| // SPDX-License-Identifier: GPL-2.0-or-later | 
 | /* | 
 |  * Copyright (c) International Business Machines Corp., 2006 | 
 |  * Copyright (c) Nokia Corporation, 2006, 2007 | 
 |  * | 
 |  * Author: Artem Bityutskiy (Битюцкий Артём) | 
 |  */ | 
 |  | 
 | /* | 
 |  * This file includes volume table manipulation code. The volume table is an | 
 |  * on-flash table containing volume meta-data like name, number of reserved | 
 |  * physical eraseblocks, type, etc. The volume table is stored in the so-called | 
 |  * "layout volume". | 
 |  * | 
 |  * The layout volume is an internal volume which is organized as follows. It | 
 |  * consists of two logical eraseblocks - LEB 0 and LEB 1. Each logical | 
 |  * eraseblock stores one volume table copy, i.e. LEB 0 and LEB 1 duplicate each | 
 |  * other. This redundancy guarantees robustness to unclean reboots. The volume | 
 |  * table is basically an array of volume table records. Each record contains | 
 |  * full information about the volume and protected by a CRC checksum. Note, | 
 |  * nowadays we use the atomic LEB change operation when updating the volume | 
 |  * table, so we do not really need 2 LEBs anymore, but we preserve the older | 
 |  * design for the backward compatibility reasons. | 
 |  * | 
 |  * When the volume table is changed, it is first changed in RAM. Then LEB 0 is | 
 |  * erased, and the updated volume table is written back to LEB 0. Then same for | 
 |  * LEB 1. This scheme guarantees recoverability from unclean reboots. | 
 |  * | 
 |  * In this UBI implementation the on-flash volume table does not contain any | 
 |  * information about how much data static volumes contain. | 
 |  * | 
 |  * But it would still be beneficial to store this information in the volume | 
 |  * table. For example, suppose we have a static volume X, and all its physical | 
 |  * eraseblocks became bad for some reasons. Suppose we are attaching the | 
 |  * corresponding MTD device, for some reason we find no logical eraseblocks | 
 |  * corresponding to the volume X. According to the volume table volume X does | 
 |  * exist. So we don't know whether it is just empty or all its physical | 
 |  * eraseblocks went bad. So we cannot alarm the user properly. | 
 |  * | 
 |  * The volume table also stores so-called "update marker", which is used for | 
 |  * volume updates. Before updating the volume, the update marker is set, and | 
 |  * after the update operation is finished, the update marker is cleared. So if | 
 |  * the update operation was interrupted (e.g. by an unclean reboot) - the | 
 |  * update marker is still there and we know that the volume's contents is | 
 |  * damaged. | 
 |  */ | 
 |  | 
 | #include <linux/crc32.h> | 
 | #include <linux/err.h> | 
 | #include <linux/slab.h> | 
 | #include <asm/div64.h> | 
 | #include "ubi.h" | 
 |  | 
 | static void self_vtbl_check(const struct ubi_device *ubi); | 
 |  | 
 | /* Empty volume table record */ | 
 | static struct ubi_vtbl_record empty_vtbl_record; | 
 |  | 
 | /** | 
 |  * ubi_update_layout_vol - helper for updatting layout volumes on flash | 
 |  * @ubi: UBI device description object | 
 |  */ | 
 | static int ubi_update_layout_vol(struct ubi_device *ubi) | 
 | { | 
 | 	struct ubi_volume *layout_vol; | 
 | 	int i, err; | 
 |  | 
 | 	layout_vol = ubi->volumes[vol_id2idx(ubi, UBI_LAYOUT_VOLUME_ID)]; | 
 | 	for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) { | 
 | 		err = ubi_eba_atomic_leb_change(ubi, layout_vol, i, ubi->vtbl, | 
 | 						ubi->vtbl_size); | 
 | 		if (err) | 
 | 			return err; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * ubi_change_vtbl_record - change volume table record. | 
 |  * @ubi: UBI device description object | 
 |  * @idx: table index to change | 
 |  * @vtbl_rec: new volume table record | 
 |  * | 
 |  * This function changes volume table record @idx. If @vtbl_rec is %NULL, empty | 
 |  * volume table record is written. The caller does not have to calculate CRC of | 
 |  * the record as it is done by this function. Returns zero in case of success | 
 |  * and a negative error code in case of failure. | 
 |  */ | 
 | int ubi_change_vtbl_record(struct ubi_device *ubi, int idx, | 
 | 			   struct ubi_vtbl_record *vtbl_rec) | 
 | { | 
 | 	int err; | 
 | 	uint32_t crc; | 
 |  | 
 | 	ubi_assert(idx >= 0 && idx < ubi->vtbl_slots); | 
 |  | 
 | 	if (!vtbl_rec) | 
 | 		vtbl_rec = &empty_vtbl_record; | 
 | 	else { | 
 | 		crc = crc32(UBI_CRC32_INIT, vtbl_rec, UBI_VTBL_RECORD_SIZE_CRC); | 
 | 		vtbl_rec->crc = cpu_to_be32(crc); | 
 | 	} | 
 |  | 
 | 	memcpy(&ubi->vtbl[idx], vtbl_rec, sizeof(struct ubi_vtbl_record)); | 
 | 	err = ubi_update_layout_vol(ubi); | 
 |  | 
 | 	self_vtbl_check(ubi); | 
 | 	return err ? err : 0; | 
 | } | 
 |  | 
 | /** | 
 |  * ubi_vtbl_rename_volumes - rename UBI volumes in the volume table. | 
 |  * @ubi: UBI device description object | 
 |  * @rename_list: list of &struct ubi_rename_entry objects | 
 |  * | 
 |  * This function re-names multiple volumes specified in @req in the volume | 
 |  * table. Returns zero in case of success and a negative error code in case of | 
 |  * failure. | 
 |  */ | 
 | int ubi_vtbl_rename_volumes(struct ubi_device *ubi, | 
 | 			    struct list_head *rename_list) | 
 | { | 
 | 	struct ubi_rename_entry *re; | 
 |  | 
 | 	list_for_each_entry(re, rename_list, list) { | 
 | 		uint32_t crc; | 
 | 		struct ubi_volume *vol = re->desc->vol; | 
 | 		struct ubi_vtbl_record *vtbl_rec = &ubi->vtbl[vol->vol_id]; | 
 |  | 
 | 		if (re->remove) { | 
 | 			memcpy(vtbl_rec, &empty_vtbl_record, | 
 | 			       sizeof(struct ubi_vtbl_record)); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		vtbl_rec->name_len = cpu_to_be16(re->new_name_len); | 
 | 		memcpy(vtbl_rec->name, re->new_name, re->new_name_len); | 
 | 		memset(vtbl_rec->name + re->new_name_len, 0, | 
 | 		       UBI_VOL_NAME_MAX + 1 - re->new_name_len); | 
 | 		crc = crc32(UBI_CRC32_INIT, vtbl_rec, | 
 | 			    UBI_VTBL_RECORD_SIZE_CRC); | 
 | 		vtbl_rec->crc = cpu_to_be32(crc); | 
 | 	} | 
 |  | 
 | 	return ubi_update_layout_vol(ubi); | 
 | } | 
 |  | 
 | /** | 
 |  * vtbl_check - check if volume table is not corrupted and sensible. | 
 |  * @ubi: UBI device description object | 
 |  * @vtbl: volume table | 
 |  * | 
 |  * This function returns zero if @vtbl is all right, %1 if CRC is incorrect, | 
 |  * and %-EINVAL if it contains inconsistent data. | 
 |  */ | 
 | static int vtbl_check(const struct ubi_device *ubi, | 
 | 		      const struct ubi_vtbl_record *vtbl) | 
 | { | 
 | 	int i, n, reserved_pebs, alignment, data_pad, vol_type, name_len; | 
 | 	int upd_marker, err; | 
 | 	uint32_t crc; | 
 | 	const char *name; | 
 |  | 
 | 	for (i = 0; i < ubi->vtbl_slots; i++) { | 
 | 		cond_resched(); | 
 |  | 
 | 		reserved_pebs = be32_to_cpu(vtbl[i].reserved_pebs); | 
 | 		alignment = be32_to_cpu(vtbl[i].alignment); | 
 | 		data_pad = be32_to_cpu(vtbl[i].data_pad); | 
 | 		upd_marker = vtbl[i].upd_marker; | 
 | 		vol_type = vtbl[i].vol_type; | 
 | 		name_len = be16_to_cpu(vtbl[i].name_len); | 
 | 		name = &vtbl[i].name[0]; | 
 |  | 
 | 		crc = crc32(UBI_CRC32_INIT, &vtbl[i], UBI_VTBL_RECORD_SIZE_CRC); | 
 | 		if (be32_to_cpu(vtbl[i].crc) != crc) { | 
 | 			ubi_err(ubi, "bad CRC at record %u: %#08x, not %#08x", | 
 | 				 i, crc, be32_to_cpu(vtbl[i].crc)); | 
 | 			ubi_dump_vtbl_record(&vtbl[i], i); | 
 | 			return 1; | 
 | 		} | 
 |  | 
 | 		if (reserved_pebs == 0) { | 
 | 			if (memcmp(&vtbl[i], &empty_vtbl_record, | 
 | 						UBI_VTBL_RECORD_SIZE)) { | 
 | 				err = 2; | 
 | 				goto bad; | 
 | 			} | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (reserved_pebs < 0 || alignment < 0 || data_pad < 0 || | 
 | 		    name_len < 0) { | 
 | 			err = 3; | 
 | 			goto bad; | 
 | 		} | 
 |  | 
 | 		if (alignment > ubi->leb_size || alignment == 0) { | 
 | 			err = 4; | 
 | 			goto bad; | 
 | 		} | 
 |  | 
 | 		n = alignment & (ubi->min_io_size - 1); | 
 | 		if (alignment != 1 && n) { | 
 | 			err = 5; | 
 | 			goto bad; | 
 | 		} | 
 |  | 
 | 		n = ubi->leb_size % alignment; | 
 | 		if (data_pad != n) { | 
 | 			ubi_err(ubi, "bad data_pad, has to be %d", n); | 
 | 			err = 6; | 
 | 			goto bad; | 
 | 		} | 
 |  | 
 | 		if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) { | 
 | 			err = 7; | 
 | 			goto bad; | 
 | 		} | 
 |  | 
 | 		if (upd_marker != 0 && upd_marker != 1) { | 
 | 			err = 8; | 
 | 			goto bad; | 
 | 		} | 
 |  | 
 | 		if (reserved_pebs > ubi->good_peb_count) { | 
 | 			ubi_err(ubi, "too large reserved_pebs %d, good PEBs %d", | 
 | 				reserved_pebs, ubi->good_peb_count); | 
 | 			err = 9; | 
 | 			goto bad; | 
 | 		} | 
 |  | 
 | 		if (name_len > UBI_VOL_NAME_MAX) { | 
 | 			err = 10; | 
 | 			goto bad; | 
 | 		} | 
 |  | 
 | 		if (name[0] == '\0') { | 
 | 			err = 11; | 
 | 			goto bad; | 
 | 		} | 
 |  | 
 | 		if (name_len != strnlen(name, name_len + 1)) { | 
 | 			err = 12; | 
 | 			goto bad; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Checks that all names are unique */ | 
 | 	for (i = 0; i < ubi->vtbl_slots - 1; i++) { | 
 | 		for (n = i + 1; n < ubi->vtbl_slots; n++) { | 
 | 			int len1 = be16_to_cpu(vtbl[i].name_len); | 
 | 			int len2 = be16_to_cpu(vtbl[n].name_len); | 
 |  | 
 | 			if (len1 > 0 && len1 == len2 && | 
 | 			    !strncmp(vtbl[i].name, vtbl[n].name, len1)) { | 
 | 				ubi_err(ubi, "volumes %d and %d have the same name \"%s\"", | 
 | 					i, n, vtbl[i].name); | 
 | 				ubi_dump_vtbl_record(&vtbl[i], i); | 
 | 				ubi_dump_vtbl_record(&vtbl[n], n); | 
 | 				return -EINVAL; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 |  | 
 | bad: | 
 | 	ubi_err(ubi, "volume table check failed: record %d, error %d", i, err); | 
 | 	ubi_dump_vtbl_record(&vtbl[i], i); | 
 | 	return -EINVAL; | 
 | } | 
 |  | 
 | /** | 
 |  * create_vtbl - create a copy of volume table. | 
 |  * @ubi: UBI device description object | 
 |  * @ai: attaching information | 
 |  * @copy: number of the volume table copy | 
 |  * @vtbl: contents of the volume table | 
 |  * | 
 |  * This function returns zero in case of success and a negative error code in | 
 |  * case of failure. | 
 |  */ | 
 | static int create_vtbl(struct ubi_device *ubi, struct ubi_attach_info *ai, | 
 | 		       int copy, void *vtbl) | 
 | { | 
 | 	int err, tries = 0; | 
 | 	struct ubi_vid_io_buf *vidb; | 
 | 	struct ubi_vid_hdr *vid_hdr; | 
 | 	struct ubi_ainf_peb *new_aeb; | 
 |  | 
 | 	dbg_gen("create volume table (copy #%d)", copy + 1); | 
 |  | 
 | 	vidb = ubi_alloc_vid_buf(ubi, GFP_KERNEL); | 
 | 	if (!vidb) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	vid_hdr = ubi_get_vid_hdr(vidb); | 
 |  | 
 | retry: | 
 | 	new_aeb = ubi_early_get_peb(ubi, ai); | 
 | 	if (IS_ERR(new_aeb)) { | 
 | 		err = PTR_ERR(new_aeb); | 
 | 		goto out_free; | 
 | 	} | 
 |  | 
 | 	vid_hdr->vol_type = UBI_LAYOUT_VOLUME_TYPE; | 
 | 	vid_hdr->vol_id = cpu_to_be32(UBI_LAYOUT_VOLUME_ID); | 
 | 	vid_hdr->compat = UBI_LAYOUT_VOLUME_COMPAT; | 
 | 	vid_hdr->data_size = vid_hdr->used_ebs = | 
 | 			     vid_hdr->data_pad = cpu_to_be32(0); | 
 | 	vid_hdr->lnum = cpu_to_be32(copy); | 
 | 	vid_hdr->sqnum = cpu_to_be64(++ai->max_sqnum); | 
 |  | 
 | 	/* The EC header is already there, write the VID header */ | 
 | 	err = ubi_io_write_vid_hdr(ubi, new_aeb->pnum, vidb); | 
 | 	if (err) | 
 | 		goto write_error; | 
 |  | 
 | 	/* Write the layout volume contents */ | 
 | 	err = ubi_io_write_data(ubi, vtbl, new_aeb->pnum, 0, ubi->vtbl_size); | 
 | 	if (err) | 
 | 		goto write_error; | 
 |  | 
 | 	/* | 
 | 	 * And add it to the attaching information. Don't delete the old version | 
 | 	 * of this LEB as it will be deleted and freed in 'ubi_add_to_av()'. | 
 | 	 */ | 
 | 	err = ubi_add_to_av(ubi, ai, new_aeb->pnum, new_aeb->ec, vid_hdr, 0); | 
 | 	ubi_free_aeb(ai, new_aeb); | 
 | 	ubi_free_vid_buf(vidb); | 
 | 	return err; | 
 |  | 
 | write_error: | 
 | 	if (err == -EIO && ++tries <= 5) { | 
 | 		/* | 
 | 		 * Probably this physical eraseblock went bad, try to pick | 
 | 		 * another one. | 
 | 		 */ | 
 | 		list_add(&new_aeb->u.list, &ai->erase); | 
 | 		goto retry; | 
 | 	} | 
 | 	ubi_free_aeb(ai, new_aeb); | 
 | out_free: | 
 | 	ubi_free_vid_buf(vidb); | 
 | 	return err; | 
 |  | 
 | } | 
 |  | 
 | /** | 
 |  * process_lvol - process the layout volume. | 
 |  * @ubi: UBI device description object | 
 |  * @ai: attaching information | 
 |  * @av: layout volume attaching information | 
 |  * | 
 |  * This function is responsible for reading the layout volume, ensuring it is | 
 |  * not corrupted, and recovering from corruptions if needed. Returns volume | 
 |  * table in case of success and a negative error code in case of failure. | 
 |  */ | 
 | static struct ubi_vtbl_record *process_lvol(struct ubi_device *ubi, | 
 | 					    struct ubi_attach_info *ai, | 
 | 					    struct ubi_ainf_volume *av) | 
 | { | 
 | 	int err; | 
 | 	struct rb_node *rb; | 
 | 	struct ubi_ainf_peb *aeb; | 
 | 	struct ubi_vtbl_record *leb[UBI_LAYOUT_VOLUME_EBS] = { NULL, NULL }; | 
 | 	int leb_corrupted[UBI_LAYOUT_VOLUME_EBS] = {1, 1}; | 
 |  | 
 | 	/* | 
 | 	 * UBI goes through the following steps when it changes the layout | 
 | 	 * volume: | 
 | 	 * a. erase LEB 0; | 
 | 	 * b. write new data to LEB 0; | 
 | 	 * c. erase LEB 1; | 
 | 	 * d. write new data to LEB 1. | 
 | 	 * | 
 | 	 * Before the change, both LEBs contain the same data. | 
 | 	 * | 
 | 	 * Due to unclean reboots, the contents of LEB 0 may be lost, but there | 
 | 	 * should LEB 1. So it is OK if LEB 0 is corrupted while LEB 1 is not. | 
 | 	 * Similarly, LEB 1 may be lost, but there should be LEB 0. And | 
 | 	 * finally, unclean reboots may result in a situation when neither LEB | 
 | 	 * 0 nor LEB 1 are corrupted, but they are different. In this case, LEB | 
 | 	 * 0 contains more recent information. | 
 | 	 * | 
 | 	 * So the plan is to first check LEB 0. Then | 
 | 	 * a. if LEB 0 is OK, it must be containing the most recent data; then | 
 | 	 *    we compare it with LEB 1, and if they are different, we copy LEB | 
 | 	 *    0 to LEB 1; | 
 | 	 * b. if LEB 0 is corrupted, but LEB 1 has to be OK, and we copy LEB 1 | 
 | 	 *    to LEB 0. | 
 | 	 */ | 
 |  | 
 | 	dbg_gen("check layout volume"); | 
 |  | 
 | 	/* Read both LEB 0 and LEB 1 into memory */ | 
 | 	ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) { | 
 | 		leb[aeb->lnum] = vzalloc(ubi->vtbl_size); | 
 | 		if (!leb[aeb->lnum]) { | 
 | 			err = -ENOMEM; | 
 | 			goto out_free; | 
 | 		} | 
 |  | 
 | 		err = ubi_io_read_data(ubi, leb[aeb->lnum], aeb->pnum, 0, | 
 | 				       ubi->vtbl_size); | 
 | 		if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) | 
 | 			/* | 
 | 			 * Scrub the PEB later. Note, -EBADMSG indicates an | 
 | 			 * uncorrectable ECC error, but we have our own CRC and | 
 | 			 * the data will be checked later. If the data is OK, | 
 | 			 * the PEB will be scrubbed (because we set | 
 | 			 * aeb->scrub). If the data is not OK, the contents of | 
 | 			 * the PEB will be recovered from the second copy, and | 
 | 			 * aeb->scrub will be cleared in | 
 | 			 * 'ubi_add_to_av()'. | 
 | 			 */ | 
 | 			aeb->scrub = 1; | 
 | 		else if (err) | 
 | 			goto out_free; | 
 | 	} | 
 |  | 
 | 	err = -EINVAL; | 
 | 	if (leb[0]) { | 
 | 		leb_corrupted[0] = vtbl_check(ubi, leb[0]); | 
 | 		if (leb_corrupted[0] < 0) | 
 | 			goto out_free; | 
 | 	} | 
 |  | 
 | 	if (!leb_corrupted[0]) { | 
 | 		/* LEB 0 is OK */ | 
 | 		if (leb[1]) | 
 | 			leb_corrupted[1] = memcmp(leb[0], leb[1], | 
 | 						  ubi->vtbl_size); | 
 | 		if (leb_corrupted[1]) { | 
 | 			ubi_warn(ubi, "volume table copy #2 is corrupted"); | 
 | 			err = create_vtbl(ubi, ai, 1, leb[0]); | 
 | 			if (err) | 
 | 				goto out_free; | 
 | 			ubi_msg(ubi, "volume table was restored"); | 
 | 		} | 
 |  | 
 | 		/* Both LEB 1 and LEB 2 are OK and consistent */ | 
 | 		vfree(leb[1]); | 
 | 		return leb[0]; | 
 | 	} else { | 
 | 		/* LEB 0 is corrupted or does not exist */ | 
 | 		if (leb[1]) { | 
 | 			leb_corrupted[1] = vtbl_check(ubi, leb[1]); | 
 | 			if (leb_corrupted[1] < 0) | 
 | 				goto out_free; | 
 | 		} | 
 | 		if (leb_corrupted[1]) { | 
 | 			/* Both LEB 0 and LEB 1 are corrupted */ | 
 | 			ubi_err(ubi, "both volume tables are corrupted"); | 
 | 			goto out_free; | 
 | 		} | 
 |  | 
 | 		ubi_warn(ubi, "volume table copy #1 is corrupted"); | 
 | 		err = create_vtbl(ubi, ai, 0, leb[1]); | 
 | 		if (err) | 
 | 			goto out_free; | 
 | 		ubi_msg(ubi, "volume table was restored"); | 
 |  | 
 | 		vfree(leb[0]); | 
 | 		return leb[1]; | 
 | 	} | 
 |  | 
 | out_free: | 
 | 	vfree(leb[0]); | 
 | 	vfree(leb[1]); | 
 | 	return ERR_PTR(err); | 
 | } | 
 |  | 
 | /** | 
 |  * create_empty_lvol - create empty layout volume. | 
 |  * @ubi: UBI device description object | 
 |  * @ai: attaching information | 
 |  * | 
 |  * This function returns volume table contents in case of success and a | 
 |  * negative error code in case of failure. | 
 |  */ | 
 | static struct ubi_vtbl_record *create_empty_lvol(struct ubi_device *ubi, | 
 | 						 struct ubi_attach_info *ai) | 
 | { | 
 | 	int i; | 
 | 	struct ubi_vtbl_record *vtbl; | 
 |  | 
 | 	vtbl = vzalloc(ubi->vtbl_size); | 
 | 	if (!vtbl) | 
 | 		return ERR_PTR(-ENOMEM); | 
 |  | 
 | 	for (i = 0; i < ubi->vtbl_slots; i++) | 
 | 		memcpy(&vtbl[i], &empty_vtbl_record, UBI_VTBL_RECORD_SIZE); | 
 |  | 
 | 	for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) { | 
 | 		int err; | 
 |  | 
 | 		err = create_vtbl(ubi, ai, i, vtbl); | 
 | 		if (err) { | 
 | 			vfree(vtbl); | 
 | 			return ERR_PTR(err); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return vtbl; | 
 | } | 
 |  | 
 | /** | 
 |  * init_volumes - initialize volume information for existing volumes. | 
 |  * @ubi: UBI device description object | 
 |  * @ai: scanning information | 
 |  * @vtbl: volume table | 
 |  * | 
 |  * This function allocates volume description objects for existing volumes. | 
 |  * Returns zero in case of success and a negative error code in case of | 
 |  * failure. | 
 |  */ | 
 | static int init_volumes(struct ubi_device *ubi, | 
 | 			const struct ubi_attach_info *ai, | 
 | 			const struct ubi_vtbl_record *vtbl) | 
 | { | 
 | 	int i, err, reserved_pebs = 0; | 
 | 	struct ubi_ainf_volume *av; | 
 | 	struct ubi_volume *vol; | 
 |  | 
 | 	for (i = 0; i < ubi->vtbl_slots; i++) { | 
 | 		cond_resched(); | 
 |  | 
 | 		if (be32_to_cpu(vtbl[i].reserved_pebs) == 0) | 
 | 			continue; /* Empty record */ | 
 |  | 
 | 		vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL); | 
 | 		if (!vol) | 
 | 			return -ENOMEM; | 
 |  | 
 | 		vol->reserved_pebs = be32_to_cpu(vtbl[i].reserved_pebs); | 
 | 		vol->alignment = be32_to_cpu(vtbl[i].alignment); | 
 | 		vol->data_pad = be32_to_cpu(vtbl[i].data_pad); | 
 | 		vol->upd_marker = vtbl[i].upd_marker; | 
 | 		vol->vol_type = vtbl[i].vol_type == UBI_VID_DYNAMIC ? | 
 | 					UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME; | 
 | 		vol->name_len = be16_to_cpu(vtbl[i].name_len); | 
 | 		vol->usable_leb_size = ubi->leb_size - vol->data_pad; | 
 | 		memcpy(vol->name, vtbl[i].name, vol->name_len); | 
 | 		vol->name[vol->name_len] = '\0'; | 
 | 		vol->vol_id = i; | 
 |  | 
 | 		if (vtbl[i].flags & UBI_VTBL_SKIP_CRC_CHECK_FLG) | 
 | 			vol->skip_check = 1; | 
 |  | 
 | 		if (vtbl[i].flags & UBI_VTBL_AUTORESIZE_FLG) { | 
 | 			/* Auto re-size flag may be set only for one volume */ | 
 | 			if (ubi->autoresize_vol_id != -1) { | 
 | 				ubi_err(ubi, "more than one auto-resize volume (%d and %d)", | 
 | 					ubi->autoresize_vol_id, i); | 
 | 				kfree(vol); | 
 | 				return -EINVAL; | 
 | 			} | 
 |  | 
 | 			ubi->autoresize_vol_id = i; | 
 | 		} | 
 |  | 
 | 		ubi_assert(!ubi->volumes[i]); | 
 | 		ubi->volumes[i] = vol; | 
 | 		ubi->vol_count += 1; | 
 | 		vol->ubi = ubi; | 
 | 		reserved_pebs += vol->reserved_pebs; | 
 |  | 
 | 		/* | 
 | 		 * We use ubi->peb_count and not vol->reserved_pebs because | 
 | 		 * we want to keep the code simple. Otherwise we'd have to | 
 | 		 * resize/check the bitmap upon volume resize too. | 
 | 		 * Allocating a few bytes more does not hurt. | 
 | 		 */ | 
 | 		err = ubi_fastmap_init_checkmap(vol, ubi->peb_count); | 
 | 		if (err) | 
 | 			return err; | 
 |  | 
 | 		/* | 
 | 		 * In case of dynamic volume UBI knows nothing about how many | 
 | 		 * data is stored there. So assume the whole volume is used. | 
 | 		 */ | 
 | 		if (vol->vol_type == UBI_DYNAMIC_VOLUME) { | 
 | 			vol->used_ebs = vol->reserved_pebs; | 
 | 			vol->last_eb_bytes = vol->usable_leb_size; | 
 | 			vol->used_bytes = | 
 | 				(long long)vol->used_ebs * vol->usable_leb_size; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* Static volumes only */ | 
 | 		av = ubi_find_av(ai, i); | 
 | 		if (!av || !av->leb_count) { | 
 | 			/* | 
 | 			 * No eraseblocks belonging to this volume found. We | 
 | 			 * don't actually know whether this static volume is | 
 | 			 * completely corrupted or just contains no data. And | 
 | 			 * we cannot know this as long as data size is not | 
 | 			 * stored on flash. So we just assume the volume is | 
 | 			 * empty. FIXME: this should be handled. | 
 | 			 */ | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (av->leb_count != av->used_ebs) { | 
 | 			/* | 
 | 			 * We found a static volume which misses several | 
 | 			 * eraseblocks. Treat it as corrupted. | 
 | 			 */ | 
 | 			ubi_warn(ubi, "static volume %d misses %d LEBs - corrupted", | 
 | 				 av->vol_id, av->used_ebs - av->leb_count); | 
 | 			vol->corrupted = 1; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		vol->used_ebs = av->used_ebs; | 
 | 		vol->used_bytes = | 
 | 			(long long)(vol->used_ebs - 1) * vol->usable_leb_size; | 
 | 		vol->used_bytes += av->last_data_size; | 
 | 		vol->last_eb_bytes = av->last_data_size; | 
 | 	} | 
 |  | 
 | 	/* And add the layout volume */ | 
 | 	vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL); | 
 | 	if (!vol) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	vol->reserved_pebs = UBI_LAYOUT_VOLUME_EBS; | 
 | 	vol->alignment = UBI_LAYOUT_VOLUME_ALIGN; | 
 | 	vol->vol_type = UBI_DYNAMIC_VOLUME; | 
 | 	vol->name_len = sizeof(UBI_LAYOUT_VOLUME_NAME) - 1; | 
 | 	memcpy(vol->name, UBI_LAYOUT_VOLUME_NAME, vol->name_len + 1); | 
 | 	vol->usable_leb_size = ubi->leb_size; | 
 | 	vol->used_ebs = vol->reserved_pebs; | 
 | 	vol->last_eb_bytes = vol->reserved_pebs; | 
 | 	vol->used_bytes = | 
 | 		(long long)vol->used_ebs * (ubi->leb_size - vol->data_pad); | 
 | 	vol->vol_id = UBI_LAYOUT_VOLUME_ID; | 
 | 	vol->ref_count = 1; | 
 |  | 
 | 	ubi_assert(!ubi->volumes[i]); | 
 | 	ubi->volumes[vol_id2idx(ubi, vol->vol_id)] = vol; | 
 | 	reserved_pebs += vol->reserved_pebs; | 
 | 	ubi->vol_count += 1; | 
 | 	vol->ubi = ubi; | 
 | 	err = ubi_fastmap_init_checkmap(vol, UBI_LAYOUT_VOLUME_EBS); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	if (reserved_pebs > ubi->avail_pebs) { | 
 | 		ubi_err(ubi, "not enough PEBs, required %d, available %d", | 
 | 			reserved_pebs, ubi->avail_pebs); | 
 | 		if (ubi->corr_peb_count) | 
 | 			ubi_err(ubi, "%d PEBs are corrupted and not used", | 
 | 				ubi->corr_peb_count); | 
 | 		return -ENOSPC; | 
 | 	} | 
 | 	ubi->rsvd_pebs += reserved_pebs; | 
 | 	ubi->avail_pebs -= reserved_pebs; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * check_av - check volume attaching information. | 
 |  * @vol: UBI volume description object | 
 |  * @av: volume attaching information | 
 |  * | 
 |  * This function returns zero if the volume attaching information is consistent | 
 |  * to the data read from the volume tabla, and %-EINVAL if not. | 
 |  */ | 
 | static int check_av(const struct ubi_volume *vol, | 
 | 		    const struct ubi_ainf_volume *av) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	if (av->highest_lnum >= vol->reserved_pebs) { | 
 | 		err = 1; | 
 | 		goto bad; | 
 | 	} | 
 | 	if (av->leb_count > vol->reserved_pebs) { | 
 | 		err = 2; | 
 | 		goto bad; | 
 | 	} | 
 | 	if (av->vol_type != vol->vol_type) { | 
 | 		err = 3; | 
 | 		goto bad; | 
 | 	} | 
 | 	if (av->used_ebs > vol->reserved_pebs) { | 
 | 		err = 4; | 
 | 		goto bad; | 
 | 	} | 
 | 	if (av->data_pad != vol->data_pad) { | 
 | 		err = 5; | 
 | 		goto bad; | 
 | 	} | 
 | 	return 0; | 
 |  | 
 | bad: | 
 | 	ubi_err(vol->ubi, "bad attaching information, error %d", err); | 
 | 	ubi_dump_av(av); | 
 | 	ubi_dump_vol_info(vol); | 
 | 	return -EINVAL; | 
 | } | 
 |  | 
 | /** | 
 |  * check_attaching_info - check that attaching information. | 
 |  * @ubi: UBI device description object | 
 |  * @ai: attaching information | 
 |  * | 
 |  * Even though we protect on-flash data by CRC checksums, we still don't trust | 
 |  * the media. This function ensures that attaching information is consistent to | 
 |  * the information read from the volume table. Returns zero if the attaching | 
 |  * information is OK and %-EINVAL if it is not. | 
 |  */ | 
 | static int check_attaching_info(const struct ubi_device *ubi, | 
 | 			       struct ubi_attach_info *ai) | 
 | { | 
 | 	int err, i; | 
 | 	struct ubi_ainf_volume *av; | 
 | 	struct ubi_volume *vol; | 
 |  | 
 | 	if (ai->vols_found > UBI_INT_VOL_COUNT + ubi->vtbl_slots) { | 
 | 		ubi_err(ubi, "found %d volumes while attaching, maximum is %d + %d", | 
 | 			ai->vols_found, UBI_INT_VOL_COUNT, ubi->vtbl_slots); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (ai->highest_vol_id >= ubi->vtbl_slots + UBI_INT_VOL_COUNT && | 
 | 	    ai->highest_vol_id < UBI_INTERNAL_VOL_START) { | 
 | 		ubi_err(ubi, "too large volume ID %d found", | 
 | 			ai->highest_vol_id); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) { | 
 | 		cond_resched(); | 
 |  | 
 | 		av = ubi_find_av(ai, i); | 
 | 		vol = ubi->volumes[i]; | 
 | 		if (!vol) { | 
 | 			if (av) | 
 | 				ubi_remove_av(ai, av); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (vol->reserved_pebs == 0) { | 
 | 			ubi_assert(i < ubi->vtbl_slots); | 
 |  | 
 | 			if (!av) | 
 | 				continue; | 
 |  | 
 | 			/* | 
 | 			 * During attaching we found a volume which does not | 
 | 			 * exist according to the information in the volume | 
 | 			 * table. This must have happened due to an unclean | 
 | 			 * reboot while the volume was being removed. Discard | 
 | 			 * these eraseblocks. | 
 | 			 */ | 
 | 			ubi_msg(ubi, "finish volume %d removal", av->vol_id); | 
 | 			ubi_remove_av(ai, av); | 
 | 		} else if (av) { | 
 | 			err = check_av(vol, av); | 
 | 			if (err) | 
 | 				return err; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * ubi_read_volume_table - read the volume table. | 
 |  * @ubi: UBI device description object | 
 |  * @ai: attaching information | 
 |  * | 
 |  * This function reads volume table, checks it, recover from errors if needed, | 
 |  * or creates it if needed. Returns zero in case of success and a negative | 
 |  * error code in case of failure. | 
 |  */ | 
 | int ubi_read_volume_table(struct ubi_device *ubi, struct ubi_attach_info *ai) | 
 | { | 
 | 	int err; | 
 | 	struct ubi_ainf_volume *av; | 
 |  | 
 | 	empty_vtbl_record.crc = cpu_to_be32(0xf116c36b); | 
 |  | 
 | 	/* | 
 | 	 * The number of supported volumes is limited by the eraseblock size | 
 | 	 * and by the UBI_MAX_VOLUMES constant. | 
 | 	 */ | 
 |  | 
 | 	if (ubi->leb_size < UBI_VTBL_RECORD_SIZE) { | 
 | 		ubi_err(ubi, "LEB size too small for a volume record"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	ubi->vtbl_slots = ubi->leb_size / UBI_VTBL_RECORD_SIZE; | 
 | 	if (ubi->vtbl_slots > UBI_MAX_VOLUMES) | 
 | 		ubi->vtbl_slots = UBI_MAX_VOLUMES; | 
 |  | 
 | 	ubi->vtbl_size = ubi->vtbl_slots * UBI_VTBL_RECORD_SIZE; | 
 | 	ubi->vtbl_size = ALIGN(ubi->vtbl_size, ubi->min_io_size); | 
 |  | 
 | 	av = ubi_find_av(ai, UBI_LAYOUT_VOLUME_ID); | 
 | 	if (!av) { | 
 | 		/* | 
 | 		 * No logical eraseblocks belonging to the layout volume were | 
 | 		 * found. This could mean that the flash is just empty. In | 
 | 		 * this case we create empty layout volume. | 
 | 		 * | 
 | 		 * But if flash is not empty this must be a corruption or the | 
 | 		 * MTD device just contains garbage. | 
 | 		 */ | 
 | 		if (ai->is_empty) { | 
 | 			ubi->vtbl = create_empty_lvol(ubi, ai); | 
 | 			if (IS_ERR(ubi->vtbl)) | 
 | 				return PTR_ERR(ubi->vtbl); | 
 | 		} else { | 
 | 			ubi_err(ubi, "the layout volume was not found"); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 	} else { | 
 | 		if (av->leb_count > UBI_LAYOUT_VOLUME_EBS) { | 
 | 			/* This must not happen with proper UBI images */ | 
 | 			ubi_err(ubi, "too many LEBs (%d) in layout volume", | 
 | 				av->leb_count); | 
 | 			return -EINVAL; | 
 | 		} | 
 |  | 
 | 		ubi->vtbl = process_lvol(ubi, ai, av); | 
 | 		if (IS_ERR(ubi->vtbl)) | 
 | 			return PTR_ERR(ubi->vtbl); | 
 | 	} | 
 |  | 
 | 	ubi->avail_pebs = ubi->good_peb_count - ubi->corr_peb_count; | 
 |  | 
 | 	/* | 
 | 	 * The layout volume is OK, initialize the corresponding in-RAM data | 
 | 	 * structures. | 
 | 	 */ | 
 | 	err = init_volumes(ubi, ai, ubi->vtbl); | 
 | 	if (err) | 
 | 		goto out_free; | 
 |  | 
 | 	/* | 
 | 	 * Make sure that the attaching information is consistent to the | 
 | 	 * information stored in the volume table. | 
 | 	 */ | 
 | 	err = check_attaching_info(ubi, ai); | 
 | 	if (err) | 
 | 		goto out_free; | 
 |  | 
 | 	return 0; | 
 |  | 
 | out_free: | 
 | 	vfree(ubi->vtbl); | 
 | 	ubi_free_all_volumes(ubi); | 
 | 	return err; | 
 | } | 
 |  | 
 | /** | 
 |  * self_vtbl_check - check volume table. | 
 |  * @ubi: UBI device description object | 
 |  */ | 
 | static void self_vtbl_check(const struct ubi_device *ubi) | 
 | { | 
 | 	if (!ubi_dbg_chk_gen(ubi)) | 
 | 		return; | 
 |  | 
 | 	if (vtbl_check(ubi, ubi->vtbl)) { | 
 | 		ubi_err(ubi, "self-check failed"); | 
 | 		BUG(); | 
 | 	} | 
 | } |