| |
| /* |
| * This needs to be done to make sure anybody waiting knows we are done |
| * updating everything for this ordered extent. |
| */ |
| btrfs_remove_ordered_extent(inode, ordered_extent); |
| |
| /* once for us */ |
| btrfs_put_ordered_extent(ordered_extent); |
| /* once for the tree */ |
| btrfs_put_ordered_extent(ordered_extent); |
| |
| return ret; |
| } |
| |
| void btrfs_writepage_endio_finish_ordered(struct btrfs_inode *inode, |
| struct page *page, u64 start, |
| u64 end, bool uptodate) |
| { |
| trace_btrfs_writepage_end_io_hook(inode, start, end, uptodate); |
| |
| btrfs_mark_ordered_io_finished(inode, page, start, end + 1 - start, uptodate); |
| } |
| |
| /* |
| * Verify the checksum for a single sector without any extra action that depend |
| * on the type of I/O. |
| */ |
| int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, struct page *page, |
| u32 pgoff, u8 *csum, const u8 * const csum_expected) |
| { |
| SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); |
| char *kaddr; |
| |
| ASSERT(pgoff + fs_info->sectorsize <= PAGE_SIZE); |
| |
| shash->tfm = fs_info->csum_shash; |
| |
| kaddr = kmap_local_page(page) + pgoff; |
| crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum); |
| kunmap_local(kaddr); |
| |
| if (memcmp(csum, csum_expected, fs_info->csum_size)) |
| return -EIO; |
| return 0; |
| } |
| |
| static u8 *btrfs_csum_ptr(const struct btrfs_fs_info *fs_info, u8 *csums, u64 offset) |
| { |
| u64 offset_in_sectors = offset >> fs_info->sectorsize_bits; |
| |
| return csums + offset_in_sectors * fs_info->csum_size; |
| } |
| |
| /* |
| * Verify the checksum of a single data sector. |
| * |
| * @bbio: btrfs_io_bio which contains the csum |
| * @dev: device the sector is on |
| * @bio_offset: offset to the beginning of the bio (in bytes) |
| * @bv: bio_vec to check |
| * |
| * Check if the checksum on a data block is valid. When a checksum mismatch is |
| * detected, report the error and fill the corrupted range with zero. |
| * |
| * Return %true if the sector is ok or had no checksum to start with, else %false. |
| */ |
| bool btrfs_data_csum_ok(struct btrfs_bio *bbio, struct btrfs_device *dev, |
| u32 bio_offset, struct bio_vec *bv) |
| { |
| struct btrfs_inode *inode = bbio->inode; |
| struct btrfs_fs_info *fs_info = inode->root->fs_info; |
| u64 file_offset = bbio->file_offset + bio_offset; |
| u64 end = file_offset + bv->bv_len - 1; |
| u8 *csum_expected; |
| u8 csum[BTRFS_CSUM_SIZE]; |
| |
| ASSERT(bv->bv_len == fs_info->sectorsize); |
| |
| if (!bbio->csum) |
| return true; |
| |
| if (btrfs_is_data_reloc_root(inode->root) && |
| test_range_bit(&inode->io_tree, file_offset, end, EXTENT_NODATASUM, |
| 1, NULL)) { |
| /* Skip the range without csum for data reloc inode */ |
| clear_extent_bits(&inode->io_tree, file_offset, end, |
| EXTENT_NODATASUM); |
| return true; |
| } |
| |
| csum_expected = btrfs_csum_ptr(fs_info, bbio->csum, bio_offset); |
| if (btrfs_check_sector_csum(fs_info, bv->bv_page, bv->bv_offset, csum, |
| csum_expected)) |
| goto zeroit; |
| return true; |
| |
| zeroit: |
| btrfs_print_data_csum_error(inode, file_offset, csum, csum_expected, |
| bbio->mirror_num); |
| if (dev) |
| btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS); |
| memzero_bvec(bv); |
| return false; |
| } |
| |
| /* |
| * btrfs_add_delayed_iput - perform a delayed iput on @inode |
| * |
| * @inode: The inode we want to perform iput on |
| * |
| * This function uses the generic vfs_inode::i_count to track whether we should |
| * just decrement it (in case it's > 1) or if this is the last iput then link |
| * the inode to the delayed iput machinery. Delayed iputs are processed at |
| * transaction commit time/superblock commit/cleaner kthread. |
| */ |
| void btrfs_add_delayed_iput(struct btrfs_inode *inode) |
| { |
| struct btrfs_fs_info *fs_info = inode->root->fs_info; |
| |
| if (atomic_add_unless(&inode->vfs_inode.i_count, -1, 1)) |
| return; |
| |
| atomic_inc(&fs_info->nr_delayed_iputs); |
| spin_lock(&fs_info->delayed_iput_lock); |
| ASSERT(list_empty(&inode->delayed_iput)); |
| list_add_tail(&inode->delayed_iput, &fs_info->delayed_iputs); |
| spin_unlock(&fs_info->delayed_iput_lock); |
| if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags)) |
| wake_up_process(fs_info->cleaner_kthread); |
| } |
| |
| static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info, |
| struct btrfs_inode *inode) |
| { |
| list_del_init(&inode->delayed_iput); |
| spin_unlock(&fs_info->delayed_iput_lock); |
| iput(&inode->vfs_inode); |
| if (atomic_dec_and_test(&fs_info->nr_delayed_iputs)) |
| wake_up(&fs_info->delayed_iputs_wait); |
| spin_lock(&fs_info->delayed_iput_lock); |
| } |
| |
| static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info, |
| struct btrfs_inode *inode) |
| { |
| if (!list_empty(&inode->delayed_iput)) { |
| spin_lock(&fs_info->delayed_iput_lock); |
| if (!list_empty(&inode->delayed_iput)) |
| run_delayed_iput_locked(fs_info, inode); |
| spin_unlock(&fs_info->delayed_iput_lock); |
| } |
| } |
| |
| void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info) |
| { |
| |
| spin_lock(&fs_info->delayed_iput_lock); |
| while (!list_empty(&fs_info->delayed_iputs)) { |
| struct btrfs_inode *inode; |
| |
| inode = list_first_entry(&fs_info->delayed_iputs, |
| struct btrfs_inode, delayed_iput); |
| run_delayed_iput_locked(fs_info, inode); |
| cond_resched_lock(&fs_info->delayed_iput_lock); |
| } |
| spin_unlock(&fs_info->delayed_iput_lock); |
| } |
| |
| /* |
| * Wait for flushing all delayed iputs |
| * |
| * @fs_info: the filesystem |
| * |
| * This will wait on any delayed iputs that are currently running with KILLABLE |
| * set. Once they are all done running we will return, unless we are killed in |
| * which case we return EINTR. This helps in user operations like fallocate etc |
| * that might get blocked on the iputs. |
| * |
| * Return EINTR if we were killed, 0 if nothing's pending |
| */ |
| int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info) |
| { |
| int ret = wait_event_killable(fs_info->delayed_iputs_wait, |
| atomic_read(&fs_info->nr_delayed_iputs) == 0); |
| if (ret) |
| return -EINTR; |
| return 0; |
| } |
| |
| /* |
| * This creates an orphan entry for the given inode in case something goes wrong |
| * in the middle of an unlink. |
| */ |
| int btrfs_orphan_add(struct btrfs_trans_handle *trans, |
| struct btrfs_inode *inode) |
| { |
| int ret; |
| |
| ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode)); |
| if (ret && ret != -EEXIST) { |
| btrfs_abort_transaction(trans, ret); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * We have done the delete so we can go ahead and remove the orphan item for |
| * this particular inode. |
| */ |
| static int btrfs_orphan_del(struct btrfs_trans_handle *trans, |
| struct btrfs_inode *inode) |
| { |
| return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode)); |
| } |
| |
| /* |
| * this cleans up any orphans that may be left on the list from the last use |
| * of this root. |
| */ |
| int btrfs_orphan_cleanup(struct btrfs_root *root) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct btrfs_path *path; |
| struct extent_buffer *leaf; |
| struct btrfs_key key, found_key; |
| struct btrfs_trans_handle *trans; |
| struct inode *inode; |
| u64 last_objectid = 0; |
| int ret = 0, nr_unlink = 0; |
| |
| if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state)) |
| return 0; |
| |
| path = btrfs_alloc_path(); |
| if (!path) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| path->reada = READA_BACK; |
| |
| key.objectid = BTRFS_ORPHAN_OBJECTID; |
| key.type = BTRFS_ORPHAN_ITEM_KEY; |
| key.offset = (u64)-1; |
| |
| while (1) { |
| ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); |
| if (ret < 0) |
| goto out; |
| |
| /* |
| * if ret == 0 means we found what we were searching for, which |
| * is weird, but possible, so only screw with path if we didn't |
| * find the key and see if we have stuff that matches |
| */ |
| if (ret > 0) { |
| ret = 0; |
| if (path->slots[0] == 0) |
| break; |
| path->slots[0]--; |
| } |
| |
| /* pull out the item */ |
| leaf = path->nodes[0]; |
| btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); |
| |
| /* make sure the item matches what we want */ |
| if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) |
| break; |
| if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) |
| break; |
| |
| /* release the path since we're done with it */ |
| btrfs_release_path(path); |
| |
| /* |
| * this is where we are basically btrfs_lookup, without the |
| * crossing root thing. we store the inode number in the |
| * offset of the orphan item. |
| */ |
| |
| if (found_key.offset == last_objectid) { |
| btrfs_err(fs_info, |
| "Error removing orphan entry, stopping orphan cleanup"); |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| last_objectid = found_key.offset; |
| |
| found_key.objectid = found_key.offset; |
| found_key.type = BTRFS_INODE_ITEM_KEY; |
| found_key.offset = 0; |
| inode = btrfs_iget(fs_info->sb, last_objectid, root); |
| ret = PTR_ERR_OR_ZERO(inode); |
| if (ret && ret != -ENOENT) |
| goto out; |
| |
| if (ret == -ENOENT && root == fs_info->tree_root) { |
| struct btrfs_root *dead_root; |
| int is_dead_root = 0; |
| |
| /* |
| * This is an orphan in the tree root. Currently these |
| * could come from 2 sources: |
| * a) a root (snapshot/subvolume) deletion in progress |
| * b) a free space cache inode |
| * We need to distinguish those two, as the orphan item |
| * for a root must not get deleted before the deletion |
| * of the snapshot/subvolume's tree completes. |
| * |
| * btrfs_find_orphan_roots() ran before us, which has |
| * found all deleted roots and loaded them into |
| * fs_info->fs_roots_radix. So here we can find if an |
| * orphan item corresponds to a deleted root by looking |
| * up the root from that radix tree. |
| */ |
| |
| spin_lock(&fs_info->fs_roots_radix_lock); |
| dead_root = radix_tree_lookup(&fs_info->fs_roots_radix, |
| (unsigned long)found_key.objectid); |
| if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0) |
| is_dead_root = 1; |
| spin_unlock(&fs_info->fs_roots_radix_lock); |
| |
| if (is_dead_root) { |
| /* prevent this orphan from being found again */ |
| key.offset = found_key.objectid - 1; |
| continue; |
| } |
| |
| } |
| |
| /* |
| * If we have an inode with links, there are a couple of |
| * possibilities: |
| * |
| * 1. We were halfway through creating fsverity metadata for the |
| * file. In that case, the orphan item represents incomplete |
| * fsverity metadata which must be cleaned up with |
| * btrfs_drop_verity_items and deleting the orphan item. |
| |
| * 2. Old kernels (before v3.12) used to create an |
| * orphan item for truncate indicating that there were possibly |
| * extent items past i_size that needed to be deleted. In v3.12, |
| * truncate was changed to update i_size in sync with the extent |
| * items, but the (useless) orphan item was still created. Since |
| * v4.18, we don't create the orphan item for truncate at all. |
| * |
| * So, this item could mean that we need to do a truncate, but |
| * only if this filesystem was last used on a pre-v3.12 kernel |
| * and was not cleanly unmounted. The odds of that are quite |
| * slim, and it's a pain to do the truncate now, so just delete |
| * the orphan item. |
| * |
| * It's also possible that this orphan item was supposed to be |
| * deleted but wasn't. The inode number may have been reused, |
| * but either way, we can delete the orphan item. |
| */ |
| if (ret == -ENOENT || inode->i_nlink) { |
| if (!ret) { |
| ret = btrfs_drop_verity_items(BTRFS_I(inode)); |
| iput(inode); |
| if (ret) |
| goto out; |
| } |
| trans = btrfs_start_transaction(root, 1); |
| if (IS_ERR(trans)) { |
| ret = PTR_ERR(trans); |
| goto out; |
| } |
| btrfs_debug(fs_info, "auto deleting %Lu", |
| found_key.objectid); |
| ret = btrfs_del_orphan_item(trans, root, |
| found_key.objectid); |
| btrfs_end_transaction(trans); |
| if (ret) |
| goto out; |
| continue; |
| } |
| |
| nr_unlink++; |
| |
| /* this will do delete_inode and everything for us */ |
| iput(inode); |
| } |
| /* release the path since we're done with it */ |
| btrfs_release_path(path); |
| |
| if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { |
| trans = btrfs_join_transaction(root); |
| if (!IS_ERR(trans)) |
| btrfs_end_transaction(trans); |
| } |
| |
| if (nr_unlink) |
| btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink); |
| |
| out: |
| if (ret) |
| btrfs_err(fs_info, "could not do orphan cleanup %d", ret); |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| /* |
| * very simple check to peek ahead in the leaf looking for xattrs. If we |
| * don't find any xattrs, we know there can't be any acls. |
| * |
| * slot is the slot the inode is in, objectid is the objectid of the inode |
| */ |
| static noinline int acls_after_inode_item(struct extent_buffer *leaf, |
| int slot, u64 objectid, |
| int *first_xattr_slot) |
| { |
| u32 nritems = btrfs_header_nritems(leaf); |
| struct btrfs_key found_key; |
| static u64 xattr_access = 0; |
| static u64 xattr_default = 0; |
| int scanned = 0; |
| |
| if (!xattr_access) { |
| xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS, |
| strlen(XATTR_NAME_POSIX_ACL_ACCESS)); |
| xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT, |
| strlen(XATTR_NAME_POSIX_ACL_DEFAULT)); |
| } |
| |
| slot++; |
| *first_xattr_slot = -1; |
| while (slot < nritems) { |
| btrfs_item_key_to_cpu(leaf, &found_key, slot); |
| |
| /* we found a different objectid, there must not be acls */ |
| if (found_key.objectid != objectid) |
| return 0; |
| |
| /* we found an xattr, assume we've got an acl */ |
| if (found_key.type == BTRFS_XATTR_ITEM_KEY) { |
| if (*first_xattr_slot == -1) |
| *first_xattr_slot = slot; |
| if (found_key.offset == xattr_access || |
| found_key.offset == xattr_default) |
| return 1; |
| } |
| |
| /* |
| * we found a key greater than an xattr key, there can't |
| * be any acls later on |
| */ |
| if (found_key.type > BTRFS_XATTR_ITEM_KEY) |
| return 0; |
| |
| slot++; |
| scanned++; |
| |
| /* |
| * it goes inode, inode backrefs, xattrs, extents, |
| * so if there are a ton of hard links to an inode there can |
| * be a lot of backrefs. Don't waste time searching too hard, |
| * this is just an optimization |
| */ |
| if (scanned >= 8) |
| break; |
| } |
| /* we hit the end of the leaf before we found an xattr or |
| * something larger than an xattr. We have to assume the inode |
| * has acls |
| */ |
| if (*first_xattr_slot == -1) |
| *first_xattr_slot = slot; |
| return 1; |
| } |
| |
| /* |
| * read an inode from the btree into the in-memory inode |
| */ |
| static int btrfs_read_locked_inode(struct inode *inode, |
| struct btrfs_path *in_path) |
| { |
| struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
| struct btrfs_path *path = in_path; |
| struct extent_buffer *leaf; |
| struct btrfs_inode_item *inode_item; |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| struct btrfs_key location; |
| unsigned long ptr; |
| int maybe_acls; |
| u32 rdev; |
| int ret; |
| bool filled = false; |
| int first_xattr_slot; |
| |
| ret = btrfs_fill_inode(inode, &rdev); |
| if (!ret) |
| filled = true; |
| |
| if (!path) { |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| } |
| |
| memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); |
| |
| ret = btrfs_lookup_inode(NULL, root, path, &location, 0); |
| if (ret) { |
| if (path != in_path) |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| leaf = path->nodes[0]; |
| |
| if (filled) |
| goto cache_index; |
| |
| inode_item = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_inode_item); |
| inode->i_mode = btrfs_inode_mode(leaf, inode_item); |
| set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); |
| i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); |
| i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); |
| btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item)); |
| btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0, |
| round_up(i_size_read(inode), fs_info->sectorsize)); |
| |
| inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime); |
| inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime); |
| |
| inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime); |
| inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime); |
| |
| inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime); |
| inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime); |
| |
| BTRFS_I(inode)->i_otime.tv_sec = |
| btrfs_timespec_sec(leaf, &inode_item->otime); |
| BTRFS_I(inode)->i_otime.tv_nsec = |
| btrfs_timespec_nsec(leaf, &inode_item->otime); |
| |
| inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); |
| BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); |
| BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); |
| |
| inode_set_iversion_queried(inode, |
| btrfs_inode_sequence(leaf, inode_item)); |
| inode->i_generation = BTRFS_I(inode)->generation; |
| inode->i_rdev = 0; |
| rdev = btrfs_inode_rdev(leaf, inode_item); |
| |
| BTRFS_I(inode)->index_cnt = (u64)-1; |
| btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item), |
| &BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags); |
| |
| cache_index: |
| /* |
| * If we were modified in the current generation and evicted from memory |
| * and then re-read we need to do a full sync since we don't have any |
| * idea about which extents were modified before we were evicted from |
| * cache. |
| * |
| * This is required for both inode re-read from disk and delayed inode |
| * in delayed_nodes_tree. |
| */ |
| if (BTRFS_I(inode)->last_trans == fs_info->generation) |
| set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, |
| &BTRFS_I(inode)->runtime_flags); |
| |
| /* |
| * We don't persist the id of the transaction where an unlink operation |
| * against the inode was last made. So here we assume the inode might |
| * have been evicted, and therefore the exact value of last_unlink_trans |
| * lost, and set it to last_trans to avoid metadata inconsistencies |
| * between the inode and its parent if the inode is fsync'ed and the log |
| * replayed. For example, in the scenario: |
| * |
| * touch mydir/foo |
| * ln mydir/foo mydir/bar |
| * sync |
| * unlink mydir/bar |
| * echo 2 > /proc/sys/vm/drop_caches # evicts inode |
| * xfs_io -c fsync mydir/foo |
| * <power failure> |
| * mount fs, triggers fsync log replay |
| * |
| * We must make sure that when we fsync our inode foo we also log its |
| * parent inode, otherwise after log replay the parent still has the |
| * dentry with the "bar" name but our inode foo has a link count of 1 |
| * and doesn't have an inode ref with the name "bar" anymore. |
| * |
| * Setting last_unlink_trans to last_trans is a pessimistic approach, |
| * but it guarantees correctness at the expense of occasional full |
| * transaction commits on fsync if our inode is a directory, or if our |
| * inode is not a directory, logging its parent unnecessarily. |
| */ |
| BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans; |
| |
| /* |
| * Same logic as for last_unlink_trans. We don't persist the generation |
| * of the last transaction where this inode was used for a reflink |
| * operation, so after eviction and reloading the inode we must be |
| * pessimistic and assume the last transaction that modified the inode. |
| */ |
| BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans; |
| |
| path->slots[0]++; |
| if (inode->i_nlink != 1 || |
| path->slots[0] >= btrfs_header_nritems(leaf)) |
| goto cache_acl; |
| |
| btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); |
| if (location.objectid != btrfs_ino(BTRFS_I(inode))) |
| goto cache_acl; |
| |
| ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); |
| if (location.type == BTRFS_INODE_REF_KEY) { |
| struct btrfs_inode_ref *ref; |
| |
| ref = (struct btrfs_inode_ref *)ptr; |
| BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref); |
| } else if (location.type == BTRFS_INODE_EXTREF_KEY) { |
| struct btrfs_inode_extref *extref; |
| |
| extref = (struct btrfs_inode_extref *)ptr; |
| BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf, |
| extref); |
| } |
| cache_acl: |
| /* |
| * try to precache a NULL acl entry for files that don't have |
| * any xattrs or acls |
| */ |
| maybe_acls = acls_after_inode_item(leaf, path->slots[0], |
| btrfs_ino(BTRFS_I(inode)), &first_xattr_slot); |
| if (first_xattr_slot != -1) { |
| path->slots[0] = first_xattr_slot; |
| ret = btrfs_load_inode_props(inode, path); |
| if (ret) |
| btrfs_err(fs_info, |
| "error loading props for ino %llu (root %llu): %d", |
| btrfs_ino(BTRFS_I(inode)), |
| root->root_key.objectid, ret); |
| } |
| if (path != in_path) |
| btrfs_free_path(path); |
| |
| if (!maybe_acls) |
| cache_no_acl(inode); |
| |
| switch (inode->i_mode & S_IFMT) { |
| case S_IFREG: |
| inode->i_mapping->a_ops = &btrfs_aops; |
| inode->i_fop = &btrfs_file_operations; |
| inode->i_op = &btrfs_file_inode_operations; |
| break; |
| case S_IFDIR: |
| inode->i_fop = &btrfs_dir_file_operations; |
| inode->i_op = &btrfs_dir_inode_operations; |
| break; |
| case S_IFLNK: |
| inode->i_op = &btrfs_symlink_inode_operations; |
| inode_nohighmem(inode); |
| inode->i_mapping->a_ops = &btrfs_aops; |
| break; |
| default: |
| inode->i_op = &btrfs_special_inode_operations; |
| init_special_inode(inode, inode->i_mode, rdev); |
| break; |
| } |
| |
| btrfs_sync_inode_flags_to_i_flags(inode); |
| return 0; |
| } |
| |
| /* |
| * given a leaf and an inode, copy the inode fields into the leaf |
| */ |
| static void fill_inode_item(struct btrfs_trans_handle *trans, |
| struct extent_buffer *leaf, |
| struct btrfs_inode_item *item, |
| struct inode *inode) |
| { |
| struct btrfs_map_token token; |
| u64 flags; |
| |
| btrfs_init_map_token(&token, leaf); |
| |
| btrfs_set_token_inode_uid(&token, item, i_uid_read(inode)); |
| btrfs_set_token_inode_gid(&token, item, i_gid_read(inode)); |
| btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size); |
| btrfs_set_token_inode_mode(&token, item, inode->i_mode); |
| btrfs_set_token_inode_nlink(&token, item, inode->i_nlink); |
| |
| btrfs_set_token_timespec_sec(&token, &item->atime, |
| inode->i_atime.tv_sec); |
| btrfs_set_token_timespec_nsec(&token, &item->atime, |
| inode->i_atime.tv_nsec); |
| |
| btrfs_set_token_timespec_sec(&token, &item->mtime, |
| inode->i_mtime.tv_sec); |
| btrfs_set_token_timespec_nsec(&token, &item->mtime, |
| inode->i_mtime.tv_nsec); |
| |
| btrfs_set_token_timespec_sec(&token, &item->ctime, |
| inode->i_ctime.tv_sec); |
| btrfs_set_token_timespec_nsec(&token, &item->ctime, |
| inode->i_ctime.tv_nsec); |
| |
| btrfs_set_token_timespec_sec(&token, &item->otime, |
| BTRFS_I(inode)->i_otime.tv_sec); |
| btrfs_set_token_timespec_nsec(&token, &item->otime, |
| BTRFS_I(inode)->i_otime.tv_nsec); |
| |
| btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode)); |
| btrfs_set_token_inode_generation(&token, item, |
| BTRFS_I(inode)->generation); |
| btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode)); |
| btrfs_set_token_inode_transid(&token, item, trans->transid); |
| btrfs_set_token_inode_rdev(&token, item, inode->i_rdev); |
| flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags, |
| BTRFS_I(inode)->ro_flags); |
| btrfs_set_token_inode_flags(&token, item, flags); |
| btrfs_set_token_inode_block_group(&token, item, 0); |
| } |
| |
| /* |
| * copy everything in the in-memory inode into the btree. |
| */ |
| static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_inode *inode) |
| { |
| struct btrfs_inode_item *inode_item; |
| struct btrfs_path *path; |
| struct extent_buffer *leaf; |
| int ret; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| ret = btrfs_lookup_inode(trans, root, path, &inode->location, 1); |
| if (ret) { |
| if (ret > 0) |
| ret = -ENOENT; |
| goto failed; |
| } |
| |
| leaf = path->nodes[0]; |
| inode_item = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_inode_item); |
| |
| fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode); |
| btrfs_mark_buffer_dirty(leaf); |
| btrfs_set_inode_last_trans(trans, inode); |
| ret = 0; |
| failed: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| /* |
| * copy everything in the in-memory inode into the btree. |
| */ |
| noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_inode *inode) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| int ret; |
| |
| /* |
| * If the inode is a free space inode, we can deadlock during commit |
| * if we put it into the delayed code. |
| * |
| * The data relocation inode should also be directly updated |
| * without delay |
| */ |
| if (!btrfs_is_free_space_inode(inode) |
| && !btrfs_is_data_reloc_root(root) |
| && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { |
| btrfs_update_root_times(trans, root); |
| |
| ret = btrfs_delayed_update_inode(trans, root, inode); |
| if (!ret) |
| btrfs_set_inode_last_trans(trans, inode); |
| return ret; |
| } |
| |
| return btrfs_update_inode_item(trans, root, inode); |
| } |
| |
| int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, struct btrfs_inode *inode) |
| { |
| int ret; |
| |
| ret = btrfs_update_inode(trans, root, inode); |
| if (ret == -ENOSPC) |
| return btrfs_update_inode_item(trans, root, inode); |
| return ret; |
| } |
| |
| /* |
| * unlink helper that gets used here in inode.c and in the tree logging |
| * recovery code. It remove a link in a directory with a given name, and |
| * also drops the back refs in the inode to the directory |
| */ |
| static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, |
| struct btrfs_inode *dir, |
| struct btrfs_inode *inode, |
| const struct fscrypt_str *name, |
| struct btrfs_rename_ctx *rename_ctx) |
| { |
| struct btrfs_root *root = dir->root; |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct btrfs_path *path; |
| int ret = 0; |
| struct btrfs_dir_item *di; |
| u64 index; |
| u64 ino = btrfs_ino(inode); |
| u64 dir_ino = btrfs_ino(dir); |
| |
| path = btrfs_alloc_path(); |
| if (!path) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| di = btrfs_lookup_dir_item(trans, root, path, dir_ino, name, -1); |
| if (IS_ERR_OR_NULL(di)) { |
| ret = di ? PTR_ERR(di) : -ENOENT; |
| goto err; |
| } |
| ret = btrfs_delete_one_dir_name(trans, root, path, di); |
| if (ret) |
| goto err; |
| btrfs_release_path(path); |
| |
| /* |
| * If we don't have dir index, we have to get it by looking up |
| * the inode ref, since we get the inode ref, remove it directly, |
| * it is unnecessary to do delayed deletion. |
| * |
| * But if we have dir index, needn't search inode ref to get it. |
| * Since the inode ref is close to the inode item, it is better |
| * that we delay to delete it, and just do this deletion when |
| * we update the inode item. |
| */ |
| if (inode->dir_index) { |
| ret = btrfs_delayed_delete_inode_ref(inode); |
| if (!ret) { |
| index = inode->dir_index; |
| goto skip_backref; |
| } |
| } |
| |
| ret = btrfs_del_inode_ref(trans, root, name, ino, dir_ino, &index); |
| if (ret) { |
| btrfs_info(fs_info, |
| "failed to delete reference to %.*s, inode %llu parent %llu", |
| name->len, name->name, ino, dir_ino); |
| btrfs_abort_transaction(trans, ret); |
| goto err; |
| } |
| skip_backref: |
| if (rename_ctx) |
| rename_ctx->index = index; |
| |
| ret = btrfs_delete_delayed_dir_index(trans, dir, index); |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| goto err; |
| } |
| |
| /* |
| * If we are in a rename context, we don't need to update anything in the |
| * log. That will be done later during the rename by btrfs_log_new_name(). |
| * Besides that, doing it here would only cause extra unnecessary btree |
| * operations on the log tree, increasing latency for applications. |
| */ |
| if (!rename_ctx) { |
| btrfs_del_inode_ref_in_log(trans, root, name, inode, dir_ino); |
| btrfs_del_dir_entries_in_log(trans, root, name, dir, index); |
| } |
| |
| /* |
| * If we have a pending delayed iput we could end up with the final iput |
| * being run in btrfs-cleaner context. If we have enough of these built |
| * up we can end up burning a lot of time in btrfs-cleaner without any |
| * way to throttle the unlinks. Since we're currently holding a ref on |
| * the inode we can run the delayed iput here without any issues as the |
| * final iput won't be done until after we drop the ref we're currently |
| * holding. |
| */ |
| btrfs_run_delayed_iput(fs_info, inode); |
| err: |
| btrfs_free_path(path); |
| if (ret) |
| goto out; |
| |
| btrfs_i_size_write(dir, dir->vfs_inode.i_size - name->len * 2); |
| inode_inc_iversion(&inode->vfs_inode); |
| inode_inc_iversion(&dir->vfs_inode); |
| inode->vfs_inode.i_ctime = current_time(&inode->vfs_inode); |
| dir->vfs_inode.i_mtime = inode->vfs_inode.i_ctime; |
| dir->vfs_inode.i_ctime = inode->vfs_inode.i_ctime; |
| ret = btrfs_update_inode(trans, root, dir); |
| out: |
| return ret; |
| } |
| |
| int btrfs_unlink_inode(struct btrfs_trans_handle *trans, |
| struct btrfs_inode *dir, struct btrfs_inode *inode, |
| const struct fscrypt_str *name) |
| { |
| int ret; |
| |
| ret = __btrfs_unlink_inode(trans, dir, inode, name, NULL); |
| if (!ret) { |
| drop_nlink(&inode->vfs_inode); |
| ret = btrfs_update_inode(trans, inode->root, inode); |
| } |
| return ret; |
| } |
| |
| /* |
| * helper to start transaction for unlink and rmdir. |
| * |
| * unlink and rmdir are special in btrfs, they do not always free space, so |
| * if we cannot make our reservations the normal way try and see if there is |
| * plenty of slack room in the global reserve to migrate, otherwise we cannot |
| * allow the unlink to occur. |
| */ |
| static struct btrfs_trans_handle *__unlink_start_trans(struct btrfs_inode *dir) |
| { |
| struct btrfs_root *root = dir->root; |
| |
| /* |
| * 1 for the possible orphan item |
| * 1 for the dir item |
| * 1 for the dir index |
| * 1 for the inode ref |
| * 1 for the inode |
| * 1 for the parent inode |
| */ |
| return btrfs_start_transaction_fallback_global_rsv(root, 6); |
| } |
| |
| static int btrfs_unlink(struct inode *dir, struct dentry *dentry) |
| { |
| struct btrfs_trans_handle *trans; |
| struct inode *inode = d_inode(dentry); |
| int ret; |
| struct fscrypt_name fname; |
| |
| ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname); |
| if (ret) |
| return ret; |
| |
| /* This needs to handle no-key deletions later on */ |
| |
| trans = __unlink_start_trans(BTRFS_I(dir)); |
| if (IS_ERR(trans)) { |
| ret = PTR_ERR(trans); |
| goto fscrypt_free; |
| } |
| |
| btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), |
| 0); |
| |
| ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), |
| &fname.disk_name); |
| if (ret) |
| goto end_trans; |
| |
| if (inode->i_nlink == 0) { |
| ret = btrfs_orphan_add(trans, BTRFS_I(inode)); |
| if (ret) |
| goto end_trans; |
| } |
| |
| end_trans: |
| btrfs_end_transaction(trans); |
| btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info); |
| fscrypt_free: |
| fscrypt_free_filename(&fname); |
| return ret; |
| } |
| |
| static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, |
| struct btrfs_inode *dir, struct dentry *dentry) |
| { |
| struct btrfs_root *root = dir->root; |
| struct btrfs_inode *inode = BTRFS_I(d_inode(dentry)); |
| struct btrfs_path *path; |
| struct extent_buffer *leaf; |
| struct btrfs_dir_item *di; |
| struct btrfs_key key; |
| u64 index; |
| int ret; |
| u64 objectid; |
| u64 dir_ino = btrfs_ino(dir); |
| struct fscrypt_name fname; |
| |
| ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname); |
| if (ret) |
| return ret; |
| |
| /* This needs to handle no-key deletions later on */ |
| |
| if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) { |
| objectid = inode->root->root_key.objectid; |
| } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { |
| objectid = inode->location.objectid; |
| } else { |
| WARN_ON(1); |
| fscrypt_free_filename(&fname); |
| return -EINVAL; |
| } |
| |
| path = btrfs_alloc_path(); |
| if (!path) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| di = btrfs_lookup_dir_item(trans, root, path, dir_ino, |
| &fname.disk_name, -1); |
| if (IS_ERR_OR_NULL(di)) { |
| ret = di ? PTR_ERR(di) : -ENOENT; |
| goto out; |
| } |
| |
| leaf = path->nodes[0]; |
| btrfs_dir_item_key_to_cpu(leaf, di, &key); |
| WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); |
| ret = btrfs_delete_one_dir_name(trans, root, path, di); |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| goto out; |
| } |
| btrfs_release_path(path); |
| |
| /* |
| * This is a placeholder inode for a subvolume we didn't have a |
| * reference to at the time of the snapshot creation. In the meantime |
| * we could have renamed the real subvol link into our snapshot, so |
| * depending on btrfs_del_root_ref to return -ENOENT here is incorrect. |
| * Instead simply lookup the dir_index_item for this entry so we can |
| * remove it. Otherwise we know we have a ref to the root and we can |
| * call btrfs_del_root_ref, and it _shouldn't_ fail. |
| */ |
| if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { |
| di = btrfs_search_dir_index_item(root, path, dir_ino, &fname.disk_name); |
| if (IS_ERR_OR_NULL(di)) { |
| if (!di) |
| ret = -ENOENT; |
| else |
| ret = PTR_ERR(di); |
| btrfs_abort_transaction(trans, ret); |
| goto out; |
| } |
| |
| leaf = path->nodes[0]; |
| btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); |
| index = key.offset; |
| btrfs_release_path(path); |
| } else { |
| ret = btrfs_del_root_ref(trans, objectid, |
| root->root_key.objectid, dir_ino, |
| &index, &fname.disk_name); |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| goto out; |
| } |
| } |
| |
| ret = btrfs_delete_delayed_dir_index(trans, dir, index); |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| goto out; |
| } |
| |
| btrfs_i_size_write(dir, dir->vfs_inode.i_size - fname.disk_name.len * 2); |
| inode_inc_iversion(&dir->vfs_inode); |
| dir->vfs_inode.i_mtime = current_time(&dir->vfs_inode); |
| dir->vfs_inode.i_ctime = dir->vfs_inode.i_mtime; |
| ret = btrfs_update_inode_fallback(trans, root, dir); |
| if (ret) |
| btrfs_abort_transaction(trans, ret); |
| out: |
| btrfs_free_path(path); |
| fscrypt_free_filename(&fname); |
| return ret; |
| } |
| |
| /* |
| * Helper to check if the subvolume references other subvolumes or if it's |
| * default. |
| */ |
| static noinline int may_destroy_subvol(struct btrfs_root *root) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct btrfs_path *path; |
| struct btrfs_dir_item *di; |
| struct btrfs_key key; |
| struct fscrypt_str name = FSTR_INIT("default", 7); |
| u64 dir_id; |
| int ret; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| /* Make sure this root isn't set as the default subvol */ |
| dir_id = btrfs_super_root_dir(fs_info->super_copy); |
| di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path, |
| dir_id, &name, 0); |
| if (di && !IS_ERR(di)) { |
| btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); |
| if (key.objectid == root->root_key.objectid) { |
| ret = -EPERM; |
| btrfs_err(fs_info, |
| "deleting default subvolume %llu is not allowed", |
| key.objectid); |
| goto out; |
| } |
| btrfs_release_path(path); |
| } |
| |
| key.objectid = root->root_key.objectid; |
| key.type = BTRFS_ROOT_REF_KEY; |
| key.offset = (u64)-1; |
| |
| ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); |
| if (ret < 0) |
| goto out; |
| BUG_ON(ret == 0); |
| |
| ret = 0; |
| if (path->slots[0] > 0) { |
| path->slots[0]--; |
| btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); |
| if (key.objectid == root->root_key.objectid && |
| key.type == BTRFS_ROOT_REF_KEY) |
| ret = -ENOTEMPTY; |
| } |
| out: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| /* Delete all dentries for inodes belonging to the root */ |
| static void btrfs_prune_dentries(struct btrfs_root *root) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct rb_node *node; |
| struct rb_node *prev; |
| struct btrfs_inode *entry; |
| struct inode *inode; |
| u64 objectid = 0; |
| |
| if (!BTRFS_FS_ERROR(fs_info)) |
| WARN_ON(btrfs_root_refs(&root->root_item) != 0); |
| |
| spin_lock(&root->inode_lock); |
| again: |
| node = root->inode_tree.rb_node; |
| prev = NULL; |
| while (node) { |
| prev = node; |
| entry = rb_entry(node, struct btrfs_inode, rb_node); |
| |
| if (objectid < btrfs_ino(entry)) |
| node = node->rb_left; |
| else if (objectid > btrfs_ino(entry)) |
| node = node->rb_right; |
| else |
| break; |
| } |
| if (!node) { |
| while (prev) { |
| entry = rb_entry(prev, struct btrfs_inode, rb_node); |
| if (objectid <= btrfs_ino(entry)) { |
| node = prev; |
| break; |
| } |
| prev = rb_next(prev); |
| } |
| } |
| while (node) { |
| entry = rb_entry(node, struct btrfs_inode, rb_node); |
| objectid = btrfs_ino(entry) + 1; |
| inode = igrab(&entry->vfs_inode); |
| if (inode) { |
| spin_unlock(&root->inode_lock); |
| if (atomic_read(&inode->i_count) > 1) |
| d_prune_aliases(inode); |
| /* |
| * btrfs_drop_inode will have it removed from the inode |
| * cache when its usage count hits zero. |
| */ |
| iput(inode); |
| cond_resched(); |
| spin_lock(&root->inode_lock); |
| goto again; |
| } |
| |
| if (cond_resched_lock(&root->inode_lock)) |
| goto again; |
| |
| node = rb_next(node); |
| } |
| spin_unlock(&root->inode_lock); |
| } |
| |
| int btrfs_delete_subvolume(struct btrfs_inode *dir, struct dentry *dentry) |
| { |
| struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); |
| struct btrfs_root *root = dir->root; |
| struct inode *inode = d_inode(dentry); |
| struct btrfs_root *dest = BTRFS_I(inode)->root; |
| struct btrfs_trans_handle *trans; |
| struct btrfs_block_rsv block_rsv; |
| u64 root_flags; |
| int ret; |
| |
| /* |
| * Don't allow to delete a subvolume with send in progress. This is |
| * inside the inode lock so the error handling that has to drop the bit |
| * again is not run concurrently. |
| */ |
| spin_lock(&dest->root_item_lock); |
| if (dest->send_in_progress) { |
| spin_unlock(&dest->root_item_lock); |
| btrfs_warn(fs_info, |
| "attempt to delete subvolume %llu during send", |
| dest->root_key.objectid); |
| return -EPERM; |
| } |
| if (atomic_read(&dest->nr_swapfiles)) { |
| spin_unlock(&dest->root_item_lock); |
| btrfs_warn(fs_info, |
| "attempt to delete subvolume %llu with active swapfile", |
| root->root_key.objectid); |
| return -EPERM; |
| } |
| root_flags = btrfs_root_flags(&dest->root_item); |
| btrfs_set_root_flags(&dest->root_item, |
| root_flags | BTRFS_ROOT_SUBVOL_DEAD); |
| spin_unlock(&dest->root_item_lock); |
| |
| down_write(&fs_info->subvol_sem); |
| |
| ret = may_destroy_subvol(dest); |
| if (ret) |
| goto out_up_write; |
| |
| btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); |
| /* |
| * One for dir inode, |
| * two for dir entries, |
| * two for root ref/backref. |
| */ |
| ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true); |
| if (ret) |
| goto out_up_write; |
| |
| trans = btrfs_start_transaction(root, 0); |
| if (IS_ERR(trans)) { |
| ret = PTR_ERR(trans); |
| goto out_release; |
| } |
| trans->block_rsv = &block_rsv; |
| trans->bytes_reserved = block_rsv.size; |
| |
| btrfs_record_snapshot_destroy(trans, dir); |
| |
| ret = btrfs_unlink_subvol(trans, dir, dentry); |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| goto out_end_trans; |
| } |
| |
| ret = btrfs_record_root_in_trans(trans, dest); |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| goto out_end_trans; |
| } |
| |
| memset(&dest->root_item.drop_progress, 0, |
| sizeof(dest->root_item.drop_progress)); |
| btrfs_set_root_drop_level(&dest->root_item, 0); |
| btrfs_set_root_refs(&dest->root_item, 0); |
| |
| if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) { |
| ret = btrfs_insert_orphan_item(trans, |
| fs_info->tree_root, |
| dest->root_key.objectid); |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| goto out_end_trans; |
| } |
| } |
| |
| ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid, |
| BTRFS_UUID_KEY_SUBVOL, |
| dest->root_key.objectid); |
| if (ret && ret != -ENOENT) { |
| btrfs_abort_transaction(trans, ret); |
| goto out_end_trans; |
| } |
| if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) { |
| ret = btrfs_uuid_tree_remove(trans, |
| dest->root_item.received_uuid, |
| BTRFS_UUID_KEY_RECEIVED_SUBVOL, |
| dest->root_key.objectid); |
| if (ret && ret != -ENOENT) { |
| btrfs_abort_transaction(trans, ret); |
| goto out_end_trans; |
| } |
| } |
| |
| free_anon_bdev(dest->anon_dev); |
| dest->anon_dev = 0; |
| out_end_trans: |
| trans->block_rsv = NULL; |
| trans->bytes_reserved = 0; |
| ret = btrfs_end_transaction(trans); |
| inode->i_flags |= S_DEAD; |
| out_release: |
| btrfs_subvolume_release_metadata(root, &block_rsv); |
| out_up_write: |
| up_write(&fs_info->subvol_sem); |
| if (ret) { |
| spin_lock(&dest->root_item_lock); |
| root_flags = btrfs_root_flags(&dest->root_item); |
| btrfs_set_root_flags(&dest->root_item, |
| root_flags & ~BTRFS_ROOT_SUBVOL_DEAD); |
| spin_unlock(&dest->root_item_lock); |
| } else { |
| d_invalidate(dentry); |
| btrfs_prune_dentries(dest); |
| ASSERT(dest->send_in_progress == 0); |
| } |
| |
| return ret; |
| } |
| |
| static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) |
| { |
| struct inode *inode = d_inode(dentry); |
| struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; |
| int err = 0; |
| struct btrfs_trans_handle *trans; |
| u64 last_unlink_trans; |
| struct fscrypt_name fname; |
| |
| if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) |
| return -ENOTEMPTY; |
| if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) { |
| if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) { |
| btrfs_err(fs_info, |
| "extent tree v2 doesn't support snapshot deletion yet"); |
| return -EOPNOTSUPP; |
| } |
| return btrfs_delete_subvolume(BTRFS_I(dir), dentry); |
| } |
| |
| err = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname); |
| if (err) |
| return err; |
| |
| /* This needs to handle no-key deletions later on */ |
| |
| trans = __unlink_start_trans(BTRFS_I(dir)); |
| if (IS_ERR(trans)) { |
| err = PTR_ERR(trans); |
| goto out_notrans; |
| } |
| |
| if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { |
| err = btrfs_unlink_subvol(trans, BTRFS_I(dir), dentry); |
| goto out; |
| } |
| |
| err = btrfs_orphan_add(trans, BTRFS_I(inode)); |
| if (err) |
| goto out; |
| |
| last_unlink_trans = BTRFS_I(inode)->last_unlink_trans; |
| |
| /* now the directory is empty */ |
| err = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), |
| &fname.disk_name); |
| if (!err) { |
| btrfs_i_size_write(BTRFS_I(inode), 0); |
| /* |
| * Propagate the last_unlink_trans value of the deleted dir to |
| * its parent directory. This is to prevent an unrecoverable |
| * log tree in the case we do something like this: |
| * 1) create dir foo |
| * 2) create snapshot under dir foo |
| * 3) delete the snapshot |
| * 4) rmdir foo |
| * 5) mkdir foo |
| * 6) fsync foo or some file inside foo |
| */ |
| if (last_unlink_trans >= trans->transid) |
| BTRFS_I(dir)->last_unlink_trans = last_unlink_trans; |
| } |
| out: |
| btrfs_end_transaction(trans); |
| out_notrans: |
| btrfs_btree_balance_dirty(fs_info); |
| fscrypt_free_filename(&fname); |
| |
| return err; |
| } |
| |
| /* |
| * btrfs_truncate_block - read, zero a chunk and write a block |
| * @inode - inode that we're zeroing |
| * @from - the offset to start zeroing |
| * @len - the length to zero, 0 to zero the entire range respective to the |
| * offset |
| * @front - zero up to the offset instead of from the offset on |
| * |
| * This will find the block for the "from" offset and cow the block and zero the |
| * part we want to zero. This is used with truncate and hole punching. |
| */ |
| int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len, |
| int front) |
| { |
| struct btrfs_fs_info *fs_info = inode->root->fs_info; |
| struct address_space *mapping = inode->vfs_inode.i_mapping; |
| struct extent_io_tree *io_tree = &inode->io_tree; |
| struct btrfs_ordered_extent *ordered; |
| struct extent_state *cached_state = NULL; |
| struct extent_changeset *data_reserved = NULL; |
| bool only_release_metadata = false; |
| u32 blocksize = fs_info->sectorsize; |
| pgoff_t index = from >> PAGE_SHIFT; |
| unsigned offset = from & (blocksize - 1); |
| struct page *page; |
| gfp_t mask = btrfs_alloc_write_mask(mapping); |
| size_t write_bytes = blocksize; |
| int ret = 0; |
| u64 block_start; |
| u64 block_end; |
| |
| if (IS_ALIGNED(offset, blocksize) && |
| (!len || IS_ALIGNED(len, blocksize))) |
| goto out; |
| |
| block_start = round_down(from, blocksize); |
| block_end = block_start + blocksize - 1; |
| |
| ret = btrfs_check_data_free_space(inode, &data_reserved, block_start, |
| blocksize, false); |
| if (ret < 0) { |
| if (btrfs_check_nocow_lock(inode, block_start, &write_bytes, false) > 0) { |
| /* For nocow case, no need to reserve data space */ |
| only_release_metadata = true; |
| } else { |
| goto out; |
| } |
| } |
| ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize, false); |
| if (ret < 0) { |
| if (!only_release_metadata) |
| btrfs_free_reserved_data_space(inode, data_reserved, |
| block_start, blocksize); |
| goto out; |
| } |
| again: |
| page = find_or_create_page(mapping, index, mask); |
| if (!page) { |
| btrfs_delalloc_release_space(inode, data_reserved, block_start, |
| blocksize, true); |
| btrfs_delalloc_release_extents(inode, blocksize); |
| ret = -ENOMEM; |
| goto out; |
| } |
| ret = set_page_extent_mapped(page); |
| if (ret < 0) |
| goto out_unlock; |
| |
| if (!PageUptodate(page)) { |
| ret = btrfs_read_folio(NULL, page_folio(page)); |
| lock_page(page); |
| if (page->mapping != mapping) { |
| unlock_page(page); |
| put_page(page); |
| goto again; |
| } |
| if (!PageUptodate(page)) { |
| ret = -EIO; |
| goto out_unlock; |
| } |
| } |
| wait_on_page_writeback(page); |
| |
| lock_extent(io_tree, block_start, block_end, &cached_state); |
| |
| ordered = btrfs_lookup_ordered_extent(inode, block_start); |
| if (ordered) { |
| unlock_extent(io_tree, block_start, block_end, &cached_state); |
| unlock_page(page); |
| put_page(page); |
| btrfs_start_ordered_extent(ordered); |
| btrfs_put_ordered_extent(ordered); |
| goto again; |
| } |
| |
| clear_extent_bit(&inode->io_tree, block_start, block_end, |
| EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, |
| &cached_state); |
| |
| ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0, |
| &cached_state); |
| if (ret) { |
| unlock_extent(io_tree, block_start, block_end, &cached_state); |
| goto out_unlock; |
| } |
| |
| if (offset != blocksize) { |
| if (!len) |
| len = blocksize - offset; |
| if (front) |
| memzero_page(page, (block_start - page_offset(page)), |
| offset); |
| else |
| memzero_page(page, (block_start - page_offset(page)) + offset, |
| len); |
| } |
| btrfs_page_clear_checked(fs_info, page, block_start, |
| block_end + 1 - block_start); |
| btrfs_page_set_dirty(fs_info, page, block_start, block_end + 1 - block_start); |
| unlock_extent(io_tree, block_start, block_end, &cached_state); |
| |
| if (only_release_metadata) |
| set_extent_bit(&inode->io_tree, block_start, block_end, |
| EXTENT_NORESERVE, NULL, GFP_NOFS); |
| |
| out_unlock: |
| if (ret) { |
| if (only_release_metadata) |
| btrfs_delalloc_release_metadata(inode, blocksize, true); |
| else |
| btrfs_delalloc_release_space(inode, data_reserved, |
| block_start, blocksize, true); |
| } |
| btrfs_delalloc_release_extents(inode, blocksize); |
| unlock_page(page); |
| put_page(page); |
| out: |
| if (only_release_metadata) |
| btrfs_check_nocow_unlock(inode); |
| extent_changeset_free(data_reserved); |
| return ret; |
| } |
| |
| static int maybe_insert_hole(struct btrfs_root *root, struct btrfs_inode *inode, |
| u64 offset, u64 len) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct btrfs_trans_handle *trans; |
| struct btrfs_drop_extents_args drop_args = { 0 }; |
| int ret; |
| |
| /* |
| * If NO_HOLES is enabled, we don't need to do anything. |
| * Later, up in the call chain, either btrfs_set_inode_last_sub_trans() |
| * or btrfs_update_inode() will be called, which guarantee that the next |
| * fsync will know this inode was changed and needs to be logged. |
| */ |
| if (btrfs_fs_incompat(fs_info, NO_HOLES)) |
| return 0; |
| |
| /* |
| * 1 - for the one we're dropping |
| * 1 - for the one we're adding |
| * 1 - for updating the inode. |
| */ |
| trans = btrfs_start_transaction(root, 3); |
| if (IS_ERR(trans)) |
| return PTR_ERR(trans); |
| |
| drop_args.start = offset; |
| drop_args.end = offset + len; |
| drop_args.drop_cache = true; |
| |
| ret = btrfs_drop_extents(trans, root, inode, &drop_args); |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| btrfs_end_transaction(trans); |
| return ret; |
| } |
| |
| ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, len); |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| } else { |
| btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found); |
| btrfs_update_inode(trans, root, inode); |
| } |
| btrfs_end_transaction(trans); |
| return ret; |
| } |
| |
| /* |
| * This function puts in dummy file extents for the area we're creating a hole |
| * for. So if we are truncating this file to a larger size we need to insert |
| * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for |
| * the range between oldsize and size |
| */ |
| int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size) |
| { |
| struct btrfs_root *root = inode->root; |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct extent_io_tree *io_tree = &inode->io_tree; |
| struct extent_map *em = NULL; |
| struct extent_state *cached_state = NULL; |
| u64 hole_start = ALIGN(oldsize, fs_info->sectorsize); |
| u64 block_end = ALIGN(size, fs_info->sectorsize); |
| u64 last_byte; |
| u64 cur_offset; |
| u64 hole_size; |
| int err = 0; |
| |
| /* |
| * If our size started in the middle of a block we need to zero out the |
| * rest of the block before we expand the i_size, otherwise we could |
| * expose stale data. |
| */ |
| err = btrfs_truncate_block(inode, oldsize, 0, 0); |
| if (err) |
| return err; |
| |
| if (size <= hole_start) |
| return 0; |
| |
| btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1, |
| &cached_state); |
| cur_offset = hole_start; |
| while (1) { |
| em = btrfs_get_extent(inode, NULL, 0, cur_offset, |
| block_end - cur_offset); |
| if (IS_ERR(em)) { |
| err = PTR_ERR(em); |
| em = NULL; |
| break; |
| } |
| last_byte = min(extent_map_end(em), block_end); |
| last_byte = ALIGN(last_byte, fs_info->sectorsize); |
| hole_size = last_byte - cur_offset; |
| |
| if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { |
| struct extent_map *hole_em; |
| |
| err = maybe_insert_hole(root, inode, cur_offset, |
| hole_size); |
| if (err) |
| break; |
| |
| err = btrfs_inode_set_file_extent_range(inode, |
| cur_offset, hole_size); |
| if (err) |
| break; |
| |
| hole_em = alloc_extent_map(); |
| if (!hole_em) { |
| btrfs_drop_extent_map_range(inode, cur_offset, |
| cur_offset + hole_size - 1, |
| false); |
| btrfs_set_inode_full_sync(inode); |
| goto next; |
| } |
| hole_em->start = cur_offset; |
| hole_em->len = hole_size; |
| hole_em->orig_start = cur_offset; |
| |
| hole_em->block_start = EXTENT_MAP_HOLE; |
| hole_em->block_len = 0; |
| hole_em->orig_block_len = 0; |
| hole_em->ram_bytes = hole_size; |
| hole_em->compress_type = BTRFS_COMPRESS_NONE; |
| hole_em->generation = fs_info->generation; |
| |
| err = btrfs_replace_extent_map_range(inode, hole_em, true); |
| free_extent_map(hole_em); |
| } else { |
| err = btrfs_inode_set_file_extent_range(inode, |
| cur_offset, hole_size); |
| if (err) |
| break; |
| } |
| next: |
| free_extent_map(em); |
| em = NULL; |
| cur_offset = last_byte; |
| if (cur_offset >= block_end) |
| break; |
| } |
| free_extent_map(em); |
| unlock_extent(io_tree, hole_start, block_end - 1, &cached_state); |
| return err; |
| } |
| |
| static int btrfs_setsize(struct inode *inode, struct iattr *attr) |
| { |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| struct btrfs_trans_handle *trans; |
| loff_t oldsize = i_size_read(inode); |
| loff_t newsize = attr->ia_size; |
| int mask = attr->ia_valid; |
| int ret; |
| |
| /* |
| * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a |
| * special case where we need to update the times despite not having |
| * these flags set. For all other operations the VFS set these flags |
| * explicitly if it wants a timestamp update. |
| */ |
| if (newsize != oldsize) { |
| inode_inc_iversion(inode); |
| if (!(mask & (ATTR_CTIME | ATTR_MTIME))) { |
| inode->i_mtime = current_time(inode); |
| inode->i_ctime = inode->i_mtime; |
| } |
| } |
| |
| if (newsize > oldsize) { |
| /* |
| * Don't do an expanding truncate while snapshotting is ongoing. |
| * This is to ensure the snapshot captures a fully consistent |
| * state of this file - if the snapshot captures this expanding |
| * truncation, it must capture all writes that happened before |
| * this truncation. |
| */ |
| btrfs_drew_write_lock(&root->snapshot_lock); |
| ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize); |
| if (ret) { |
| btrfs_drew_write_unlock(&root->snapshot_lock); |
| return ret; |
| } |
| |
| trans = btrfs_start_transaction(root, 1); |
| if (IS_ERR(trans)) { |
| btrfs_drew_write_unlock(&root->snapshot_lock); |
| return PTR_ERR(trans); |
| } |
| |
| i_size_write(inode, newsize); |
| btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); |
| pagecache_isize_extended(inode, oldsize, newsize); |
| ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); |
| btrfs_drew_write_unlock(&root->snapshot_lock); |
| btrfs_end_transaction(trans); |
| } else { |
| struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
| |
| if (btrfs_is_zoned(fs_info)) { |
| ret = btrfs_wait_ordered_range(inode, |
| ALIGN(newsize, fs_info->sectorsize), |
| (u64)-1); |
| if (ret) |
| return ret; |
| } |
| |
| /* |
| * We're truncating a file that used to have good data down to |
| * zero. Make sure any new writes to the file get on disk |
| * on close. |
| */ |
| if (newsize == 0) |
| set_bit(BTRFS_INODE_FLUSH_ON_CLOSE, |
| &BTRFS_I(inode)->runtime_flags); |
| |
| truncate_setsize(inode, newsize); |
| |
| inode_dio_wait(inode); |
| |
| ret = btrfs_truncate(BTRFS_I(inode), newsize == oldsize); |
| if (ret && inode->i_nlink) { |
| int err; |
| |
| /* |
| * Truncate failed, so fix up the in-memory size. We |
| * adjusted disk_i_size down as we removed extents, so |
| * wait for disk_i_size to be stable and then update the |
| * in-memory size to match. |
| */ |
| err = btrfs_wait_ordered_range(inode, 0, (u64)-1); |
| if (err) |
| return err; |
| i_size_write(inode, BTRFS_I(inode)->disk_i_size); |
| } |
| } |
| |
| return ret; |
| } |
| |
| static int btrfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry, |
| struct iattr *attr) |
| { |
| struct inode *inode = d_inode(dentry); |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| int err; |
| |
| if (btrfs_root_readonly(root)) |
| return -EROFS; |
| |
| err = setattr_prepare(idmap, dentry, attr); |
| if (err) |
| return err; |
| |
| if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { |
| err = btrfs_setsize(inode, attr); |
| if (err) |
| return err; |
| } |
| |
| if (attr->ia_valid) { |
| setattr_copy(idmap, inode, attr); |
| inode_inc_iversion(inode); |
| err = btrfs_dirty_inode(BTRFS_I(inode)); |
| |
| if (!err && attr->ia_valid & ATTR_MODE) |
| err = posix_acl_chmod(idmap, dentry, inode->i_mode); |
| } |
| |
| return err; |
| } |
| |
| /* |
| * While truncating the inode pages during eviction, we get the VFS |
| * calling btrfs_invalidate_folio() against each folio of the inode. This |
| * is slow because the calls to btrfs_invalidate_folio() result in a |
| * huge amount of calls to lock_extent() and clear_extent_bit(), |
| * which keep merging and splitting extent_state structures over and over, |
| * wasting lots of time. |
| * |
| * Therefore if the inode is being evicted, let btrfs_invalidate_folio() |
| * skip all those expensive operations on a per folio basis and do only |
| * the ordered io finishing, while we release here the extent_map and |
| * extent_state structures, without the excessive merging and splitting. |
| */ |
| static void evict_inode_truncate_pages(struct inode *inode) |
| { |
| struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; |
| struct rb_node *node; |
| |
| ASSERT(inode->i_state & I_FREEING); |
| truncate_inode_pages_final(&inode->i_data); |
| |
| btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false); |
| |
| /* |
| * Keep looping until we have no more ranges in the io tree. |
| * We can have ongoing bios started by readahead that have |
| * their endio callback (extent_io.c:end_bio_extent_readpage) |
| * still in progress (unlocked the pages in the bio but did not yet |
| * unlocked the ranges in the io tree). Therefore this means some |
| * ranges can still be locked and eviction started because before |
| * submitting those bios, which are executed by a separate task (work |
| * queue kthread), inode references (inode->i_count) were not taken |
| * (which would be dropped in the end io callback of each bio). |
| * Therefore here we effectively end up waiting for those bios and |
| * anyone else holding locked ranges without having bumped the inode's |
| * reference count - if we don't do it, when they access the inode's |
| * io_tree to unlock a range it may be too late, leading to an |
| * use-after-free issue. |
| */ |
| spin_lock(&io_tree->lock); |
| while (!RB_EMPTY_ROOT(&io_tree->state)) { |
| struct extent_state *state; |
| struct extent_state *cached_state = NULL; |
| u64 start; |
| u64 end; |
| unsigned state_flags; |
| |
| node = rb_first(&io_tree->state); |
| state = rb_entry(node, struct extent_state, rb_node); |
| start = state->start; |
| end = state->end; |
| state_flags = state->state; |
| spin_unlock(&io_tree->lock); |
| |
| lock_extent(io_tree, start, end, &cached_state); |
| |
| /* |
| * If still has DELALLOC flag, the extent didn't reach disk, |
| * and its reserved space won't be freed by delayed_ref. |
| * So we need to free its reserved space here. |
| * (Refer to comment in btrfs_invalidate_folio, case 2) |
| * |
| * Note, end is the bytenr of last byte, so we need + 1 here. |
| */ |
| if (state_flags & EXTENT_DELALLOC) |
| btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start, |
| end - start + 1); |
| |
| clear_extent_bit(io_tree, start, end, |
| EXTENT_CLEAR_ALL_BITS | EXTENT_DO_ACCOUNTING, |
| &cached_state); |
| |
| cond_resched(); |
| spin_lock(&io_tree->lock); |
| } |
| spin_unlock(&io_tree->lock); |
| } |
| |
| static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root, |
| struct btrfs_block_rsv *rsv) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct btrfs_trans_handle *trans; |
| u64 delayed_refs_extra = btrfs_calc_insert_metadata_size(fs_info, 1); |
| int ret; |
| |
| /* |
| * Eviction should be taking place at some place safe because of our |
| * delayed iputs. However the normal flushing code will run delayed |
| * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock. |
| * |
| * We reserve the delayed_refs_extra here again because we can't use |
| * btrfs_start_transaction(root, 0) for the same deadlocky reason as |
| * above. We reserve our extra bit here because we generate a ton of |
| * delayed refs activity by truncating. |
| * |
| * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can, |
| * if we fail to make this reservation we can re-try without the |
| * delayed_refs_extra so we can make some forward progress. |
| */ |
| ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra, |
| BTRFS_RESERVE_FLUSH_EVICT); |
| if (ret) { |
| ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size, |
| BTRFS_RESERVE_FLUSH_EVICT); |
| if (ret) { |
| btrfs_warn(fs_info, |
| "could not allocate space for delete; will truncate on mount"); |
| return ERR_PTR(-ENOSPC); |
| } |
| delayed_refs_extra = 0; |
| } |
| |
| trans = btrfs_join_transaction(root); |
| if (IS_ERR(trans)) |
| return trans; |
| |
| if (delayed_refs_extra) { |
| trans->block_rsv = &fs_info->trans_block_rsv; |
| trans->bytes_reserved = delayed_refs_extra; |
| btrfs_block_rsv_migrate(rsv, trans->block_rsv, |
| delayed_refs_extra, 1); |
| } |
| return trans; |
| } |
| |
| void btrfs_evict_inode(struct inode *inode) |
| { |
| struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
| struct btrfs_trans_handle *trans; |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| struct btrfs_block_rsv *rsv; |
| int ret; |
| |
| trace_btrfs_inode_evict(inode); |
| |
| if (!root) { |
| fsverity_cleanup_inode(inode); |
| clear_inode(inode); |
| return; |
| } |
| |
| evict_inode_truncate_pages(inode); |
| |
| if (inode->i_nlink && |
| ((btrfs_root_refs(&root->root_item) != 0 && |
| root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) || |
| btrfs_is_free_space_inode(BTRFS_I(inode)))) |
| goto no_delete; |
| |
| if (is_bad_inode(inode)) |
| goto no_delete; |
| |
| if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) |
| goto no_delete; |
| |
| if (inode->i_nlink > 0) { |
| BUG_ON(btrfs_root_refs(&root->root_item) != 0 && |
| root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID); |
| goto no_delete; |
| } |
| |
| /* |
| * This makes sure the inode item in tree is uptodate and the space for |
| * the inode update is released. |
| */ |
| ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode)); |
| if (ret) |
| goto no_delete; |
| |
| /* |
| * This drops any pending insert or delete operations we have for this |
| * inode. We could have a delayed dir index deletion queued up, but |
| * we're removing the inode completely so that'll be taken care of in |
| * the truncate. |
| */ |
| btrfs_kill_delayed_inode_items(BTRFS_I(inode)); |
| |
| rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); |
| if (!rsv) |
| goto no_delete; |
| rsv->size = btrfs_calc_metadata_size(fs_info, 1); |
| rsv->failfast = true; |
| |
| btrfs_i_size_write(BTRFS_I(inode), 0); |
| |
| while (1) { |
| struct btrfs_truncate_control control = { |
| .inode = BTRFS_I(inode), |
| .ino = btrfs_ino(BTRFS_I(inode)), |
| .new_size = 0, |
| .min_type = 0, |
| }; |
| |
| trans = evict_refill_and_join(root, rsv); |
| if (IS_ERR(trans)) |
| goto free_rsv; |
| |
| trans->block_rsv = rsv; |
| |
| ret = btrfs_truncate_inode_items(trans, root, &control); |
| trans->block_rsv = &fs_info->trans_block_rsv; |
| btrfs_end_transaction(trans); |
| btrfs_btree_balance_dirty(fs_info); |
| if (ret && ret != -ENOSPC && ret != -EAGAIN) |
| goto free_rsv; |
| else if (!ret) |
| break; |
| } |
| |
| /* |
| * Errors here aren't a big deal, it just means we leave orphan items in |
| * the tree. They will be cleaned up on the next mount. If the inode |
| * number gets reused, cleanup deletes the orphan item without doing |
| * anything, and unlink reuses the existing orphan item. |
| * |
| * If it turns out that we are dropping too many of these, we might want |
| * to add a mechanism for retrying these after a commit. |
| */ |
| trans = evict_refill_and_join(root, rsv); |
| if (!IS_ERR(trans)) { |
| trans->block_rsv = rsv; |
| btrfs_orphan_del(trans, BTRFS_I(inode)); |
| trans->block_rsv = &fs_info->trans_block_rsv; |
| btrfs_end_transaction(trans); |
| } |
| |
| free_rsv: |
| btrfs_free_block_rsv(fs_info, rsv); |
| no_delete: |
| /* |
| * If we didn't successfully delete, the orphan item will still be in |
| * the tree and we'll retry on the next mount. Again, we might also want |
| * to retry these periodically in the future. |
| */ |
| btrfs_remove_delayed_node(BTRFS_I(inode)); |
| fsverity_cleanup_inode(inode); |
| clear_inode(inode); |
| } |
| |
| /* |
| * Return the key found in the dir entry in the location pointer, fill @type |
| * with BTRFS_FT_*, and return 0. |
| * |
| * If no dir entries were found, returns -ENOENT. |
| * If found a corrupted location in dir entry, returns -EUCLEAN. |
| */ |
| static int btrfs_inode_by_name(struct btrfs_inode *dir, struct dentry *dentry, |
| struct btrfs_key *location, u8 *type) |
| { |
| struct btrfs_dir_item *di; |
| struct btrfs_path *path; |
| struct btrfs_root *root = dir->root; |
| int ret = 0; |
| struct fscrypt_name fname; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname); |
| if (ret < 0) |
| goto out; |
| /* |
| * fscrypt_setup_filename() should never return a positive value, but |
| * gcc on sparc/parisc thinks it can, so assert that doesn't happen. |
| */ |
| ASSERT(ret == 0); |
| |
| /* This needs to handle no-key deletions later on */ |
| |
| di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), |
| &fname.disk_name, 0); |
| if (IS_ERR_OR_NULL(di)) { |
| ret = di ? PTR_ERR(di) : -ENOENT; |
| goto out; |
| } |
| |
| btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); |
| if (location->type != BTRFS_INODE_ITEM_KEY && |
| location->type != BTRFS_ROOT_ITEM_KEY) { |
| ret = -EUCLEAN; |
| btrfs_warn(root->fs_info, |
| "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))", |
| __func__, fname.disk_name.name, btrfs_ino(dir), |
| location->objectid, location->type, location->offset); |
| } |
| if (!ret) |
| *type = btrfs_dir_ftype(path->nodes[0], di); |
| out: |
| fscrypt_free_filename(&fname); |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| /* |
| * when we hit a tree root in a directory, the btrfs part of the inode |
| * needs to be changed to reflect the root directory of the tree root. This |
| * is kind of like crossing a mount point. |
| */ |
| static int fixup_tree_root_location(struct btrfs_fs_info *fs_info, |
| struct btrfs_inode *dir, |
| struct dentry *dentry, |
| struct btrfs_key *location, |
| struct btrfs_root **sub_root) |
| { |
| struct btrfs_path *path; |
| struct btrfs_root *new_root; |
| struct btrfs_root_ref *ref; |
| struct extent_buffer *leaf; |
| struct btrfs_key key; |
| int ret; |
| int err = 0; |
| struct fscrypt_name fname; |
| |
| ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 0, &fname); |
| if (ret) |
| return ret; |
| |
| path = btrfs_alloc_path(); |
| if (!path) { |
| err = -ENOMEM; |
| goto out; |
| } |
| |
| err = -ENOENT; |
| key.objectid = dir->root->root_key.objectid; |
| key.type = BTRFS_ROOT_REF_KEY; |
| key.offset = location->objectid; |
| |
| ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); |
| if (ret) { |
| if (ret < 0) |
| err = ret; |
| goto out; |
| } |
| |
| leaf = path->nodes[0]; |
| ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); |
| if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) || |
| btrfs_root_ref_name_len(leaf, ref) != fname.disk_name.len) |
| goto out; |
| |
| ret = memcmp_extent_buffer(leaf, fname.disk_name.name, |
| (unsigned long)(ref + 1), fname.disk_name.len); |
| if (ret) |
| goto out; |
| |
| btrfs_release_path(path); |
| |
| new_root = btrfs_get_fs_root(fs_info, location->objectid, true); |
| if (IS_ERR(new_root)) { |
| err = PTR_ERR(new_root); |
| goto out; |
| } |
| |
| *sub_root = new_root; |
| location->objectid = btrfs_root_dirid(&new_root->root_item); |
| location->type = BTRFS_INODE_ITEM_KEY; |
| location->offset = 0; |
| err = 0; |
| out: |
| btrfs_free_path(path); |
| fscrypt_free_filename(&fname); |
| return err; |
| } |
| |
| static void inode_tree_add(struct btrfs_inode *inode) |
| { |
| struct btrfs_root *root = inode->root; |
| struct btrfs_inode *entry; |
| struct rb_node **p; |
| struct rb_node *parent; |
| struct rb_node *new = &inode->rb_node; |
| u64 ino = btrfs_ino(inode); |
| |
| if (inode_unhashed(&inode->vfs_inode)) |
| return; |
| parent = NULL; |
| spin_lock(&root->inode_lock); |
| p = &root->inode_tree.rb_node; |
| while (*p) { |
| parent = *p; |
| entry = rb_entry(parent, struct btrfs_inode, rb_node); |
| |
| if (ino < btrfs_ino(entry)) |
| p = &parent->rb_left; |
| else if (ino > btrfs_ino(entry)) |
| p = &parent->rb_right; |
| else { |
| WARN_ON(!(entry->vfs_inode.i_state & |
| (I_WILL_FREE | I_FREEING))); |
| rb_replace_node(parent, new, &root->inode_tree); |
| RB_CLEAR_NODE(parent); |
| spin_unlock(&root->inode_lock); |
| return; |
| } |
| } |
| rb_link_node(new, parent, p); |
| rb_insert_color(new, &root->inode_tree); |
| spin_unlock(&root->inode_lock); |
| } |
| |
| static void inode_tree_del(struct btrfs_inode *inode) |
| { |
| struct btrfs_root *root = inode->root; |
| int empty = 0; |
| |
| spin_lock(&root->inode_lock); |
| if (!RB_EMPTY_NODE(&inode->rb_node)) { |
| rb_erase(&inode->rb_node, &root->inode_tree); |
| RB_CLEAR_NODE(&inode->rb_node); |
| empty = RB_EMPTY_ROOT(&root->inode_tree); |
| } |
| spin_unlock(&root->inode_lock); |
| |
| if (empty && btrfs_root_refs(&root->root_item) == 0) { |
| spin_lock(&root->inode_lock); |
| empty = RB_EMPTY_ROOT(&root->inode_tree); |
| spin_unlock(&root->inode_lock); |
| if (empty) |
| btrfs_add_dead_root(root); |
| } |
| } |
| |
| |
| static int btrfs_init_locked_inode(struct inode *inode, void *p) |
| { |
| struct btrfs_iget_args *args = p; |
| |
| inode->i_ino = args->ino; |
| BTRFS_I(inode)->location.objectid = args->ino; |
| BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY; |
| BTRFS_I(inode)->location.offset = 0; |
| BTRFS_I(inode)->root = btrfs_grab_root(args->root); |
| BUG_ON(args->root && !BTRFS_I(inode)->root); |
| |
| if (args->root && args->root == args->root->fs_info->tree_root && |
| args->ino != BTRFS_BTREE_INODE_OBJECTID) |
| set_bit(BTRFS_INODE_FREE_SPACE_INODE, |
| &BTRFS_I(inode)->runtime_flags); |
| return 0; |
| } |
| |
| static int btrfs_find_actor(struct inode *inode, void *opaque) |
| { |
| struct btrfs_iget_args *args = opaque; |
| |
| return args->ino == BTRFS_I(inode)->location.objectid && |
| args->root == BTRFS_I(inode)->root; |
| } |
| |
| static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino, |
| struct btrfs_root *root) |
| { |
| struct inode *inode; |
| struct btrfs_iget_args args; |
| unsigned long hashval = btrfs_inode_hash(ino, root); |
| |
| args.ino = ino; |
| args.root = root; |
| |
| inode = iget5_locked(s, hashval, btrfs_find_actor, |
| btrfs_init_locked_inode, |
| (void *)&args); |
| return inode; |
| } |
| |
| /* |
| * Get an inode object given its inode number and corresponding root. |
| * Path can be preallocated to prevent recursing back to iget through |
| * allocator. NULL is also valid but may require an additional allocation |
| * later. |
| */ |
| struct inode *btrfs_iget_path(struct super_block *s, u64 ino, |
| struct btrfs_root *root, struct btrfs_path *path) |
| { |
| struct inode *inode; |
| |
| inode = btrfs_iget_locked(s, ino, root); |
| if (!inode) |
| return ERR_PTR(-ENOMEM); |
| |
| if (inode->i_state & I_NEW) { |
| int ret; |
| |
| ret = btrfs_read_locked_inode(inode, path); |
| if (!ret) { |
| inode_tree_add(BTRFS_I(inode)); |
| unlock_new_inode(inode); |
| } else { |
| iget_failed(inode); |
| /* |
| * ret > 0 can come from btrfs_search_slot called by |
| * btrfs_read_locked_inode, this means the inode item |
| * was not found. |
| */ |
| if (ret > 0) |
| ret = -ENOENT; |
| inode = ERR_PTR(ret); |
| } |
| } |
| |
| return inode; |
| } |
| |
| struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root) |
| { |
| return btrfs_iget_path(s, ino, root, NULL); |
| } |
| |
| static struct inode *new_simple_dir(struct super_block *s, |
| struct btrfs_key *key, |
| struct btrfs_root *root) |
| { |
| struct inode *inode = new_inode(s); |
| |
| if (!inode) |
| return ERR_PTR(-ENOMEM); |
| |
| BTRFS_I(inode)->root = btrfs_grab_root(root); |
| memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); |
| set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); |
| |
| inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; |
| /* |
| * We only need lookup, the rest is read-only and there's no inode |
| * associated with the dentry |
| */ |
| inode->i_op = &simple_dir_inode_operations; |
| inode->i_opflags &= ~IOP_XATTR; |
| inode->i_fop = &simple_dir_operations; |
| inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; |
| inode->i_mtime = current_time(inode); |
| inode->i_atime = inode->i_mtime; |
| inode->i_ctime = inode->i_mtime; |
| BTRFS_I(inode)->i_otime = inode->i_mtime; |
| |
| return inode; |
| } |
| |
| static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN); |
| static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE); |
| static_assert(BTRFS_FT_DIR == FT_DIR); |
| static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV); |
| static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV); |
| static_assert(BTRFS_FT_FIFO == FT_FIFO); |
| static_assert(BTRFS_FT_SOCK == FT_SOCK); |
| static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK); |
| |
| static inline u8 btrfs_inode_type(struct inode *inode) |
| { |
| return fs_umode_to_ftype(inode->i_mode); |
| } |
| |
| struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) |
| { |
| struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); |
| struct inode *inode; |
| struct btrfs_root *root = BTRFS_I(dir)->root; |
| struct btrfs_root *sub_root = root; |
| struct btrfs_key location; |
| u8 di_type = 0; |
| int ret = 0; |
| |
| if (dentry->d_name.len > BTRFS_NAME_LEN) |
| return ERR_PTR(-ENAMETOOLONG); |
| |
| ret = btrfs_inode_by_name(BTRFS_I(dir), dentry, &location, &di_type); |
| if (ret < 0) |
| return ERR_PTR(ret); |
| |
| if (location.type == BTRFS_INODE_ITEM_KEY) { |
| inode = btrfs_iget(dir->i_sb, location.objectid, root); |
| if (IS_ERR(inode)) |
| return inode; |
| |
| /* Do extra check against inode mode with di_type */ |
| if (btrfs_inode_type(inode) != di_type) { |
| btrfs_crit(fs_info, |
| "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u", |
| inode->i_mode, btrfs_inode_type(inode), |
| di_type); |
| iput(inode); |
| return ERR_PTR(-EUCLEAN); |
| } |
| return inode; |
| } |
| |
| ret = fixup_tree_root_location(fs_info, BTRFS_I(dir), dentry, |
| &location, &sub_root); |
| if (ret < 0) { |
| if (ret != -ENOENT) |
| inode = ERR_PTR(ret); |
| else |
| inode = new_simple_dir(dir->i_sb, &location, root); |
| } else { |
| inode = btrfs_iget(dir->i_sb, location.objectid, sub_root); |
| btrfs_put_root(sub_root); |
| |
| if (IS_ERR(inode)) |
| return inode; |
| |
| down_read(&fs_info->cleanup_work_sem); |
| if (!sb_rdonly(inode->i_sb)) |
| ret = btrfs_orphan_cleanup(sub_root); |
| up_read(&fs_info->cleanup_work_sem); |
| if (ret) { |
| iput(inode); |
| inode = ERR_PTR(ret); |
| } |
| } |
| |
| return inode; |
| } |
| |
| static int btrfs_dentry_delete(const struct dentry *dentry) |
| { |
| struct btrfs_root *root; |
| struct inode *inode = d_inode(dentry); |
| |
| if (!inode && !IS_ROOT(dentry)) |
| inode = d_inode(dentry->d_parent); |
| |
| if (inode) { |
| root = BTRFS_I(inode)->root; |
| if (btrfs_root_refs(&root->root_item) == 0) |
| return 1; |
| |
| if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) |
| return 1; |
| } |
| return 0; |
| } |
| |
| static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, |
| unsigned int flags) |
| { |
| struct inode *inode = btrfs_lookup_dentry(dir, dentry); |
| |
| if (inode == ERR_PTR(-ENOENT)) |
| inode = NULL; |
| return d_splice_alias(inode, dentry); |
| } |
| |
| /* |
| * All this infrastructure exists because dir_emit can fault, and we are holding |
| * the tree lock when doing readdir. For now just allocate a buffer and copy |
| * our information into that, and then dir_emit from the buffer. This is |
| * similar to what NFS does, only we don't keep the buffer around in pagecache |
| * because I'm afraid I'll mess that up. Long term we need to make filldir do |
| * copy_to_user_inatomic so we don't have to worry about page faulting under the |
| * tree lock. |
| */ |
| static int btrfs_opendir(struct inode *inode, struct file *file) |
| { |
| struct btrfs_file_private *private; |
| |
| private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL); |
| if (!private) |
| return -ENOMEM; |
| private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL); |
| if (!private->filldir_buf) { |
| kfree(private); |
| return -ENOMEM; |
| } |
| file->private_data = private; |
| return 0; |
| } |
| |
| struct dir_entry { |
| u64 ino; |
| u64 offset; |
| unsigned type; |
| int name_len; |
| }; |
| |
| static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx) |
| { |
| while (entries--) { |
| struct dir_entry *entry = addr; |
| char *name = (char *)(entry + 1); |
| |
| ctx->pos = get_unaligned(&entry->offset); |
| if (!dir_emit(ctx, name, get_unaligned(&entry->name_len), |
| get_unaligned(&entry->ino), |
| get_unaligned(&entry->type))) |
| return 1; |
| addr += sizeof(struct dir_entry) + |
| get_unaligned(&entry->name_len); |
| ctx->pos++; |
| } |
| return 0; |
| } |
| |
| static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) |
| { |
| struct inode *inode = file_inode(file); |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| struct btrfs_file_private *private = file->private_data; |
| struct btrfs_dir_item *di; |
| struct btrfs_key key; |
| struct btrfs_key found_key; |
| struct btrfs_path *path; |
| void *addr; |
| struct list_head ins_list; |
| struct list_head del_list; |
| int ret; |
| char *name_ptr; |
| int name_len; |
| int entries = 0; |
| int total_len = 0; |
| bool put = false; |
| struct btrfs_key location; |
| |
| if (!dir_emit_dots(file, ctx)) |
| return 0; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| addr = private->filldir_buf; |
| path->reada = READA_FORWARD; |
| |
| INIT_LIST_HEAD(&ins_list); |
| INIT_LIST_HEAD(&del_list); |
| put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list); |
| |
| again: |
| key.type = BTRFS_DIR_INDEX_KEY; |
| key.offset = ctx->pos; |
| key.objectid = btrfs_ino(BTRFS_I(inode)); |
| |
| btrfs_for_each_slot(root, &key, &found_key, path, ret) { |
| struct dir_entry *entry; |
| struct extent_buffer *leaf = path->nodes[0]; |
| u8 ftype; |
| |
| if (found_key.objectid != key.objectid) |
| break; |
| if (found_key.type != BTRFS_DIR_INDEX_KEY) |
| break; |
| if (found_key.offset < ctx->pos) |
| continue; |
| if (btrfs_should_delete_dir_index(&del_list, found_key.offset)) |
| continue; |
| di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item); |
| name_len = btrfs_dir_name_len(leaf, di); |
| if ((total_len + sizeof(struct dir_entry) + name_len) >= |
| PAGE_SIZE) { |
| btrfs_release_path(path); |
| ret = btrfs_filldir(private->filldir_buf, entries, ctx); |
| if (ret) |
| goto nopos; |
| addr = private->filldir_buf; |
| entries = 0; |
| total_len = 0; |
| goto again; |
| } |
| |
| ftype = btrfs_dir_flags_to_ftype(btrfs_dir_flags(leaf, di)); |
| entry = addr; |
| name_ptr = (char *)(entry + 1); |
| read_extent_buffer(leaf, name_ptr, |
| (unsigned long)(di + 1), name_len); |
| put_unaligned(name_len, &entry->name_len); |
| put_unaligned(fs_ftype_to_dtype(ftype), &entry->type); |
| btrfs_dir_item_key_to_cpu(leaf, di, &location); |
| put_unaligned(location.objectid, &entry->ino); |
| put_unaligned(found_key.offset, &entry->offset); |
| entries++; |
| addr += sizeof(struct dir_entry) + name_len; |
| total_len += sizeof(struct dir_entry) + name_len; |
| } |
| /* Catch error encountered during iteration */ |
| if (ret < 0) |
| goto err; |
| |
| btrfs_release_path(path); |
| |
| ret = btrfs_filldir(private->filldir_buf, entries, ctx); |
| if (ret) |
| goto nopos; |
| |
| ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list); |
| if (ret) |
| goto nopos; |
| |
| /* |
| * Stop new entries from being returned after we return the last |
| * entry. |
| * |
| * New directory entries are assigned a strictly increasing |
| * offset. This means that new entries created during readdir |
| * are *guaranteed* to be seen in the future by that readdir. |
| * This has broken buggy programs which operate on names as |
| * they're returned by readdir. Until we re-use freed offsets |
| * we have this hack to stop new entries from being returned |
| * under the assumption that they'll never reach this huge |
| * offset. |
| * |
| * This is being careful not to overflow 32bit loff_t unless the |
| * last entry requires it because doing so has broken 32bit apps |
| * in the past. |
| */ |
| if (ctx->pos >= INT_MAX) |
| ctx->pos = LLONG_MAX; |
| else |
| ctx->pos = INT_MAX; |
| nopos: |
| ret = 0; |
| err: |
| if (put) |
| btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list); |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| /* |
| * This is somewhat expensive, updating the tree every time the |
| * inode changes. But, it is most likely to find the inode in cache. |
| * FIXME, needs more benchmarking...there are no reasons other than performance |
| * to keep or drop this code. |
| */ |
| static int btrfs_dirty_inode(struct btrfs_inode *inode) |
| { |
| struct btrfs_root *root = inode->root; |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct btrfs_trans_handle *trans; |
| int ret; |
| |
| if (test_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags)) |
| return 0; |
| |
| trans = btrfs_join_transaction(root); |
| if (IS_ERR(trans)) |
| return PTR_ERR(trans); |
| |
| ret = btrfs_update_inode(trans, root, inode); |
| if (ret && (ret == -ENOSPC || ret == -EDQUOT)) { |
| /* whoops, lets try again with the full transaction */ |
| btrfs_end_transaction(trans); |
| trans = btrfs_start_transaction(root, 1); |
| if (IS_ERR(trans)) |
| return PTR_ERR(trans); |
| |
| ret = btrfs_update_inode(trans, root, inode); |
| } |
| btrfs_end_transaction(trans); |
| if (inode->delayed_node) |
| btrfs_balance_delayed_items(fs_info); |
| |
| return ret; |
| } |
| |
| /* |
| * This is a copy of file_update_time. We need this so we can return error on |
| * ENOSPC for updating the inode in the case of file write and mmap writes. |
| */ |
| static int btrfs_update_time(struct inode *inode, struct timespec64 *now, |
| int flags) |
| { |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| bool dirty = flags & ~S_VERSION; |
| |
| if (btrfs_root_readonly(root)) |
| return -EROFS; |
| |
| if (flags & S_VERSION) |
| dirty |= inode_maybe_inc_iversion(inode, dirty); |
| if (flags & S_CTIME) |
| inode->i_ctime = *now; |
| if (flags & S_MTIME) |
| inode->i_mtime = *now; |
| if (flags & S_ATIME) |
| inode->i_atime = *now; |
| return dirty ? btrfs_dirty_inode(BTRFS_I(inode)) : 0; |
| } |
| |
| /* |
| * find the highest existing sequence number in a directory |
| * and then set the in-memory index_cnt variable to reflect |
| * free sequence numbers |
| */ |
| static int btrfs_set_inode_index_count(struct btrfs_inode *inode) |
| { |
| struct btrfs_root *root = inode->root; |
| struct btrfs_key key, found_key; |
| struct btrfs_path *path; |
| struct extent_buffer *leaf; |
| int ret; |
| |
| key.objectid = btrfs_ino(inode); |
| key.type = BTRFS_DIR_INDEX_KEY; |
| key.offset = (u64)-1; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); |
| if (ret < 0) |
| goto out; |
| /* FIXME: we should be able to handle this */ |
| if (ret == 0) |
| goto out; |
| ret = 0; |
| |
| if (path->slots[0] == 0) { |
| inode->index_cnt = BTRFS_DIR_START_INDEX; |
| goto out; |
| } |
| |
| path->slots[0]--; |
| |
| leaf = path->nodes[0]; |
| btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); |
| |
| if (found_key.objectid != btrfs_ino(inode) || |
| found_key.type != BTRFS_DIR_INDEX_KEY) { |
| inode->index_cnt = BTRFS_DIR_START_INDEX; |
| goto out; |
| } |
| |
| inode->index_cnt = found_key.offset + 1; |
| out: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| /* |
| * helper to find a free sequence number in a given directory. This current |
| * code is very simple, later versions will do smarter things in the btree |
| */ |
| int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index) |
| { |
| int ret = 0; |
| |
| if (dir->index_cnt == (u64)-1) { |
| ret = btrfs_inode_delayed_dir_index_count(dir); |
| if (ret) { |
| ret = btrfs_set_inode_index_count(dir); |
| if (ret) |
| return ret; |
| } |
| } |
| |
| *index = dir->index_cnt; |
| dir->index_cnt++; |
| |
| return ret; |
| } |
| |
| static int btrfs_insert_inode_locked(struct inode *inode) |
| { |
| struct btrfs_iget_args args; |
| |
| args.ino = BTRFS_I(inode)->location.objectid; |
| args.root = BTRFS_I(inode)->root; |
| |
| return insert_inode_locked4(inode, |
| btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), |
| btrfs_find_actor, &args); |
| } |
| |
| int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args, |
| unsigned int *trans_num_items) |
| { |
| struct inode *dir = args->dir; |
| struct inode *inode = args->inode; |
| int ret; |
| |
| if (!args->orphan) { |
| ret = fscrypt_setup_filename(dir, &args->dentry->d_name, 0, |
| &args->fname); |
| if (ret) |
| return ret; |
| } |
| |
| ret = posix_acl_create(dir, &inode->i_mode, &args->default_acl, &args->acl); |
| if (ret) { |
| fscrypt_free_filename(&args->fname); |
| return ret; |
| } |
| |
| /* 1 to add inode item */ |
| *trans_num_items = 1; |
| /* 1 to add compression property */ |
| if (BTRFS_I(dir)->prop_compress) |
| (*trans_num_items)++; |
| /* 1 to add default ACL xattr */ |
| if (args->default_acl) |
| (*trans_num_items)++; |
| /* 1 to add access ACL xattr */ |
| if (args->acl) |
| (*trans_num_items)++; |
| #ifdef CONFIG_SECURITY |
| /* 1 to add LSM xattr */ |
| if (dir->i_security) |
| (*trans_num_items)++; |
| #endif |
| if (args->orphan) { |
| /* 1 to add orphan item */ |
| (*trans_num_items)++; |
| } else { |
| /* |
| * 1 to add dir item |
| * 1 to add dir index |
| * 1 to update parent inode item |
| * |
| * No need for 1 unit for the inode ref item because it is |
| * inserted in a batch together with the inode item at |
| * btrfs_create_new_inode(). |
| */ |
| *trans_num_items += 3; |
| } |
| return 0; |
| } |
| |
| void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args) |
| { |
| posix_acl_release(args->acl); |
| posix_acl_release(args->default_acl); |
| fscrypt_free_filename(&args->fname); |
| } |
| |
| /* |
| * Inherit flags from the parent inode. |
| * |
| * Currently only the compression flags and the cow flags are inherited. |
| */ |
| static void btrfs_inherit_iflags(struct btrfs_inode *inode, struct btrfs_inode *dir) |
| { |
| unsigned int flags; |
| |
| flags = dir->flags; |
| |
| if (flags & BTRFS_INODE_NOCOMPRESS) { |
| inode->flags &= ~BTRFS_INODE_COMPRESS; |
| inode->flags |= BTRFS_INODE_NOCOMPRESS; |
| } else if (flags & BTRFS_INODE_COMPRESS) { |
| inode->flags &= ~BTRFS_INODE_NOCOMPRESS; |
| inode->flags |= BTRFS_INODE_COMPRESS; |
| } |
| |
| if (flags & BTRFS_INODE_NODATACOW) { |
| inode->flags |= BTRFS_INODE_NODATACOW; |
| if (S_ISREG(inode->vfs_inode.i_mode)) |
| inode->flags |= BTRFS_INODE_NODATASUM; |
| } |
| |
| btrfs_sync_inode_flags_to_i_flags(&inode->vfs_inode); |
| } |
| |
| int btrfs_create_new_inode(struct btrfs_trans_handle *trans, |
| struct btrfs_new_inode_args *args) |
| { |
| struct inode *dir = args->dir; |
| struct inode *inode = args->inode; |
| const struct fscrypt_str *name = args->orphan ? NULL : &args->fname.disk_name; |
| struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); |
| struct btrfs_root *root; |
| struct btrfs_inode_item *inode_item; |
| struct btrfs_key *location; |
| struct btrfs_path *path; |
| u64 objectid; |
| struct btrfs_inode_ref *ref; |
| struct btrfs_key key[2]; |
| u32 sizes[2]; |
| struct btrfs_item_batch batch; |
| unsigned long ptr; |
| int ret; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| if (!args->subvol) |
| BTRFS_I(inode)->root = btrfs_grab_root(BTRFS_I(dir)->root); |
| root = BTRFS_I(inode)->root; |
| |
| ret = btrfs_get_free_objectid(root, &objectid); |
| if (ret) |
| goto out; |
| inode->i_ino = objectid; |
| |
| if (args->orphan) { |
| /* |
| * O_TMPFILE, set link count to 0, so that after this point, we |
| * fill in an inode item with the correct link count. |
| */ |
| set_nlink(inode, 0); |
| } else { |
| trace_btrfs_inode_request(dir); |
| |
| ret = btrfs_set_inode_index(BTRFS_I(dir), &BTRFS_I(inode)->dir_index); |
| if (ret) |
| goto out; |
| } |
| /* index_cnt is ignored for everything but a dir. */ |
| BTRFS_I(inode)->index_cnt = BTRFS_DIR_START_INDEX; |
| BTRFS_I(inode)->generation = trans->transid; |
| inode->i_generation = BTRFS_I(inode)->generation; |
| |
| /* |
| * Subvolumes don't inherit flags from their parent directory. |
| * Originally this was probably by accident, but we probably can't |
| * change it now without compatibility issues. |
| */ |
| if (!args->subvol) |
| btrfs_inherit_iflags(BTRFS_I(inode), BTRFS_I(dir)); |
| |
| if (S_ISREG(inode->i_mode)) { |
| if (btrfs_test_opt(fs_info, NODATASUM)) |
| BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; |
| if (btrfs_test_opt(fs_info, NODATACOW)) |
| BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | |
| BTRFS_INODE_NODATASUM; |
| } |
| |
| location = &BTRFS_I(inode)->location; |
| location->objectid = objectid; |
| location->offset = 0; |
| location->type = BTRFS_INODE_ITEM_KEY; |
| |
| ret = btrfs_insert_inode_locked(inode); |
| if (ret < 0) { |
| if (!args->orphan) |
| BTRFS_I(dir)->index_cnt--; |
| goto out; |
| } |
| |
| /* |
| * We could have gotten an inode number from somebody who was fsynced |
| * and then removed in this same transaction, so let's just set full |
| * sync since it will be a full sync anyway and this will blow away the |
| * old info in the log. |
| */ |
| btrfs_set_inode_full_sync(BTRFS_I(inode)); |
| |
| key[0].objectid = objectid; |
| key[0].type = BTRFS_INODE_ITEM_KEY; |
| key[0].offset = 0; |
| |
| sizes[0] = sizeof(struct btrfs_inode_item); |
| |
| if (!args->orphan) { |
| /* |
| * Start new inodes with an inode_ref. This is slightly more |
| * efficient for small numbers of hard links since they will |
| * be packed into one item. Extended refs will kick in if we |
| * add more hard links than can fit in the ref item. |
| */ |
| key[1].objectid = objectid; |
| key[1].type = BTRFS_INODE_REF_KEY; |
| if (args->subvol) { |
| key[1].offset = objectid; |
| sizes[1] = 2 + sizeof(*ref); |
| } else { |
| key[1].offset = btrfs_ino(BTRFS_I(dir)); |
| sizes[1] = name->len + sizeof(*ref); |
| } |
| } |
| |
| batch.keys = &key[0]; |
| batch.data_sizes = &sizes[0]; |
| batch.total_data_size = sizes[0] + (args->orphan ? 0 : sizes[1]); |
| batch.nr = args->orphan ? 1 : 2; |
| ret = btrfs_insert_empty_items(trans, root, path, &batch); |
| if (ret != 0) { |
| btrfs_abort_transaction(trans, ret); |
| goto discard; |
| } |
| |
| inode->i_mtime = current_time(inode); |
| inode->i_atime = inode->i_mtime; |
| inode->i_ctime = inode->i_mtime; |
| BTRFS_I(inode)->i_otime = inode->i_mtime; |
| |
| /* |
| * We're going to fill the inode item now, so at this point the inode |
| * must be fully initialized. |
| */ |
| |
| inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], |
| struct btrfs_inode_item); |
| memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item, |
| sizeof(*inode_item)); |
| fill_inode_item(trans, path->nodes[0], inode_item, inode); |
| |
| if (!args->orphan) { |
| ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, |
| struct btrfs_inode_ref); |
| ptr = (unsigned long)(ref + 1); |
| if (args->subvol) { |
| btrfs_set_inode_ref_name_len(path->nodes[0], ref, 2); |
| btrfs_set_inode_ref_index(path->nodes[0], ref, 0); |
| write_extent_buffer(path->nodes[0], "..", ptr, 2); |
| } else { |
| btrfs_set_inode_ref_name_len(path->nodes[0], ref, |
| name->len); |
| btrfs_set_inode_ref_index(path->nodes[0], ref, |
| BTRFS_I(inode)->dir_index); |
| write_extent_buffer(path->nodes[0], name->name, ptr, |
| name->len); |
| } |
| } |
| |
| btrfs_mark_buffer_dirty(path->nodes[0]); |
| /* |
| * We don't need the path anymore, plus inheriting properties, adding |
| * ACLs, security xattrs, orphan item or adding the link, will result in |
| * allocating yet another path. So just free our path. |
| */ |
| btrfs_free_path(path); |
| path = NULL; |
| |
| if (args->subvol) { |
| struct inode *parent; |
| |
| /* |
| * Subvolumes inherit properties from their parent subvolume, |
| * not the directory they were created in. |
| */ |
| parent = btrfs_iget(fs_info->sb, BTRFS_FIRST_FREE_OBJECTID, |
| BTRFS_I(dir)->root); |
| if (IS_ERR(parent)) { |
| ret = PTR_ERR(parent); |
| } else { |
| ret = btrfs_inode_inherit_props(trans, inode, parent); |
| iput(parent); |
| } |
| } else { |
| ret = btrfs_inode_inherit_props(trans, inode, dir); |
| } |
| if (ret) { |
| btrfs_err(fs_info, |
| "error inheriting props for ino %llu (root %llu): %d", |
| btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, |
| ret); |
| } |
| |
| /* |
| * Subvolumes don't inherit ACLs or get passed to the LSM. This is |
| * probably a bug. |
| */ |
| if (!args->subvol) { |
| ret = btrfs_init_inode_security(trans, args); |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| goto discard; |
| } |
| } |
| |
| inode_tree_add(BTRFS_I(inode)); |
| |
| trace_btrfs_inode_new(inode); |
| btrfs_set_inode_last_trans(trans, BTRFS_I(inode)); |
| |
| btrfs_update_root_times(trans, root); |
| |
| if (args->orphan) { |
| ret = btrfs_orphan_add(trans, BTRFS_I(inode)); |
| } else { |
| ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name, |
| 0, BTRFS_I(inode)->dir_index); |
| } |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| goto discard; |
| } |
| |
| return 0; |
| |
| discard: |
| /* |
| * discard_new_inode() calls iput(), but the caller owns the reference |
| * to the inode. |
| */ |
| ihold(inode); |
| discard_new_inode(inode); |
| out: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| /* |
| * utility function to add 'inode' into 'parent_inode' with |
| * a give name and a given sequence number. |
| * if 'add_backref' is true, also insert a backref from the |
| * inode to the parent directory. |
| */ |
| int btrfs_add_link(struct btrfs_trans_handle *trans, |
| struct btrfs_inode *parent_inode, struct btrfs_inode *inode, |
| const struct fscrypt_str *name, int add_backref, u64 index) |
| { |
| int ret = 0; |
| struct btrfs_key key; |
| struct btrfs_root *root = parent_inode->root; |
| u64 ino = btrfs_ino(inode); |
| u64 parent_ino = btrfs_ino(parent_inode); |
| |
| if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { |
| memcpy(&key, &inode->root->root_key, sizeof(key)); |
| } else { |
| key.objectid = ino; |
| key.type = BTRFS_INODE_ITEM_KEY; |
| key.offset = 0; |
| } |
| |
| if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { |
| ret = btrfs_add_root_ref(trans, key.objectid, |
| root->root_key.objectid, parent_ino, |
| index, name); |
| } else if (add_backref) { |
| ret = btrfs_insert_inode_ref(trans, root, name, |
| ino, parent_ino, index); |
| } |
| |
| /* Nothing to clean up yet */ |
| if (ret) |
| return ret; |
| |
| ret = btrfs_insert_dir_item(trans, name, parent_inode, &key, |
| btrfs_inode_type(&inode->vfs_inode), index); |
| if (ret == -EEXIST || ret == -EOVERFLOW) |
| goto fail_dir_item; |
| else if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| return ret; |
| } |
| |
| btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size + |
| name->len * 2); |
| inode_inc_iversion(&parent_inode->vfs_inode); |
| /* |
| * If we are replaying a log tree, we do not want to update the mtime |
| * and ctime of the parent directory with the current time, since the |
| * log replay procedure is responsible for setting them to their correct |
| * values (the ones it had when the fsync was done). |
| */ |
| if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) { |
| struct timespec64 now = current_time(&parent_inode->vfs_inode); |
| |
| parent_inode->vfs_inode.i_mtime = now; |
| parent_inode->vfs_inode.i_ctime = now; |
| } |
| ret = btrfs_update_inode(trans, root, parent_inode); |
| if (ret) |
| btrfs_abort_transaction(trans, ret); |
| return ret; |
| |
| fail_dir_item: |
| if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { |
| u64 local_index; |
| int err; |
| err = btrfs_del_root_ref(trans, key.objectid, |
| root->root_key.objectid, parent_ino, |
| &local_index, name); |
| if (err) |
| btrfs_abort_transaction(trans, err); |
| } else if (add_backref) { |
| u64 local_index; |
| int err; |
| |
| err = btrfs_del_inode_ref(trans, root, name, ino, parent_ino, |
| &local_index); |
| if (err) |
| btrfs_abort_transaction(trans, err); |
| } |
| |
| /* Return the original error code */ |
| return ret; |
| } |
| |
| static int btrfs_create_common(struct inode *dir, struct dentry *dentry, |
| struct inode *inode) |
| { |
| struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); |
| struct btrfs_root *root = BTRFS_I(dir)->root; |
| struct btrfs_new_inode_args new_inode_args = { |
| .dir = dir, |
| .dentry = dentry, |
| .inode = inode, |
| }; |
| unsigned int trans_num_items; |
| struct btrfs_trans_handle *trans; |
| int err; |
| |
| err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); |
| if (err) |
| goto out_inode; |
| |
| trans = btrfs_start_transaction(root, trans_num_items); |
| if (IS_ERR(trans)) { |
| err = PTR_ERR(trans); |
| goto out_new_inode_args; |
| } |
| |
| err = btrfs_create_new_inode(trans, &new_inode_args); |
| if (!err) |
| d_instantiate_new(dentry, inode); |
| |
| btrfs_end_transaction(trans); |
| btrfs_btree_balance_dirty(fs_info); |
| out_new_inode_args: |
| btrfs_new_inode_args_destroy(&new_inode_args); |
| out_inode: |
| if (err) |
| iput(inode); |
| return err; |
| } |
| |
| static int btrfs_mknod(struct mnt_idmap *idmap, struct inode *dir, |
| struct dentry *dentry, umode_t mode, dev_t rdev) |
| { |
| struct inode *inode; |
| |
| inode = new_inode(dir->i_sb); |
| if (!inode) |
| return -ENOMEM; |
| inode_init_owner(idmap, inode, dir, mode); |
| inode->i_op = &btrfs_special_inode_operations; |
| init_special_inode(inode, inode->i_mode, rdev); |
| return btrfs_create_common(dir, dentry, inode); |
| } |
| |
| static int btrfs_create(struct mnt_idmap *idmap, struct inode *dir, |
| struct dentry *dentry, umode_t mode, bool excl) |
| { |
| struct inode *inode; |
| |
| inode = new_inode(dir->i_sb); |
| if (!inode) |
| return -ENOMEM; |
| inode_init_owner(idmap, inode, dir, mode); |
| inode->i_fop = &btrfs_file_operations; |
| inode->i_op = &btrfs_file_inode_operations; |
| inode->i_mapping->a_ops = &btrfs_aops; |
| return btrfs_create_common(dir, dentry, inode); |
| } |
| |
| static int btrfs_link(struct dentry *old_dentry, struct inode *dir, |
| struct dentry *dentry) |
| { |
| struct btrfs_trans_handle *trans = NULL; |
| struct btrfs_root *root = BTRFS_I(dir)->root; |
| struct inode *inode = d_inode(old_dentry); |
| struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
| struct fscrypt_name fname; |
| u64 index; |
| int err; |
| int drop_inode = 0; |
| |
| /* do not allow sys_link's with other subvols of the same device */ |
| if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid) |
| return -EXDEV; |
| |
| if (inode->i_nlink >= BTRFS_LINK_MAX) |
| return -EMLINK; |
| |
| err = fscrypt_setup_filename(dir, &dentry->d_name, 0, &fname); |
| if (err) |
| goto fail; |
| |
| err = btrfs_set_inode_index(BTRFS_I(dir), &index); |
| if (err) |
| goto fail; |
| |
| /* |
| * 2 items for inode and inode ref |
| * 2 items for dir items |
| * 1 item for parent inode |
| * 1 item for orphan item deletion if O_TMPFILE |
| */ |
| trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6); |
| if (IS_ERR(trans)) { |
| err = PTR_ERR(trans); |
| trans = NULL; |
| goto fail; |
| } |
| |
| /* There are several dir indexes for this inode, clear the cache. */ |
| BTRFS_I(inode)->dir_index = 0ULL; |
| inc_nlink(inode); |
| inode_inc_iversion(inode); |
| inode->i_ctime = current_time(inode); |
| ihold(inode); |
| set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); |
| |
| err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), |
| &fname.disk_name, 1, index); |
| |
| if (err) { |
| drop_inode = 1; |
| } else { |
| struct dentry *parent = dentry->d_parent; |
| |
| err = btrfs_update_inode(trans, root, BTRFS_I(inode)); |
| if (err) |
| goto fail; |
| if (inode->i_nlink == 1) { |
| /* |
| * If new hard link count is 1, it's a file created |
| * with open(2) O_TMPFILE flag. |
| */ |
| err = btrfs_orphan_del(trans, BTRFS_I(inode)); |
| if (err) |
| goto fail; |
| } |
| d_instantiate(dentry, inode); |
| btrfs_log_new_name(trans, old_dentry, NULL, 0, parent); |
| } |
| |
| fail: |
| fscrypt_free_filename(&fname); |
| if (trans) |
| btrfs_end_transaction(trans); |
| if (drop_inode) { |
| inode_dec_link_count(inode); |
| iput(inode); |
| } |
| btrfs_btree_balance_dirty(fs_info); |
| return err; |
| } |
| |
| static int btrfs_mkdir(struct mnt_idmap *idmap, struct inode *dir, |
| struct dentry *dentry, umode_t mode) |
| { |
| struct inode *inode; |
| |
| inode = new_inode(dir->i_sb); |
| if (!inode) |
| return -ENOMEM; |
| inode_init_owner(idmap, inode, dir, S_IFDIR | mode); |
| inode->i_op = &btrfs_dir_inode_operations; |
| inode->i_fop = &btrfs_dir_file_operations; |
| return btrfs_create_common(dir, dentry, inode); |
| } |
| |
| static noinline int uncompress_inline(struct btrfs_path *path, |
| struct page *page, |
| struct btrfs_file_extent_item *item) |
| { |
| int ret; |
| struct extent_buffer *leaf = path->nodes[0]; |
| char *tmp; |
| size_t max_size; |
| unsigned long inline_size; |
| unsigned long ptr; |
| int compress_type; |
| |
| compress_type = btrfs_file_extent_compression(leaf, item); |
| max_size = btrfs_file_extent_ram_bytes(leaf, item); |
| inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]); |
| tmp = kmalloc(inline_size, GFP_NOFS); |
| if (!tmp) |
| return -ENOMEM; |
| ptr = btrfs_file_extent_inline_start(item); |
| |
| read_extent_buffer(leaf, tmp, ptr, inline_size); |
| |
| max_size = min_t(unsigned long, PAGE_SIZE, max_size); |
| ret = btrfs_decompress(compress_type, tmp, page, 0, inline_size, max_size); |
| |
| /* |
| * decompression code contains a memset to fill in any space between the end |
| * of the uncompressed data and the end of max_size in case the decompressed |
| * data ends up shorter than ram_bytes. That doesn't cover the hole between |
| * the end of an inline extent and the beginning of the next block, so we |
| * cover that region here. |
| */ |
| |
| if (max_size < PAGE_SIZE) |
| memzero_page(page, max_size, PAGE_SIZE - max_size); |
| kfree(tmp); |
| return ret; |
| } |
| |
| static int read_inline_extent(struct btrfs_inode *inode, struct btrfs_path *path, |
| struct page *page) |
| { |
| struct btrfs_file_extent_item *fi; |
| void *kaddr; |
| size_t copy_size; |
| |
| if (!page || PageUptodate(page)) |
| return 0; |
| |
| ASSERT(page_offset(page) == 0); |
| |
| fi = btrfs_item_ptr(path->nodes[0], path->slots[0], |
| struct btrfs_file_extent_item); |
| if (btrfs_file_extent_compression(path->nodes[0], fi) != BTRFS_COMPRESS_NONE) |
| return uncompress_inline(path, page, fi); |
| |
| copy_size = min_t(u64, PAGE_SIZE, |
| btrfs_file_extent_ram_bytes(path->nodes[0], fi)); |
| kaddr = kmap_local_page(page); |
| read_extent_buffer(path->nodes[0], kaddr, |
| btrfs_file_extent_inline_start(fi), copy_size); |
| kunmap_local(kaddr); |
| if (copy_size < PAGE_SIZE) |
| memzero_page(page, copy_size, PAGE_SIZE - copy_size); |
| return 0; |
| } |
| |
| /* |
| * Lookup the first extent overlapping a range in a file. |
| * |
| * @inode: file to search in |
| * @page: page to read extent data into if the extent is inline |
| * @pg_offset: offset into @page to copy to |
| * @start: file offset |
| * @len: length of range starting at @start |
| * |
| * Return the first &struct extent_map which overlaps the given range, reading |
| * it from the B-tree and caching it if necessary. Note that there may be more |
| * extents which overlap the given range after the returned extent_map. |
| * |
| * If @page is not NULL and the extent is inline, this also reads the extent |
| * data directly into the page and marks the extent up to date in the io_tree. |
| * |
| * Return: ERR_PTR on error, non-NULL extent_map on success. |
| */ |
| struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, |
| struct page *page, size_t pg_offset, |
| u64 start, u64 len) |
| { |
| struct btrfs_fs_info *fs_info = inode->root->fs_info; |
| int ret = 0; |
| u64 extent_start = 0; |
| u64 extent_end = 0; |
| u64 objectid = btrfs_ino(inode); |
| int extent_type = -1; |
| struct btrfs_path *path = NULL; |
| struct btrfs_root *root = inode->root; |
| struct btrfs_file_extent_item *item; |
| struct extent_buffer *leaf; |
| struct btrfs_key found_key; |
| struct extent_map *em = NULL; |
| struct extent_map_tree *em_tree = &inode->extent_tree; |
| |
| read_lock(&em_tree->lock); |
| em = lookup_extent_mapping(em_tree, start, len); |
| read_unlock(&em_tree->lock); |
| |
| if (em) { |
| if (em->start > start || em->start + em->len <= start) |
| free_extent_map(em); |
| else if (em->block_start == EXTENT_MAP_INLINE && page) |
| free_extent_map(em); |
| else |
| goto out; |
| } |
| em = alloc_extent_map(); |
| if (!em) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| em->start = EXTENT_MAP_HOLE; |
| em->orig_start = EXTENT_MAP_HOLE; |
| em->len = (u64)-1; |
| em->block_len = (u64)-1; |
| |
| path = btrfs_alloc_path(); |
| if (!path) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| /* Chances are we'll be called again, so go ahead and do readahead */ |
| path->reada = READA_FORWARD; |
| |
| /* |
| * The same explanation in load_free_space_cache applies here as well, |
| * we only read when we're loading the free space cache, and at that |
| * point the commit_root has everything we need. |
| */ |
| if (btrfs_is_free_space_inode(inode)) { |
| path->search_commit_root = 1; |
| path->skip_locking = 1; |
| } |
| |
| ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0); |
| if (ret < 0) { |
| goto out; |
| } else if (ret > 0) { |
| if (path->slots[0] == 0) |
| goto not_found; |
| path->slots[0]--; |
| ret = 0; |
| } |
| |
| leaf = path->nodes[0]; |
| item = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_file_extent_item); |
| btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); |
| if (found_key.objectid != objectid || |
| found_key.type != BTRFS_EXTENT_DATA_KEY) { |
| /* |
| * If we backup past the first extent we want to move forward |
| * and see if there is an extent in front of us, otherwise we'll |
| * say there is a hole for our whole search range which can |
| * cause problems. |
| */ |
| extent_end = start; |
| goto next; |
| } |
| |
| extent_type = btrfs_file_extent_type(leaf, item); |
| extent_start = found_key.offset; |
| extent_end = btrfs_file_extent_end(path); |
| if (extent_type == BTRFS_FILE_EXTENT_REG || |
| extent_type == BTRFS_FILE_EXTENT_PREALLOC) { |
| /* Only regular file could have regular/prealloc extent */ |
| if (!S_ISREG(inode->vfs_inode.i_mode)) { |
| ret = -EUCLEAN; |
| btrfs_crit(fs_info, |
| "regular/prealloc extent found for non-regular inode %llu", |
| btrfs_ino(inode)); |
| goto out; |
| } |
| trace_btrfs_get_extent_show_fi_regular(inode, leaf, item, |
| extent_start); |
| } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { |
| trace_btrfs_get_extent_show_fi_inline(inode, leaf, item, |
| path->slots[0], |
| extent_start); |
| } |
| next: |
| if (start >= extent_end) { |
| path->slots[0]++; |
| if (path->slots[0] >= btrfs_header_nritems(leaf)) { |
| ret = btrfs_next_leaf(root, path); |
| if (ret < 0) |
| goto out; |
| else if (ret > 0) |
| goto not_found; |
| |
| leaf = path->nodes[0]; |
| } |
| btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); |
| if (found_key.objectid != objectid || |
| found_key.type != BTRFS_EXTENT_DATA_KEY) |
| goto not_found; |
| if (start + len <= found_key.offset) |
| goto not_found; |
| if (start > found_key.offset) |
| goto next; |
| |
| /* New extent overlaps with existing one */ |
| em->start = start; |
| em->orig_start = start; |
| em->len = found_key.offset - start; |
| em->block_start = EXTENT_MAP_HOLE; |
| goto insert; |
| } |
| |
| btrfs_extent_item_to_extent_map(inode, path, item, em); |
| |
| if (extent_type == BTRFS_FILE_EXTENT_REG || |
| extent_type == BTRFS_FILE_EXTENT_PREALLOC) { |
| goto insert; |
| } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { |
| /* |
| * Inline extent can only exist at file offset 0. This is |
| * ensured by tree-checker and inline extent creation path. |
| * Thus all members representing file offsets should be zero. |
| */ |
| ASSERT(pg_offset == 0); |
| ASSERT(extent_start == 0); |
| ASSERT(em->start == 0); |
| |
| /* |
| * btrfs_extent_item_to_extent_map() should have properly |
| * initialized em members already. |
| * |
| * Other members are not utilized for inline extents. |
| */ |
| ASSERT(em->block_start == EXTENT_MAP_INLINE); |
| ASSERT(em->len == fs_info->sectorsize); |
| |
| ret = read_inline_extent(inode, path, page); |
| if (ret < 0) |
| goto out; |
| goto insert; |
| } |
| not_found: |
| em->start = start; |
| em->orig_start = start; |
| em->len = len; |
| em->block_start = EXTENT_MAP_HOLE; |
| insert: |
| ret = 0; |
| btrfs_release_path(path); |
| if (em->start > start || extent_map_end(em) <= start) { |
| btrfs_err(fs_info, |
| "bad extent! em: [%llu %llu] passed [%llu %llu]", |
| em->start, em->len, start, len); |
| ret = -EIO; |
| goto out; |
| } |
| |
| write_lock(&em_tree->lock); |
| ret = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len); |
| write_unlock(&em_tree->lock); |
| out: |
| btrfs_free_path(path); |
| |
| trace_btrfs_get_extent(root, inode, em); |
| |
| if (ret) { |
| free_extent_map(em); |
| return ERR_PTR(ret); |
| } |
| return em; |
| } |
| |
| static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode, |
| const u64 start, |
| const u64 len, |
| const u64 orig_start, |
| const u64 block_start, |
| const u64 block_len, |
| const u64 orig_block_len, |
| const u64 ram_bytes, |
| const int type) |
| { |
| struct extent_map *em = NULL; |
| int ret; |
| |
| if (type != BTRFS_ORDERED_NOCOW) { |
| em = create_io_em(inode, start, len, orig_start, block_start, |
| block_len, orig_block_len, ram_bytes, |
| BTRFS_COMPRESS_NONE, /* compress_type */ |
| type); |
| if (IS_ERR(em)) |
| goto out; |
| } |
| ret = btrfs_add_ordered_extent(inode, start, len, len, block_start, |
| block_len, 0, |
| (1 << type) | |
| (1 << BTRFS_ORDERED_DIRECT), |
| BTRFS_COMPRESS_NONE); |
| if (ret) { |
| if (em) { |
| free_extent_map(em); |
| btrfs_drop_extent_map_range(inode, start, |
| start + len - 1, false); |
| } |
| em = ERR_PTR(ret); |
| } |
| out: |
| |
| return em; |
| } |
| |
| static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode, |
| u64 start, u64 len) |
| { |
| struct btrfs_root *root = inode->root; |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct extent_map *em; |
| struct btrfs_key ins; |
| u64 alloc_hint; |
| int ret; |
| |
| alloc_hint = get_extent_allocation_hint(inode, start, len); |
| ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize, |
| 0, alloc_hint, &ins, 1, 1); |
| if (ret) |
| return ERR_PTR(ret); |
| |
| em = btrfs_create_dio_extent(inode, start, ins.offset, start, |
| ins.objectid, ins.offset, ins.offset, |
| ins.offset, BTRFS_ORDERED_REGULAR); |
| btrfs_dec_block_group_reservations(fs_info, ins.objectid); |
| if (IS_ERR(em)) |
| btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, |
| 1); |
| |
| return em; |
| } |
| |
| static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr) |
| { |
| struct btrfs_block_group *block_group; |
| bool readonly = false; |
| |
| block_group = btrfs_lookup_block_group(fs_info, bytenr); |
| if (!block_group || block_group->ro) |
| readonly = true; |
| if (block_group) |
| btrfs_put_block_group(block_group); |
| return readonly; |
| } |
| |
| /* |
| * Check if we can do nocow write into the range [@offset, @offset + @len) |
| * |
| * @offset: File offset |
| * @len: The length to write, will be updated to the nocow writeable |
| * range |
| * @orig_start: (optional) Return the original file offset of the file extent |
| * @orig_len: (optional) Return the original on-disk length of the file extent |
| * @ram_bytes: (optional) Return the ram_bytes of the file extent |
| * @strict: if true, omit optimizations that might force us into unnecessary |
| * cow. e.g., don't trust generation number. |
| * |
| * Return: |
| * >0 and update @len if we can do nocow write |
| * 0 if we can't do nocow write |
| * <0 if error happened |
| * |
| * NOTE: This only checks the file extents, caller is responsible to wait for |
| * any ordered extents. |
| */ |
| noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, |
| u64 *orig_start, u64 *orig_block_len, |
| u64 *ram_bytes, bool nowait, bool strict) |
| { |
| struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
| struct can_nocow_file_extent_args nocow_args = { 0 }; |
| struct btrfs_path *path; |
| int ret; |
| struct extent_buffer *leaf; |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; |
| struct btrfs_file_extent_item *fi; |
| struct btrfs_key key; |
| int found_type; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| path->nowait = nowait; |
| |
| ret = btrfs_lookup_file_extent(NULL, root, path, |
| btrfs_ino(BTRFS_I(inode)), offset, 0); |
| if (ret < 0) |
| goto out; |
| |
| if (ret == 1) { |
| if (path->slots[0] == 0) { |
| /* can't find the item, must cow */ |
| ret = 0; |
| goto out; |
| } |
| path->slots[0]--; |
| } |
| ret = 0; |
| leaf = path->nodes[0]; |
| btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); |
| if (key.objectid != btrfs_ino(BTRFS_I(inode)) || |
| key.type != BTRFS_EXTENT_DATA_KEY) { |
| /* not our file or wrong item type, must cow */ |
| goto out; |
| } |
| |
| if (key.offset > offset) { |
| /* Wrong offset, must cow */ |
| goto out; |
| } |
| |
| if (btrfs_file_extent_end(path) <= offset) |
| goto out; |
| |
| fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); |
| found_type = btrfs_file_extent_type(leaf, fi); |
| if (ram_bytes) |
| *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); |
| |
| nocow_args.start = offset; |
| nocow_args.end = offset + *len - 1; |
| nocow_args.strict = strict; |
| nocow_args.free_path = true; |
| |
| ret = can_nocow_file_extent(path, &key, BTRFS_I(inode), &nocow_args); |
| /* can_nocow_file_extent() has freed the path. */ |
| path = NULL; |
| |
| if (ret != 1) { |
| /* Treat errors as not being able to NOCOW. */ |
| ret = 0; |
| goto out; |
| } |
| |
| ret = 0; |
| if (btrfs_extent_readonly(fs_info, nocow_args.disk_bytenr)) |
| goto out; |
| |
| if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && |
| found_type == BTRFS_FILE_EXTENT_PREALLOC) { |
| u64 range_end; |
| |
| range_end = round_up(offset + nocow_args.num_bytes, |
| root->fs_info->sectorsize) - 1; |
| ret = test_range_bit(io_tree, offset, range_end, |
| EXTENT_DELALLOC, 0, NULL); |
| if (ret) { |
| ret = -EAGAIN; |
| goto out; |
| } |
| } |
| |
| if (orig_start) |
| *orig_start = key.offset - nocow_args.extent_offset; |
| if (orig_block_len) |
| *orig_block_len = nocow_args.disk_num_bytes; |
| |
| *len = nocow_args.num_bytes; |
| ret = 1; |
| out: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend, |
| struct extent_state **cached_state, |
| unsigned int iomap_flags) |
| { |
| const bool writing = (iomap_flags & IOMAP_WRITE); |
| const bool nowait = (iomap_flags & IOMAP_NOWAIT); |
| struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; |
| struct btrfs_ordered_extent *ordered; |
| int ret = 0; |
| |
| while (1) { |
| if (nowait) { |
| if (!try_lock_extent(io_tree, lockstart, lockend, |
| cached_state)) |
| return -EAGAIN; |
| } else { |
| lock_extent(io_tree, lockstart, lockend, cached_state); |
| } |
| /* |
| * We're concerned with the entire range that we're going to be |
| * doing DIO to, so we need to make sure there's no ordered |
| * extents in this range. |
| */ |
| ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart, |
| lockend - lockstart + 1); |
| |
| /* |
| * We need to make sure there are no buffered pages in this |
| * range either, we could have raced between the invalidate in |
| * generic_file_direct_write and locking the extent. The |
| * invalidate needs to happen so that reads after a write do not |
| * get stale data. |
| */ |
| if (!ordered && |
| (!writing || !filemap_range_has_page(inode->i_mapping, |
| lockstart, lockend))) |
| break; |
| |
| unlock_extent(io_tree, lockstart, lockend, cached_state); |
| |
| if (ordered) { |
| if (nowait) { |
| btrfs_put_ordered_extent(ordered); |
| ret = -EAGAIN; |
| break; |
| } |
| /* |
| * If we are doing a DIO read and the ordered extent we |
| * found is for a buffered write, we can not wait for it |
| * to complete and retry, because if we do so we can |
| * deadlock with concurrent buffered writes on page |
| * locks. This happens only if our DIO read covers more |
| * than one extent map, if at this point has already |
| * created an ordered extent for a previous extent map |
| * and locked its range in the inode's io tree, and a |
| * concurrent write against that previous extent map's |
| * range and this range started (we unlock the ranges |
| * in the io tree only when the bios complete and |
| * buffered writes always lock pages before attempting |
| * to lock range in the io tree). |
| */ |
| if (writing || |
| test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) |
| btrfs_start_ordered_extent(ordered); |
| else |
| ret = nowait ? -EAGAIN : -ENOTBLK; |
| btrfs_put_ordered_extent(ordered); |
| } else { |
| /* |
| * We could trigger writeback for this range (and wait |
| * for it to complete) and then invalidate the pages for |
| * this range (through invalidate_inode_pages2_range()), |
| * but that can lead us to a deadlock with a concurrent |
| * call to readahead (a buffered read or a defrag call |
| * triggered a readahead) on a page lock due to an |
| * ordered dio extent we created before but did not have |
| * yet a corresponding bio submitted (whence it can not |
| * complete), which makes readahead wait for that |
| * ordered extent to complete while holding a lock on |
| * that page. |
| */ |
| ret = nowait ? -EAGAIN : -ENOTBLK; |
| } |
| |
| if (ret) |
| break; |
| |
| cond_resched(); |
| } |
| |
| return ret; |
| } |
| |
| /* The callers of this must take lock_extent() */ |
| static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start, |
| u64 len, u64 orig_start, u64 block_start, |
| u64 block_len, u64 orig_block_len, |
| u64 ram_bytes, int compress_type, |
| int type) |
| { |
| struct extent_map *em; |
| int ret; |
| |
| ASSERT(type == BTRFS_ORDERED_PREALLOC || |
| type == BTRFS_ORDERED_COMPRESSED || |
| type == BTRFS_ORDERED_NOCOW || |
| type == BTRFS_ORDERED_REGULAR); |
| |
| em = alloc_extent_map(); |
| if (!em) |
| return ERR_PTR(-ENOMEM); |
| |
| em->start = start; |
| em->orig_start = orig_start; |
| em->len = len; |
| em->block_len = block_len; |
| em->block_start = block_start; |
| em->orig_block_len = orig_block_len; |
| em->ram_bytes = ram_bytes; |
| em->generation = -1; |
| set_bit(EXTENT_FLAG_PINNED, &em->flags); |
| if (type == BTRFS_ORDERED_PREALLOC) { |
| set_bit(EXTENT_FLAG_FILLING, &em->flags); |
| } else if (type == BTRFS_ORDERED_COMPRESSED) { |
| set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); |
| em->compress_type = compress_type; |
| } |
| |
| ret = btrfs_replace_extent_map_range(inode, em, true); |
| if (ret) { |
| free_extent_map(em); |
| return ERR_PTR(ret); |
| } |
| |
| /* em got 2 refs now, callers needs to do free_extent_map once. */ |
| return em; |
| } |
| |
| |
| static int btrfs_get_blocks_direct_write(struct extent_map **map, |
| struct inode *inode, |
| struct btrfs_dio_data *dio_data, |
| u64 start, u64 len, |
| unsigned int iomap_flags) |
| { |
| const bool nowait = (iomap_flags & IOMAP_NOWAIT); |
| struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
| struct extent_map *em = *map; |
| int type; |
| u64 block_start, orig_start, orig_block_len, ram_bytes; |
| struct btrfs_block_group *bg; |
| bool can_nocow = false; |
| bool space_reserved = false; |
| u64 prev_len; |
| int ret = 0; |
| |
| /* |
| * We don't allocate a new extent in the following cases |
| * |
| * 1) The inode is marked as NODATACOW. In this case we'll just use the |
| * existing extent. |
| * 2) The extent is marked as PREALLOC. We're good to go here and can |
| * just use the extent. |
| * |
| */ |
| if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || |
| ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && |
| em->block_start != EXTENT_MAP_HOLE)) { |
| if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) |
| type = BTRFS_ORDERED_PREALLOC; |
| else |
| type = BTRFS_ORDERED_NOCOW; |
| len = min(len, em->len - (start - em->start)); |
| block_start = em->block_start + (start - em->start); |
| |
| if (can_nocow_extent(inode, start, &len, &orig_start, |
| &orig_block_len, &ram_bytes, false, false) == 1) { |
| bg = btrfs_inc_nocow_writers(fs_info, block_start); |
| if (bg) |
| can_nocow = true; |
| } |
| } |
| |
| prev_len = len; |
| if (can_nocow) { |
| struct extent_map *em2; |
| |
| /* We can NOCOW, so only need to reserve metadata space. */ |
| ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len, |
| nowait); |
| if (ret < 0) { |
| /* Our caller expects us to free the input extent map. */ |
| free_extent_map(em); |
| *map = NULL; |
| btrfs_dec_nocow_writers(bg); |
| if (nowait && (ret == -ENOSPC || ret == -EDQUOT)) |
| ret = -EAGAIN; |
| goto out; |
| } |
| space_reserved = true; |
| |
| em2 = btrfs_create_dio_extent(BTRFS_I(inode), start, len, |
| orig_start, block_start, |
| len, orig_block_len, |
| ram_bytes, type); |
| btrfs_dec_nocow_writers(bg); |
| if (type == BTRFS_ORDERED_PREALLOC) { |
| free_extent_map(em); |
| *map = em2; |
| em = em2; |
| } |
| |
| if (IS_ERR(em2)) { |
| ret = PTR_ERR(em2); |
| goto out; |
| } |
| |
| dio_data->nocow_done = true; |
| } else { |
| /* Our caller expects us to free the input extent map. */ |
| free_extent_map(em); |
| *map = NULL; |
| |
| if (nowait) |
| return -EAGAIN; |
| |
| /* |
| * If we could not allocate data space before locking the file |
| * range and we can't do a NOCOW write, then we have to fail. |
| */ |
| if (!dio_data->data_space_reserved) |
| return -ENOSPC; |
| |
| /* |
| * We have to COW and we have already reserved data space before, |
| * so now we reserve only metadata. |
| */ |
| ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len, |
| false); |
| if (ret < 0) |
| goto out; |
| space_reserved = true; |
| |
| em = btrfs_new_extent_direct(BTRFS_I(inode), start, len); |
| if (IS_ERR(em)) { |
| ret = PTR_ERR(em); |
| goto out; |
| } |
| *map = em; |
| len = min(len, em->len - (start - em->start)); |
| if (len < prev_len) |
| btrfs_delalloc_release_metadata(BTRFS_I(inode), |
| prev_len - len, true); |
| } |
| |
| /* |
| * We have created our ordered extent, so we can now release our reservation |
| * for an outstanding extent. |
| */ |
| btrfs_delalloc_release_extents(BTRFS_I(inode), prev_len); |
| |
| /* |
| * Need to update the i_size under the extent lock so buffered |
| * readers will get the updated i_size when we unlock. |
| */ |
| if (start + len > i_size_read(inode)) |
| i_size_write(inode, start + len); |
| out: |
| if (ret && space_reserved) { |
| btrfs_delalloc_release_extents(BTRFS_I(inode), len); |
| btrfs_delalloc_release_metadata(BTRFS_I(inode), len, true); |
| } |
| return ret; |
| } |
| |
| static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start, |
| loff_t length, unsigned int flags, struct iomap *iomap, |
| struct iomap *srcmap) |
| { |
| struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap); |
| struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
| struct extent_map *em; |
| struct extent_state *cached_state = NULL; |
| struct btrfs_dio_data *dio_data = iter->private; |
| u64 lockstart, lockend; |
| const bool write = !!(flags & IOMAP_WRITE); |
| int ret = 0; |
| u64 len = length; |
| const u64 data_alloc_len = length; |
| bool unlock_extents = false; |
| |
| /* |
| * We could potentially fault if we have a buffer > PAGE_SIZE, and if |
| * we're NOWAIT we may submit a bio for a partial range and return |
| * EIOCBQUEUED, which would result in an errant short read. |
| * |
| * The best way to handle this would be to allow for partial completions |
| * of iocb's, so we could submit the partial bio, return and fault in |
| * the rest of the pages, and then submit the io for the rest of the |
| * range. However we don't have that currently, so simply return |
| * -EAGAIN at this point so that the normal path is used. |
| */ |
| if (!write && (flags & IOMAP_NOWAIT) && length > PAGE_SIZE) |
| return -EAGAIN; |
| |
| /* |
| * Cap the size of reads to that usually seen in buffered I/O as we need |
| * to allocate a contiguous array for the checksums. |
| */ |
| if (!write) |
| len = min_t(u64, len, fs_info->sectorsize * BTRFS_MAX_BIO_SECTORS); |
| |
| lockstart = start; |
| lockend = start + len - 1; |
| |
| /* |
| * iomap_dio_rw() only does filemap_write_and_wait_range(), which isn't |
| * enough if we've written compressed pages to this area, so we need to |
| * flush the dirty pages again to make absolutely sure that any |
| * outstanding dirty pages are on disk - the first flush only starts |
| * compression on the data, while keeping the pages locked, so by the |
| * time the second flush returns we know bios for the compressed pages |
| * were submitted and finished, and the pages no longer under writeback. |
| * |
| * If we have a NOWAIT request and we have any pages in the range that |
| * are locked, likely due to compression still in progress, we don't want |
| * to block on page locks. We also don't want to block on pages marked as |
| * dirty or under writeback (same as for the non-compression case). |
| * iomap_dio_rw() did the same check, but after that and before we got |
| * here, mmap'ed writes may have happened or buffered reads started |
| * (readpage() and readahead(), which lock pages), as we haven't locked |
| * the file range yet. |
| */ |
| if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, |
| &BTRFS_I(inode)->runtime_flags)) { |
| if (flags & IOMAP_NOWAIT) { |
| if (filemap_range_needs_writeback(inode->i_mapping, |
| lockstart, lockend)) |
| return -EAGAIN; |
| } else { |
| ret = filemap_fdatawrite_range(inode->i_mapping, start, |
| start + length - 1); |
| if (ret) |
| return ret; |
| } |
| } |
| |
| memset(dio_data, 0, sizeof(*dio_data)); |
| |
| /* |
| * We always try to allocate data space and must do it before locking |
| * the file range, to avoid deadlocks with concurrent writes to the same |
| * range if the range has several extents and the writes don't expand the |
| * current i_size (the inode lock is taken in shared mode). If we fail to |
| * allocate data space here we continue and later, after locking the |
| * file range, we fail with ENOSPC only if we figure out we can not do a |
| * NOCOW write. |
| */ |
| if (write && !(flags & IOMAP_NOWAIT)) { |
| ret = btrfs_check_data_free_space(BTRFS_I(inode), |
| &dio_data->data_reserved, |
| start, data_alloc_len, false); |
| if (!ret) |
| dio_data->data_space_reserved = true; |
| else if (ret && !(BTRFS_I(inode)->flags & |
| (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC))) |
| goto err; |
| } |
| |
| /* |
| * If this errors out it's because we couldn't invalidate pagecache for |
| * this range and we need to fallback to buffered IO, or we are doing a |
| * NOWAIT read/write and we need to block. |
| */ |
| ret = lock_extent_direct(inode, lockstart, lockend, &cached_state, flags); |
| if (ret < 0) |
| goto err; |
| |
| em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len); |
| if (IS_ERR(em)) { |
| ret = PTR_ERR(em); |
| goto unlock_err; |
| } |
| |
| /* |
| * Ok for INLINE and COMPRESSED extents we need to fallback on buffered |
| * io. INLINE is special, and we could probably kludge it in here, but |
| * it's still buffered so for safety lets just fall back to the generic |
| * buffered path. |
| * |
| * For COMPRESSED we _have_ to read the entire extent in so we can |
| * decompress it, so there will be buffering required no matter what we |
| * do, so go ahead and fallback to buffered. |
| * |
| * We return -ENOTBLK because that's what makes DIO go ahead and go back |
| * to buffered IO. Don't blame me, this is the price we pay for using |
| * the generic code. |
| */ |
| if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || |
| em->block_start == EXTENT_MAP_INLINE) { |
| free_extent_map(em); |
| /* |
| * If we are in a NOWAIT context, return -EAGAIN in order to |
| * fallback to buffered IO. This is not only because we can |
| * block with buffered IO (no support for NOWAIT semantics at |
| * the moment) but also to avoid returning short reads to user |
| * space - this happens if we were able to read some data from |
| * previous non-compressed extents and then when we fallback to |
| * buffered IO, at btrfs_file_read_iter() by calling |
| * filemap_read(), we fail to fault in pages for the read buffer, |
| * in which case filemap_read() returns a short read (the number |
| * of bytes previously read is > 0, so it does not return -EFAULT). |
| */ |
| ret = (flags & IOMAP_NOWAIT) ? -EAGAIN : -ENOTBLK; |
| goto unlock_err; |
| } |
| |
| len = min(len, em->len - (start - em->start)); |
| |
| /* |
| * If we have a NOWAIT request and the range contains multiple extents |
| * (or a mix of extents and holes), then we return -EAGAIN to make the |
| * caller fallback to a context where it can do a blocking (without |
| * NOWAIT) request. This way we avoid doing partial IO and returning |
| * success to the caller, which is not optimal for writes and for reads |
| * it can result in unexpected behaviour for an application. |
| * |
| * When doing a read, because we use IOMAP_DIO_PARTIAL when calling |
| * iomap_dio_rw(), we can end up returning less data then what the caller |
| * asked for, resulting in an unexpected, and incorrect, short read. |
| * That is, the caller asked to read N bytes and we return less than that, |
| * which is wrong unless we are crossing EOF. This happens if we get a |
| * page fault error when trying to fault in pages for the buffer that is |
| * associated to the struct iov_iter passed to iomap_dio_rw(), and we |
| * have previously submitted bios for other extents in the range, in |
| * which case iomap_dio_rw() may return us EIOCBQUEUED if not all of |
| * those bios have completed by the time we get the page fault error, |
| * which we return back to our caller - we should only return EIOCBQUEUED |
| * after we have submitted bios for all the extents in the range. |
| */ |
| if ((flags & IOMAP_NOWAIT) && len < length) { |
| free_extent_map(em); |
| ret = -EAGAIN; |
| goto unlock_err; |
| } |
| |
| if (write) { |
| ret = btrfs_get_blocks_direct_write(&em, inode, dio_data, |
| start, len, flags); |
| if (ret < 0) |
| goto unlock_err; |
| unlock_extents = true; |
| /* Recalc len in case the new em is smaller than requested */ |
| len = min(len, em->len - (start - em->start)); |
| if (dio_data->data_space_reserved) { |
| u64 release_offset; |
| u64 release_len = 0; |
| |
| if (dio_data->nocow_done) { |
| release_offset = start; |
| release_len = data_alloc_len; |
| } else if (len < data_alloc_len) { |
| release_offset = start + len; |
| release_len = data_alloc_len - len; |
| } |
| |
| if (release_len > 0) |
| btrfs_free_reserved_data_space(BTRFS_I(inode), |
| dio_data->data_reserved, |
| release_offset, |
| release_len); |
| } |
| } else { |
| /* |
| * We need to unlock only the end area that we aren't using. |
| * The rest is going to be unlocked by the endio routine. |
| */ |
| lockstart = start + len; |
| if (lockstart < lockend) |
| unlock_extents = true; |
| } |
| |
| if (unlock_extents) |
| unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, |
| &cached_state); |
| else |
| free_extent_state(cached_state); |
| |
| /* |
| * Translate extent map information to iomap. |
| * We trim the extents (and move the addr) even though iomap code does |
| * that, since we have locked only the parts we are performing I/O in. |
| */ |
| if ((em->block_start == EXTENT_MAP_HOLE) || |
| (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && !write)) { |
| iomap->addr = IOMAP_NULL_ADDR; |
| iomap->type = IOMAP_HOLE; |
| } else { |
| iomap->addr = em->block_start + (start - em->start); |
| iomap->type = IOMAP_MAPPED; |
| } |
| iomap->offset = start; |
| iomap->bdev = fs_info->fs_devices->latest_dev->bdev; |
| iomap->length = len; |
| free_extent_map(em); |
| |
| return 0; |
| |
| unlock_err: |
| unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, |
| &cached_state); |
| err: |
| if (dio_data->data_space_reserved) { |
| btrfs_free_reserved_data_space(BTRFS_I(inode), |
| dio_data->data_reserved, |
| start, data_alloc_len); |
| extent_changeset_free(dio_data->data_reserved); |
| } |
| |
| return ret; |
| } |
| |
| static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length, |
| ssize_t written, unsigned int flags, struct iomap *iomap) |
| { |
| struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap); |
| struct btrfs_dio_data *dio_data = iter->private; |
| size_t submitted = dio_data->submitted; |
| const bool write = !!(flags & IOMAP_WRITE); |
| int ret = 0; |
| |
| if (!write && (iomap->type == IOMAP_HOLE)) { |
| /* If reading from a hole, unlock and return */ |
| unlock_extent(&BTRFS_I(inode)->io_tree, pos, pos + length - 1, |
| NULL); |
| return 0; |
| } |
| |
| if (submitted < length) { |
| pos += submitted; |
| length -= submitted; |
| if (write) |
| btrfs_mark_ordered_io_finished(BTRFS_I(inode), NULL, |
| pos, length, false); |
| else |
| unlock_extent(&BTRFS_I(inode)->io_tree, pos, |
| pos + length - 1, NULL); |
| ret = -ENOTBLK; |
| } |
| |
| if (write) |
| extent_changeset_free(dio_data->data_reserved); |
| return ret; |
| } |
| |
| static void btrfs_dio_end_io(struct btrfs_bio *bbio) |
| { |
| struct btrfs_dio_private *dip = |
| container_of(bbio, struct btrfs_dio_private, bbio); |
| struct btrfs_inode *inode = bbio->inode; |
| struct bio *bio = &bbio->bio; |
| |
| if (bio->bi_status) { |
| btrfs_warn(inode->root->fs_info, |
| "direct IO failed ino %llu op 0x%0x offset %#llx len %u err no %d", |
| btrfs_ino(inode), bio->bi_opf, |
| dip->file_offset, dip->bytes, bio->bi_status); |
| } |
| |
| if (btrfs_op(bio) == BTRFS_MAP_WRITE) |
| btrfs_mark_ordered_io_finished(inode, NULL, dip->file_offset, |
| dip->bytes, !bio->bi_status); |
| else |
| unlock_extent(&inode->io_tree, dip->file_offset, |
| dip->file_offset + dip->bytes - 1, NULL); |
| |
| bbio->bio.bi_private = bbio->private; |
| iomap_dio_bio_end_io(bio); |
| } |
| |
| static void btrfs_dio_submit_io(const struct iomap_iter *iter, struct bio *bio, |
| loff_t file_offset) |
| { |
| struct btrfs_bio *bbio = btrfs_bio(bio); |
| struct btrfs_dio_private *dip = |
| container_of(bbio, struct btrfs_dio_private, bbio); |
| struct btrfs_dio_data *dio_data = iter->private; |
| |
| btrfs_bio_init(bbio, BTRFS_I(iter->inode), btrfs_dio_end_io, bio->bi_private); |
| bbio->file_offset = file_offset; |
| |
| dip->file_offset = file_offset; |
| dip->bytes = bio->bi_iter.bi_size; |
| |
| dio_data->submitted += bio->bi_iter.bi_size; |
| btrfs_submit_bio(bio, 0); |
| } |
| |
| static const struct iomap_ops btrfs_dio_iomap_ops = { |
| .iomap_begin = btrfs_dio_iomap_begin, |
| .iomap_end = btrfs_dio_iomap_end, |
| }; |
| |
| static const struct iomap_dio_ops btrfs_dio_ops = { |
| .submit_io = btrfs_dio_submit_io, |
| .bio_set = &btrfs_dio_bioset, |
| }; |
| |
| ssize_t btrfs_dio_read(struct kiocb *iocb, struct iov_iter *iter, size_t done_before) |
| { |
| struct btrfs_dio_data data; |
| |
| return iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops, |
| IOMAP_DIO_PARTIAL, &data, done_before); |
| } |
| |
| struct iomap_dio *btrfs_dio_write(struct kiocb *iocb, struct iov_iter *iter, |
| size_t done_before) |
| { |
| struct btrfs_dio_data data; |
| |
| return __iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops, |
| IOMAP_DIO_PARTIAL, &data, done_before); |
| } |
| |
| static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, |
| u64 start, u64 len) |
| { |
| int ret; |
| |
| ret = fiemap_prep(inode, fieinfo, start, &len, 0); |
| if (ret) |
| return ret; |
| |
| /* |
| * fiemap_prep() called filemap_write_and_wait() for the whole possible |
| * file range (0 to LLONG_MAX), but that is not enough if we have |
| * compression enabled. The first filemap_fdatawrite_range() only kicks |
| * in the compression of data (in an async thread) and will return |
| * before the compression is done and writeback is started. A second |
| * filemap_fdatawrite_range() is needed to wait for the compression to |
| * complete and writeback to start. We also need to wait for ordered |
| * extents to complete, because our fiemap implementation uses mainly |
| * file extent items to list the extents, searching for extent maps |
| * only for file ranges with holes or prealloc extents to figure out |
| * if we have delalloc in those ranges. |
| */ |
| if (fieinfo->fi_flags & FIEMAP_FLAG_SYNC) { |
| ret = btrfs_wait_ordered_range(inode, 0, LLONG_MAX); |
| if (ret) |
| return ret; |
| } |
| |
| return extent_fiemap(BTRFS_I(inode), fieinfo, start, len); |
| } |
| |
| static int btrfs_writepages(struct address_space *mapping, |
| struct writeback_control *wbc) |
| { |
| return extent_writepages(mapping, wbc); |
| } |
| |
| static void btrfs_readahead(struct readahead_control *rac) |
| { |
| extent_readahead(rac); |
| } |
| |
| /* |
| * For release_folio() and invalidate_folio() we have a race window where |
| * folio_end_writeback() is called but the subpage spinlock is not yet released. |
| * If we continue to release/invalidate the page, we could cause use-after-free |
| * for subpage spinlock. So this function is to spin and wait for subpage |
| * spinlock. |
| */ |
| static void wait_subpage_spinlock(struct page *page) |
| { |
| struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); |
| struct btrfs_subpage *subpage; |
| |
| if (!btrfs_is_subpage(fs_info, page)) |
| return; |
| |
| ASSERT(PagePrivate(page) && page->private); |
| subpage = (struct btrfs_subpage *)page->private; |
| |
| /* |
| * This may look insane as we just acquire the spinlock and release it, |
| * without doing anything. But we just want to make sure no one is |
| * still holding the subpage spinlock. |
| * And since the page is not dirty nor writeback, and we have page |
| * locked, the only possible way to hold a spinlock is from the endio |
| * function to clear page writeback. |
| * |
| * Here we just acquire the spinlock so that all existing callers |
| * should exit and we're safe to release/invalidate the page. |
| */ |
| spin_lock_irq(&subpage->lock); |
| spin_unlock_irq(&subpage->lock); |
| } |
| |
| static bool __btrfs_release_folio(struct folio *folio, gfp_t gfp_flags) |
| { |
| int ret = try_release_extent_mapping(&folio->page, gfp_flags); |
| |
| if (ret == 1) { |
| wait_subpage_spinlock(&folio->page); |
| clear_page_extent_mapped(&folio->page); |
| } |
| return ret; |
| } |
| |
| static bool btrfs_release_folio(struct folio *folio, gfp_t gfp_flags) |
| { |
| if (folio_test_writeback(folio) || folio_test_dirty(folio)) |
| return false; |
| return __btrfs_release_folio(folio, gfp_flags); |
| } |
| |
| #ifdef CONFIG_MIGRATION |
| static int btrfs_migrate_folio(struct address_space *mapping, |
| struct folio *dst, struct folio *src, |
| enum migrate_mode mode) |
| { |
| int ret = filemap_migrate_folio(mapping, dst, src, mode); |
| |
| if (ret != MIGRATEPAGE_SUCCESS) |
| return ret; |
| |
| if (folio_test_ordered(src)) { |
| folio_clear_ordered(src); |
| folio_set_ordered(dst); |
| } |
| |
| return MIGRATEPAGE_SUCCESS; |
| } |
| #else |
| #define btrfs_migrate_folio NULL |
| #endif |
| |
| static void btrfs_invalidate_folio(struct folio *folio, size_t offset, |
| size_t length) |
| { |
| struct btrfs_inode *inode = BTRFS_I(folio->mapping->host); |
| struct btrfs_fs_info *fs_info = inode->root->fs_info; |
| struct extent_io_tree *tree = &inode->io_tree; |
| struct extent_state *cached_state = NULL; |
| u64 page_start = folio_pos(folio); |
| u64 page_end = page_start + folio_size(folio) - 1; |
| u64 cur; |
| int inode_evicting = inode->vfs_inode.i_state & I_FREEING; |
| |
| /* |
| * We have folio locked so no new ordered extent can be created on this |
| * page, nor bio can be submitted for this folio. |
| * |
| * But already submitted bio can still be finished on this folio. |
| * Furthermore, endio function won't skip folio which has Ordered |
| * (Private2) already cleared, so it's possible for endio and |
| * invalidate_folio to do the same ordered extent accounting twice |
| * on one folio. |
| * |
| * So here we wait for any submitted bios to finish, so that we won't |
| * do double ordered extent accounting on the same folio. |
| */ |
| folio_wait_writeback(folio); |
| wait_subpage_spinlock(&folio->page); |
| |
| /* |
| * For subpage case, we have call sites like |
| * btrfs_punch_hole_lock_range() which passes range not aligned to |
| * sectorsize. |
| * If the range doesn't cover the full folio, we don't need to and |
| * shouldn't clear page extent mapped, as folio->private can still |
| * record subpage dirty bits for other part of the range. |
| * |
| * For cases that invalidate the full folio even the range doesn't |
| * cover the full folio, like invalidating the last folio, we're |
| * still safe to wait for ordered extent to finish. |
| */ |
| if (!(offset == 0 && length == folio_size(folio))) { |
| btrfs_release_folio(folio, GFP_NOFS); |
| return; |
| } |
| |
| if (!inode_evicting) |
| lock_extent(tree, page_start, page_end, &cached_state); |
| |
| cur = page_start; |
| while (cur < page_end) { |
| struct btrfs_ordered_extent *ordered; |
| u64 range_end; |
| u32 range_len; |
| u32 extra_flags = 0; |
| |
| ordered = btrfs_lookup_first_ordered_range(inode, cur, |
| page_end + 1 - cur); |
| if (!ordered) { |
| range_end = page_end; |
| /* |
| * No ordered extent covering this range, we are safe |
| * to delete all extent states in the range. |
| */ |
| extra_flags = EXTENT_CLEAR_ALL_BITS; |
| goto next; |
| } |
| if (ordered->file_offset > cur) { |
| /* |
| * There is a range between [cur, oe->file_offset) not |
| * covered by any ordered extent. |
| * We are safe to delete all extent states, and handle |
| * the ordered extent in the next iteration. |
| */ |
| range_end = ordered->file_offset - 1; |
| extra_flags = EXTENT_CLEAR_ALL_BITS; |
| goto next; |
| } |
| |
| range_end = min(ordered->file_offset + ordered->num_bytes - 1, |
| page_end); |
| ASSERT(range_end + 1 - cur < U32_MAX); |
| range_len = range_end + 1 - cur; |
| if (!btrfs_page_test_ordered(fs_info, &folio->page, cur, range_len)) { |
| /* |
| * If Ordered (Private2) is cleared, it means endio has |
| * already been executed for the range. |
| * We can't delete the extent states as |
| * btrfs_finish_ordered_io() may still use some of them. |
| */ |
| goto next; |
| } |
| btrfs_page_clear_ordered(fs_info, &folio->page, cur, range_len); |
| |
| /* |
| * IO on this page will never be started, so we need to account |
| * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW |
| * here, must leave that up for the ordered extent completion. |
| * |
| * This will also unlock the range for incoming |
| * btrfs_finish_ordered_io(). |
| */ |
| if (!inode_evicting) |
| clear_extent_bit(tree, cur, range_end, |
| EXTENT_DELALLOC | |
| EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | |
| EXTENT_DEFRAG, &cached_state); |
| |
| spin_lock_irq(&inode->ordered_tree.lock); |
| set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); |
| ordered->truncated_len = min(ordered->truncated_len, |
| cur - ordered->file_offset); |
| spin_unlock_irq(&inode->ordered_tree.lock); |
| |
| /* |
| * If the ordered extent has finished, we're safe to delete all |
| * the extent states of the range, otherwise |
| * btrfs_finish_ordered_io() will get executed by endio for |
| * other pages, so we can't delete extent states. |
| */ |
| if (btrfs_dec_test_ordered_pending(inode, &ordered, |
| cur, range_end + 1 - cur)) { |
| btrfs_finish_ordered_io(ordered); |
| /* |
| * The ordered extent has finished, now we're again |
| * safe to delete all extent states of the range. |
| */ |
| extra_flags = EXTENT_CLEAR_ALL_BITS; |
| } |
| next: |
| if (ordered) |
| btrfs_put_ordered_extent(ordered); |
| /* |
| * Qgroup reserved space handler |
| * Sector(s) here will be either: |
| * |
| * 1) Already written to disk or bio already finished |
| * Then its QGROUP_RESERVED bit in io_tree is already cleared. |
| * Qgroup will be handled by its qgroup_record then. |
| * btrfs_qgroup_free_data() call will do nothing here. |
| * |
| * 2) Not written to disk yet |
| * Then btrfs_qgroup_free_data() call will clear the |
| * QGROUP_RESERVED bit of its io_tree, and free the qgroup |
| * reserved data space. |
| * Since the IO will never happen for this page. |
| */ |
| btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur); |
| if (!inode_evicting) { |
| clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED | |
| EXTENT_DELALLOC | EXTENT_UPTODATE | |
| EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG | |
| extra_flags, &cached_state); |
| } |
| cur = range_end + 1; |
| } |
| /* |
| * We have iterated through all ordered extents of the page, the page |
| * should not have Ordered (Private2) anymore, or the above iteration |
| * did something wrong. |
| */ |
| ASSERT(!folio_test_ordered(folio)); |
| btrfs_page_clear_checked(fs_info, &folio->page, folio_pos(folio), folio_size(folio)); |
| if (!inode_evicting) |
| __btrfs_release_folio(folio, GFP_NOFS); |
| clear_page_extent_mapped(&folio->page); |
| } |
| |
| /* |
| * btrfs_page_mkwrite() is not allowed to change the file size as it gets |
| * called from a page fault handler when a page is first dirtied. Hence we must |
| * be careful to check for EOF conditions here. We set the page up correctly |
| * for a written page which means we get ENOSPC checking when writing into |
| * holes and correct delalloc and unwritten extent mapping on filesystems that |
| * support these features. |
| * |
| * We are not allowed to take the i_mutex here so we have to play games to |
| * protect against truncate races as the page could now be beyond EOF. Because |
| * truncate_setsize() writes the inode size before removing pages, once we have |
| * the page lock we can determine safely if the page is beyond EOF. If it is not |
| * beyond EOF, then the page is guaranteed safe against truncation until we |
| * unlock the page. |
| */ |
| vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf) |
| { |
| struct page *page = vmf->page; |
| struct inode *inode = file_inode(vmf->vma->vm_file); |
| struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
| struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; |
| struct btrfs_ordered_extent *ordered; |
| struct extent_state *cached_state = NULL; |
| struct extent_changeset *data_reserved = NULL; |
| unsigned long zero_start; |
| loff_t size; |
| vm_fault_t ret; |
| int ret2; |
| int reserved = 0; |
| u64 reserved_space; |
| u64 page_start; |
| u64 page_end; |
| u64 end; |
| |
| reserved_space = PAGE_SIZE; |
| |
| sb_start_pagefault(inode->i_sb); |
| page_start = page_offset(page); |
| page_end = page_start + PAGE_SIZE - 1; |
| end = page_end; |
| |
| /* |
| * Reserving delalloc space after obtaining the page lock can lead to |
| * deadlock. For example, if a dirty page is locked by this function |
| * and the call to btrfs_delalloc_reserve_space() ends up triggering |
| * dirty page write out, then the btrfs_writepages() function could |
| * end up waiting indefinitely to get a lock on the page currently |
| * being processed by btrfs_page_mkwrite() function. |
| */ |
| ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved, |
| page_start, reserved_space); |
| if (!ret2) { |
| ret2 = file_update_time(vmf->vma->vm_file); |
| reserved = 1; |
| } |
| if (ret2) { |
| ret = vmf_error(ret2); |
| if (reserved) |
| goto out; |
| goto out_noreserve; |
| } |
| |
| ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ |
| again: |
| down_read(&BTRFS_I(inode)->i_mmap_lock); |
| lock_page(page); |
| size = i_size_read(inode); |
| |
| if ((page->mapping != inode->i_mapping) || |
| (page_start >= size)) { |
| /* page got truncated out from underneath us */ |
| goto out_unlock; |
| } |
| wait_on_page_writeback(page); |
| |
| lock_extent(io_tree, page_start, page_end, &cached_state); |
| ret2 = set_page_extent_mapped(page); |
| if (ret2 < 0) { |
| ret = vmf_error(ret2); |
| unlock_extent(io_tree, page_start, page_end, &cached_state); |
| goto out_unlock; |
| } |
| |
| /* |
| * we can't set the delalloc bits if there are pending ordered |
| * extents. Drop our locks and wait for them to finish |
| */ |
| ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, |
| PAGE_SIZE); |
| if (ordered) { |
| unlock_extent(io_tree, page_start, page_end, &cached_state); |
| unlock_page(page); |
| up_read(&BTRFS_I(inode)->i_mmap_lock); |
| btrfs_start_ordered_extent(ordered); |
| btrfs_put_ordered_extent(ordered); |
| goto again; |
| } |
| |
| if (page->index == ((size - 1) >> PAGE_SHIFT)) { |
| reserved_space = round_up(size - page_start, |
| fs_info->sectorsize); |
| if (reserved_space < PAGE_SIZE) { |
| end = page_start + reserved_space - 1; |
| btrfs_delalloc_release_space(BTRFS_I(inode), |
| data_reserved, page_start, |
| PAGE_SIZE - reserved_space, true); |
| } |
| } |
| |
| /* |
| * page_mkwrite gets called when the page is firstly dirtied after it's |
| * faulted in, but write(2) could also dirty a page and set delalloc |
| * bits, thus in this case for space account reason, we still need to |
| * clear any delalloc bits within this page range since we have to |
| * reserve data&meta space before lock_page() (see above comments). |
| */ |
| clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end, |
| EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | |
| EXTENT_DEFRAG, &cached_state); |
| |
| ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0, |
| &cached_state); |
| if (ret2) { |
| unlock_extent(io_tree, page_start, page_end, &cached_state); |
| ret = VM_FAULT_SIGBUS; |
| goto out_unlock; |
| } |
| |
| /* page is wholly or partially inside EOF */ |
| if (page_start + PAGE_SIZE > size) |
| zero_start = offset_in_page(size); |
| else |
| zero_start = PAGE_SIZE; |
| |
| if (zero_start != PAGE_SIZE) |
| memzero_page(page, zero_start, PAGE_SIZE - zero_start); |
| |
| btrfs_page_clear_checked(fs_info, page, page_start, PAGE_SIZE); |
| btrfs_page_set_dirty(fs_info, page, page_start, end + 1 - page_start); |
| btrfs_page_set_uptodate(fs_info, page, page_start, end + 1 - page_start); |
| |
| btrfs_set_inode_last_sub_trans(BTRFS_I(inode)); |
| |
| unlock_extent(io_tree, page_start, page_end, &cached_state); |
| up_read(&BTRFS_I(inode)->i_mmap_lock); |
| |
| btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); |
| sb_end_pagefault(inode->i_sb); |
| extent_changeset_free(data_reserved); |
| return VM_FAULT_LOCKED; |
| |
| out_unlock: |
| unlock_page(page); |
| up_read(&BTRFS_I(inode)->i_mmap_lock); |
| out: |
| btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); |
| btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start, |
| reserved_space, (ret != 0)); |
| out_noreserve: |
| sb_end_pagefault(inode->i_sb); |
| extent_changeset_free(data_reserved); |
| return ret; |
| } |
| |
| static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback) |
| { |
| struct btrfs_truncate_control control = { |
| .inode = inode, |
| .ino = btrfs_ino(inode), |
| .min_type = BTRFS_EXTENT_DATA_KEY, |
| .clear_extent_range = true, |
| }; |
| struct btrfs_root *root = inode->root; |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct btrfs_block_rsv *rsv; |
| int ret; |
| struct btrfs_trans_handle *trans; |
| u64 mask = fs_info->sectorsize - 1; |
| u64 min_size = btrfs_calc_metadata_size(fs_info, 1); |
| |
| if (!skip_writeback) { |
| ret = btrfs_wait_ordered_range(&inode->vfs_inode, |
| inode->vfs_inode.i_size & (~mask), |
| (u64)-1); |
| if (ret) |
| return ret; |
| } |
| |
| /* |
| * Yes ladies and gentlemen, this is indeed ugly. We have a couple of |
| * things going on here: |
| * |
| * 1) We need to reserve space to update our inode. |
| * |
| * 2) We need to have something to cache all the space that is going to |
| * be free'd up by the truncate operation, but also have some slack |
| * space reserved in case it uses space during the truncate (thank you |
| * very much snapshotting). |
| * |
| * And we need these to be separate. The fact is we can use a lot of |
| * space doing the truncate, and we have no earthly idea how much space |
| * we will use, so we need the truncate reservation to be separate so it |
| * doesn't end up using space reserved for updating the inode. We also |
| * need to be able to stop the transaction and start a new one, which |
| * means we need to be able to update the inode several times, and we |
| * have no idea of knowing how many times that will be, so we can't just |
| * reserve 1 item for the entirety of the operation, so that has to be |
| * done separately as well. |
| * |
| * So that leaves us with |
| * |
| * 1) rsv - for the truncate reservation, which we will steal from the |
| * transaction reservation. |
| * 2) fs_info->trans_block_rsv - this will have 1 items worth left for |
| * updating the inode. |
| */ |
| rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); |
| if (!rsv) |
| return -ENOMEM; |
| rsv->size = min_size; |
| rsv->failfast = true; |
| |
| /* |
| * 1 for the truncate slack space |
| * 1 for updating the inode. |
| */ |
| trans = btrfs_start_transaction(root, 2); |
| if (IS_ERR(trans)) { |
| ret = PTR_ERR(trans); |
| goto out; |
| } |
| |
| /* Migrate the slack space for the truncate to our reserve */ |
| ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, |
| min_size, false); |
| BUG_ON(ret); |
| |
| trans->block_rsv = rsv; |
| |
| while (1) { |
| struct extent_state *cached_state = NULL; |
| const u64 new_size = inode->vfs_inode.i_size; |
| const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize); |
| |
| control.new_size = new_size; |
| lock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state); |
| /* |
| * We want to drop from the next block forward in case this new |
| * size is not block aligned since we will be keeping the last |
| * block of the extent just the way it is. |
| */ |
| btrfs_drop_extent_map_range(inode, |
| ALIGN(new_size, fs_info->sectorsize), |
| (u64)-1, false); |
| |
| ret = btrfs_truncate_inode_items(trans, root, &control); |
| |
| inode_sub_bytes(&inode->vfs_inode, control.sub_bytes); |
| btrfs_inode_safe_disk_i_size_write(inode, control.last_size); |
| |
| unlock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state); |
| |
| trans->block_rsv = &fs_info->trans_block_rsv; |
| if (ret != -ENOSPC && ret != -EAGAIN) |
| break; |
| |
| ret = btrfs_update_inode(trans, root, inode); |
| if (ret) |
| break; |
| |
| btrfs_end_transaction(trans); |
| btrfs_btree_balance_dirty(fs_info); |
| |
| trans = btrfs_start_transaction(root, 2); |
| if (IS_ERR(trans)) { |
| ret = PTR_ERR(trans); |
| trans = NULL; |
| break; |
| } |
| |
| btrfs_block_rsv_release(fs_info, rsv, -1, NULL); |
| ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, |
| rsv, min_size, false); |
| BUG_ON(ret); /* shouldn't happen */ |
| trans->block_rsv = rsv; |
| } |
| |
| /* |
| * We can't call btrfs_truncate_block inside a trans handle as we could |
| * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we |
| * know we've truncated everything except the last little bit, and can |
| * do btrfs_truncate_block and then update the disk_i_size. |
| */ |
| if (ret == BTRFS_NEED_TRUNCATE_BLOCK) { |
| btrfs_end_transaction(trans); |
| btrfs_btree_balance_dirty(fs_info); |
| |
| ret = btrfs_truncate_block(inode, inode->vfs_inode.i_size, 0, 0); |
| if (ret) |
| goto out; |
| trans = btrfs_start_transaction(root, 1); |
| if (IS_ERR(trans)) { |
| ret = PTR_ERR(trans); |
| goto out; |
| } |
| btrfs_inode_safe_disk_i_size_write(inode, 0); |
| } |
| |
| if (trans) { |
| int ret2; |
| |
| trans->block_rsv = &fs_info->trans_block_rsv; |
| ret2 = btrfs_update_inode(trans, root, inode); |
| if (ret2 && !ret) |
| ret = ret2; |
| |
| ret2 = btrfs_end_transaction(trans); |
| if (ret2 && !ret) |
| ret = ret2; |
| btrfs_btree_balance_dirty(fs_info); |
| } |
| out: |
| btrfs_free_block_rsv(fs_info, rsv); |
| /* |
| * So if we truncate and then write and fsync we normally would just |
| * write the extents that changed, which is a problem if we need to |
| * first truncate that entire inode. So set this flag so we write out |
| * all of the extents in the inode to the sync log so we're completely |
| * safe. |
| * |
| * If no extents were dropped or trimmed we don't need to force the next |
| * fsync to truncate all the inode's items from the log and re-log them |
| * all. This means the truncate operation did not change the file size, |
| * or changed it to a smaller size but there was only an implicit hole |
| * between the old i_size and the new i_size, and there were no prealloc |
| * extents beyond i_size to drop. |
| */ |
| if (control.extents_found > 0) |
| btrfs_set_inode_full_sync(inode); |
| |
| return ret; |
| } |
| |
| struct inode *btrfs_new_subvol_inode(struct mnt_idmap *idmap, |
| struct inode *dir) |
| { |
| struct inode *inode; |
| |
| inode = new_inode(dir->i_sb); |
| if (inode) { |
| /* |
| * Subvolumes don't inherit the sgid bit or the parent's gid if |
| * the parent's sgid bit is set. This is probably a bug. |
| */ |
| inode_init_owner(idmap, inode, NULL, |
| S_IFDIR | (~current_umask() & S_IRWXUGO)); |
| inode->i_op = &btrfs_dir_inode_operations; |
| inode->i_fop = &btrfs_dir_file_operations; |
| } |
| return inode; |
| } |
| |
| struct inode *btrfs_alloc_inode(struct super_block *sb) |
| { |
| struct btrfs_fs_info *fs_info = btrfs_sb(sb); |
| struct btrfs_inode *ei; |
| struct inode *inode; |
| |
| ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL); |
| if (!ei) |
| return NULL; |
| |
| ei->root = NULL; |
| ei->generation = 0; |
| ei->last_trans = 0; |
| ei->last_sub_trans = 0; |
| ei->logged_trans = 0; |
| ei->delalloc_bytes = 0; |
| ei->new_delalloc_bytes = 0; |
| ei->defrag_bytes = 0; |
| ei->disk_i_size = 0; |
| ei->flags = 0; |
| ei->ro_flags = 0; |
| ei->csum_bytes = 0; |
| ei->index_cnt = (u64)-1; |
| ei->dir_index = 0; |
| ei->last_unlink_trans = 0; |
| ei->last_reflink_trans = 0; |
| ei->last_log_commit = 0; |
| |
| spin_lock_init(&ei->lock); |
| ei->outstanding_extents = 0; |
| if (sb->s_magic != BTRFS_TEST_MAGIC) |
| btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv, |
| BTRFS_BLOCK_RSV_DELALLOC); |
| ei->runtime_flags = 0; |
| ei->prop_compress = BTRFS_COMPRESS_NONE; |
| ei->defrag_compress = BTRFS_COMPRESS_NONE; |
| |
| ei->delayed_node = NULL; |
| |
| ei->i_otime.tv_sec = 0; |
| ei->i_otime.tv_nsec = 0; |
| |
| inode = &ei->vfs_inode; |
| extent_map_tree_init(&ei->extent_tree); |
| extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO); |
| ei->io_tree.inode = ei; |
| extent_io_tree_init(fs_info, &ei->file_extent_tree, |
| IO_TREE_INODE_FILE_EXTENT); |
| atomic_set(&ei->sync_writers, 0); |
| mutex_init(&ei->log_mutex); |
| btrfs_ordered_inode_tree_init(&ei->ordered_tree); |
| INIT_LIST_HEAD(&ei->delalloc_inodes); |
| INIT_LIST_HEAD(&ei->delayed_iput); |
| RB_CLEAR_NODE(&ei->rb_node); |
| init_rwsem(&ei->i_mmap_lock); |
| |
| return inode; |
| } |
| |
| #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS |
| void btrfs_test_destroy_inode(struct inode *inode) |
| { |
| btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false); |
| kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); |
| } |
| #endif |
| |
| void btrfs_free_inode(struct inode *inode) |
| { |
| kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); |
| } |
| |
| void btrfs_destroy_inode(struct inode *vfs_inode) |
| { |
| struct btrfs_ordered_extent *ordered; |
| struct btrfs_inode *inode = BTRFS_I(vfs_inode); |
| struct btrfs_root *root = inode->root; |
| bool freespace_inode; |
| |
| WARN_ON(!hlist_empty(&vfs_inode->i_dentry)); |
| WARN_ON(vfs_inode->i_data.nrpages); |
| WARN_ON(inode->block_rsv.reserved); |
| WARN_ON(inode->block_rsv.size); |
| WARN_ON(inode->outstanding_extents); |
| if (!S_ISDIR(vfs_inode->i_mode)) { |
| WARN_ON(inode->delalloc_bytes); |
| WARN_ON(inode->new_delalloc_bytes); |
| } |
| WARN_ON(inode->csum_bytes); |
| WARN_ON(inode->defrag_bytes); |
| |
| /* |
| * This can happen where we create an inode, but somebody else also |
| * created the same inode and we need to destroy the one we already |
| * created. |
| */ |
| if (!root) |
| return; |
| |
| /* |
| * If this is a free space inode do not take the ordered extents lockdep |
| * map. |
| */ |
| freespace_inode = btrfs_is_free_space_inode(inode); |
| |
| while (1) { |
| ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); |
| if (!ordered) |
| break; |
| else { |
| btrfs_err(root->fs_info, |
| "found ordered extent %llu %llu on inode cleanup", |
| ordered->file_offset, ordered->num_bytes); |
| |
| if (!freespace_inode) |
| btrfs_lockdep_acquire(root->fs_info, btrfs_ordered_extent); |
| |
| btrfs_remove_ordered_extent(inode, ordered); |
| btrfs_put_ordered_extent(ordered); |
| btrfs_put_ordered_extent(ordered); |
| } |
| } |
| btrfs_qgroup_check_reserved_leak(inode); |
| inode_tree_del(inode); |
| btrfs_drop_extent_map_range(inode, 0, (u64)-1, false); |
| btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1); |
| btrfs_put_root(inode->root); |
| } |
| |
| int btrfs_drop_inode(struct inode *inode) |
| { |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| |
| if (root == NULL) |
| return 1; |
| |
| /* the snap/subvol tree is on deleting */ |
| if (btrfs_root_refs(&root->root_item) == 0) |
| return 1; |
| else |
| return generic_drop_inode(inode); |
| } |
| |
| static void init_once(void *foo) |
| { |
| struct btrfs_inode *ei = foo; |
| |
| inode_init_once(&ei->vfs_inode); |
| } |
| |
| void __cold btrfs_destroy_cachep(void) |
| { |
| /* |
| * Make sure all delayed rcu free inodes are flushed before we |
| * destroy cache. |
| */ |
| rcu_barrier(); |
| bioset_exit(&btrfs_dio_bioset); |
| kmem_cache_destroy(btrfs_inode_cachep); |
| } |
| |
| int __init btrfs_init_cachep(void) |
| { |
| btrfs_inode_cachep = kmem_cache_create("btrfs_inode", |
| sizeof(struct btrfs_inode), 0, |
| SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT, |
| init_once); |
| if (!btrfs_inode_cachep) |
| goto fail; |
| |
| if (bioset_init(&btrfs_dio_bioset, BIO_POOL_SIZE, |
| offsetof(struct btrfs_dio_private, bbio.bio), |
| BIOSET_NEED_BVECS)) |
| goto fail; |
| |
| return 0; |
| fail: |
| btrfs_destroy_cachep(); |
| return -ENOMEM; |
| } |
| |
| static int btrfs_getattr(struct mnt_idmap *idmap, |
| const struct path *path, struct kstat *stat, |
| u32 request_mask, unsigned int flags) |
| { |
| u64 delalloc_bytes; |
| u64 inode_bytes; |
| struct inode *inode = d_inode(path->dentry); |
| u32 blocksize = inode->i_sb->s_blocksize; |
| u32 bi_flags = BTRFS_I(inode)->flags; |
| u32 bi_ro_flags = BTRFS_I(inode)->ro_flags; |
| |
| stat->result_mask |= STATX_BTIME; |
| stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec; |
| stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec; |
| if (bi_flags & BTRFS_INODE_APPEND) |
| stat->attributes |= STATX_ATTR_APPEND; |
| if (bi_flags & BTRFS_INODE_COMPRESS) |
| stat->attributes |= STATX_ATTR_COMPRESSED; |
| if (bi_flags & BTRFS_INODE_IMMUTABLE) |
| stat->attributes |= STATX_ATTR_IMMUTABLE; |
| if (bi_flags & BTRFS_INODE_NODUMP) |
| stat->attributes |= STATX_ATTR_NODUMP; |
| if (bi_ro_flags & BTRFS_INODE_RO_VERITY) |
| stat->attributes |= STATX_ATTR_VERITY; |
| |
| stat->attributes_mask |= (STATX_ATTR_APPEND | |
| STATX_ATTR_COMPRESSED | |
| STATX_ATTR_IMMUTABLE | |
| STATX_ATTR_NODUMP); |
| |
| generic_fillattr(idmap, inode, stat); |
| stat->dev = BTRFS_I(inode)->root->anon_dev; |
| |
| spin_lock(&BTRFS_I(inode)->lock); |
| delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes; |
| inode_bytes = inode_get_bytes(inode); |
| spin_unlock(&BTRFS_I(inode)->lock); |
| stat->blocks = (ALIGN(inode_bytes, blocksize) + |
| ALIGN(delalloc_bytes, blocksize)) >> 9; |
| return 0; |
| } |
| |
| static int btrfs_rename_exchange(struct inode *old_dir, |
| struct dentry *old_dentry, |
| struct inode *new_dir, |
| struct dentry *new_dentry) |
| { |
| struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); |
| struct btrfs_trans_handle *trans; |
| unsigned int trans_num_items; |
| struct btrfs_root *root = BTRFS_I(old_dir)->root; |
| struct btrfs_root *dest = BTRFS_I(new_dir)->root; |
| struct inode *new_inode = new_dentry->d_inode; |
| struct inode *old_inode = old_dentry->d_inode; |
| struct timespec64 ctime = current_time(old_inode); |
| struct btrfs_rename_ctx old_rename_ctx; |
| struct btrfs_rename_ctx new_rename_ctx; |
| u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); |
| u64 new_ino = btrfs_ino(BTRFS_I(new_inode)); |
| u64 old_idx = 0; |
| u64 new_idx = 0; |
| int ret; |
| int ret2; |
| bool need_abort = false; |
| struct fscrypt_name old_fname, new_fname; |
| struct fscrypt_str *old_name, *new_name; |
| |
| /* |
| * For non-subvolumes allow exchange only within one subvolume, in the |
| * same inode namespace. Two subvolumes (represented as directory) can |
| * be exchanged as they're a logical link and have a fixed inode number. |
| */ |
| if (root != dest && |
| (old_ino != BTRFS_FIRST_FREE_OBJECTID || |
| new_ino != BTRFS_FIRST_FREE_OBJECTID)) |
| return -EXDEV; |
| |
| ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname); |
| if (ret) |
| return ret; |
| |
| ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname); |
| if (ret) { |
| fscrypt_free_filename(&old_fname); |
| return ret; |
| } |
| |
| old_name = &old_fname.disk_name; |
| new_name = &new_fname.disk_name; |
| |
| /* close the race window with snapshot create/destroy ioctl */ |
| if (old_ino == BTRFS_FIRST_FREE_OBJECTID || |
| new_ino == BTRFS_FIRST_FREE_OBJECTID) |
| down_read(&fs_info->subvol_sem); |
| |
| /* |
| * For each inode: |
| * 1 to remove old dir item |
| * 1 to remove old dir index |
| * 1 to add new dir item |
| * 1 to add new dir index |
| * 1 to update parent inode |
| * |
| * If the parents are the same, we only need to account for one |
| */ |
| trans_num_items = (old_dir == new_dir ? 9 : 10); |
| if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { |
| /* |
| * 1 to remove old root ref |
| * 1 to remove old root backref |
| * 1 to add new root ref |
| * 1 to add new root backref |
| */ |
| trans_num_items += 4; |
| } else { |
| /* |
| * 1 to update inode item |
| * 1 to remove old inode ref |
| * 1 to add new inode ref |
| */ |
| trans_num_items += 3; |
| } |
| if (new_ino == BTRFS_FIRST_FREE_OBJECTID) |
| trans_num_items += 4; |
| else |
| trans_num_items += 3; |
| trans = btrfs_start_transaction(root, trans_num_items); |
| if (IS_ERR(trans)) { |
| ret = PTR_ERR(trans); |
| goto out_notrans; |
| } |
| |
| if (dest != root) { |
| ret = btrfs_record_root_in_trans(trans, dest); |
| if (ret) |
| goto out_fail; |
| } |
| |
| /* |
| * We need to find a free sequence number both in the source and |
| * in the destination directory for the exchange. |
| */ |
| ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx); |
| if (ret) |
| goto out_fail; |
| ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx); |
| if (ret) |
| goto out_fail; |
| |
| BTRFS_I(old_inode)->dir_index = 0ULL; |
| BTRFS_I(new_inode)->dir_index = 0ULL; |
| |
| /* Reference for the source. */ |
| if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { |
| /* force full log commit if subvolume involved. */ |
| btrfs_set_log_full_commit(trans); |
| } else { |
| ret = btrfs_insert_inode_ref(trans, dest, new_name, old_ino, |
| btrfs_ino(BTRFS_I(new_dir)), |
| old_idx); |
| if (ret) |
| goto out_fail; |
| need_abort = true; |
| } |
| |
| /* And now for the dest. */ |
| if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { |
| /* force full log commit if subvolume involved. */ |
| btrfs_set_log_full_commit(trans); |
| } else { |
| ret = btrfs_insert_inode_ref(trans, root, old_name, new_ino, |
| btrfs_ino(BTRFS_I(old_dir)), |
| new_idx); |
| if (ret) { |
| if (need_abort) |
| btrfs_abort_transaction(trans, ret); |
| goto out_fail; |
| } |
| } |
| |
| /* Update inode version and ctime/mtime. */ |
| inode_inc_iversion(old_dir); |
| inode_inc_iversion(new_dir); |
| inode_inc_iversion(old_inode); |
| inode_inc_iversion(new_inode); |
| old_dir->i_mtime = ctime; |
| old_dir->i_ctime = ctime; |
| new_dir->i_mtime = ctime; |
| new_dir->i_ctime = ctime; |
| old_inode->i_ctime = ctime; |
| new_inode->i_ctime = ctime; |
| |
| if (old_dentry->d_parent != new_dentry->d_parent) { |
| btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), |
| BTRFS_I(old_inode), 1); |
| btrfs_record_unlink_dir(trans, BTRFS_I(new_dir), |
| BTRFS_I(new_inode), 1); |
| } |
| |
| /* src is a subvolume */ |
| if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { |
| ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry); |
| } else { /* src is an inode */ |
| ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir), |
| BTRFS_I(old_dentry->d_inode), |
| old_name, &old_rename_ctx); |
| if (!ret) |
| ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode)); |
| } |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| goto out_fail; |
| } |
| |
| /* dest is a subvolume */ |
| if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { |
| ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry); |
| } else { /* dest is an inode */ |
| ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir), |
| BTRFS_I(new_dentry->d_inode), |
| new_name, &new_rename_ctx); |
| if (!ret) |
| ret = btrfs_update_inode(trans, dest, BTRFS_I(new_inode)); |
| } |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| goto out_fail; |
| } |
| |
| ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), |
| new_name, 0, old_idx); |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| goto out_fail; |
| } |
| |
| ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode), |
| old_name, 0, new_idx); |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| goto out_fail; |
| } |
| |
| if (old_inode->i_nlink == 1) |
| BTRFS_I(old_inode)->dir_index = old_idx; |
| if (new_inode->i_nlink == 1) |
| BTRFS_I(new_inode)->dir_index = new_idx; |
| |
| /* |
| * Now pin the logs of the roots. We do it to ensure that no other task |
| * can sync the logs while we are in progress with the rename, because |
| * that could result in an inconsistency in case any of the inodes that |
| * are part of this rename operation were logged before. |
| */ |
| if (old_ino != BTRFS_FIRST_FREE_OBJECTID) |
| btrfs_pin_log_trans(root); |
| if (new_ino != BTRFS_FIRST_FREE_OBJECTID) |
| btrfs_pin_log_trans(dest); |
| |
| /* Do the log updates for all inodes. */ |
| if (old_ino != BTRFS_FIRST_FREE_OBJECTID) |
| btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir), |
| old_rename_ctx.index, new_dentry->d_parent); |
| if (new_ino != BTRFS_FIRST_FREE_OBJECTID) |
| btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir), |
| new_rename_ctx.index, old_dentry->d_parent); |
| |
| /* Now unpin the logs. */ |
| if (old_ino != BTRFS_FIRST_FREE_OBJECTID) |
| btrfs_end_log_trans(root); |
| if (new_ino != BTRFS_FIRST_FREE_OBJECTID) |
| btrfs_end_log_trans(dest); |
| out_fail: |
| ret2 = btrfs_end_transaction(trans); |
| ret = ret ? ret : ret2; |
| out_notrans: |
| if (new_ino == BTRFS_FIRST_FREE_OBJECTID || |
| old_ino == BTRFS_FIRST_FREE_OBJECTID) |
| up_read(&fs_info->subvol_sem); |
| |
| fscrypt_free_filename(&new_fname); |
| fscrypt_free_filename(&old_fname); |
| return ret; |
| } |
| |
| static struct inode *new_whiteout_inode(struct mnt_idmap *idmap, |
| struct inode *dir) |
| { |
| struct inode *inode; |
| |
| inode = new_inode(dir->i_sb); |
| if (inode) { |
| inode_init_owner(idmap, inode, dir, |
| S_IFCHR | WHITEOUT_MODE); |
| inode->i_op = &btrfs_special_inode_operations; |
| init_special_inode(inode, inode->i_mode, WHITEOUT_DEV); |
| } |
| return inode; |
| } |
| |
| static int btrfs_rename(struct mnt_idmap *idmap, |
| struct inode *old_dir, struct dentry *old_dentry, |
| struct inode *new_dir, struct dentry *new_dentry, |
| unsigned int flags) |
| { |
| struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); |
| struct btrfs_new_inode_args whiteout_args = { |
| .dir = old_dir, |
| .dentry = old_dentry, |
| }; |
| struct btrfs_trans_handle *trans; |
| unsigned int trans_num_items; |
| struct btrfs_root *root = BTRFS_I(old_dir)->root; |
| struct btrfs_root *dest = BTRFS_I(new_dir)->root; |
| struct inode *new_inode = d_inode(new_dentry); |
| struct inode *old_inode = d_inode(old_dentry); |
| struct btrfs_rename_ctx rename_ctx; |
| u64 index = 0; |
| int ret; |
| int ret2; |
| u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); |
| struct fscrypt_name old_fname, new_fname; |
| |
| if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) |
| return -EPERM; |
| |
| /* we only allow rename subvolume link between subvolumes */ |
| if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) |
| return -EXDEV; |
| |
| if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || |
| (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID)) |
| return -ENOTEMPTY; |
| |
| if (S_ISDIR(old_inode->i_mode) && new_inode && |
| new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) |
| return -ENOTEMPTY; |
| |
| ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname); |
| if (ret) |
| return ret; |
| |
| ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname); |
| if (ret) { |
| fscrypt_free_filename(&old_fname); |
| return ret; |
| } |
| |
| /* check for collisions, even if the name isn't there */ |
| ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, &new_fname.disk_name); |
| if (ret) { |
| if (ret == -EEXIST) { |
| /* we shouldn't get |
| * eexist without a new_inode */ |
| if (WARN_ON(!new_inode)) { |
| goto out_fscrypt_names; |
| } |
| } else { |
| /* maybe -EOVERFLOW */ |
| goto out_fscrypt_names; |
| } |
| } |
| ret = 0; |
| |
| /* |
| * we're using rename to replace one file with another. Start IO on it |
| * now so we don't add too much work to the end of the transaction |
| */ |
| if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) |
| filemap_flush(old_inode->i_mapping); |
| |
| if (flags & RENAME_WHITEOUT) { |
| whiteout_args.inode = new_whiteout_inode(idmap, old_dir); |
| if (!whiteout_args.inode) { |
| ret = -ENOMEM; |
| goto out_fscrypt_names; |
| } |
| ret = btrfs_new_inode_prepare(&whiteout_args, &trans_num_items); |
| if (ret) |
| goto out_whiteout_inode; |
| } else { |
| /* 1 to update the old parent inode. */ |
| trans_num_items = 1; |
| } |
| |
| if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { |
| /* Close the race window with snapshot create/destroy ioctl */ |
| down_read(&fs_info->subvol_sem); |
| /* |
| * 1 to remove old root ref |
| * 1 to remove old root backref |
| * 1 to add new root ref |
| * 1 to add new root backref |
| */ |
| trans_num_items += 4; |
| } else { |
| /* |
| * 1 to update inode |
| * 1 to remove old inode ref |
| * 1 to add new inode ref |
| */ |
| trans_num_items += 3; |
| } |
| /* |
| * 1 to remove old dir item |
| * 1 to remove old dir index |
| * 1 to add new dir item |
| * 1 to add new dir index |
| */ |
| trans_num_items += 4; |
| /* 1 to update new parent inode if it's not the same as the old parent */ |
| if (new_dir != old_dir) |
| trans_num_items++; |
| if (new_inode) { |
| /* |
| * 1 to update inode |
| * 1 to remove inode ref |
| * 1 to remove dir item |
| * 1 to remove dir index |
| * 1 to possibly add orphan item |
| */ |
| trans_num_items += 5; |
| } |
| trans = btrfs_start_transaction(root, trans_num_items); |
| if (IS_ERR(trans)) { |
| ret = PTR_ERR(trans); |
| goto out_notrans; |
| } |
| |
| if (dest != root) { |
| ret = btrfs_record_root_in_trans(trans, dest); |
| if (ret) |
| goto out_fail; |
| } |
| |
| ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index); |
| if (ret) |
| goto out_fail; |
| |
| BTRFS_I(old_inode)->dir_index = 0ULL; |
| if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { |
| /* force full log commit if subvolume involved. */ |
| btrfs_set_log_full_commit(trans); |
| } else { |
| ret = btrfs_insert_inode_ref(trans, dest, &new_fname.disk_name, |
| old_ino, btrfs_ino(BTRFS_I(new_dir)), |
| index); |
| if (ret) |
| goto out_fail; |
| } |
| |
| inode_inc_iversion(old_dir); |
| inode_inc_iversion(new_dir); |
| inode_inc_iversion(old_inode); |
| old_dir->i_mtime = current_time(old_dir); |
| old_dir->i_ctime = old_dir->i_mtime; |
| new_dir->i_mtime = old_dir->i_mtime; |
| new_dir->i_ctime = old_dir->i_mtime; |
| old_inode->i_ctime = old_dir->i_mtime; |
| |
| if (old_dentry->d_parent != new_dentry->d_parent) |
| btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), |
| BTRFS_I(old_inode), 1); |
| |
| if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { |
| ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry); |
| } else { |
| ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir), |
| BTRFS_I(d_inode(old_dentry)), |
| &old_fname.disk_name, &rename_ctx); |
| if (!ret) |
| ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode)); |
| } |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| goto out_fail; |
| } |
| |
| if (new_inode) { |
| inode_inc_iversion(new_inode); |
| new_inode->i_ctime = current_time(new_inode); |
| if (unlikely(btrfs_ino(BTRFS_I(new_inode)) == |
| BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { |
| ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry); |
| BUG_ON(new_inode->i_nlink == 0); |
| } else { |
| ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir), |
| BTRFS_I(d_inode(new_dentry)), |
| &new_fname.disk_name); |
| } |
| if (!ret && new_inode->i_nlink == 0) |
| ret = btrfs_orphan_add(trans, |
| BTRFS_I(d_inode(new_dentry))); |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| goto out_fail; |
| } |
| } |
| |
| ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), |
| &new_fname.disk_name, 0, index); |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| goto out_fail; |
| } |
| |
| if (old_inode->i_nlink == 1) |
| BTRFS_I(old_inode)->dir_index = index; |
| |
| if (old_ino != BTRFS_FIRST_FREE_OBJECTID) |
| btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir), |
| rename_ctx.index, new_dentry->d_parent); |
| |
| if (flags & RENAME_WHITEOUT) { |
| ret = btrfs_create_new_inode(trans, &whiteout_args); |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| goto out_fail; |
| } else { |
| unlock_new_inode(whiteout_args.inode); |
| iput(whiteout_args.inode); |
| whiteout_args.inode = NULL; |
| } |
| } |
| out_fail: |
| ret2 = btrfs_end_transaction(trans); |
| ret = ret ? ret : ret2; |
| out_notrans: |
| if (old_ino == BTRFS_FIRST_FREE_OBJECTID) |
| up_read(&fs_info->subvol_sem); |
| if (flags & RENAME_WHITEOUT) |
| btrfs_new_inode_args_destroy(&whiteout_args); |
| out_whiteout_inode: |
| if (flags & RENAME_WHITEOUT) |
| iput(whiteout_args.inode); |
| out_fscrypt_names: |
| fscrypt_free_filename(&old_fname); |
| fscrypt_free_filename(&new_fname); |
| return ret; |
| } |
| |
| static int btrfs_rename2(struct mnt_idmap *idmap, struct inode *old_dir, |
| struct dentry *old_dentry, struct inode *new_dir, |
| struct dentry *new_dentry, unsigned int flags) |
| { |
| int ret; |
| |
| if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) |
| return -EINVAL; |
| |
| if (flags & RENAME_EXCHANGE) |
| ret = btrfs_rename_exchange(old_dir, old_dentry, new_dir, |
| new_dentry); |
| else |
| ret = btrfs_rename(idmap, old_dir, old_dentry, new_dir, |
| new_dentry, flags); |
| |
| btrfs_btree_balance_dirty(BTRFS_I(new_dir)->root->fs_info); |
| |
| return ret; |
| } |
| |
| struct btrfs_delalloc_work { |
| struct inode *inode; |
| struct completion completion; |
| struct list_head list; |
| struct btrfs_work work; |
| }; |
| |
| static void btrfs_run_delalloc_work(struct btrfs_work *work) |
| { |
| struct btrfs_delalloc_work *delalloc_work; |
| struct inode *inode; |
| |
| delalloc_work = container_of(work, struct btrfs_delalloc_work, |
| work); |
| inode = delalloc_work->inode; |
| filemap_flush(inode->i_mapping); |
| if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, |
| &BTRFS_I(inode)->runtime_flags)) |
| filemap_flush(inode->i_mapping); |
| |
| iput(inode); |
| complete(&delalloc_work->completion); |
| } |
| |
| static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode) |
| { |
| struct btrfs_delalloc_work *work; |
| |
| work = kmalloc(sizeof(*work), GFP_NOFS); |
| if (!work) |
| return NULL; |
| |
| init_completion(&work->completion); |
| INIT_LIST_HEAD(&work->list); |
| work->inode = inode; |
| btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL); |
| |
| return work; |
| } |
| |
| /* |
| * some fairly slow code that needs optimization. This walks the list |
| * of all the inodes with pending delalloc and forces them to disk. |
| */ |
| static int start_delalloc_inodes(struct btrfs_root *root, |
| struct writeback_control *wbc, bool snapshot, |
| bool in_reclaim_context) |
| { |
| struct btrfs_inode *binode; |
| struct inode *inode; |
| struct btrfs_delalloc_work *work, *next; |
| struct list_head works; |
| struct list_head splice; |
| int ret = 0; |
| bool full_flush = wbc->nr_to_write == LONG_MAX; |
| |
| INIT_LIST_HEAD(&works); |
| INIT_LIST_HEAD(&splice); |
| |
| mutex_lock(&root->delalloc_mutex); |
| spin_lock(&root->delalloc_lock); |
| list_splice_init(&root->delalloc_inodes, &splice); |
| while (!list_empty(&splice)) { |
| binode = list_entry(splice.next, struct btrfs_inode, |
| delalloc_inodes); |
| |
| list_move_tail(&binode->delalloc_inodes, |
| &root->delalloc_inodes); |
| |
| if (in_reclaim_context && |
| test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags)) |
| continue; |
| |
| inode = igrab(&binode->vfs_inode); |
| if (!inode) { |
| cond_resched_lock(&root->delalloc_lock); |
| continue; |
| } |
| spin_unlock(&root->delalloc_lock); |
| |
| if (snapshot) |
| set_bit(BTRFS_INODE_SNAPSHOT_FLUSH, |
| &binode->runtime_flags); |
| if (full_flush) { |
| work = btrfs_alloc_delalloc_work(inode); |
| if (!work) { |
| iput(inode); |
| ret = -ENOMEM; |
| goto out; |
| } |
| list_add_tail(&work->list, &works); |
| btrfs_queue_work(root->fs_info->flush_workers, |
| &work->work); |
| } else { |
| ret = filemap_fdatawrite_wbc(inode->i_mapping, wbc); |
| btrfs_add_delayed_iput(BTRFS_I(inode)); |
| if (ret || wbc->nr_to_write <= 0) |
| goto out; |
| } |
| cond_resched(); |
| spin_lock(&root->delalloc_lock); |
| } |
| spin_unlock(&root->delalloc_lock); |
| |
| out: |
| list_for_each_entry_safe(work, next, &works, list) { |
| list_del_init(&work->list); |
| wait_for_completion(&work->completion); |
| kfree(work); |
| } |
| |
| if (!list_empty(&splice)) { |
| spin_lock(&root->delalloc_lock); |
| list_splice_tail(&splice, &root->delalloc_inodes); |
| spin_unlock(&root->delalloc_lock); |
| } |
| mutex_unlock(&root->delalloc_mutex); |
| return ret; |
| } |
| |
| int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context) |
| { |
| struct writeback_control wbc = { |
| .nr_to_write = LONG_MAX, |
| .sync_mode = WB_SYNC_NONE, |
| .range_start = 0, |
| .range_end = LLONG_MAX, |
| }; |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| |
| if (BTRFS_FS_ERROR(fs_info)) |
| return -EROFS; |
| |
| return start_delalloc_inodes(root, &wbc, true, in_reclaim_context); |
| } |
| |
| int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr, |
| bool in_reclaim_context) |
| { |
| struct writeback_control wbc = { |
| .nr_to_write = nr, |
| .sync_mode = WB_SYNC_NONE, |
| .range_start = 0, |
| .range_end = LLONG_MAX, |
| }; |
| struct btrfs_root *root; |
| struct list_head splice; |
| int ret; |
| |
| if (BTRFS_FS_ERROR(fs_info)) |
| return -EROFS; |
| |
| INIT_LIST_HEAD(&splice); |
| |
| mutex_lock(&fs_info->delalloc_root_mutex); |
| spin_lock(&fs_info->delalloc_root_lock); |
| list_splice_init(&fs_info->delalloc_roots, &splice); |
| while (!list_empty(&splice)) { |
| /* |
| * Reset nr_to_write here so we know that we're doing a full |
| * flush. |
| */ |
| if (nr == LONG_MAX) |
| wbc.nr_to_write = LONG_MAX; |
| |
| root = list_first_entry(&splice, struct btrfs_root, |
| delalloc_root); |
| root = btrfs_grab_root(root); |
| BUG_ON(!root); |
| list_move_tail(&root->delalloc_root, |
| &fs_info->delalloc_roots); |
| spin_unlock(&fs_info->delalloc_root_lock); |
| |
| ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context); |
| btrfs_put_root(root); |
| if (ret < 0 || wbc.nr_to_write <= 0) |
| goto out; |
| spin_lock(&fs_info->delalloc_root_lock); |
| } |
| spin_unlock(&fs_info->delalloc_root_lock); |
| |
| ret = 0; |
| out: |
| if (!list_empty(&splice)) { |
| spin_lock(&fs_info->delalloc_root_lock); |
| list_splice_tail(&splice, &fs_info->delalloc_roots); |
| spin_unlock(&fs_info->delalloc_root_lock); |
| } |
| mutex_unlock(&fs_info->delalloc_root_mutex); |
| return ret; |
| } |
| |
| static int btrfs_symlink(struct mnt_idmap *idmap, struct inode *dir, |
| struct dentry *dentry, const char *symname) |
| { |
| struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); |
| struct btrfs_trans_handle *trans; |
| struct btrfs_root *root = BTRFS_I(dir)->root; |
| struct btrfs_path *path; |
| struct btrfs_key key; |
| struct inode *inode; |
| struct btrfs_new_inode_args new_inode_args = { |
| .dir = dir, |
| .dentry = dentry, |
| }; |
| unsigned int trans_num_items; |
| int err; |
| int name_len; |
| int datasize; |
| unsigned long ptr; |
| struct btrfs_file_extent_item *ei; |
| struct extent_buffer *leaf; |
| |
| name_len = strlen(symname); |
| if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info)) |
| return -ENAMETOOLONG; |
| |
| inode = new_inode(dir->i_sb); |
| if (!inode) |
| return -ENOMEM; |
| inode_init_owner(idmap, inode, dir, S_IFLNK | S_IRWXUGO); |
| inode->i_op = &btrfs_symlink_inode_operations; |
| inode_nohighmem(inode); |
| inode->i_mapping->a_ops = &btrfs_aops; |
| btrfs_i_size_write(BTRFS_I(inode), name_len); |
| inode_set_bytes(inode, name_len); |
| |
| new_inode_args.inode = inode; |
| err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); |
| if (err) |
| goto out_inode; |
| /* 1 additional item for the inline extent */ |
| trans_num_items++; |
| |
| trans = btrfs_start_transaction(root, trans_num_items); |
| if (IS_ERR(trans)) { |
| err = PTR_ERR(trans); |
| goto out_new_inode_args; |
| } |
| |
| err = btrfs_create_new_inode(trans, &new_inode_args); |
| if (err) |
| goto out; |
| |
| path = btrfs_alloc_path(); |
| if (!path) { |
| err = -ENOMEM; |
| btrfs_abort_transaction(trans, err); |
| discard_new_inode(inode); |
| inode = NULL; |
| goto out; |
| } |
| key.objectid = btrfs_ino(BTRFS_I(inode)); |
| key.offset = 0; |
| key.type = BTRFS_EXTENT_DATA_KEY; |
| datasize = btrfs_file_extent_calc_inline_size(name_len); |
| err = btrfs_insert_empty_item(trans, root, path, &key, |
| datasize); |
| if (err) { |
| btrfs_abort_transaction(trans, err); |
| btrfs_free_path(path); |
| discard_new_inode(inode); |
| inode = NULL; |
| goto out; |
| } |
| leaf = path->nodes[0]; |
| ei = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_file_extent_item); |
| btrfs_set_file_extent_generation(leaf, ei, trans->transid); |
| btrfs_set_file_extent_type(leaf, ei, |
| BTRFS_FILE_EXTENT_INLINE); |
| btrfs_set_file_extent_encryption(leaf, ei, 0); |
| btrfs_set_file_extent_compression(leaf, ei, 0); |
| btrfs_set_file_extent_other_encoding(leaf, ei, 0); |
| btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); |
| |
| ptr = btrfs_file_extent_inline_start(ei); |
| write_extent_buffer(leaf, symname, ptr, name_len); |
| btrfs_mark_buffer_dirty(leaf); |
| btrfs_free_path(path); |
| |
| d_instantiate_new(dentry, inode); |
| err = 0; |
| out: |
| btrfs_end_transaction(trans); |
| btrfs_btree_balance_dirty(fs_info); |
| out_new_inode_args: |
| btrfs_new_inode_args_destroy(&new_inode_args); |
| out_inode: |
| if (err) |
| iput(inode); |
| return err; |
| } |
| |
| static struct btrfs_trans_handle *insert_prealloc_file_extent( |
| struct btrfs_trans_handle *trans_in, |
| struct btrfs_inode *inode, |
| struct btrfs_key *ins, |
| u64 file_offset) |
| { |
| struct btrfs_file_extent_item stack_fi; |
| struct btrfs_replace_extent_info extent_info; |
| struct btrfs_trans_handle *trans = trans_in; |
| struct btrfs_path *path; |
| u64 start = ins->objectid; |
| u64 len = ins->offset; |
| int qgroup_released; |
| int ret; |
| |
| memset(&stack_fi, 0, sizeof(stack_fi)); |
| |
| btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC); |
| btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start); |
| btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len); |
| btrfs_set_stack_file_extent_num_bytes(&stack_fi, len); |
| btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len); |
| btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE); |
| /* Encryption and other encoding is reserved and all 0 */ |
| |
| qgroup_released = btrfs_qgroup_release_data(inode, file_offset, len); |
| if (qgroup_released < 0) |
| return ERR_PTR(qgroup_released); |
| |
| if (trans) { |
| ret = insert_reserved_file_extent(trans, inode, |
| file_offset, &stack_fi, |
| true, qgroup_released); |
| if (ret) |
| goto free_qgroup; |
| return trans; |
| } |
| |
| extent_info.disk_offset = start; |
| extent_info.disk_len = len; |
| extent_info.data_offset = 0; |
| extent_info.data_len = len; |
| extent_info.file_offset = file_offset; |
| extent_info.extent_buf = (char *)&stack_fi; |
| extent_info.is_new_extent = true; |
| extent_info.update_times = true; |
| extent_info.qgroup_reserved = qgroup_released; |
| extent_info.insertions = 0; |
| |
| path = btrfs_alloc_path(); |
| if (!path) { |
| ret = -ENOMEM; |
| goto free_qgroup; |
| } |
| |
| ret = btrfs_replace_file_extents(inode, path, file_offset, |
| file_offset + len - 1, &extent_info, |
| &trans); |
| btrfs_free_path(path); |
| if (ret) |
| goto free_qgroup; |
| return trans; |
| |
| free_qgroup: |
| /* |
| * We have released qgroup data range at the beginning of the function, |
| * and normally qgroup_released bytes will be freed when committing |
| * transaction. |
| * But if we error out early, we have to free what we have released |
| * or we leak qgroup data reservation. |
| */ |
| btrfs_qgroup_free_refroot(inode->root->fs_info, |
| inode->root->root_key.objectid, qgroup_released, |
| BTRFS_QGROUP_RSV_DATA); |
| return ERR_PTR(ret); |
| } |
| |
| static int __btrfs_prealloc_file_range(struct inode *inode, int mode, |
| u64 start, u64 num_bytes, u64 min_size, |
| loff_t actual_len, u64 *alloc_hint, |
| struct btrfs_trans_handle *trans) |
| { |
| struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
| struct extent_map *em; |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| struct btrfs_key ins; |
| u64 cur_offset = start; |
| u64 clear_offset = start; |
| u64 i_size; |
| u64 cur_bytes; |
| u64 last_alloc = (u64)-1; |
| int ret = 0; |
| bool own_trans = true; |
| u64 end = start + num_bytes - 1; |
| |
| if (trans) |
| own_trans = false; |
| while (num_bytes > 0) { |
| cur_bytes = min_t(u64, num_bytes, SZ_256M); |
| cur_bytes = max(cur_bytes, min_size); |
| /* |
| * If we are severely fragmented we could end up with really |
| * small allocations, so if the allocator is returning small |
| * chunks lets make its job easier by only searching for those |
| * sized chunks. |
| */ |
| cur_bytes = min(cur_bytes, last_alloc); |
| ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes, |
| min_size, 0, *alloc_hint, &ins, 1, 0); |
| if (ret) |
| break; |
| |
| /* |
| * We've reserved this space, and thus converted it from |
| * ->bytes_may_use to ->bytes_reserved. Any error that happens |
| * from here on out we will only need to clear our reservation |
| * for the remaining unreserved area, so advance our |
| * clear_offset by our extent size. |
| */ |
| clear_offset += ins.offset; |
| |
| last_alloc = ins.offset; |
| trans = insert_prealloc_file_extent(trans, BTRFS_I(inode), |
| &ins, cur_offset); |
| /* |
| * Now that we inserted the prealloc extent we can finally |
| * decrement the number of reservations in the block group. |
| * If we did it before, we could race with relocation and have |
| * relocation miss the reserved extent, making it fail later. |
| */ |
| btrfs_dec_block_group_reservations(fs_info, ins.objectid); |
| if (IS_ERR(trans)) { |
| ret = PTR_ERR(trans); |
| btrfs_free_reserved_extent(fs_info, ins.objectid, |
| ins.offset, 0); |
| break; |
| } |
| |
| em = alloc_extent_map(); |
| if (!em) { |
| btrfs_drop_extent_map_range(BTRFS_I(inode), cur_offset, |
| cur_offset + ins.offset - 1, false); |
| btrfs_set_inode_full_sync(BTRFS_I(inode)); |
| goto next; |
| } |
| |
| em->start = cur_offset; |
| em->orig_start = cur_offset; |
| em->len = ins.offset; |
| em->block_start = ins.objectid; |
| em->block_len = ins.offset; |
| em->orig_block_len = ins.offset; |
| em->ram_bytes = ins.offset; |
| set_bit(EXTENT_FLAG_PREALLOC, &em->flags); |
| em->generation = trans->transid; |
| |
| ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, true); |
| free_extent_map(em); |
| next: |
| num_bytes -= ins.offset; |
| cur_offset += ins.offset; |
| *alloc_hint = ins.objectid + ins.offset; |
| |
| inode_inc_iversion(inode); |
| inode->i_ctime = current_time(inode); |
| BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; |
| if (!(mode & FALLOC_FL_KEEP_SIZE) && |
| (actual_len > inode->i_size) && |
| (cur_offset > inode->i_size)) { |
| if (cur_offset > actual_len) |
| i_size = actual_len; |
| else |
| i_size = cur_offset; |
| i_size_write(inode, i_size); |
| btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); |
| } |
| |
| ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); |
| |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| if (own_trans) |
| btrfs_end_transaction(trans); |
| break; |
| } |
| |
| if (own_trans) { |
| btrfs_end_transaction(trans); |
| trans = NULL; |
| } |
| } |
| if (clear_offset < end) |
| btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset, |
| end - clear_offset + 1); |
| return ret; |
| } |
| |
| int btrfs_prealloc_file_range(struct inode *inode, int mode, |
| u64 start, u64 num_bytes, u64 min_size, |
| loff_t actual_len, u64 *alloc_hint) |
| { |
| return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, |
| min_size, actual_len, alloc_hint, |
| NULL); |
| } |
| |
| int btrfs_prealloc_file_range_trans(struct inode *inode, |
| struct btrfs_trans_handle *trans, int mode, |
| u64 start, u64 num_bytes, u64 min_size, |
| loff_t actual_len, u64 *alloc_hint) |
| { |
| return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, |
| min_size, actual_len, alloc_hint, trans); |
| } |
| |
| static int btrfs_permission(struct mnt_idmap *idmap, |
| struct inode *inode, int mask) |
| { |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| umode_t mode = inode->i_mode; |
| |
| if (mask & MAY_WRITE && |
| (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { |
| if (btrfs_root_readonly(root)) |
| return -EROFS; |
| if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) |
| return -EACCES; |
| } |
| return generic_permission(idmap, inode, mask); |
| } |
| |
| static int btrfs_tmpfile(struct mnt_idmap *idmap, struct inode *dir, |
| struct file *file, umode_t mode) |
| { |
| struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); |
| struct btrfs_trans_handle *trans; |
| struct btrfs_root *root = BTRFS_I(dir)->root; |
| struct inode *inode; |
| struct btrfs_new_inode_args new_inode_args = { |
| .dir = dir, |
| .dentry = file->f_path.dentry, |
| .orphan = true, |
| }; |
| unsigned int trans_num_items; |
| int ret; |
| |
| inode = new_inode(dir->i_sb); |
| if (!inode) |
| return -ENOMEM; |
| inode_init_owner(idmap, inode, dir, mode); |
| inode->i_fop = &btrfs_file_operations; |
| inode->i_op = &btrfs_file_inode_operations; |
| inode->i_mapping->a_ops = &btrfs_aops; |
| |
| new_inode_args.inode = inode; |
| ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); |
| if (ret) |
| goto out_inode; |
| |
| trans = btrfs_start_transaction(root, trans_num_items); |
| if (IS_ERR(trans)) { |
| ret = PTR_ERR(trans); |
| goto out_new_inode_args; |
| } |
| |
| ret = btrfs_create_new_inode(trans, &new_inode_args); |
| |
| /* |
| * We set number of links to 0 in btrfs_create_new_inode(), and here we |
| * set it to 1 because d_tmpfile() will issue a warning if the count is |
| * 0, through: |
| * |
| * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() |
| */ |
| set_nlink(inode, 1); |
| |
| if (!ret) { |
| d_tmpfile(file, inode); |
| unlock_new_inode(inode); |
| mark_inode_dirty(inode); |
| } |
| |
| btrfs_end_transaction(trans); |
| btrfs_btree_balance_dirty(fs_info); |
| out_new_inode_args: |
| btrfs_new_inode_args_destroy(&new_inode_args); |
| out_inode: |
| if (ret) |
| iput(inode); |
| return finish_open_simple(file, ret); |
| } |
| |
| void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end) |
| { |
| struct btrfs_fs_info *fs_info = inode->root->fs_info; |
| unsigned long index = start >> PAGE_SHIFT; |
| unsigned long end_index = end >> PAGE_SHIFT; |
| struct page *page; |
| u32 len; |
| |
| ASSERT(end + 1 - start <= U32_MAX); |
| len = end + 1 - start; |
| while (index <= end_index) { |
| page = find_get_page(inode->vfs_inode.i_mapping, index); |
| ASSERT(page); /* Pages should be in the extent_io_tree */ |
| |
| btrfs_page_set_writeback(fs_info, page, start, len); |
| put_page(page); |
| index++; |
| } |
| } |
| |
| int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info, |
| int compress_type) |
| { |
| switch (compress_type) { |
| case BTRFS_COMPRESS_NONE: |
| return BTRFS_ENCODED_IO_COMPRESSION_NONE; |
| case BTRFS_COMPRESS_ZLIB: |
| return BTRFS_ENCODED_IO_COMPRESSION_ZLIB; |
| case BTRFS_COMPRESS_LZO: |
| /* |
| * The LZO format depends on the sector size. 64K is the maximum |
| * sector size that we support. |
| */ |
| if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K) |
| return -EINVAL; |
| return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + |
| (fs_info->sectorsize_bits - 12); |
| case BTRFS_COMPRESS_ZSTD: |
| return BTRFS_ENCODED_IO_COMPRESSION_ZSTD; |
| default: |
| return -EUCLEAN; |
| } |
| } |
| |
| static ssize_t btrfs_encoded_read_inline( |
| struct kiocb *iocb, |
| struct iov_iter *iter, u64 start, |
| u64 lockend, |
| struct extent_state **cached_state, |
| u64 extent_start, size_t count, |
| struct btrfs_ioctl_encoded_io_args *encoded, |
| bool *unlocked) |
| { |
| struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); |
| struct btrfs_root *root = inode->root; |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct extent_io_tree *io_tree = &inode->io_tree; |
| struct btrfs_path *path; |
| struct extent_buffer *leaf; |
| struct btrfs_file_extent_item *item; |
| u64 ram_bytes; |
| unsigned long ptr; |
| void *tmp; |
| ssize_t ret; |
| |
| path = btrfs_alloc_path(); |
| if (!path) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), |
| extent_start, 0); |
| if (ret) { |
| if (ret > 0) { |
| /* The extent item disappeared? */ |
| ret = -EIO; |
| } |
| goto out; |
| } |
| leaf = path->nodes[0]; |
| item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); |
| |
| ram_bytes = btrfs_file_extent_ram_bytes(leaf, item); |
| ptr = btrfs_file_extent_inline_start(item); |
| |
| encoded->len = min_t(u64, extent_start + ram_bytes, |
| inode->vfs_inode.i_size) - iocb->ki_pos; |
| ret = btrfs_encoded_io_compression_from_extent(fs_info, |
| btrfs_file_extent_compression(leaf, item)); |
| if (ret < 0) |
| goto out; |
| encoded->compression = ret; |
| if (encoded->compression) { |
| size_t inline_size; |
| |
| inline_size = btrfs_file_extent_inline_item_len(leaf, |
| path->slots[0]); |
| if (inline_size > count) { |
| ret = -ENOBUFS; |
| goto out; |
| } |
| count = inline_size; |
| encoded->unencoded_len = ram_bytes; |
| encoded->unencoded_offset = iocb->ki_pos - extent_start; |
| } else { |
| count = min_t(u64, count, encoded->len); |
| encoded->len = count; |
| encoded->unencoded_len = count; |
| ptr += iocb->ki_pos - extent_start; |
| } |
| |
| tmp = kmalloc(count, GFP_NOFS); |
| if (!tmp) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| read_extent_buffer(leaf, tmp, ptr, count); |
| btrfs_release_path(path); |
| unlock_extent(io_tree, start, lockend, cached_state); |
| btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); |
| *unlocked = true; |
| |
| ret = copy_to_iter(tmp, count, iter); |
| if (ret != count) |
| ret = -EFAULT; |
| kfree(tmp); |
| out: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| struct btrfs_encoded_read_private { |
| struct btrfs_inode *inode; |
| u64 file_offset; |
| wait_queue_head_t wait; |
| atomic_t pending; |
| blk_status_t status; |
| }; |
| |
| static void btrfs_encoded_read_endio(struct btrfs_bio *bbio) |
| { |
| struct btrfs_encoded_read_private *priv = bbio->private; |
| |
| if (bbio->bio.bi_status) { |
| /* |
| * The memory barrier implied by the atomic_dec_return() here |
| * pairs with the memory barrier implied by the |
| * atomic_dec_return() or io_wait_event() in |
| * btrfs_encoded_read_regular_fill_pages() to ensure that this |
| * write is observed before the load of status in |
| * btrfs_encoded_read_regular_fill_pages(). |
| */ |
| WRITE_ONCE(priv->status, bbio->bio.bi_status); |
| } |
| if (!atomic_dec_return(&priv->pending)) |
| wake_up(&priv->wait); |
| bio_put(&bbio->bio); |
| } |
| |
| int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode, |
| u64 file_offset, u64 disk_bytenr, |
| u64 disk_io_size, struct page **pages) |
| { |
| struct btrfs_encoded_read_private priv = { |
| .inode = inode, |
| .file_offset = file_offset, |
| .pending = ATOMIC_INIT(1), |
| }; |
| unsigned long i = 0; |
| u64 cur = 0; |
| |
| init_waitqueue_head(&priv.wait); |
| /* Submit bios for the extent, splitting due to bio limits as necessary. */ |
| while (cur < disk_io_size) { |
| struct bio *bio = NULL; |
| u64 remaining = disk_io_size - cur; |
| |
| while (bio || remaining) { |
| size_t bytes = min_t(u64, remaining, PAGE_SIZE); |
| |
| if (!bio) { |
| bio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, |
| inode, |
| btrfs_encoded_read_endio, |
| &priv); |
| bio->bi_iter.bi_sector = |
| (disk_bytenr + cur) >> SECTOR_SHIFT; |
| } |
| |
| if (!bytes || |
| bio_add_page(bio, pages[i], bytes, 0) < bytes) { |
| atomic_inc(&priv.pending); |
| btrfs_submit_bio(bio, 0); |
| bio = NULL; |
| continue; |
| } |
| |
| i++; |
| cur += bytes; |
| remaining -= bytes; |
| } |
| } |
| |
| if (atomic_dec_return(&priv.pending)) |
| io_wait_event(priv.wait, !atomic_read(&priv.pending)); |
| /* See btrfs_encoded_read_endio() for ordering. */ |
| return blk_status_to_errno(READ_ONCE(priv.status)); |
| } |
| |
| static ssize_t btrfs_encoded_read_regular(struct kiocb *iocb, |
| struct iov_iter *iter, |
| u64 start, u64 lockend, |
| struct extent_state **cached_state, |
| u64 disk_bytenr, u64 disk_io_size, |
| size_t count, bool compressed, |
| bool *unlocked) |
| { |
| struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); |
| struct extent_io_tree *io_tree = &inode->io_tree; |
| struct page **pages; |
| unsigned long nr_pages, i; |
| u64 cur; |
| size_t page_offset; |
| ssize_t ret; |
| |
| nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE); |
| pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); |
| if (!pages) |
| return -ENOMEM; |
| ret = btrfs_alloc_page_array(nr_pages, pages); |
| if (ret) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| ret = btrfs_encoded_read_regular_fill_pages(inode, start, disk_bytenr, |
| disk_io_size, pages); |
| if (ret) |
| goto out; |
| |
| unlock_extent(io_tree, start, lockend, cached_state); |
| btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); |
| *unlocked = true; |
| |
| if (compressed) { |
| i = 0; |
| page_offset = 0; |
| } else { |
| i = (iocb->ki_pos - start) >> PAGE_SHIFT; |
| page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1); |
| } |
| cur = 0; |
| while (cur < count) { |
| size_t bytes = min_t(size_t, count - cur, |
| PAGE_SIZE - page_offset); |
| |
| if (copy_page_to_iter(pages[i], page_offset, bytes, |
| iter) != bytes) { |
| ret = -EFAULT; |
| goto out; |
| } |
| i++; |
| cur += bytes; |
| page_offset = 0; |
| } |
| ret = count; |
| out: |
| for (i = 0; i < nr_pages; i++) { |
| if (pages[i]) |
| __free_page(pages[i]); |
| } |
| kfree(pages); |
| return ret; |
| } |
| |
| ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter, |
| struct btrfs_ioctl_encoded_io_args *encoded) |
| { |
| struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); |
| struct btrfs_fs_info *fs_info = inode->root->fs_info; |
| struct extent_io_tree *io_tree = &inode->io_tree; |
| ssize_t ret; |
| size_t count = iov_iter_count(iter); |
| u64 start, lockend, disk_bytenr, disk_io_size; |
| struct extent_state *cached_state = NULL; |
| struct extent_map *em; |
| bool unlocked = false; |
| |
| file_accessed(iocb->ki_filp); |
| |
| btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED); |
| |
| if (iocb->ki_pos >= inode->vfs_inode.i_size) { |
| btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); |
| return 0; |
| } |
| start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize); |
| /* |
| * We don't know how long the extent containing iocb->ki_pos is, but if |
| * it's compressed we know that it won't be longer than this. |
| */ |
| lockend = start + BTRFS_MAX_UNCOMPRESSED - 1; |
| |
| for (;;) { |
| struct btrfs_ordered_extent *ordered; |
| |
| ret = btrfs_wait_ordered_range(&inode->vfs_inode, start, |
| lockend - start + 1); |
| if (ret) |
| goto out_unlock_inode; |
| lock_extent(io_tree, start, lockend, &cached_state); |
| ordered = btrfs_lookup_ordered_range(inode, start, |
| lockend - start + 1); |
| if (!ordered) |
| break; |
| btrfs_put_ordered_extent(ordered); |
| unlock_extent(io_tree, start, lockend, &cached_state); |
| cond_resched(); |
| } |
| |
| em = btrfs_get_extent(inode, NULL, 0, start, lockend - start + 1); |
| if (IS_ERR(em)) { |
| ret = PTR_ERR(em); |
| goto out_unlock_extent; |
| } |
| |
| if (em->block_start == EXTENT_MAP_INLINE) { |
| u64 extent_start = em->start; |
| |
| /* |
| * For inline extents we get everything we need out of the |
| * extent item. |
| */ |
| free_extent_map(em); |
| em = NULL; |
| ret = btrfs_encoded_read_inline(iocb, iter, start, lockend, |
| &cached_state, extent_start, |
| count, encoded, &unlocked); |
| goto out; |
| } |
| |
| /* |
| * We only want to return up to EOF even if the extent extends beyond |
| * that. |
| */ |
| encoded->len = min_t(u64, extent_map_end(em), |
| inode->vfs_inode.i_size) - iocb->ki_pos; |
| if (em->block_start == EXTENT_MAP_HOLE || |
| test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { |
| disk_bytenr = EXTENT_MAP_HOLE; |
| count = min_t(u64, count, encoded->len); |
| encoded->len = count; |
| encoded->unencoded_len = count; |
| } else if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { |
| disk_bytenr = em->block_start; |
| /* |
| * Bail if the buffer isn't large enough to return the whole |
| * compressed extent. |
| */ |
| if (em->block_len > count) { |
| ret = -ENOBUFS; |
| goto out_em; |
| } |
| disk_io_size = em->block_len; |
| count = em->block_len; |
| encoded->unencoded_len = em->ram_bytes; |
| encoded->unencoded_offset = iocb->ki_pos - em->orig_start; |
| ret = btrfs_encoded_io_compression_from_extent(fs_info, |
| em->compress_type); |
| if (ret < 0) |
| goto out_em; |
| encoded->compression = ret; |
| } else { |
| disk_bytenr = em->block_start + (start - em->start); |
| if (encoded->len > count) |
| encoded->len = count; |
| /* |
| * Don't read beyond what we locked. This also limits the page |
| * allocations that we'll do. |
| */ |
| disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start; |
| count = start + disk_io_size - iocb->ki_pos; |
| encoded->len = count; |
| encoded->unencoded_len = count; |
| disk_io_size = ALIGN(disk_io_size, fs_info->sectorsize); |
| } |
| free_extent_map(em); |
| em = NULL; |
| |
| if (disk_bytenr == EXTENT_MAP_HOLE) { |
| unlock_extent(io_tree, start, lockend, &cached_state); |
| btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); |
| unlocked = true; |
| ret = iov_iter_zero(count, iter); |
| if (ret != count) |
| ret = -EFAULT; |
| } else { |
| ret = btrfs_encoded_read_regular(iocb, iter, start, lockend, |
| &cached_state, disk_bytenr, |
| disk_io_size, count, |
| encoded->compression, |
| &unlocked); |
| } |
| |
| out: |
| if (ret >= 0) |
| iocb->ki_pos += encoded->len; |
| out_em: |
| free_extent_map(em); |
| out_unlock_extent: |
| if (!unlocked) |
| unlock_extent(io_tree, start, lockend, &cached_state); |
| out_unlock_inode: |
| if (!unlocked) |
| btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); |
| return ret; |
| } |
| |
| ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from, |
| const struct btrfs_ioctl_encoded_io_args *encoded) |
| { |
| struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); |
| struct btrfs_root *root = inode->root; |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct extent_io_tree *io_tree = &inode->io_tree; |
| struct extent_changeset *data_reserved = NULL; |
| struct extent_state *cached_state = NULL; |
| int compression; |
| size_t orig_count; |
| u64 start, end; |
| u64 num_bytes, ram_bytes, disk_num_bytes; |
| unsigned long nr_pages, i; |
| struct page **pages; |
| struct btrfs_key ins; |
| bool extent_reserved = false; |
| struct extent_map *em; |
| ssize_t ret; |
| |
| switch (encoded->compression) { |
| case BTRFS_ENCODED_IO_COMPRESSION_ZLIB: |
| compression = BTRFS_COMPRESS_ZLIB; |
| break; |
| case BTRFS_ENCODED_IO_COMPRESSION_ZSTD: |
| compression = BTRFS_COMPRESS_ZSTD; |
| break; |
| case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K: |
| case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K: |
| case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K: |
| case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K: |
| case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K: |
| /* The sector size must match for LZO. */ |
| if (encoded->compression - |
| BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 != |
| fs_info->sectorsize_bits) |
| return -EINVAL; |
| compression = BTRFS_COMPRESS_LZO; |
| break; |
| default: |
| return -EINVAL; |
| } |
| if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE) |
| return -EINVAL; |
| |
| orig_count = iov_iter_count(from); |
| |
| /* The extent size must be sane. */ |
| if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED || |
| orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0) |
| return -EINVAL; |
| |
| /* |
| * The compressed data must be smaller than the decompressed data. |
| * |
| * It's of course possible for data to compress to larger or the same |
| * size, but the buffered I/O path falls back to no compression for such |
| * data, and we don't want to break any assumptions by creating these |
| * extents. |
| * |
| * Note that this is less strict than the current check we have that the |
| * compressed data must be at least one sector smaller than the |
| * decompressed data. We only want to enforce the weaker requirement |
| * from old kernels that it is at least one byte smaller. |
| */ |
| if (orig_count >= encoded->unencoded_len) |
| return -EINVAL; |
| |
| /* The extent must start on a sector boundary. */ |
| start = iocb->ki_pos; |
| if (!IS_ALIGNED(start, fs_info->sectorsize)) |
| return -EINVAL; |
| |
| /* |
| * The extent must end on a sector boundary. However, we allow a write |
| * which ends at or extends i_size to have an unaligned length; we round |
| * up the extent size and set i_size to the unaligned end. |
| */ |
| if (start + encoded->len < inode->vfs_inode.i_size && |
| !IS_ALIGNED(start + encoded->len, fs_info->sectorsize)) |
| return -EINVAL; |
| |
| /* Finally, the offset in the unencoded data must be sector-aligned. */ |
| if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize)) |
| return -EINVAL; |
| |
| num_bytes = ALIGN(encoded->len, fs_info->sectorsize); |
| ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize); |
| end = start + num_bytes - 1; |
| |
| /* |
| * If the extent cannot be inline, the compressed data on disk must be |
| * sector-aligned. For convenience, we extend it with zeroes if it |
| * isn't. |
| */ |
| disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize); |
| nr_pages = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE); |
| pages = kvcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL_ACCOUNT); |
| if (!pages) |
| return -ENOMEM; |
| for (i = 0; i < nr_pages; i++) { |
| size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from)); |
| char *kaddr; |
| |
| pages[i] = alloc_page(GFP_KERNEL_ACCOUNT); |
| if (!pages[i]) { |
| ret = -ENOMEM; |
| goto out_pages; |
| } |
| kaddr = kmap_local_page(pages[i]); |
| if (copy_from_iter(kaddr, bytes, from) != bytes) { |
| kunmap_local(kaddr); |
| ret = -EFAULT; |
| goto out_pages; |
| } |
| if (bytes < PAGE_SIZE) |
| memset(kaddr + bytes, 0, PAGE_SIZE - bytes); |
| kunmap_local(kaddr); |
| } |
| |
| for (;;) { |
| struct btrfs_ordered_extent *ordered; |
| |
| ret = btrfs_wait_ordered_range(&inode->vfs_inode, start, num_bytes); |
| if (ret) |
| goto out_pages; |
| ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping, |
| start >> PAGE_SHIFT, |
| end >> PAGE_SHIFT); |
| if (ret) |
| goto out_pages; |
| lock_extent(io_tree, start, end, &cached_state); |
| ordered = btrfs_lookup_ordered_range(inode, start, num_bytes); |
| if (!ordered && |
| !filemap_range_has_page(inode->vfs_inode.i_mapping, start, end)) |
| break; |
| if (ordered) |
| btrfs_put_ordered_extent(ordered); |
| unlock_extent(io_tree, start, end, &cached_state); |
| cond_resched(); |
| } |
| |
| /* |
| * We don't use the higher-level delalloc space functions because our |
| * num_bytes and disk_num_bytes are different. |
| */ |
| ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes); |
| if (ret) |
| goto out_unlock; |
| ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes); |
| if (ret) |
| goto out_free_data_space; |
| ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes, |
| false); |
| if (ret) |
| goto out_qgroup_free_data; |
| |
| /* Try an inline extent first. */ |
| if (start == 0 && encoded->unencoded_len == encoded->len && |
| encoded->unencoded_offset == 0) { |
| ret = cow_file_range_inline(inode, encoded->len, orig_count, |
| compression, pages, true); |
| if (ret <= 0) { |
| if (ret == 0) |
| ret = orig_count; |
| goto out_delalloc_release; |
| } |
| } |
| |
| ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes, |
| disk_num_bytes, 0, 0, &ins, 1, 1); |
| if (ret) |
| goto out_delalloc_release; |
| extent_reserved = true; |
| |
| em = create_io_em(inode, start, num_bytes, |
| start - encoded->unencoded_offset, ins.objectid, |
| ins.offset, ins.offset, ram_bytes, compression, |
| BTRFS_ORDERED_COMPRESSED); |
| if (IS_ERR(em)) { |
| ret = PTR_ERR(em); |
| goto out_free_reserved; |
| } |
| free_extent_map(em); |
| |
| ret = btrfs_add_ordered_extent(inode, start, num_bytes, ram_bytes, |
| ins.objectid, ins.offset, |
| encoded->unencoded_offset, |
| (1 << BTRFS_ORDERED_ENCODED) | |
| (1 << BTRFS_ORDERED_COMPRESSED), |
| compression); |
| if (ret) { |
| btrfs_drop_extent_map_range(inode, start, end, false); |
| goto out_free_reserved; |
| } |
| btrfs_dec_block_group_reservations(fs_info, ins.objectid); |
| |
| if (start + encoded->len > inode->vfs_inode.i_size) |
| i_size_write(&inode->vfs_inode, start + encoded->len); |
| |
| unlock_extent(io_tree, start, end, &cached_state); |
| |
| btrfs_delalloc_release_extents(inode, num_bytes); |
| |
| if (btrfs_submit_compressed_write(inode, start, num_bytes, ins.objectid, |
| ins.offset, pages, nr_pages, 0, NULL, |
| false)) { |
| btrfs_writepage_endio_finish_ordered(inode, pages[0], start, end, 0); |
| ret = -EIO; |
| goto out_pages; |
| } |
| ret = orig_count; |
| goto out; |
| |
| out_free_reserved: |
| btrfs_dec_block_group_reservations(fs_info, ins.objectid); |
| btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); |
| out_delalloc_release: |
| btrfs_delalloc_release_extents(inode, num_bytes); |
| btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0); |
| out_qgroup_free_data: |
| if (ret < 0) |
| btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes); |
| out_free_data_space: |
| /* |
| * If btrfs_reserve_extent() succeeded, then we already decremented |
| * bytes_may_use. |
| */ |
| if (!extent_reserved) |
| btrfs_free_reserved_data_space_noquota(fs_info, disk_num_bytes); |
| out_unlock: |
| unlock_extent(io_tree, start, end, &cached_state); |
| out_pages: |
| for (i = 0; i < nr_pages; i++) { |
| if (pages[i]) |
| __free_page(pages[i]); |
| } |
| kvfree(pages); |
| out: |
| if (ret >= 0) |
| iocb->ki_pos += encoded->len; |
| return ret; |
| } |
| |
| #ifdef CONFIG_SWAP |
| /* |
| * Add an entry indicating a block group or device which is pinned by a |
| * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a |
| * negative errno on failure. |
| */ |
| static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr, |
| bool is_block_group) |
| { |
| struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; |
| struct btrfs_swapfile_pin *sp, *entry; |
| struct rb_node **p; |
| struct rb_node *parent = NULL; |
| |
| sp = kmalloc(sizeof(*sp), GFP_NOFS); |
| if (!sp) |
| return -ENOMEM; |
| sp->ptr = ptr; |
| sp->inode = inode; |
| sp->is_block_group = is_block_group; |
| sp->bg_extent_count = 1; |
| |
| spin_lock(&fs_info->swapfile_pins_lock); |
| p = &fs_info->swapfile_pins.rb_node; |
| while (*p) { |
| parent = *p; |
| entry = rb_entry(parent, struct btrfs_swapfile_pin, node); |
| if (sp->ptr < entry->ptr || |
| (sp->ptr == entry->ptr && sp->inode < entry->inode)) { |
| p = &(*p)->rb_left; |
| } else if (sp->ptr > entry->ptr || |
| (sp->ptr == entry->ptr && sp->inode > entry->inode)) { |
| p = &(*p)->rb_right; |
| } else { |
| if (is_block_group) |
| entry->bg_extent_count++; |
| spin_unlock(&fs_info->swapfile_pins_lock); |
| kfree(sp); |
| return 1; |
| } |
| } |
| rb_link_node(&sp->node, parent, p); |
| rb_insert_color(&sp->node, &fs_info->swapfile_pins); |
| spin_unlock(&fs_info->swapfile_pins_lock); |
| return 0; |
| } |
| |
| /* Free all of the entries pinned by this swapfile. */ |
| static void btrfs_free_swapfile_pins(struct inode *inode) |
| { |
| struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; |
| struct btrfs_swapfile_pin *sp; |
| struct rb_node *node, *next; |
| |
| spin_lock(&fs_info->swapfile_pins_lock); |
| node = rb_first(&fs_info->swapfile_pins); |
| while (node) { |
| next = rb_next(node); |
| sp = rb_entry(node, struct btrfs_swapfile_pin, node); |
| if (sp->inode == inode) { |
| rb_erase(&sp->node, &fs_info->swapfile_pins); |
| if (sp->is_block_group) { |
| btrfs_dec_block_group_swap_extents(sp->ptr, |
| sp->bg_extent_count); |
| btrfs_put_block_group(sp->ptr); |
| } |
| kfree(sp); |
| } |
| node = next; |
| } |
| spin_unlock(&fs_info->swapfile_pins_lock); |
| } |
| |
| struct btrfs_swap_info { |
| u64 start; |
| u64 block_start; |
| u64 block_len; |
| u64 lowest_ppage; |
| u64 highest_ppage; |
| unsigned long nr_pages; |
| int nr_extents; |
| }; |
| |
| static int btrfs_add_swap_extent(struct swap_info_struct *sis, |
| struct btrfs_swap_info *bsi) |
| { |
| unsigned long nr_pages; |
| unsigned long max_pages; |
| u64 first_ppage, first_ppage_reported, next_ppage; |
| int ret; |
| |
| /* |
| * Our swapfile may have had its size extended after the swap header was |
| * written. In that case activating the swapfile should not go beyond |
| * the max size set in the swap header. |
| */ |
| if (bsi->nr_pages >= sis->max) |
| return 0; |
| |
| max_pages = sis->max - bsi->nr_pages; |
| first_ppage = PAGE_ALIGN(bsi->block_start) >> PAGE_SHIFT; |
| next_ppage = PAGE_ALIGN_DOWN(bsi->block_start + bsi->block_len) >> PAGE_SHIFT; |
| |
| if (first_ppage >= next_ppage) |
| return 0; |
| nr_pages = next_ppage - first_ppage; |
| nr_pages = min(nr_pages, max_pages); |
| |
| first_ppage_reported = first_ppage; |
| if (bsi->start == 0) |
| first_ppage_reported++; |
| if (bsi->lowest_ppage > first_ppage_reported) |
| bsi->lowest_ppage = first_ppage_reported; |
| if (bsi->highest_ppage < (next_ppage - 1)) |
| bsi->highest_ppage = next_ppage - 1; |
| |
| ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage); |
| if (ret < 0) |
| return ret; |
| bsi->nr_extents += ret; |
| bsi->nr_pages += nr_pages; |
| return 0; |
| } |
| |
| static void btrfs_swap_deactivate(struct file *file) |
| { |
| struct inode *inode = file_inode(file); |
| |
| btrfs_free_swapfile_pins(inode); |
| atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles); |
| } |
| |
| static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, |
| sector_t *span) |
| { |
| struct inode *inode = file_inode(file); |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; |
| struct extent_state *cached_state = NULL; |
| struct extent_map *em = NULL; |
| struct btrfs_device *device = NULL; |
| struct btrfs_swap_info bsi = { |
| .lowest_ppage = (sector_t)-1ULL, |
| }; |
| int ret = 0; |
| u64 isize; |
| u64 start; |
| |
| /* |
| * If the swap file was just created, make sure delalloc is done. If the |
| * file changes again after this, the user is doing something stupid and |
| * we don't really care. |
| */ |
| ret = btrfs_wait_ordered_range(inode, 0, (u64)-1); |
| if (ret) |
| return ret; |
| |
| /* |
| * The inode is locked, so these flags won't change after we check them. |
| */ |
| if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) { |
| btrfs_warn(fs_info, "swapfile must not be compressed"); |
| return -EINVAL; |
| } |
| if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) { |
| btrfs_warn(fs_info, "swapfile must not be copy-on-write"); |
| return -EINVAL; |
| } |
| if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { |
| btrfs_warn(fs_info, "swapfile must not be checksummed"); |
| return -EINVAL; |
| } |
| |
| /* |
| * Balance or device remove/replace/resize can move stuff around from |
| * under us. The exclop protection makes sure they aren't running/won't |
| * run concurrently while we are mapping the swap extents, and |
| * fs_info->swapfile_pins prevents them from running while the swap |
| * file is active and moving the extents. Note that this also prevents |
| * a concurrent device add which isn't actually necessary, but it's not |
| * really worth the trouble to allow it. |
| */ |
| if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) { |
| btrfs_warn(fs_info, |
| "cannot activate swapfile while exclusive operation is running"); |
| return -EBUSY; |
| } |
| |
| /* |
| * Prevent snapshot creation while we are activating the swap file. |
| * We do not want to race with snapshot creation. If snapshot creation |
| * already started before we bumped nr_swapfiles from 0 to 1 and |
| * completes before the first write into the swap file after it is |
| * activated, than that write would fallback to COW. |
| */ |
| if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) { |
| btrfs_exclop_finish(fs_info); |
| btrfs_warn(fs_info, |
| "cannot activate swapfile because snapshot creation is in progress"); |
| return -EINVAL; |
| } |
| /* |
| * Snapshots can create extents which require COW even if NODATACOW is |
| * set. We use this counter to prevent snapshots. We must increment it |
| * before walking the extents because we don't want a concurrent |
| * snapshot to run after we've already checked the extents. |
| * |
| * It is possible that subvolume is marked for deletion but still not |
| * removed yet. To prevent this race, we check the root status before |
| * activating the swapfile. |
| */ |
| spin_lock(&root->root_item_lock); |
| if (btrfs_root_dead(root)) { |
| spin_unlock(&root->root_item_lock); |
| |
| btrfs_exclop_finish(fs_info); |
| btrfs_warn(fs_info, |
| "cannot activate swapfile because subvolume %llu is being deleted", |
| root->root_key.objectid); |
| return -EPERM; |
| } |
| atomic_inc(&root->nr_swapfiles); |
| spin_unlock(&root->root_item_lock); |
| |
| isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize); |
| |
| lock_extent(io_tree, 0, isize - 1, &cached_state); |
| start = 0; |
| while (start < isize) { |
| u64 logical_block_start, physical_block_start; |
| struct btrfs_block_group *bg; |
| u64 len = isize - start; |
| |
| em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len); |
| if (IS_ERR(em)) { |
| ret = PTR_ERR(em); |
| goto out; |
| } |
| |
| if (em->block_start == EXTENT_MAP_HOLE) { |
| btrfs_warn(fs_info, "swapfile must not have holes"); |
| ret = -EINVAL; |
| goto out; |
| } |
| if (em->block_start == EXTENT_MAP_INLINE) { |
| /* |
| * It's unlikely we'll ever actually find ourselves |
| * here, as a file small enough to fit inline won't be |
| * big enough to store more than the swap header, but in |
| * case something changes in the future, let's catch it |
| * here rather than later. |
| */ |
| btrfs_warn(fs_info, "swapfile must not be inline"); |
| ret = -EINVAL; |
| goto out; |
| } |
| if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { |
| btrfs_warn(fs_info, "swapfile must not be compressed"); |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| logical_block_start = em->block_start + (start - em->start); |
| len = min(len, em->len - (start - em->start)); |
| free_extent_map(em); |
| em = NULL; |
| |
| ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, false, true); |
| if (ret < 0) { |
| goto out; |
| } else if (ret) { |
| ret = 0; |
| } else { |
| btrfs_warn(fs_info, |
| "swapfile must not be copy-on-write"); |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| em = btrfs_get_chunk_map(fs_info, logical_block_start, len); |
| if (IS_ERR(em)) { |
| ret = PTR_ERR(em); |
| goto out; |
| } |
| |
| if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { |
| btrfs_warn(fs_info, |
| "swapfile must have single data profile"); |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| if (device == NULL) { |
| device = em->map_lookup->stripes[0].dev; |
| ret = btrfs_add_swapfile_pin(inode, device, false); |
| if (ret == 1) |
| ret = 0; |
| else if (ret) |
| goto out; |
| } else if (device != em->map_lookup->stripes[0].dev) { |
| btrfs_warn(fs_info, "swapfile must be on one device"); |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| physical_block_start = (em->map_lookup->stripes[0].physical + |
| (logical_block_start - em->start)); |
| len = min(len, em->len - (logical_block_start - em->start)); |
| free_extent_map(em); |
| em = NULL; |
| |
| bg = btrfs_lookup_block_group(fs_info, logical_block_start); |
| if (!bg) { |
| btrfs_warn(fs_info, |
| "could not find block group containing swapfile"); |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| if (!btrfs_inc_block_group_swap_extents(bg)) { |
| btrfs_warn(fs_info, |
| "block group for swapfile at %llu is read-only%s", |
| bg->start, |
| atomic_read(&fs_info->scrubs_running) ? |
| " (scrub running)" : ""); |
| btrfs_put_block_group(bg); |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| ret = btrfs_add_swapfile_pin(inode, bg, true); |
| if (ret) { |
| btrfs_put_block_group(bg); |
| if (ret == 1) |
| ret = 0; |
| else |
| goto out; |
| } |
| |
| if (bsi.block_len && |
| bsi.block_start + bsi.block_len == physical_block_start) { |
| bsi.block_len += len; |
| } else { |
| if (bsi.block_len) { |
| ret = btrfs_add_swap_extent(sis, &bsi); |
| if (ret) |
| goto out; |
| } |
| bsi.start = start; |
| bsi.block_start = physical_block_start; |
| bsi.block_len = len; |
| } |
| |
| start += len; |
| } |
| |
| if (bsi.block_len) |
| ret = btrfs_add_swap_extent(sis, &bsi); |
| |
| out: |
| if (!IS_ERR_OR_NULL(em)) |
| free_extent_map(em); |
| |
| unlock_extent(io_tree, 0, isize - 1, &cached_state); |
| |
| if (ret) |
| btrfs_swap_deactivate(file); |
| |
| btrfs_drew_write_unlock(&root->snapshot_lock); |
| |
| btrfs_exclop_finish(fs_info); |
| |
| if (ret) |
| return ret; |
| |
| if (device) |
| sis->bdev = device->bdev; |
| *span = bsi.highest_ppage - bsi.lowest_ppage + 1; |
| sis->max = bsi.nr_pages; |
| sis->pages = bsi.nr_pages - 1; |
| sis->highest_bit = bsi.nr_pages - 1; |
| return bsi.nr_extents; |
| } |
| #else |
| static void btrfs_swap_deactivate(struct file *file) |
| { |
| } |
| |
| static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, |
| sector_t *span) |
| { |
| return -EOPNOTSUPP; |
| } |
| #endif |
| |
| /* |
| * Update the number of bytes used in the VFS' inode. When we replace extents in |
| * a range (clone, dedupe, fallocate's zero range), we must update the number of |
| * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls |
| * always get a correct value. |
| */ |
| void btrfs_update_inode_bytes(struct btrfs_inode *inode, |
| const u64 add_bytes, |
| const u64 del_bytes) |
| { |
| if (add_bytes == del_bytes) |
| return; |
| |
| spin_lock(&inode->lock); |
| if (del_bytes > 0) |
| inode_sub_bytes(&inode->vfs_inode, del_bytes); |
| if (add_bytes > 0) |
| inode_add_bytes(&inode->vfs_inode, add_bytes); |
| spin_unlock(&inode->lock); |
| } |
| |
| /* |
| * Verify that there are no ordered extents for a given file range. |
| * |
| * @inode: The target inode. |
| * @start: Start offset of the file range, should be sector size aligned. |
| * @end: End offset (inclusive) of the file range, its value +1 should be |
| * sector size aligned. |
| * |
| * This should typically be used for cases where we locked an inode's VFS lock in |
| * exclusive mode, we have also locked the inode's i_mmap_lock in exclusive mode, |
| * we have flushed all delalloc in the range, we have waited for all ordered |
| * extents in the range to complete and finally we have locked the file range in |
| * the inode's io_tree. |
| */ |
| void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end) |
| { |
| struct btrfs_root *root = inode->root; |
| struct btrfs_ordered_extent *ordered; |
| |
| if (!IS_ENABLED(CONFIG_BTRFS_ASSERT)) |
| return; |
| |
| ordered = btrfs_lookup_first_ordered_range(inode, start, end + 1 - start); |
| if (ordered) { |
| btrfs_err(root->fs_info, |
| "found unexpected ordered extent in file range [%llu, %llu] for inode %llu root %llu (ordered range [%llu, %llu])", |
| start, end, btrfs_ino(inode), root->root_key.objectid, |
| ordered->file_offset, |
| ordered->file_offset + ordered->num_bytes - 1); |
| btrfs_put_ordered_extent(ordered); |
| } |
| |
| ASSERT(ordered == NULL); |
| } |
| |
| static const struct inode_operations btrfs_dir_inode_operations = { |
| .getattr = btrfs_getattr, |
| .lookup = btrfs_lookup, |
| .create = btrfs_create, |
| .unlink = btrfs_unlink, |
| .link = btrfs_link, |
| .mkdir = btrfs_mkdir, |
| .rmdir = btrfs_rmdir, |
| .rename = btrfs_rename2, |
| .symlink = btrfs_symlink, |
| .setattr = btrfs_setattr, |
| .mknod = btrfs_mknod, |
| .listxattr = btrfs_listxattr, |
| .permission = btrfs_permission, |
| .get_inode_acl = btrfs_get_acl, |
| .set_acl = btrfs_set_acl, |
| .update_time = btrfs_update_time, |
| .tmpfile = btrfs_tmpfile, |
| .fileattr_get = btrfs_fileattr_get, |
| .fileattr_set = btrfs_fileattr_set, |
| }; |
| |
| static const struct file_operations btrfs_dir_file_operations = { |
| .llseek = generic_file_llseek, |
| .read = generic_read_dir, |
| .iterate_shared = btrfs_real_readdir, |
| .open = btrfs_opendir, |
| .unlocked_ioctl = btrfs_ioctl, |
| #ifdef CONFIG_COMPAT |
| .compat_ioctl = btrfs_compat_ioctl, |
| #endif |
| .release = btrfs_release_file, |
| .fsync = btrfs_sync_file, |
| }; |
| |
| /* |
| * btrfs doesn't support the bmap operation because swapfiles |
| * use bmap to make a mapping of extents in the file. They assume |
| * these extents won't change over the life of the file and they |
| * use the bmap result to do IO directly to the drive. |
| * |
| * the btrfs bmap call would return logical addresses that aren't |
| * suitable for IO and they also will change frequently as COW |
| * operations happen. So, swapfile + btrfs == corruption. |
| * |
| * For now we're avoiding this by dropping bmap. |
| */ |
| static const struct address_space_operations btrfs_aops = { |
| .read_folio = btrfs_read_folio, |
| .writepages = btrfs_writepages, |
| .readahead = btrfs_readahead, |
| .direct_IO = noop_direct_IO, |
| .invalidate_folio = btrfs_invalidate_folio, |
| .release_folio = btrfs_release_folio, |
| .migrate_folio = btrfs_migrate_folio, |
| .dirty_folio = filemap_dirty_folio, |
| .error_remove_page = generic_error_remove_page, |
| .swap_activate = btrfs_swap_activate, |
| .swap_deactivate = btrfs_swap_deactivate, |
| }; |
| |
| static const struct inode_operations btrfs_file_inode_operations = { |
| .getattr = btrfs_getattr, |
| .setattr = btrfs_setattr, |
| .listxattr = btrfs_listxattr, |
| .permission = btrfs_permission, |
| .fiemap = btrfs_fiemap, |
| .get_inode_acl = btrfs_get_acl, |
| .set_acl = btrfs_set_acl, |
| .update_time = btrfs_update_time, |
| .fileattr_get = btrfs_fileattr_get, |
| .fileattr_set = btrfs_fileattr_set, |
| }; |
| static const struct inode_operations btrfs_special_inode_operations = { |
| .getattr = btrfs_getattr, |
| .setattr = btrfs_setattr, |
| .permission = btrfs_permission, |
| .listxattr = btrfs_listxattr, |
| .get_inode_acl = btrfs_get_acl, |
| .set_acl = btrfs_set_acl, |
| .update_time = btrfs_update_time, |
| }; |
| static const struct inode_operations btrfs_symlink_inode_operations = { |
| .get_link = page_get_link, |
| .getattr = btrfs_getattr, |
| .setattr = btrfs_setattr, |
| .permission = btrfs_permission, |
| .listxattr = btrfs_listxattr, |
| .update_time = btrfs_update_time, |
| }; |
| |
| const struct dentry_operations btrfs_dentry_operations = { |
| .d_delete = btrfs_dentry_delete, |
| }; |