blob: 7073f86699f2caf0b9a4788098d29b91b347cfb9 [file] [log] [blame] [edit]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Based on arch/arm/mm/ioremap.c
*
* (C) Copyright 1995 1996 Linus Torvalds
* Hacked for ARM by Phil Blundell <philb@gnu.org>
* Hacked to allow all architectures to build, and various cleanups
* by Russell King
* Copyright (C) 2012 ARM Ltd.
*/
#define pr_fmt(fmt) "ioremap: " fmt
#include <linux/export.h>
#include <linux/mm.h>
#include <linux/vmalloc.h>
#include <linux/slab.h>
#include <linux/io.h>
#include <linux/arm-smccc.h>
#include <asm/fixmap.h>
#include <asm/tlbflush.h>
#include <asm/hypervisor.h>
#ifndef ARM_SMCCC_KVM_FUNC_MMIO_GUARD_INFO
#define ARM_SMCCC_KVM_FUNC_MMIO_GUARD_INFO 5
#define ARM_SMCCC_VENDOR_HYP_KVM_MMIO_GUARD_INFO_FUNC_ID \
ARM_SMCCC_CALL_VAL(ARM_SMCCC_FAST_CALL, \
ARM_SMCCC_SMC_64, \
ARM_SMCCC_OWNER_VENDOR_HYP, \
ARM_SMCCC_KVM_FUNC_MMIO_GUARD_INFO)
#endif /* ARM_SMCCC_KVM_FUNC_MMIO_GUARD_INFO */
#ifndef ARM_SMCCC_KVM_FUNC_MMIO_GUARD_ENROLL
#define ARM_SMCCC_KVM_FUNC_MMIO_GUARD_ENROLL 6
#define ARM_SMCCC_VENDOR_HYP_KVM_MMIO_GUARD_ENROLL_FUNC_ID \
ARM_SMCCC_CALL_VAL(ARM_SMCCC_FAST_CALL, \
ARM_SMCCC_SMC_64, \
ARM_SMCCC_OWNER_VENDOR_HYP, \
ARM_SMCCC_KVM_FUNC_MMIO_GUARD_ENROLL)
#endif /* ARM_SMCCC_KVM_FUNC_MMIO_GUARD_ENROLL */
#ifndef ARM_SMCCC_KVM_FUNC_MMIO_GUARD_MAP
#define ARM_SMCCC_KVM_FUNC_MMIO_GUARD_MAP 7
#define ARM_SMCCC_VENDOR_HYP_KVM_MMIO_GUARD_MAP_FUNC_ID \
ARM_SMCCC_CALL_VAL(ARM_SMCCC_FAST_CALL, \
ARM_SMCCC_SMC_64, \
ARM_SMCCC_OWNER_VENDOR_HYP, \
ARM_SMCCC_KVM_FUNC_MMIO_GUARD_MAP)
#endif /* ARM_SMCCC_KVM_FUNC_MMIO_GUARD_MAP */
#ifndef ARM_SMCCC_KVM_FUNC_MMIO_GUARD_UNMAP
#define ARM_SMCCC_KVM_FUNC_MMIO_GUARD_UNMAP 8
#define ARM_SMCCC_VENDOR_HYP_KVM_MMIO_GUARD_UNMAP_FUNC_ID \
ARM_SMCCC_CALL_VAL(ARM_SMCCC_FAST_CALL, \
ARM_SMCCC_SMC_64, \
ARM_SMCCC_OWNER_VENDOR_HYP, \
ARM_SMCCC_KVM_FUNC_MMIO_GUARD_UNMAP)
#endif /* ARM_SMCCC_KVM_FUNC_MMIO_GUARD_UNMAP */
struct ioremap_guard_ref {
refcount_t count;
};
static DEFINE_STATIC_KEY_FALSE(ioremap_guard_key);
static DEFINE_XARRAY(ioremap_guard_array);
static DEFINE_MUTEX(ioremap_guard_lock);
static size_t guard_granule;
static bool ioremap_guard;
static int __init ioremap_guard_setup(char *str)
{
ioremap_guard = true;
return 0;
}
early_param("ioremap_guard", ioremap_guard_setup);
void kvm_init_ioremap_services(void)
{
struct arm_smccc_res res;
size_t granule;
if (!ioremap_guard)
return;
/* We need all the functions to be implemented */
if (!kvm_arm_hyp_service_available(ARM_SMCCC_KVM_FUNC_MMIO_GUARD_INFO) ||
!kvm_arm_hyp_service_available(ARM_SMCCC_KVM_FUNC_MMIO_GUARD_ENROLL) ||
!kvm_arm_hyp_service_available(ARM_SMCCC_KVM_FUNC_MMIO_GUARD_MAP) ||
!kvm_arm_hyp_service_available(ARM_SMCCC_KVM_FUNC_MMIO_GUARD_UNMAP))
return;
arm_smccc_1_1_invoke(ARM_SMCCC_VENDOR_HYP_KVM_MMIO_GUARD_INFO_FUNC_ID,
0, 0, 0, &res);
granule = res.a0;
if (granule > PAGE_SIZE || !granule || (granule & (granule - 1))) {
pr_warn("KVM MMIO guard initialization failed: "
"guard granule (%lu), page size (%lu)\n",
granule, PAGE_SIZE);
return;
}
arm_smccc_1_1_invoke(ARM_SMCCC_VENDOR_HYP_KVM_MMIO_GUARD_ENROLL_FUNC_ID,
&res);
if (res.a0 == SMCCC_RET_SUCCESS) {
guard_granule = granule;
static_branch_enable(&ioremap_guard_key);
pr_info("Using KVM MMIO guard for ioremap\n");
} else {
pr_warn("KVM MMIO guard registration failed (%ld)\n", res.a0);
}
}
void ioremap_phys_range_hook(phys_addr_t phys_addr, size_t size, pgprot_t prot)
{
int guard_shift;
if (!static_branch_unlikely(&ioremap_guard_key))
return;
guard_shift = __builtin_ctzl(guard_granule);
mutex_lock(&ioremap_guard_lock);
while (size) {
u64 guard_fn = phys_addr >> guard_shift;
struct ioremap_guard_ref *ref;
struct arm_smccc_res res;
if (pfn_valid(__phys_to_pfn(phys_addr)))
goto next;
ref = xa_load(&ioremap_guard_array, guard_fn);
if (ref) {
refcount_inc(&ref->count);
goto next;
}
/*
* It is acceptable for the allocation to fail, specially
* if trying to ioremap something very early on, like with
* earlycon, which happens long before kmem_cache_init.
* This page will be permanently accessible, similar to a
* saturated refcount.
*/
if (slab_is_available())
ref = kzalloc(sizeof(*ref), GFP_KERNEL);
if (ref) {
refcount_set(&ref->count, 1);
if (xa_err(xa_store(&ioremap_guard_array, guard_fn, ref,
GFP_KERNEL))) {
kfree(ref);
ref = NULL;
}
}
arm_smccc_1_1_hvc(ARM_SMCCC_VENDOR_HYP_KVM_MMIO_GUARD_MAP_FUNC_ID,
phys_addr, prot, &res);
if (res.a0 != SMCCC_RET_SUCCESS) {
pr_warn_ratelimited("Failed to register %llx\n",
phys_addr);
xa_erase(&ioremap_guard_array, guard_fn);
kfree(ref);
goto out;
}
next:
size -= guard_granule;
phys_addr += guard_granule;
}
out:
mutex_unlock(&ioremap_guard_lock);
}
void iounmap_phys_range_hook(phys_addr_t phys_addr, size_t size)
{
int guard_shift;
if (!static_branch_unlikely(&ioremap_guard_key))
return;
VM_BUG_ON(phys_addr & ~PAGE_MASK || size & ~PAGE_MASK);
guard_shift = __builtin_ctzl(guard_granule);
mutex_lock(&ioremap_guard_lock);
while (size) {
u64 guard_fn = phys_addr >> guard_shift;
struct ioremap_guard_ref *ref;
struct arm_smccc_res res;
ref = xa_load(&ioremap_guard_array, guard_fn);
if (!ref) {
pr_warn_ratelimited("%llx not tracked, left mapped\n",
phys_addr);
goto next;
}
if (!refcount_dec_and_test(&ref->count))
goto next;
xa_erase(&ioremap_guard_array, guard_fn);
kfree(ref);
arm_smccc_1_1_hvc(ARM_SMCCC_VENDOR_HYP_KVM_MMIO_GUARD_UNMAP_FUNC_ID,
phys_addr, &res);
if (res.a0 != SMCCC_RET_SUCCESS) {
pr_warn_ratelimited("Failed to unregister %llx\n",
phys_addr);
goto out;
}
next:
size -= guard_granule;
phys_addr += guard_granule;
}
out:
mutex_unlock(&ioremap_guard_lock);
}
static void __iomem *__ioremap_caller(phys_addr_t phys_addr, size_t size,
pgprot_t prot, void *caller)
{
unsigned long last_addr;
unsigned long offset = phys_addr & ~PAGE_MASK;
int err;
unsigned long addr;
struct vm_struct *area;
/*
* Page align the mapping address and size, taking account of any
* offset.
*/
phys_addr &= PAGE_MASK;
size = PAGE_ALIGN(size + offset);
/*
* Don't allow wraparound, zero size or outside PHYS_MASK.
*/
last_addr = phys_addr + size - 1;
if (!size || last_addr < phys_addr || (last_addr & ~PHYS_MASK))
return NULL;
/*
* Don't allow RAM to be mapped.
*/
if (WARN_ON(pfn_is_map_memory(__phys_to_pfn(phys_addr))))
return NULL;
area = get_vm_area_caller(size, VM_IOREMAP, caller);
if (!area)
return NULL;
addr = (unsigned long)area->addr;
area->phys_addr = phys_addr;
err = ioremap_page_range(addr, addr + size, phys_addr, prot);
if (err) {
vunmap((void *)addr);
return NULL;
}
return (void __iomem *)(offset + addr);
}
void __iomem *__ioremap(phys_addr_t phys_addr, size_t size, pgprot_t prot)
{
return __ioremap_caller(phys_addr, size, prot,
__builtin_return_address(0));
}
EXPORT_SYMBOL(__ioremap);
void iounmap(volatile void __iomem *io_addr)
{
unsigned long addr = (unsigned long)io_addr & PAGE_MASK;
/*
* We could get an address outside vmalloc range in case
* of ioremap_cache() reusing a RAM mapping.
*/
if (is_vmalloc_addr((void *)addr))
vunmap((void *)addr);
}
EXPORT_SYMBOL(iounmap);
void __iomem *ioremap_cache(phys_addr_t phys_addr, size_t size)
{
/* For normal memory we already have a cacheable mapping. */
if (pfn_is_map_memory(__phys_to_pfn(phys_addr)))
return (void __iomem *)__phys_to_virt(phys_addr);
return __ioremap_caller(phys_addr, size, __pgprot(PROT_NORMAL),
__builtin_return_address(0));
}
EXPORT_SYMBOL(ioremap_cache);
/*
* Must be called after early_fixmap_init
*/
void __init early_ioremap_init(void)
{
early_ioremap_setup();
}
bool arch_memremap_can_ram_remap(resource_size_t offset, size_t size,
unsigned long flags)
{
unsigned long pfn = PHYS_PFN(offset);
return pfn_is_map_memory(pfn);
}