blob: 49d7a6ad7e3975f7834aa6c3be23e4db67b70cd8 [file] [log] [blame] [edit]
// SPDX-License-Identifier: GPL-2.0
/* Copyright(c) 2017 - 2018 Intel Corporation. */
#include <errno.h>
#include <getopt.h>
#include <libgen.h>
#include <linux/bpf.h>
#include <linux/if_link.h>
#include <linux/if_xdp.h>
#include <linux/if_ether.h>
#include <linux/ip.h>
#include <linux/limits.h>
#include <linux/udp.h>
#include <arpa/inet.h>
#include <locale.h>
#include <net/ethernet.h>
#include <net/if.h>
#include <poll.h>
#include <pthread.h>
#include <signal.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/capability.h>
#include <sys/mman.h>
#include <sys/resource.h>
#include <sys/socket.h>
#include <sys/types.h>
#include <sys/un.h>
#include <time.h>
#include <unistd.h>
#include <bpf/libbpf.h>
#include <bpf/xsk.h>
#include <bpf/bpf.h>
#include "xdpsock.h"
#ifndef SOL_XDP
#define SOL_XDP 283
#endif
#ifndef AF_XDP
#define AF_XDP 44
#endif
#ifndef PF_XDP
#define PF_XDP AF_XDP
#endif
#define NUM_FRAMES (4 * 1024)
#define MIN_PKT_SIZE 64
#define DEBUG_HEXDUMP 0
typedef __u64 u64;
typedef __u32 u32;
typedef __u16 u16;
typedef __u8 u8;
static unsigned long prev_time;
enum benchmark_type {
BENCH_RXDROP = 0,
BENCH_TXONLY = 1,
BENCH_L2FWD = 2,
};
static enum benchmark_type opt_bench = BENCH_RXDROP;
static u32 opt_xdp_flags = XDP_FLAGS_UPDATE_IF_NOEXIST;
static const char *opt_if = "";
static int opt_ifindex;
static int opt_queue;
static unsigned long opt_duration;
static unsigned long start_time;
static bool benchmark_done;
static u32 opt_batch_size = 64;
static int opt_pkt_count;
static u16 opt_pkt_size = MIN_PKT_SIZE;
static u32 opt_pkt_fill_pattern = 0x12345678;
static bool opt_extra_stats;
static bool opt_quiet;
static bool opt_app_stats;
static const char *opt_irq_str = "";
static u32 irq_no;
static int irqs_at_init = -1;
static int opt_poll;
static int opt_interval = 1;
static u32 opt_xdp_bind_flags = XDP_USE_NEED_WAKEUP;
static u32 opt_umem_flags;
static int opt_unaligned_chunks;
static int opt_mmap_flags;
static int opt_xsk_frame_size = XSK_UMEM__DEFAULT_FRAME_SIZE;
static int opt_timeout = 1000;
static bool opt_need_wakeup = true;
static u32 opt_num_xsks = 1;
static u32 prog_id;
static bool opt_busy_poll;
static bool opt_reduced_cap;
struct xsk_ring_stats {
unsigned long rx_npkts;
unsigned long tx_npkts;
unsigned long rx_dropped_npkts;
unsigned long rx_invalid_npkts;
unsigned long tx_invalid_npkts;
unsigned long rx_full_npkts;
unsigned long rx_fill_empty_npkts;
unsigned long tx_empty_npkts;
unsigned long prev_rx_npkts;
unsigned long prev_tx_npkts;
unsigned long prev_rx_dropped_npkts;
unsigned long prev_rx_invalid_npkts;
unsigned long prev_tx_invalid_npkts;
unsigned long prev_rx_full_npkts;
unsigned long prev_rx_fill_empty_npkts;
unsigned long prev_tx_empty_npkts;
};
struct xsk_driver_stats {
unsigned long intrs;
unsigned long prev_intrs;
};
struct xsk_app_stats {
unsigned long rx_empty_polls;
unsigned long fill_fail_polls;
unsigned long copy_tx_sendtos;
unsigned long tx_wakeup_sendtos;
unsigned long opt_polls;
unsigned long prev_rx_empty_polls;
unsigned long prev_fill_fail_polls;
unsigned long prev_copy_tx_sendtos;
unsigned long prev_tx_wakeup_sendtos;
unsigned long prev_opt_polls;
};
struct xsk_umem_info {
struct xsk_ring_prod fq;
struct xsk_ring_cons cq;
struct xsk_umem *umem;
void *buffer;
};
struct xsk_socket_info {
struct xsk_ring_cons rx;
struct xsk_ring_prod tx;
struct xsk_umem_info *umem;
struct xsk_socket *xsk;
struct xsk_ring_stats ring_stats;
struct xsk_app_stats app_stats;
struct xsk_driver_stats drv_stats;
u32 outstanding_tx;
};
static int num_socks;
struct xsk_socket_info *xsks[MAX_SOCKS];
int sock;
static unsigned long get_nsecs(void)
{
struct timespec ts;
clock_gettime(CLOCK_MONOTONIC, &ts);
return ts.tv_sec * 1000000000UL + ts.tv_nsec;
}
static void print_benchmark(bool running)
{
const char *bench_str = "INVALID";
if (opt_bench == BENCH_RXDROP)
bench_str = "rxdrop";
else if (opt_bench == BENCH_TXONLY)
bench_str = "txonly";
else if (opt_bench == BENCH_L2FWD)
bench_str = "l2fwd";
printf("%s:%d %s ", opt_if, opt_queue, bench_str);
if (opt_xdp_flags & XDP_FLAGS_SKB_MODE)
printf("xdp-skb ");
else if (opt_xdp_flags & XDP_FLAGS_DRV_MODE)
printf("xdp-drv ");
else
printf(" ");
if (opt_poll)
printf("poll() ");
if (running) {
printf("running...");
fflush(stdout);
}
}
static int xsk_get_xdp_stats(int fd, struct xsk_socket_info *xsk)
{
struct xdp_statistics stats;
socklen_t optlen;
int err;
optlen = sizeof(stats);
err = getsockopt(fd, SOL_XDP, XDP_STATISTICS, &stats, &optlen);
if (err)
return err;
if (optlen == sizeof(struct xdp_statistics)) {
xsk->ring_stats.rx_dropped_npkts = stats.rx_dropped;
xsk->ring_stats.rx_invalid_npkts = stats.rx_invalid_descs;
xsk->ring_stats.tx_invalid_npkts = stats.tx_invalid_descs;
xsk->ring_stats.rx_full_npkts = stats.rx_ring_full;
xsk->ring_stats.rx_fill_empty_npkts = stats.rx_fill_ring_empty_descs;
xsk->ring_stats.tx_empty_npkts = stats.tx_ring_empty_descs;
return 0;
}
return -EINVAL;
}
static void dump_app_stats(long dt)
{
int i;
for (i = 0; i < num_socks && xsks[i]; i++) {
char *fmt = "%-18s %'-14.0f %'-14lu\n";
double rx_empty_polls_ps, fill_fail_polls_ps, copy_tx_sendtos_ps,
tx_wakeup_sendtos_ps, opt_polls_ps;
rx_empty_polls_ps = (xsks[i]->app_stats.rx_empty_polls -
xsks[i]->app_stats.prev_rx_empty_polls) * 1000000000. / dt;
fill_fail_polls_ps = (xsks[i]->app_stats.fill_fail_polls -
xsks[i]->app_stats.prev_fill_fail_polls) * 1000000000. / dt;
copy_tx_sendtos_ps = (xsks[i]->app_stats.copy_tx_sendtos -
xsks[i]->app_stats.prev_copy_tx_sendtos) * 1000000000. / dt;
tx_wakeup_sendtos_ps = (xsks[i]->app_stats.tx_wakeup_sendtos -
xsks[i]->app_stats.prev_tx_wakeup_sendtos)
* 1000000000. / dt;
opt_polls_ps = (xsks[i]->app_stats.opt_polls -
xsks[i]->app_stats.prev_opt_polls) * 1000000000. / dt;
printf("\n%-18s %-14s %-14s\n", "", "calls/s", "count");
printf(fmt, "rx empty polls", rx_empty_polls_ps, xsks[i]->app_stats.rx_empty_polls);
printf(fmt, "fill fail polls", fill_fail_polls_ps,
xsks[i]->app_stats.fill_fail_polls);
printf(fmt, "copy tx sendtos", copy_tx_sendtos_ps,
xsks[i]->app_stats.copy_tx_sendtos);
printf(fmt, "tx wakeup sendtos", tx_wakeup_sendtos_ps,
xsks[i]->app_stats.tx_wakeup_sendtos);
printf(fmt, "opt polls", opt_polls_ps, xsks[i]->app_stats.opt_polls);
xsks[i]->app_stats.prev_rx_empty_polls = xsks[i]->app_stats.rx_empty_polls;
xsks[i]->app_stats.prev_fill_fail_polls = xsks[i]->app_stats.fill_fail_polls;
xsks[i]->app_stats.prev_copy_tx_sendtos = xsks[i]->app_stats.copy_tx_sendtos;
xsks[i]->app_stats.prev_tx_wakeup_sendtos = xsks[i]->app_stats.tx_wakeup_sendtos;
xsks[i]->app_stats.prev_opt_polls = xsks[i]->app_stats.opt_polls;
}
}
static bool get_interrupt_number(void)
{
FILE *f_int_proc;
char line[4096];
bool found = false;
f_int_proc = fopen("/proc/interrupts", "r");
if (f_int_proc == NULL) {
printf("Failed to open /proc/interrupts.\n");
return found;
}
while (!feof(f_int_proc) && !found) {
/* Make sure to read a full line at a time */
if (fgets(line, sizeof(line), f_int_proc) == NULL ||
line[strlen(line) - 1] != '\n') {
printf("Error reading from interrupts file\n");
break;
}
/* Extract interrupt number from line */
if (strstr(line, opt_irq_str) != NULL) {
irq_no = atoi(line);
found = true;
break;
}
}
fclose(f_int_proc);
return found;
}
static int get_irqs(void)
{
char count_path[PATH_MAX];
int total_intrs = -1;
FILE *f_count_proc;
char line[4096];
snprintf(count_path, sizeof(count_path),
"/sys/kernel/irq/%i/per_cpu_count", irq_no);
f_count_proc = fopen(count_path, "r");
if (f_count_proc == NULL) {
printf("Failed to open %s\n", count_path);
return total_intrs;
}
if (fgets(line, sizeof(line), f_count_proc) == NULL ||
line[strlen(line) - 1] != '\n') {
printf("Error reading from %s\n", count_path);
} else {
static const char com[2] = ",";
char *token;
total_intrs = 0;
token = strtok(line, com);
while (token != NULL) {
/* sum up interrupts across all cores */
total_intrs += atoi(token);
token = strtok(NULL, com);
}
}
fclose(f_count_proc);
return total_intrs;
}
static void dump_driver_stats(long dt)
{
int i;
for (i = 0; i < num_socks && xsks[i]; i++) {
char *fmt = "%-18s %'-14.0f %'-14lu\n";
double intrs_ps;
int n_ints = get_irqs();
if (n_ints < 0) {
printf("error getting intr info for intr %i\n", irq_no);
return;
}
xsks[i]->drv_stats.intrs = n_ints - irqs_at_init;
intrs_ps = (xsks[i]->drv_stats.intrs - xsks[i]->drv_stats.prev_intrs) *
1000000000. / dt;
printf("\n%-18s %-14s %-14s\n", "", "intrs/s", "count");
printf(fmt, "irqs", intrs_ps, xsks[i]->drv_stats.intrs);
xsks[i]->drv_stats.prev_intrs = xsks[i]->drv_stats.intrs;
}
}
static void dump_stats(void)
{
unsigned long now = get_nsecs();
long dt = now - prev_time;
int i;
prev_time = now;
for (i = 0; i < num_socks && xsks[i]; i++) {
char *fmt = "%-18s %'-14.0f %'-14lu\n";
double rx_pps, tx_pps, dropped_pps, rx_invalid_pps, full_pps, fill_empty_pps,
tx_invalid_pps, tx_empty_pps;
rx_pps = (xsks[i]->ring_stats.rx_npkts - xsks[i]->ring_stats.prev_rx_npkts) *
1000000000. / dt;
tx_pps = (xsks[i]->ring_stats.tx_npkts - xsks[i]->ring_stats.prev_tx_npkts) *
1000000000. / dt;
printf("\n sock%d@", i);
print_benchmark(false);
printf("\n");
printf("%-18s %-14s %-14s %-14.2f\n", "", "pps", "pkts",
dt / 1000000000.);
printf(fmt, "rx", rx_pps, xsks[i]->ring_stats.rx_npkts);
printf(fmt, "tx", tx_pps, xsks[i]->ring_stats.tx_npkts);
xsks[i]->ring_stats.prev_rx_npkts = xsks[i]->ring_stats.rx_npkts;
xsks[i]->ring_stats.prev_tx_npkts = xsks[i]->ring_stats.tx_npkts;
if (opt_extra_stats) {
if (!xsk_get_xdp_stats(xsk_socket__fd(xsks[i]->xsk), xsks[i])) {
dropped_pps = (xsks[i]->ring_stats.rx_dropped_npkts -
xsks[i]->ring_stats.prev_rx_dropped_npkts) *
1000000000. / dt;
rx_invalid_pps = (xsks[i]->ring_stats.rx_invalid_npkts -
xsks[i]->ring_stats.prev_rx_invalid_npkts) *
1000000000. / dt;
tx_invalid_pps = (xsks[i]->ring_stats.tx_invalid_npkts -
xsks[i]->ring_stats.prev_tx_invalid_npkts) *
1000000000. / dt;
full_pps = (xsks[i]->ring_stats.rx_full_npkts -
xsks[i]->ring_stats.prev_rx_full_npkts) *
1000000000. / dt;
fill_empty_pps = (xsks[i]->ring_stats.rx_fill_empty_npkts -
xsks[i]->ring_stats.prev_rx_fill_empty_npkts) *
1000000000. / dt;
tx_empty_pps = (xsks[i]->ring_stats.tx_empty_npkts -
xsks[i]->ring_stats.prev_tx_empty_npkts) *
1000000000. / dt;
printf(fmt, "rx dropped", dropped_pps,
xsks[i]->ring_stats.rx_dropped_npkts);
printf(fmt, "rx invalid", rx_invalid_pps,
xsks[i]->ring_stats.rx_invalid_npkts);
printf(fmt, "tx invalid", tx_invalid_pps,
xsks[i]->ring_stats.tx_invalid_npkts);
printf(fmt, "rx queue full", full_pps,
xsks[i]->ring_stats.rx_full_npkts);
printf(fmt, "fill ring empty", fill_empty_pps,
xsks[i]->ring_stats.rx_fill_empty_npkts);
printf(fmt, "tx ring empty", tx_empty_pps,
xsks[i]->ring_stats.tx_empty_npkts);
xsks[i]->ring_stats.prev_rx_dropped_npkts =
xsks[i]->ring_stats.rx_dropped_npkts;
xsks[i]->ring_stats.prev_rx_invalid_npkts =
xsks[i]->ring_stats.rx_invalid_npkts;
xsks[i]->ring_stats.prev_tx_invalid_npkts =
xsks[i]->ring_stats.tx_invalid_npkts;
xsks[i]->ring_stats.prev_rx_full_npkts =
xsks[i]->ring_stats.rx_full_npkts;
xsks[i]->ring_stats.prev_rx_fill_empty_npkts =
xsks[i]->ring_stats.rx_fill_empty_npkts;
xsks[i]->ring_stats.prev_tx_empty_npkts =
xsks[i]->ring_stats.tx_empty_npkts;
} else {
printf("%-15s\n", "Error retrieving extra stats");
}
}
}
if (opt_app_stats)
dump_app_stats(dt);
if (irq_no)
dump_driver_stats(dt);
}
static bool is_benchmark_done(void)
{
if (opt_duration > 0) {
unsigned long dt = (get_nsecs() - start_time);
if (dt >= opt_duration)
benchmark_done = true;
}
return benchmark_done;
}
static void *poller(void *arg)
{
(void)arg;
while (!is_benchmark_done()) {
sleep(opt_interval);
dump_stats();
}
return NULL;
}
static void remove_xdp_program(void)
{
u32 curr_prog_id = 0;
if (bpf_get_link_xdp_id(opt_ifindex, &curr_prog_id, opt_xdp_flags)) {
printf("bpf_get_link_xdp_id failed\n");
exit(EXIT_FAILURE);
}
if (prog_id == curr_prog_id)
bpf_set_link_xdp_fd(opt_ifindex, -1, opt_xdp_flags);
else if (!curr_prog_id)
printf("couldn't find a prog id on a given interface\n");
else
printf("program on interface changed, not removing\n");
}
static void int_exit(int sig)
{
benchmark_done = true;
}
static void __exit_with_error(int error, const char *file, const char *func,
int line)
{
fprintf(stderr, "%s:%s:%i: errno: %d/\"%s\"\n", file, func,
line, error, strerror(error));
if (opt_num_xsks > 1)
remove_xdp_program();
exit(EXIT_FAILURE);
}
#define exit_with_error(error) __exit_with_error(error, __FILE__, __func__, __LINE__)
static void xdpsock_cleanup(void)
{
struct xsk_umem *umem = xsks[0]->umem->umem;
int i, cmd = CLOSE_CONN;
dump_stats();
for (i = 0; i < num_socks; i++)
xsk_socket__delete(xsks[i]->xsk);
(void)xsk_umem__delete(umem);
if (opt_reduced_cap) {
if (write(sock, &cmd, sizeof(int)) < 0)
exit_with_error(errno);
}
if (opt_num_xsks > 1)
remove_xdp_program();
}
static void swap_mac_addresses(void *data)
{
struct ether_header *eth = (struct ether_header *)data;
struct ether_addr *src_addr = (struct ether_addr *)&eth->ether_shost;
struct ether_addr *dst_addr = (struct ether_addr *)&eth->ether_dhost;
struct ether_addr tmp;
tmp = *src_addr;
*src_addr = *dst_addr;
*dst_addr = tmp;
}
static void hex_dump(void *pkt, size_t length, u64 addr)
{
const unsigned char *address = (unsigned char *)pkt;
const unsigned char *line = address;
size_t line_size = 32;
unsigned char c;
char buf[32];
int i = 0;
if (!DEBUG_HEXDUMP)
return;
sprintf(buf, "addr=%llu", addr);
printf("length = %zu\n", length);
printf("%s | ", buf);
while (length-- > 0) {
printf("%02X ", *address++);
if (!(++i % line_size) || (length == 0 && i % line_size)) {
if (length == 0) {
while (i++ % line_size)
printf("__ ");
}
printf(" | "); /* right close */
while (line < address) {
c = *line++;
printf("%c", (c < 33 || c == 255) ? 0x2E : c);
}
printf("\n");
if (length > 0)
printf("%s | ", buf);
}
}
printf("\n");
}
static void *memset32_htonl(void *dest, u32 val, u32 size)
{
u32 *ptr = (u32 *)dest;
int i;
val = htonl(val);
for (i = 0; i < (size & (~0x3)); i += 4)
ptr[i >> 2] = val;
for (; i < size; i++)
((char *)dest)[i] = ((char *)&val)[i & 3];
return dest;
}
/*
* This function code has been taken from
* Linux kernel lib/checksum.c
*/
static inline unsigned short from32to16(unsigned int x)
{
/* add up 16-bit and 16-bit for 16+c bit */
x = (x & 0xffff) + (x >> 16);
/* add up carry.. */
x = (x & 0xffff) + (x >> 16);
return x;
}
/*
* This function code has been taken from
* Linux kernel lib/checksum.c
*/
static unsigned int do_csum(const unsigned char *buff, int len)
{
unsigned int result = 0;
int odd;
if (len <= 0)
goto out;
odd = 1 & (unsigned long)buff;
if (odd) {
#ifdef __LITTLE_ENDIAN
result += (*buff << 8);
#else
result = *buff;
#endif
len--;
buff++;
}
if (len >= 2) {
if (2 & (unsigned long)buff) {
result += *(unsigned short *)buff;
len -= 2;
buff += 2;
}
if (len >= 4) {
const unsigned char *end = buff +
((unsigned int)len & ~3);
unsigned int carry = 0;
do {
unsigned int w = *(unsigned int *)buff;
buff += 4;
result += carry;
result += w;
carry = (w > result);
} while (buff < end);
result += carry;
result = (result & 0xffff) + (result >> 16);
}
if (len & 2) {
result += *(unsigned short *)buff;
buff += 2;
}
}
if (len & 1)
#ifdef __LITTLE_ENDIAN
result += *buff;
#else
result += (*buff << 8);
#endif
result = from32to16(result);
if (odd)
result = ((result >> 8) & 0xff) | ((result & 0xff) << 8);
out:
return result;
}
/*
* This is a version of ip_compute_csum() optimized for IP headers,
* which always checksum on 4 octet boundaries.
* This function code has been taken from
* Linux kernel lib/checksum.c
*/
static inline __sum16 ip_fast_csum(const void *iph, unsigned int ihl)
{
return (__sum16)~do_csum(iph, ihl * 4);
}
/*
* Fold a partial checksum
* This function code has been taken from
* Linux kernel include/asm-generic/checksum.h
*/
static inline __sum16 csum_fold(__wsum csum)
{
u32 sum = (u32)csum;
sum = (sum & 0xffff) + (sum >> 16);
sum = (sum & 0xffff) + (sum >> 16);
return (__sum16)~sum;
}
/*
* This function code has been taken from
* Linux kernel lib/checksum.c
*/
static inline u32 from64to32(u64 x)
{
/* add up 32-bit and 32-bit for 32+c bit */
x = (x & 0xffffffff) + (x >> 32);
/* add up carry.. */
x = (x & 0xffffffff) + (x >> 32);
return (u32)x;
}
__wsum csum_tcpudp_nofold(__be32 saddr, __be32 daddr,
__u32 len, __u8 proto, __wsum sum);
/*
* This function code has been taken from
* Linux kernel lib/checksum.c
*/
__wsum csum_tcpudp_nofold(__be32 saddr, __be32 daddr,
__u32 len, __u8 proto, __wsum sum)
{
unsigned long long s = (u32)sum;
s += (u32)saddr;
s += (u32)daddr;
#ifdef __BIG_ENDIAN__
s += proto + len;
#else
s += (proto + len) << 8;
#endif
return (__wsum)from64to32(s);
}
/*
* This function has been taken from
* Linux kernel include/asm-generic/checksum.h
*/
static inline __sum16
csum_tcpudp_magic(__be32 saddr, __be32 daddr, __u32 len,
__u8 proto, __wsum sum)
{
return csum_fold(csum_tcpudp_nofold(saddr, daddr, len, proto, sum));
}
static inline u16 udp_csum(u32 saddr, u32 daddr, u32 len,
u8 proto, u16 *udp_pkt)
{
u32 csum = 0;
u32 cnt = 0;
/* udp hdr and data */
for (; cnt < len; cnt += 2)
csum += udp_pkt[cnt >> 1];
return csum_tcpudp_magic(saddr, daddr, len, proto, csum);
}
#define ETH_FCS_SIZE 4
#define PKT_HDR_SIZE (sizeof(struct ethhdr) + sizeof(struct iphdr) + \
sizeof(struct udphdr))
#define PKT_SIZE (opt_pkt_size - ETH_FCS_SIZE)
#define IP_PKT_SIZE (PKT_SIZE - sizeof(struct ethhdr))
#define UDP_PKT_SIZE (IP_PKT_SIZE - sizeof(struct iphdr))
#define UDP_PKT_DATA_SIZE (UDP_PKT_SIZE - sizeof(struct udphdr))
static u8 pkt_data[XSK_UMEM__DEFAULT_FRAME_SIZE];
static void gen_eth_hdr_data(void)
{
struct udphdr *udp_hdr = (struct udphdr *)(pkt_data +
sizeof(struct ethhdr) +
sizeof(struct iphdr));
struct iphdr *ip_hdr = (struct iphdr *)(pkt_data +
sizeof(struct ethhdr));
struct ethhdr *eth_hdr = (struct ethhdr *)pkt_data;
/* ethernet header */
memcpy(eth_hdr->h_dest, "\x3c\xfd\xfe\x9e\x7f\x71", ETH_ALEN);
memcpy(eth_hdr->h_source, "\xec\xb1\xd7\x98\x3a\xc0", ETH_ALEN);
eth_hdr->h_proto = htons(ETH_P_IP);
/* IP header */
ip_hdr->version = IPVERSION;
ip_hdr->ihl = 0x5; /* 20 byte header */
ip_hdr->tos = 0x0;
ip_hdr->tot_len = htons(IP_PKT_SIZE);
ip_hdr->id = 0;
ip_hdr->frag_off = 0;
ip_hdr->ttl = IPDEFTTL;
ip_hdr->protocol = IPPROTO_UDP;
ip_hdr->saddr = htonl(0x0a0a0a10);
ip_hdr->daddr = htonl(0x0a0a0a20);
/* IP header checksum */
ip_hdr->check = 0;
ip_hdr->check = ip_fast_csum((const void *)ip_hdr, ip_hdr->ihl);
/* UDP header */
udp_hdr->source = htons(0x1000);
udp_hdr->dest = htons(0x1000);
udp_hdr->len = htons(UDP_PKT_SIZE);
/* UDP data */
memset32_htonl(pkt_data + PKT_HDR_SIZE, opt_pkt_fill_pattern,
UDP_PKT_DATA_SIZE);
/* UDP header checksum */
udp_hdr->check = 0;
udp_hdr->check = udp_csum(ip_hdr->saddr, ip_hdr->daddr, UDP_PKT_SIZE,
IPPROTO_UDP, (u16 *)udp_hdr);
}
static void gen_eth_frame(struct xsk_umem_info *umem, u64 addr)
{
memcpy(xsk_umem__get_data(umem->buffer, addr), pkt_data,
PKT_SIZE);
}
static struct xsk_umem_info *xsk_configure_umem(void *buffer, u64 size)
{
struct xsk_umem_info *umem;
struct xsk_umem_config cfg = {
/* We recommend that you set the fill ring size >= HW RX ring size +
* AF_XDP RX ring size. Make sure you fill up the fill ring
* with buffers at regular intervals, and you will with this setting
* avoid allocation failures in the driver. These are usually quite
* expensive since drivers have not been written to assume that
* allocation failures are common. For regular sockets, kernel
* allocated memory is used that only runs out in OOM situations
* that should be rare.
*/
.fill_size = XSK_RING_PROD__DEFAULT_NUM_DESCS * 2,
.comp_size = XSK_RING_CONS__DEFAULT_NUM_DESCS,
.frame_size = opt_xsk_frame_size,
.frame_headroom = XSK_UMEM__DEFAULT_FRAME_HEADROOM,
.flags = opt_umem_flags
};
int ret;
umem = calloc(1, sizeof(*umem));
if (!umem)
exit_with_error(errno);
ret = xsk_umem__create(&umem->umem, buffer, size, &umem->fq, &umem->cq,
&cfg);
if (ret)
exit_with_error(-ret);
umem->buffer = buffer;
return umem;
}
static void xsk_populate_fill_ring(struct xsk_umem_info *umem)
{
int ret, i;
u32 idx;
ret = xsk_ring_prod__reserve(&umem->fq,
XSK_RING_PROD__DEFAULT_NUM_DESCS * 2, &idx);
if (ret != XSK_RING_PROD__DEFAULT_NUM_DESCS * 2)
exit_with_error(-ret);
for (i = 0; i < XSK_RING_PROD__DEFAULT_NUM_DESCS * 2; i++)
*xsk_ring_prod__fill_addr(&umem->fq, idx++) =
i * opt_xsk_frame_size;
xsk_ring_prod__submit(&umem->fq, XSK_RING_PROD__DEFAULT_NUM_DESCS * 2);
}
static struct xsk_socket_info *xsk_configure_socket(struct xsk_umem_info *umem,
bool rx, bool tx)
{
struct xsk_socket_config cfg;
struct xsk_socket_info *xsk;
struct xsk_ring_cons *rxr;
struct xsk_ring_prod *txr;
int ret;
xsk = calloc(1, sizeof(*xsk));
if (!xsk)
exit_with_error(errno);
xsk->umem = umem;
cfg.rx_size = XSK_RING_CONS__DEFAULT_NUM_DESCS;
cfg.tx_size = XSK_RING_PROD__DEFAULT_NUM_DESCS;
if (opt_num_xsks > 1 || opt_reduced_cap)
cfg.libbpf_flags = XSK_LIBBPF_FLAGS__INHIBIT_PROG_LOAD;
else
cfg.libbpf_flags = 0;
cfg.xdp_flags = opt_xdp_flags;
cfg.bind_flags = opt_xdp_bind_flags;
rxr = rx ? &xsk->rx : NULL;
txr = tx ? &xsk->tx : NULL;
ret = xsk_socket__create(&xsk->xsk, opt_if, opt_queue, umem->umem,
rxr, txr, &cfg);
if (ret)
exit_with_error(-ret);
ret = bpf_get_link_xdp_id(opt_ifindex, &prog_id, opt_xdp_flags);
if (ret)
exit_with_error(-ret);
xsk->app_stats.rx_empty_polls = 0;
xsk->app_stats.fill_fail_polls = 0;
xsk->app_stats.copy_tx_sendtos = 0;
xsk->app_stats.tx_wakeup_sendtos = 0;
xsk->app_stats.opt_polls = 0;
xsk->app_stats.prev_rx_empty_polls = 0;
xsk->app_stats.prev_fill_fail_polls = 0;
xsk->app_stats.prev_copy_tx_sendtos = 0;
xsk->app_stats.prev_tx_wakeup_sendtos = 0;
xsk->app_stats.prev_opt_polls = 0;
return xsk;
}
static struct option long_options[] = {
{"rxdrop", no_argument, 0, 'r'},
{"txonly", no_argument, 0, 't'},
{"l2fwd", no_argument, 0, 'l'},
{"interface", required_argument, 0, 'i'},
{"queue", required_argument, 0, 'q'},
{"poll", no_argument, 0, 'p'},
{"xdp-skb", no_argument, 0, 'S'},
{"xdp-native", no_argument, 0, 'N'},
{"interval", required_argument, 0, 'n'},
{"zero-copy", no_argument, 0, 'z'},
{"copy", no_argument, 0, 'c'},
{"frame-size", required_argument, 0, 'f'},
{"no-need-wakeup", no_argument, 0, 'm'},
{"unaligned", no_argument, 0, 'u'},
{"shared-umem", no_argument, 0, 'M'},
{"force", no_argument, 0, 'F'},
{"duration", required_argument, 0, 'd'},
{"batch-size", required_argument, 0, 'b'},
{"tx-pkt-count", required_argument, 0, 'C'},
{"tx-pkt-size", required_argument, 0, 's'},
{"tx-pkt-pattern", required_argument, 0, 'P'},
{"extra-stats", no_argument, 0, 'x'},
{"quiet", no_argument, 0, 'Q'},
{"app-stats", no_argument, 0, 'a'},
{"irq-string", no_argument, 0, 'I'},
{"busy-poll", no_argument, 0, 'B'},
{"reduce-cap", no_argument, 0, 'R'},
{0, 0, 0, 0}
};
static void usage(const char *prog)
{
const char *str =
" Usage: %s [OPTIONS]\n"
" Options:\n"
" -r, --rxdrop Discard all incoming packets (default)\n"
" -t, --txonly Only send packets\n"
" -l, --l2fwd MAC swap L2 forwarding\n"
" -i, --interface=n Run on interface n\n"
" -q, --queue=n Use queue n (default 0)\n"
" -p, --poll Use poll syscall\n"
" -S, --xdp-skb=n Use XDP skb-mod\n"
" -N, --xdp-native=n Enforce XDP native mode\n"
" -n, --interval=n Specify statistics update interval (default 1 sec).\n"
" -z, --zero-copy Force zero-copy mode.\n"
" -c, --copy Force copy mode.\n"
" -m, --no-need-wakeup Turn off use of driver need wakeup flag.\n"
" -f, --frame-size=n Set the frame size (must be a power of two in aligned mode, default is %d).\n"
" -u, --unaligned Enable unaligned chunk placement\n"
" -M, --shared-umem Enable XDP_SHARED_UMEM (cannot be used with -R)\n"
" -F, --force Force loading the XDP prog\n"
" -d, --duration=n Duration in secs to run command.\n"
" Default: forever.\n"
" -b, --batch-size=n Batch size for sending or receiving\n"
" packets. Default: %d\n"
" -C, --tx-pkt-count=n Number of packets to send.\n"
" Default: Continuous packets.\n"
" -s, --tx-pkt-size=n Transmit packet size.\n"
" (Default: %d bytes)\n"
" Min size: %d, Max size %d.\n"
" -P, --tx-pkt-pattern=nPacket fill pattern. Default: 0x%x\n"
" -x, --extra-stats Display extra statistics.\n"
" -Q, --quiet Do not display any stats.\n"
" -a, --app-stats Display application (syscall) statistics.\n"
" -I, --irq-string Display driver interrupt statistics for interface associated with irq-string.\n"
" -B, --busy-poll Busy poll.\n"
" -R, --reduce-cap Use reduced capabilities (cannot be used with -M)\n"
"\n";
fprintf(stderr, str, prog, XSK_UMEM__DEFAULT_FRAME_SIZE,
opt_batch_size, MIN_PKT_SIZE, MIN_PKT_SIZE,
XSK_UMEM__DEFAULT_FRAME_SIZE, opt_pkt_fill_pattern);
exit(EXIT_FAILURE);
}
static void parse_command_line(int argc, char **argv)
{
int option_index, c;
opterr = 0;
for (;;) {
c = getopt_long(argc, argv, "Frtli:q:pSNn:czf:muMd:b:C:s:P:xQaI:BR",
long_options, &option_index);
if (c == -1)
break;
switch (c) {
case 'r':
opt_bench = BENCH_RXDROP;
break;
case 't':
opt_bench = BENCH_TXONLY;
break;
case 'l':
opt_bench = BENCH_L2FWD;
break;
case 'i':
opt_if = optarg;
break;
case 'q':
opt_queue = atoi(optarg);
break;
case 'p':
opt_poll = 1;
break;
case 'S':
opt_xdp_flags |= XDP_FLAGS_SKB_MODE;
opt_xdp_bind_flags |= XDP_COPY;
break;
case 'N':
/* default, set below */
break;
case 'n':
opt_interval = atoi(optarg);
break;
case 'z':
opt_xdp_bind_flags |= XDP_ZEROCOPY;
break;
case 'c':
opt_xdp_bind_flags |= XDP_COPY;
break;
case 'u':
opt_umem_flags |= XDP_UMEM_UNALIGNED_CHUNK_FLAG;
opt_unaligned_chunks = 1;
opt_mmap_flags = MAP_HUGETLB;
break;
case 'F':
opt_xdp_flags &= ~XDP_FLAGS_UPDATE_IF_NOEXIST;
break;
case 'f':
opt_xsk_frame_size = atoi(optarg);
break;
case 'm':
opt_need_wakeup = false;
opt_xdp_bind_flags &= ~XDP_USE_NEED_WAKEUP;
break;
case 'M':
opt_num_xsks = MAX_SOCKS;
break;
case 'd':
opt_duration = atoi(optarg);
opt_duration *= 1000000000;
break;
case 'b':
opt_batch_size = atoi(optarg);
break;
case 'C':
opt_pkt_count = atoi(optarg);
break;
case 's':
opt_pkt_size = atoi(optarg);
if (opt_pkt_size > (XSK_UMEM__DEFAULT_FRAME_SIZE) ||
opt_pkt_size < MIN_PKT_SIZE) {
fprintf(stderr,
"ERROR: Invalid frame size %d\n",
opt_pkt_size);
usage(basename(argv[0]));
}
break;
case 'P':
opt_pkt_fill_pattern = strtol(optarg, NULL, 16);
break;
case 'x':
opt_extra_stats = 1;
break;
case 'Q':
opt_quiet = 1;
break;
case 'a':
opt_app_stats = 1;
break;
case 'I':
opt_irq_str = optarg;
if (get_interrupt_number())
irqs_at_init = get_irqs();
if (irqs_at_init < 0) {
fprintf(stderr, "ERROR: Failed to get irqs for %s\n", opt_irq_str);
usage(basename(argv[0]));
}
break;
case 'B':
opt_busy_poll = 1;
break;
case 'R':
opt_reduced_cap = true;
break;
default:
usage(basename(argv[0]));
}
}
if (!(opt_xdp_flags & XDP_FLAGS_SKB_MODE))
opt_xdp_flags |= XDP_FLAGS_DRV_MODE;
opt_ifindex = if_nametoindex(opt_if);
if (!opt_ifindex) {
fprintf(stderr, "ERROR: interface \"%s\" does not exist\n",
opt_if);
usage(basename(argv[0]));
}
if ((opt_xsk_frame_size & (opt_xsk_frame_size - 1)) &&
!opt_unaligned_chunks) {
fprintf(stderr, "--frame-size=%d is not a power of two\n",
opt_xsk_frame_size);
usage(basename(argv[0]));
}
if (opt_reduced_cap && opt_num_xsks > 1) {
fprintf(stderr, "ERROR: -M and -R cannot be used together\n");
usage(basename(argv[0]));
}
}
static void kick_tx(struct xsk_socket_info *xsk)
{
int ret;
ret = sendto(xsk_socket__fd(xsk->xsk), NULL, 0, MSG_DONTWAIT, NULL, 0);
if (ret >= 0 || errno == ENOBUFS || errno == EAGAIN ||
errno == EBUSY || errno == ENETDOWN)
return;
exit_with_error(errno);
}
static inline void complete_tx_l2fwd(struct xsk_socket_info *xsk)
{
struct xsk_umem_info *umem = xsk->umem;
u32 idx_cq = 0, idx_fq = 0;
unsigned int rcvd;
size_t ndescs;
if (!xsk->outstanding_tx)
return;
/* In copy mode, Tx is driven by a syscall so we need to use e.g. sendto() to
* really send the packets. In zero-copy mode we do not have to do this, since Tx
* is driven by the NAPI loop. So as an optimization, we do not have to call
* sendto() all the time in zero-copy mode for l2fwd.
*/
if (opt_xdp_bind_flags & XDP_COPY) {
xsk->app_stats.copy_tx_sendtos++;
kick_tx(xsk);
}
ndescs = (xsk->outstanding_tx > opt_batch_size) ? opt_batch_size :
xsk->outstanding_tx;
/* re-add completed Tx buffers */
rcvd = xsk_ring_cons__peek(&umem->cq, ndescs, &idx_cq);
if (rcvd > 0) {
unsigned int i;
int ret;
ret = xsk_ring_prod__reserve(&umem->fq, rcvd, &idx_fq);
while (ret != rcvd) {
if (ret < 0)
exit_with_error(-ret);
if (opt_busy_poll || xsk_ring_prod__needs_wakeup(&umem->fq)) {
xsk->app_stats.fill_fail_polls++;
recvfrom(xsk_socket__fd(xsk->xsk), NULL, 0, MSG_DONTWAIT, NULL,
NULL);
}
ret = xsk_ring_prod__reserve(&umem->fq, rcvd, &idx_fq);
}
for (i = 0; i < rcvd; i++)
*xsk_ring_prod__fill_addr(&umem->fq, idx_fq++) =
*xsk_ring_cons__comp_addr(&umem->cq, idx_cq++);
xsk_ring_prod__submit(&xsk->umem->fq, rcvd);
xsk_ring_cons__release(&xsk->umem->cq, rcvd);
xsk->outstanding_tx -= rcvd;
}
}
static inline void complete_tx_only(struct xsk_socket_info *xsk,
int batch_size)
{
unsigned int rcvd;
u32 idx;
if (!xsk->outstanding_tx)
return;
if (!opt_need_wakeup || xsk_ring_prod__needs_wakeup(&xsk->tx)) {
xsk->app_stats.tx_wakeup_sendtos++;
kick_tx(xsk);
}
rcvd = xsk_ring_cons__peek(&xsk->umem->cq, batch_size, &idx);
if (rcvd > 0) {
xsk_ring_cons__release(&xsk->umem->cq, rcvd);
xsk->outstanding_tx -= rcvd;
}
}
static void rx_drop(struct xsk_socket_info *xsk)
{
unsigned int rcvd, i;
u32 idx_rx = 0, idx_fq = 0;
int ret;
rcvd = xsk_ring_cons__peek(&xsk->rx, opt_batch_size, &idx_rx);
if (!rcvd) {
if (opt_busy_poll || xsk_ring_prod__needs_wakeup(&xsk->umem->fq)) {
xsk->app_stats.rx_empty_polls++;
recvfrom(xsk_socket__fd(xsk->xsk), NULL, 0, MSG_DONTWAIT, NULL, NULL);
}
return;
}
ret = xsk_ring_prod__reserve(&xsk->umem->fq, rcvd, &idx_fq);
while (ret != rcvd) {
if (ret < 0)
exit_with_error(-ret);
if (opt_busy_poll || xsk_ring_prod__needs_wakeup(&xsk->umem->fq)) {
xsk->app_stats.fill_fail_polls++;
recvfrom(xsk_socket__fd(xsk->xsk), NULL, 0, MSG_DONTWAIT, NULL, NULL);
}
ret = xsk_ring_prod__reserve(&xsk->umem->fq, rcvd, &idx_fq);
}
for (i = 0; i < rcvd; i++) {
u64 addr = xsk_ring_cons__rx_desc(&xsk->rx, idx_rx)->addr;
u32 len = xsk_ring_cons__rx_desc(&xsk->rx, idx_rx++)->len;
u64 orig = xsk_umem__extract_addr(addr);
addr = xsk_umem__add_offset_to_addr(addr);
char *pkt = xsk_umem__get_data(xsk->umem->buffer, addr);
hex_dump(pkt, len, addr);
*xsk_ring_prod__fill_addr(&xsk->umem->fq, idx_fq++) = orig;
}
xsk_ring_prod__submit(&xsk->umem->fq, rcvd);
xsk_ring_cons__release(&xsk->rx, rcvd);
xsk->ring_stats.rx_npkts += rcvd;
}
static void rx_drop_all(void)
{
struct pollfd fds[MAX_SOCKS] = {};
int i, ret;
for (i = 0; i < num_socks; i++) {
fds[i].fd = xsk_socket__fd(xsks[i]->xsk);
fds[i].events = POLLIN;
}
for (;;) {
if (opt_poll) {
for (i = 0; i < num_socks; i++)
xsks[i]->app_stats.opt_polls++;
ret = poll(fds, num_socks, opt_timeout);
if (ret <= 0)
continue;
}
for (i = 0; i < num_socks; i++)
rx_drop(xsks[i]);
if (benchmark_done)
break;
}
}
static void tx_only(struct xsk_socket_info *xsk, u32 *frame_nb, int batch_size)
{
u32 idx;
unsigned int i;
while (xsk_ring_prod__reserve(&xsk->tx, batch_size, &idx) <
batch_size) {
complete_tx_only(xsk, batch_size);
if (benchmark_done)
return;
}
for (i = 0; i < batch_size; i++) {
struct xdp_desc *tx_desc = xsk_ring_prod__tx_desc(&xsk->tx,
idx + i);
tx_desc->addr = (*frame_nb + i) * opt_xsk_frame_size;
tx_desc->len = PKT_SIZE;
}
xsk_ring_prod__submit(&xsk->tx, batch_size);
xsk->ring_stats.tx_npkts += batch_size;
xsk->outstanding_tx += batch_size;
*frame_nb += batch_size;
*frame_nb %= NUM_FRAMES;
complete_tx_only(xsk, batch_size);
}
static inline int get_batch_size(int pkt_cnt)
{
if (!opt_pkt_count)
return opt_batch_size;
if (pkt_cnt + opt_batch_size <= opt_pkt_count)
return opt_batch_size;
return opt_pkt_count - pkt_cnt;
}
static void complete_tx_only_all(void)
{
bool pending;
int i;
do {
pending = false;
for (i = 0; i < num_socks; i++) {
if (xsks[i]->outstanding_tx) {
complete_tx_only(xsks[i], opt_batch_size);
pending = !!xsks[i]->outstanding_tx;
}
}
} while (pending);
}
static void tx_only_all(void)
{
struct pollfd fds[MAX_SOCKS] = {};
u32 frame_nb[MAX_SOCKS] = {};
int pkt_cnt = 0;
int i, ret;
for (i = 0; i < num_socks; i++) {
fds[0].fd = xsk_socket__fd(xsks[i]->xsk);
fds[0].events = POLLOUT;
}
while ((opt_pkt_count && pkt_cnt < opt_pkt_count) || !opt_pkt_count) {
int batch_size = get_batch_size(pkt_cnt);
if (opt_poll) {
for (i = 0; i < num_socks; i++)
xsks[i]->app_stats.opt_polls++;
ret = poll(fds, num_socks, opt_timeout);
if (ret <= 0)
continue;
if (!(fds[0].revents & POLLOUT))
continue;
}
for (i = 0; i < num_socks; i++)
tx_only(xsks[i], &frame_nb[i], batch_size);
pkt_cnt += batch_size;
if (benchmark_done)
break;
}
if (opt_pkt_count)
complete_tx_only_all();
}
static void l2fwd(struct xsk_socket_info *xsk)
{
unsigned int rcvd, i;
u32 idx_rx = 0, idx_tx = 0;
int ret;
complete_tx_l2fwd(xsk);
rcvd = xsk_ring_cons__peek(&xsk->rx, opt_batch_size, &idx_rx);
if (!rcvd) {
if (opt_busy_poll || xsk_ring_prod__needs_wakeup(&xsk->umem->fq)) {
xsk->app_stats.rx_empty_polls++;
recvfrom(xsk_socket__fd(xsk->xsk), NULL, 0, MSG_DONTWAIT, NULL, NULL);
}
return;
}
xsk->ring_stats.rx_npkts += rcvd;
ret = xsk_ring_prod__reserve(&xsk->tx, rcvd, &idx_tx);
while (ret != rcvd) {
if (ret < 0)
exit_with_error(-ret);
complete_tx_l2fwd(xsk);
if (opt_busy_poll || xsk_ring_prod__needs_wakeup(&xsk->tx)) {
xsk->app_stats.tx_wakeup_sendtos++;
kick_tx(xsk);
}
ret = xsk_ring_prod__reserve(&xsk->tx, rcvd, &idx_tx);
}
for (i = 0; i < rcvd; i++) {
u64 addr = xsk_ring_cons__rx_desc(&xsk->rx, idx_rx)->addr;
u32 len = xsk_ring_cons__rx_desc(&xsk->rx, idx_rx++)->len;
u64 orig = addr;
addr = xsk_umem__add_offset_to_addr(addr);
char *pkt = xsk_umem__get_data(xsk->umem->buffer, addr);
swap_mac_addresses(pkt);
hex_dump(pkt, len, addr);
xsk_ring_prod__tx_desc(&xsk->tx, idx_tx)->addr = orig;
xsk_ring_prod__tx_desc(&xsk->tx, idx_tx++)->len = len;
}
xsk_ring_prod__submit(&xsk->tx, rcvd);
xsk_ring_cons__release(&xsk->rx, rcvd);
xsk->ring_stats.tx_npkts += rcvd;
xsk->outstanding_tx += rcvd;
}
static void l2fwd_all(void)
{
struct pollfd fds[MAX_SOCKS] = {};
int i, ret;
for (;;) {
if (opt_poll) {
for (i = 0; i < num_socks; i++) {
fds[i].fd = xsk_socket__fd(xsks[i]->xsk);
fds[i].events = POLLOUT | POLLIN;
xsks[i]->app_stats.opt_polls++;
}
ret = poll(fds, num_socks, opt_timeout);
if (ret <= 0)
continue;
}
for (i = 0; i < num_socks; i++)
l2fwd(xsks[i]);
if (benchmark_done)
break;
}
}
static void load_xdp_program(char **argv, struct bpf_object **obj)
{
struct bpf_prog_load_attr prog_load_attr = {
.prog_type = BPF_PROG_TYPE_XDP,
};
char xdp_filename[256];
int prog_fd;
snprintf(xdp_filename, sizeof(xdp_filename), "%s_kern.o", argv[0]);
prog_load_attr.file = xdp_filename;
if (bpf_prog_load_xattr(&prog_load_attr, obj, &prog_fd))
exit(EXIT_FAILURE);
if (prog_fd < 0) {
fprintf(stderr, "ERROR: no program found: %s\n",
strerror(prog_fd));
exit(EXIT_FAILURE);
}
if (bpf_set_link_xdp_fd(opt_ifindex, prog_fd, opt_xdp_flags) < 0) {
fprintf(stderr, "ERROR: link set xdp fd failed\n");
exit(EXIT_FAILURE);
}
}
static void enter_xsks_into_map(struct bpf_object *obj)
{
struct bpf_map *map;
int i, xsks_map;
map = bpf_object__find_map_by_name(obj, "xsks_map");
xsks_map = bpf_map__fd(map);
if (xsks_map < 0) {
fprintf(stderr, "ERROR: no xsks map found: %s\n",
strerror(xsks_map));
exit(EXIT_FAILURE);
}
for (i = 0; i < num_socks; i++) {
int fd = xsk_socket__fd(xsks[i]->xsk);
int key, ret;
key = i;
ret = bpf_map_update_elem(xsks_map, &key, &fd, 0);
if (ret) {
fprintf(stderr, "ERROR: bpf_map_update_elem %d\n", i);
exit(EXIT_FAILURE);
}
}
}
static void apply_setsockopt(struct xsk_socket_info *xsk)
{
int sock_opt;
if (!opt_busy_poll)
return;
sock_opt = 1;
if (setsockopt(xsk_socket__fd(xsk->xsk), SOL_SOCKET, SO_PREFER_BUSY_POLL,
(void *)&sock_opt, sizeof(sock_opt)) < 0)
exit_with_error(errno);
sock_opt = 20;
if (setsockopt(xsk_socket__fd(xsk->xsk), SOL_SOCKET, SO_BUSY_POLL,
(void *)&sock_opt, sizeof(sock_opt)) < 0)
exit_with_error(errno);
sock_opt = opt_batch_size;
if (setsockopt(xsk_socket__fd(xsk->xsk), SOL_SOCKET, SO_BUSY_POLL_BUDGET,
(void *)&sock_opt, sizeof(sock_opt)) < 0)
exit_with_error(errno);
}
static int recv_xsks_map_fd_from_ctrl_node(int sock, int *_fd)
{
char cms[CMSG_SPACE(sizeof(int))];
struct cmsghdr *cmsg;
struct msghdr msg;
struct iovec iov;
int value;
int len;
iov.iov_base = &value;
iov.iov_len = sizeof(int);
msg.msg_name = 0;
msg.msg_namelen = 0;
msg.msg_iov = &iov;
msg.msg_iovlen = 1;
msg.msg_flags = 0;
msg.msg_control = (caddr_t)cms;
msg.msg_controllen = sizeof(cms);
len = recvmsg(sock, &msg, 0);
if (len < 0) {
fprintf(stderr, "Recvmsg failed length incorrect.\n");
return -EINVAL;
}
if (len == 0) {
fprintf(stderr, "Recvmsg failed no data\n");
return -EINVAL;
}
cmsg = CMSG_FIRSTHDR(&msg);
*_fd = *(int *)CMSG_DATA(cmsg);
return 0;
}
static int
recv_xsks_map_fd(int *xsks_map_fd)
{
struct sockaddr_un server;
int err;
sock = socket(AF_UNIX, SOCK_STREAM, 0);
if (sock < 0) {
fprintf(stderr, "Error opening socket stream: %s", strerror(errno));
return errno;
}
server.sun_family = AF_UNIX;
strcpy(server.sun_path, SOCKET_NAME);
if (connect(sock, (struct sockaddr *)&server, sizeof(struct sockaddr_un)) < 0) {
close(sock);
fprintf(stderr, "Error connecting stream socket: %s", strerror(errno));
return errno;
}
err = recv_xsks_map_fd_from_ctrl_node(sock, xsks_map_fd);
if (err) {
fprintf(stderr, "Error %d receiving fd\n", err);
return err;
}
return 0;
}
int main(int argc, char **argv)
{
struct __user_cap_header_struct hdr = { _LINUX_CAPABILITY_VERSION_3, 0 };
struct __user_cap_data_struct data[2] = { { 0 } };
struct rlimit r = {RLIM_INFINITY, RLIM_INFINITY};
bool rx = false, tx = false;
struct xsk_umem_info *umem;
struct bpf_object *obj;
int xsks_map_fd = 0;
pthread_t pt;
int i, ret;
void *bufs;
parse_command_line(argc, argv);
if (opt_reduced_cap) {
if (capget(&hdr, data) < 0)
fprintf(stderr, "Error getting capabilities\n");
data->effective &= CAP_TO_MASK(CAP_NET_RAW);
data->permitted &= CAP_TO_MASK(CAP_NET_RAW);
if (capset(&hdr, data) < 0)
fprintf(stderr, "Setting capabilities failed\n");
if (capget(&hdr, data) < 0) {
fprintf(stderr, "Error getting capabilities\n");
} else {
fprintf(stderr, "Capabilities EFF %x Caps INH %x Caps Per %x\n",
data[0].effective, data[0].inheritable, data[0].permitted);
fprintf(stderr, "Capabilities EFF %x Caps INH %x Caps Per %x\n",
data[1].effective, data[1].inheritable, data[1].permitted);
}
} else {
if (setrlimit(RLIMIT_MEMLOCK, &r)) {
fprintf(stderr, "ERROR: setrlimit(RLIMIT_MEMLOCK) \"%s\"\n",
strerror(errno));
exit(EXIT_FAILURE);
}
if (opt_num_xsks > 1)
load_xdp_program(argv, &obj);
}
/* Reserve memory for the umem. Use hugepages if unaligned chunk mode */
bufs = mmap(NULL, NUM_FRAMES * opt_xsk_frame_size,
PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS | opt_mmap_flags, -1, 0);
if (bufs == MAP_FAILED) {
printf("ERROR: mmap failed\n");
exit(EXIT_FAILURE);
}
/* Create sockets... */
umem = xsk_configure_umem(bufs, NUM_FRAMES * opt_xsk_frame_size);
if (opt_bench == BENCH_RXDROP || opt_bench == BENCH_L2FWD) {
rx = true;
xsk_populate_fill_ring(umem);
}
if (opt_bench == BENCH_L2FWD || opt_bench == BENCH_TXONLY)
tx = true;
for (i = 0; i < opt_num_xsks; i++)
xsks[num_socks++] = xsk_configure_socket(umem, rx, tx);
for (i = 0; i < opt_num_xsks; i++)
apply_setsockopt(xsks[i]);
if (opt_bench == BENCH_TXONLY) {
gen_eth_hdr_data();
for (i = 0; i < NUM_FRAMES; i++)
gen_eth_frame(umem, i * opt_xsk_frame_size);
}
if (opt_num_xsks > 1 && opt_bench != BENCH_TXONLY)
enter_xsks_into_map(obj);
if (opt_reduced_cap) {
ret = recv_xsks_map_fd(&xsks_map_fd);
if (ret) {
fprintf(stderr, "Error %d receiving xsks_map_fd\n", ret);
exit_with_error(ret);
}
if (xsks[0]->xsk) {
ret = xsk_socket__update_xskmap(xsks[0]->xsk, xsks_map_fd);
if (ret) {
fprintf(stderr, "Update of BPF map failed(%d)\n", ret);
exit_with_error(ret);
}
}
}
signal(SIGINT, int_exit);
signal(SIGTERM, int_exit);
signal(SIGABRT, int_exit);
setlocale(LC_ALL, "");
if (!opt_quiet) {
ret = pthread_create(&pt, NULL, poller, NULL);
if (ret)
exit_with_error(ret);
}
prev_time = get_nsecs();
start_time = prev_time;
if (opt_bench == BENCH_RXDROP)
rx_drop_all();
else if (opt_bench == BENCH_TXONLY)
tx_only_all();
else
l2fwd_all();
benchmark_done = true;
if (!opt_quiet)
pthread_join(pt, NULL);
xdpsock_cleanup();
munmap(bufs, NUM_FRAMES * opt_xsk_frame_size);
return 0;
}