blob: 56f0f3ef294274d611885a1a65495b7e01904fdf [file] [log] [blame] [edit]
// SPDX-License-Identifier: GPL-2.0
/*
* Functions related to sysfs handling
*/
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
#include <linux/backing-dev.h>
#include <linux/blktrace_api.h>
#include <linux/blk-mq.h>
#include <linux/blk-cgroup.h>
#include <linux/debugfs.h>
#include "blk.h"
#include "blk-mq.h"
#include "blk-mq-debugfs.h"
#include "blk-wbt.h"
struct queue_sysfs_entry {
struct attribute attr;
ssize_t (*show)(struct request_queue *, char *);
ssize_t (*store)(struct request_queue *, const char *, size_t);
};
static ssize_t
queue_var_show(unsigned long var, char *page)
{
return sprintf(page, "%lu\n", var);
}
static ssize_t
queue_var_store(unsigned long *var, const char *page, size_t count)
{
int err;
unsigned long v;
err = kstrtoul(page, 10, &v);
if (err || v > UINT_MAX)
return -EINVAL;
*var = v;
return count;
}
static ssize_t queue_var_store64(s64 *var, const char *page)
{
int err;
s64 v;
err = kstrtos64(page, 10, &v);
if (err < 0)
return err;
*var = v;
return 0;
}
static ssize_t queue_requests_show(struct request_queue *q, char *page)
{
return queue_var_show(q->nr_requests, page);
}
static ssize_t
queue_requests_store(struct request_queue *q, const char *page, size_t count)
{
unsigned long nr;
int ret, err;
if (!queue_is_mq(q))
return -EINVAL;
ret = queue_var_store(&nr, page, count);
if (ret < 0)
return ret;
if (nr < BLKDEV_MIN_RQ)
nr = BLKDEV_MIN_RQ;
err = blk_mq_update_nr_requests(q, nr);
if (err)
return err;
return ret;
}
static ssize_t queue_ra_show(struct request_queue *q, char *page)
{
unsigned long ra_kb;
if (!q->disk)
return -EINVAL;
ra_kb = q->disk->bdi->ra_pages << (PAGE_SHIFT - 10);
return queue_var_show(ra_kb, page);
}
static ssize_t
queue_ra_store(struct request_queue *q, const char *page, size_t count)
{
unsigned long ra_kb;
ssize_t ret;
if (!q->disk)
return -EINVAL;
ret = queue_var_store(&ra_kb, page, count);
if (ret < 0)
return ret;
q->disk->bdi->ra_pages = ra_kb >> (PAGE_SHIFT - 10);
return ret;
}
static ssize_t queue_max_sectors_show(struct request_queue *q, char *page)
{
int max_sectors_kb = queue_max_sectors(q) >> 1;
return queue_var_show(max_sectors_kb, page);
}
static ssize_t queue_max_segments_show(struct request_queue *q, char *page)
{
return queue_var_show(queue_max_segments(q), page);
}
static ssize_t queue_max_discard_segments_show(struct request_queue *q,
char *page)
{
return queue_var_show(queue_max_discard_segments(q), page);
}
static ssize_t queue_max_integrity_segments_show(struct request_queue *q, char *page)
{
return queue_var_show(q->limits.max_integrity_segments, page);
}
static ssize_t queue_max_segment_size_show(struct request_queue *q, char *page)
{
return queue_var_show(queue_max_segment_size(q), page);
}
static ssize_t queue_logical_block_size_show(struct request_queue *q, char *page)
{
return queue_var_show(queue_logical_block_size(q), page);
}
static ssize_t queue_physical_block_size_show(struct request_queue *q, char *page)
{
return queue_var_show(queue_physical_block_size(q), page);
}
static ssize_t queue_chunk_sectors_show(struct request_queue *q, char *page)
{
return queue_var_show(q->limits.chunk_sectors, page);
}
static ssize_t queue_io_min_show(struct request_queue *q, char *page)
{
return queue_var_show(queue_io_min(q), page);
}
static ssize_t queue_io_opt_show(struct request_queue *q, char *page)
{
return queue_var_show(queue_io_opt(q), page);
}
static ssize_t queue_discard_granularity_show(struct request_queue *q, char *page)
{
return queue_var_show(q->limits.discard_granularity, page);
}
static ssize_t queue_discard_max_hw_show(struct request_queue *q, char *page)
{
return sprintf(page, "%llu\n",
(unsigned long long)q->limits.max_hw_discard_sectors << 9);
}
static ssize_t queue_discard_max_show(struct request_queue *q, char *page)
{
return sprintf(page, "%llu\n",
(unsigned long long)q->limits.max_discard_sectors << 9);
}
static ssize_t queue_discard_max_store(struct request_queue *q,
const char *page, size_t count)
{
unsigned long max_discard;
ssize_t ret = queue_var_store(&max_discard, page, count);
if (ret < 0)
return ret;
if (max_discard & (q->limits.discard_granularity - 1))
return -EINVAL;
max_discard >>= 9;
if (max_discard > UINT_MAX)
return -EINVAL;
if (max_discard > q->limits.max_hw_discard_sectors)
max_discard = q->limits.max_hw_discard_sectors;
q->limits.max_discard_sectors = max_discard;
return ret;
}
static ssize_t queue_discard_zeroes_data_show(struct request_queue *q, char *page)
{
return queue_var_show(0, page);
}
static ssize_t queue_write_same_max_show(struct request_queue *q, char *page)
{
return sprintf(page, "%llu\n",
(unsigned long long)q->limits.max_write_same_sectors << 9);
}
static ssize_t queue_write_zeroes_max_show(struct request_queue *q, char *page)
{
return sprintf(page, "%llu\n",
(unsigned long long)q->limits.max_write_zeroes_sectors << 9);
}
static ssize_t queue_zone_write_granularity_show(struct request_queue *q,
char *page)
{
return queue_var_show(queue_zone_write_granularity(q), page);
}
static ssize_t queue_zone_append_max_show(struct request_queue *q, char *page)
{
unsigned long long max_sectors = q->limits.max_zone_append_sectors;
return sprintf(page, "%llu\n", max_sectors << SECTOR_SHIFT);
}
static ssize_t
queue_max_sectors_store(struct request_queue *q, const char *page, size_t count)
{
unsigned long max_sectors_kb,
max_hw_sectors_kb = queue_max_hw_sectors(q) >> 1,
page_kb = 1 << (PAGE_SHIFT - 10);
ssize_t ret = queue_var_store(&max_sectors_kb, page, count);
if (ret < 0)
return ret;
max_hw_sectors_kb = min_not_zero(max_hw_sectors_kb, (unsigned long)
q->limits.max_dev_sectors >> 1);
if (max_sectors_kb > max_hw_sectors_kb || max_sectors_kb < page_kb)
return -EINVAL;
spin_lock_irq(&q->queue_lock);
q->limits.max_sectors = max_sectors_kb << 1;
if (q->disk)
q->disk->bdi->io_pages = max_sectors_kb >> (PAGE_SHIFT - 10);
spin_unlock_irq(&q->queue_lock);
return ret;
}
static ssize_t queue_max_hw_sectors_show(struct request_queue *q, char *page)
{
int max_hw_sectors_kb = queue_max_hw_sectors(q) >> 1;
return queue_var_show(max_hw_sectors_kb, page);
}
static ssize_t queue_virt_boundary_mask_show(struct request_queue *q, char *page)
{
return queue_var_show(q->limits.virt_boundary_mask, page);
}
#define QUEUE_SYSFS_BIT_FNS(name, flag, neg) \
static ssize_t \
queue_##name##_show(struct request_queue *q, char *page) \
{ \
int bit; \
bit = test_bit(QUEUE_FLAG_##flag, &q->queue_flags); \
return queue_var_show(neg ? !bit : bit, page); \
} \
static ssize_t \
queue_##name##_store(struct request_queue *q, const char *page, size_t count) \
{ \
unsigned long val; \
ssize_t ret; \
ret = queue_var_store(&val, page, count); \
if (ret < 0) \
return ret; \
if (neg) \
val = !val; \
\
if (val) \
blk_queue_flag_set(QUEUE_FLAG_##flag, q); \
else \
blk_queue_flag_clear(QUEUE_FLAG_##flag, q); \
return ret; \
}
QUEUE_SYSFS_BIT_FNS(nonrot, NONROT, 1);
QUEUE_SYSFS_BIT_FNS(random, ADD_RANDOM, 0);
QUEUE_SYSFS_BIT_FNS(iostats, IO_STAT, 0);
QUEUE_SYSFS_BIT_FNS(stable_writes, STABLE_WRITES, 0);
#undef QUEUE_SYSFS_BIT_FNS
static ssize_t queue_zoned_show(struct request_queue *q, char *page)
{
switch (blk_queue_zoned_model(q)) {
case BLK_ZONED_HA:
return sprintf(page, "host-aware\n");
case BLK_ZONED_HM:
return sprintf(page, "host-managed\n");
default:
return sprintf(page, "none\n");
}
}
static ssize_t queue_nr_zones_show(struct request_queue *q, char *page)
{
return queue_var_show(blk_queue_nr_zones(q), page);
}
static ssize_t queue_max_open_zones_show(struct request_queue *q, char *page)
{
return queue_var_show(queue_max_open_zones(q), page);
}
static ssize_t queue_max_active_zones_show(struct request_queue *q, char *page)
{
return queue_var_show(queue_max_active_zones(q), page);
}
static ssize_t queue_nomerges_show(struct request_queue *q, char *page)
{
return queue_var_show((blk_queue_nomerges(q) << 1) |
blk_queue_noxmerges(q), page);
}
static ssize_t queue_nomerges_store(struct request_queue *q, const char *page,
size_t count)
{
unsigned long nm;
ssize_t ret = queue_var_store(&nm, page, count);
if (ret < 0)
return ret;
blk_queue_flag_clear(QUEUE_FLAG_NOMERGES, q);
blk_queue_flag_clear(QUEUE_FLAG_NOXMERGES, q);
if (nm == 2)
blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q);
else if (nm)
blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
return ret;
}
static ssize_t queue_rq_affinity_show(struct request_queue *q, char *page)
{
bool set = test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags);
bool force = test_bit(QUEUE_FLAG_SAME_FORCE, &q->queue_flags);
return queue_var_show(set << force, page);
}
static ssize_t
queue_rq_affinity_store(struct request_queue *q, const char *page, size_t count)
{
ssize_t ret = -EINVAL;
#ifdef CONFIG_SMP
unsigned long val;
ret = queue_var_store(&val, page, count);
if (ret < 0)
return ret;
if (val == 2) {
blk_queue_flag_set(QUEUE_FLAG_SAME_COMP, q);
blk_queue_flag_set(QUEUE_FLAG_SAME_FORCE, q);
} else if (val == 1) {
blk_queue_flag_set(QUEUE_FLAG_SAME_COMP, q);
blk_queue_flag_clear(QUEUE_FLAG_SAME_FORCE, q);
} else if (val == 0) {
blk_queue_flag_clear(QUEUE_FLAG_SAME_COMP, q);
blk_queue_flag_clear(QUEUE_FLAG_SAME_FORCE, q);
}
#endif
return ret;
}
static ssize_t queue_poll_delay_show(struct request_queue *q, char *page)
{
int val;
if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
val = BLK_MQ_POLL_CLASSIC;
else
val = q->poll_nsec / 1000;
return sprintf(page, "%d\n", val);
}
static ssize_t queue_poll_delay_store(struct request_queue *q, const char *page,
size_t count)
{
int err, val;
if (!q->mq_ops || !q->mq_ops->poll)
return -EINVAL;
err = kstrtoint(page, 10, &val);
if (err < 0)
return err;
if (val == BLK_MQ_POLL_CLASSIC)
q->poll_nsec = BLK_MQ_POLL_CLASSIC;
else if (val >= 0)
q->poll_nsec = val * 1000;
else
return -EINVAL;
return count;
}
static ssize_t queue_poll_show(struct request_queue *q, char *page)
{
return queue_var_show(test_bit(QUEUE_FLAG_POLL, &q->queue_flags), page);
}
static ssize_t queue_poll_store(struct request_queue *q, const char *page,
size_t count)
{
unsigned long poll_on;
ssize_t ret;
if (!q->tag_set || q->tag_set->nr_maps <= HCTX_TYPE_POLL ||
!q->tag_set->map[HCTX_TYPE_POLL].nr_queues)
return -EINVAL;
ret = queue_var_store(&poll_on, page, count);
if (ret < 0)
return ret;
if (poll_on) {
blk_queue_flag_set(QUEUE_FLAG_POLL, q);
} else {
blk_mq_freeze_queue(q);
blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
blk_mq_unfreeze_queue(q);
}
return ret;
}
static ssize_t queue_io_timeout_show(struct request_queue *q, char *page)
{
return sprintf(page, "%u\n", jiffies_to_msecs(q->rq_timeout));
}
static ssize_t queue_io_timeout_store(struct request_queue *q, const char *page,
size_t count)
{
unsigned int val;
int err;
err = kstrtou32(page, 10, &val);
if (err || val == 0)
return -EINVAL;
blk_queue_rq_timeout(q, msecs_to_jiffies(val));
return count;
}
static ssize_t queue_wb_lat_show(struct request_queue *q, char *page)
{
if (!wbt_rq_qos(q))
return -EINVAL;
return sprintf(page, "%llu\n", div_u64(wbt_get_min_lat(q), 1000));
}
static ssize_t queue_wb_lat_store(struct request_queue *q, const char *page,
size_t count)
{
struct rq_qos *rqos;
ssize_t ret;
s64 val;
ret = queue_var_store64(&val, page);
if (ret < 0)
return ret;
if (val < -1)
return -EINVAL;
rqos = wbt_rq_qos(q);
if (!rqos) {
ret = wbt_init(q);
if (ret)
return ret;
}
if (val == -1)
val = wbt_default_latency_nsec(q);
else if (val >= 0)
val *= 1000ULL;
if (wbt_get_min_lat(q) == val)
return count;
/*
* Ensure that the queue is idled, in case the latency update
* ends up either enabling or disabling wbt completely. We can't
* have IO inflight if that happens.
*/
blk_mq_freeze_queue(q);
blk_mq_quiesce_queue(q);
wbt_set_min_lat(q, val);
blk_mq_unquiesce_queue(q);
blk_mq_unfreeze_queue(q);
return count;
}
static ssize_t queue_wc_show(struct request_queue *q, char *page)
{
if (test_bit(QUEUE_FLAG_WC, &q->queue_flags))
return sprintf(page, "write back\n");
return sprintf(page, "write through\n");
}
static ssize_t queue_wc_store(struct request_queue *q, const char *page,
size_t count)
{
int set = -1;
if (!strncmp(page, "write back", 10))
set = 1;
else if (!strncmp(page, "write through", 13) ||
!strncmp(page, "none", 4))
set = 0;
if (set == -1)
return -EINVAL;
if (set)
blk_queue_flag_set(QUEUE_FLAG_WC, q);
else
blk_queue_flag_clear(QUEUE_FLAG_WC, q);
return count;
}
static ssize_t queue_fua_show(struct request_queue *q, char *page)
{
return sprintf(page, "%u\n", test_bit(QUEUE_FLAG_FUA, &q->queue_flags));
}
static ssize_t queue_dax_show(struct request_queue *q, char *page)
{
return queue_var_show(blk_queue_dax(q), page);
}
#define QUEUE_RO_ENTRY(_prefix, _name) \
static struct queue_sysfs_entry _prefix##_entry = { \
.attr = { .name = _name, .mode = 0444 }, \
.show = _prefix##_show, \
};
#define QUEUE_RW_ENTRY(_prefix, _name) \
static struct queue_sysfs_entry _prefix##_entry = { \
.attr = { .name = _name, .mode = 0644 }, \
.show = _prefix##_show, \
.store = _prefix##_store, \
};
QUEUE_RW_ENTRY(queue_requests, "nr_requests");
QUEUE_RW_ENTRY(queue_ra, "read_ahead_kb");
QUEUE_RW_ENTRY(queue_max_sectors, "max_sectors_kb");
QUEUE_RO_ENTRY(queue_max_hw_sectors, "max_hw_sectors_kb");
QUEUE_RO_ENTRY(queue_max_segments, "max_segments");
QUEUE_RO_ENTRY(queue_max_integrity_segments, "max_integrity_segments");
QUEUE_RO_ENTRY(queue_max_segment_size, "max_segment_size");
QUEUE_RW_ENTRY(elv_iosched, "scheduler");
QUEUE_RO_ENTRY(queue_logical_block_size, "logical_block_size");
QUEUE_RO_ENTRY(queue_physical_block_size, "physical_block_size");
QUEUE_RO_ENTRY(queue_chunk_sectors, "chunk_sectors");
QUEUE_RO_ENTRY(queue_io_min, "minimum_io_size");
QUEUE_RO_ENTRY(queue_io_opt, "optimal_io_size");
QUEUE_RO_ENTRY(queue_max_discard_segments, "max_discard_segments");
QUEUE_RO_ENTRY(queue_discard_granularity, "discard_granularity");
QUEUE_RO_ENTRY(queue_discard_max_hw, "discard_max_hw_bytes");
QUEUE_RW_ENTRY(queue_discard_max, "discard_max_bytes");
QUEUE_RO_ENTRY(queue_discard_zeroes_data, "discard_zeroes_data");
QUEUE_RO_ENTRY(queue_write_same_max, "write_same_max_bytes");
QUEUE_RO_ENTRY(queue_write_zeroes_max, "write_zeroes_max_bytes");
QUEUE_RO_ENTRY(queue_zone_append_max, "zone_append_max_bytes");
QUEUE_RO_ENTRY(queue_zone_write_granularity, "zone_write_granularity");
QUEUE_RO_ENTRY(queue_zoned, "zoned");
QUEUE_RO_ENTRY(queue_nr_zones, "nr_zones");
QUEUE_RO_ENTRY(queue_max_open_zones, "max_open_zones");
QUEUE_RO_ENTRY(queue_max_active_zones, "max_active_zones");
QUEUE_RW_ENTRY(queue_nomerges, "nomerges");
QUEUE_RW_ENTRY(queue_rq_affinity, "rq_affinity");
QUEUE_RW_ENTRY(queue_poll, "io_poll");
QUEUE_RW_ENTRY(queue_poll_delay, "io_poll_delay");
QUEUE_RW_ENTRY(queue_wc, "write_cache");
QUEUE_RO_ENTRY(queue_fua, "fua");
QUEUE_RO_ENTRY(queue_dax, "dax");
QUEUE_RW_ENTRY(queue_io_timeout, "io_timeout");
QUEUE_RW_ENTRY(queue_wb_lat, "wbt_lat_usec");
QUEUE_RO_ENTRY(queue_virt_boundary_mask, "virt_boundary_mask");
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
QUEUE_RW_ENTRY(blk_throtl_sample_time, "throttle_sample_time");
#endif
/* legacy alias for logical_block_size: */
static struct queue_sysfs_entry queue_hw_sector_size_entry = {
.attr = {.name = "hw_sector_size", .mode = 0444 },
.show = queue_logical_block_size_show,
};
QUEUE_RW_ENTRY(queue_nonrot, "rotational");
QUEUE_RW_ENTRY(queue_iostats, "iostats");
QUEUE_RW_ENTRY(queue_random, "add_random");
QUEUE_RW_ENTRY(queue_stable_writes, "stable_writes");
static struct attribute *queue_attrs[] = {
&queue_requests_entry.attr,
&queue_ra_entry.attr,
&queue_max_hw_sectors_entry.attr,
&queue_max_sectors_entry.attr,
&queue_max_segments_entry.attr,
&queue_max_discard_segments_entry.attr,
&queue_max_integrity_segments_entry.attr,
&queue_max_segment_size_entry.attr,
&elv_iosched_entry.attr,
&queue_hw_sector_size_entry.attr,
&queue_logical_block_size_entry.attr,
&queue_physical_block_size_entry.attr,
&queue_chunk_sectors_entry.attr,
&queue_io_min_entry.attr,
&queue_io_opt_entry.attr,
&queue_discard_granularity_entry.attr,
&queue_discard_max_entry.attr,
&queue_discard_max_hw_entry.attr,
&queue_discard_zeroes_data_entry.attr,
&queue_write_same_max_entry.attr,
&queue_write_zeroes_max_entry.attr,
&queue_zone_append_max_entry.attr,
&queue_zone_write_granularity_entry.attr,
&queue_nonrot_entry.attr,
&queue_zoned_entry.attr,
&queue_nr_zones_entry.attr,
&queue_max_open_zones_entry.attr,
&queue_max_active_zones_entry.attr,
&queue_nomerges_entry.attr,
&queue_rq_affinity_entry.attr,
&queue_iostats_entry.attr,
&queue_stable_writes_entry.attr,
&queue_random_entry.attr,
&queue_poll_entry.attr,
&queue_wc_entry.attr,
&queue_fua_entry.attr,
&queue_dax_entry.attr,
&queue_wb_lat_entry.attr,
&queue_poll_delay_entry.attr,
&queue_io_timeout_entry.attr,
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
&blk_throtl_sample_time_entry.attr,
#endif
&queue_virt_boundary_mask_entry.attr,
NULL,
};
static umode_t queue_attr_visible(struct kobject *kobj, struct attribute *attr,
int n)
{
struct request_queue *q =
container_of(kobj, struct request_queue, kobj);
if (attr == &queue_io_timeout_entry.attr &&
(!q->mq_ops || !q->mq_ops->timeout))
return 0;
if ((attr == &queue_max_open_zones_entry.attr ||
attr == &queue_max_active_zones_entry.attr) &&
!blk_queue_is_zoned(q))
return 0;
return attr->mode;
}
static struct attribute_group queue_attr_group = {
.attrs = queue_attrs,
.is_visible = queue_attr_visible,
};
#define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
static ssize_t
queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
{
struct queue_sysfs_entry *entry = to_queue(attr);
struct request_queue *q =
container_of(kobj, struct request_queue, kobj);
ssize_t res;
if (!entry->show)
return -EIO;
mutex_lock(&q->sysfs_lock);
res = entry->show(q, page);
mutex_unlock(&q->sysfs_lock);
return res;
}
static ssize_t
queue_attr_store(struct kobject *kobj, struct attribute *attr,
const char *page, size_t length)
{
struct queue_sysfs_entry *entry = to_queue(attr);
struct request_queue *q;
ssize_t res;
if (!entry->store)
return -EIO;
q = container_of(kobj, struct request_queue, kobj);
mutex_lock(&q->sysfs_lock);
res = entry->store(q, page, length);
mutex_unlock(&q->sysfs_lock);
return res;
}
static void blk_free_queue_rcu(struct rcu_head *rcu_head)
{
struct request_queue *q = container_of(rcu_head, struct request_queue,
rcu_head);
kmem_cache_free(blk_requestq_cachep, q);
}
/* Unconfigure the I/O scheduler and dissociate from the cgroup controller. */
static void blk_exit_queue(struct request_queue *q)
{
/*
* Since the I/O scheduler exit code may access cgroup information,
* perform I/O scheduler exit before disassociating from the block
* cgroup controller.
*/
if (q->elevator) {
ioc_clear_queue(q);
__elevator_exit(q, q->elevator);
}
/*
* Remove all references to @q from the block cgroup controller before
* restoring @q->queue_lock to avoid that restoring this pointer causes
* e.g. blkcg_print_blkgs() to crash.
*/
blkcg_exit_queue(q);
}
/**
* blk_release_queue - releases all allocated resources of the request_queue
* @kobj: pointer to a kobject, whose container is a request_queue
*
* This function releases all allocated resources of the request queue.
*
* The struct request_queue refcount is incremented with blk_get_queue() and
* decremented with blk_put_queue(). Once the refcount reaches 0 this function
* is called.
*
* For drivers that have a request_queue on a gendisk and added with
* __device_add_disk() the refcount to request_queue will reach 0 with
* the last put_disk() called by the driver. For drivers which don't use
* __device_add_disk() this happens with blk_cleanup_queue().
*
* Drivers exist which depend on the release of the request_queue to be
* synchronous, it should not be deferred.
*
* Context: can sleep
*/
static void blk_release_queue(struct kobject *kobj)
{
struct request_queue *q =
container_of(kobj, struct request_queue, kobj);
might_sleep();
if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
blk_stat_remove_callback(q, q->poll_cb);
blk_stat_free_callback(q->poll_cb);
blk_free_queue_stats(q->stats);
blk_exit_queue(q);
blk_queue_free_zone_bitmaps(q);
if (queue_is_mq(q))
blk_mq_release(q);
blk_trace_shutdown(q);
mutex_lock(&q->debugfs_mutex);
debugfs_remove_recursive(q->debugfs_dir);
mutex_unlock(&q->debugfs_mutex);
if (queue_is_mq(q))
blk_mq_debugfs_unregister(q);
bioset_exit(&q->bio_split);
ida_simple_remove(&blk_queue_ida, q->id);
call_rcu(&q->rcu_head, blk_free_queue_rcu);
}
static const struct sysfs_ops queue_sysfs_ops = {
.show = queue_attr_show,
.store = queue_attr_store,
};
struct kobj_type blk_queue_ktype = {
.sysfs_ops = &queue_sysfs_ops,
.release = blk_release_queue,
};
/**
* blk_register_queue - register a block layer queue with sysfs
* @disk: Disk of which the request queue should be registered with sysfs.
*/
int blk_register_queue(struct gendisk *disk)
{
int ret;
struct device *dev = disk_to_dev(disk);
struct request_queue *q = disk->queue;
ret = blk_trace_init_sysfs(dev);
if (ret)
return ret;
mutex_lock(&q->sysfs_dir_lock);
ret = kobject_add(&q->kobj, kobject_get(&dev->kobj), "%s", "queue");
if (ret < 0) {
blk_trace_remove_sysfs(dev);
goto unlock;
}
ret = sysfs_create_group(&q->kobj, &queue_attr_group);
if (ret) {
blk_trace_remove_sysfs(dev);
kobject_del(&q->kobj);
kobject_put(&dev->kobj);
goto unlock;
}
mutex_lock(&q->debugfs_mutex);
q->debugfs_dir = debugfs_create_dir(kobject_name(q->kobj.parent),
blk_debugfs_root);
mutex_unlock(&q->debugfs_mutex);
if (queue_is_mq(q)) {
__blk_mq_register_dev(dev, q);
blk_mq_debugfs_register(q);
}
mutex_lock(&q->sysfs_lock);
if (q->elevator) {
ret = elv_register_queue(q, false);
if (ret) {
mutex_unlock(&q->sysfs_lock);
mutex_unlock(&q->sysfs_dir_lock);
kobject_del(&q->kobj);
blk_trace_remove_sysfs(dev);
kobject_put(&dev->kobj);
return ret;
}
}
ret = blk_crypto_sysfs_register(q);
if (ret)
goto put_dev;
blk_queue_flag_set(QUEUE_FLAG_REGISTERED, q);
wbt_enable_default(q);
blk_throtl_register_queue(q);
/* Now everything is ready and send out KOBJ_ADD uevent */
kobject_uevent(&q->kobj, KOBJ_ADD);
if (q->elevator)
kobject_uevent(&q->elevator->kobj, KOBJ_ADD);
mutex_unlock(&q->sysfs_lock);
ret = 0;
unlock:
mutex_unlock(&q->sysfs_dir_lock);
/*
* SCSI probing may synchronously create and destroy a lot of
* request_queues for non-existent devices. Shutting down a fully
* functional queue takes measureable wallclock time as RCU grace
* periods are involved. To avoid excessive latency in these
* cases, a request_queue starts out in a degraded mode which is
* faster to shut down and is made fully functional here as
* request_queues for non-existent devices never get registered.
*/
if (!blk_queue_init_done(q)) {
blk_queue_flag_set(QUEUE_FLAG_INIT_DONE, q);
percpu_ref_switch_to_percpu(&q->q_usage_counter);
}
return ret;
put_dev:
elv_unregister_queue(q);
mutex_unlock(&q->sysfs_lock);
mutex_unlock(&q->sysfs_dir_lock);
kobject_del(&q->kobj);
blk_trace_remove_sysfs(dev);
kobject_put(&dev->kobj);
return ret;
}
/**
* blk_unregister_queue - counterpart of blk_register_queue()
* @disk: Disk of which the request queue should be unregistered from sysfs.
*
* Note: the caller is responsible for guaranteeing that this function is called
* after blk_register_queue() has finished.
*/
void blk_unregister_queue(struct gendisk *disk)
{
struct request_queue *q = disk->queue;
if (WARN_ON(!q))
return;
/* Return early if disk->queue was never registered. */
if (!blk_queue_registered(q))
return;
/*
* Since sysfs_remove_dir() prevents adding new directory entries
* before removal of existing entries starts, protect against
* concurrent elv_iosched_store() calls.
*/
mutex_lock(&q->sysfs_lock);
blk_queue_flag_clear(QUEUE_FLAG_REGISTERED, q);
mutex_unlock(&q->sysfs_lock);
mutex_lock(&q->sysfs_dir_lock);
/*
* Remove the sysfs attributes before unregistering the queue data
* structures that can be modified through sysfs.
*/
if (queue_is_mq(q))
blk_mq_unregister_dev(disk_to_dev(disk), q);
blk_crypto_sysfs_unregister(q);
blk_trace_remove_sysfs(disk_to_dev(disk));
mutex_lock(&q->sysfs_lock);
elv_unregister_queue(q);
mutex_unlock(&q->sysfs_lock);
/* Now that we've deleted all child objects, we can delete the queue. */
kobject_uevent(&q->kobj, KOBJ_REMOVE);
kobject_del(&q->kobj);
mutex_unlock(&q->sysfs_dir_lock);
kobject_put(&disk_to_dev(disk)->kobj);
}