| /* Copyright (c) 2018, Mellanox Technologies All rights reserved. |
| * |
| * This software is available to you under a choice of one of two |
| * licenses. You may choose to be licensed under the terms of the GNU |
| * General Public License (GPL) Version 2, available from the file |
| * COPYING in the main directory of this source tree, or the |
| * OpenIB.org BSD license below: |
| * |
| * Redistribution and use in source and binary forms, with or |
| * without modification, are permitted provided that the following |
| * conditions are met: |
| * |
| * - Redistributions of source code must retain the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer. |
| * |
| * - Redistributions in binary form must reproduce the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer in the documentation and/or other materials |
| * provided with the distribution. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
| * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
| * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
| * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS |
| * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN |
| * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN |
| * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| * SOFTWARE. |
| */ |
| |
| #include <crypto/aead.h> |
| #include <linux/highmem.h> |
| #include <linux/module.h> |
| #include <linux/netdevice.h> |
| #include <net/dst.h> |
| #include <net/inet_connection_sock.h> |
| #include <net/tcp.h> |
| #include <net/tls.h> |
| |
| #include "trace.h" |
| |
| /* device_offload_lock is used to synchronize tls_dev_add |
| * against NETDEV_DOWN notifications. |
| */ |
| static DECLARE_RWSEM(device_offload_lock); |
| |
| static void tls_device_gc_task(struct work_struct *work); |
| |
| static DECLARE_WORK(tls_device_gc_work, tls_device_gc_task); |
| static LIST_HEAD(tls_device_gc_list); |
| static LIST_HEAD(tls_device_list); |
| static LIST_HEAD(tls_device_down_list); |
| static DEFINE_SPINLOCK(tls_device_lock); |
| |
| static void tls_device_free_ctx(struct tls_context *ctx) |
| { |
| if (ctx->tx_conf == TLS_HW) { |
| kfree(tls_offload_ctx_tx(ctx)); |
| kfree(ctx->tx.rec_seq); |
| kfree(ctx->tx.iv); |
| } |
| |
| if (ctx->rx_conf == TLS_HW) |
| kfree(tls_offload_ctx_rx(ctx)); |
| |
| tls_ctx_free(NULL, ctx); |
| } |
| |
| static void tls_device_gc_task(struct work_struct *work) |
| { |
| struct tls_context *ctx, *tmp; |
| unsigned long flags; |
| LIST_HEAD(gc_list); |
| |
| spin_lock_irqsave(&tls_device_lock, flags); |
| list_splice_init(&tls_device_gc_list, &gc_list); |
| spin_unlock_irqrestore(&tls_device_lock, flags); |
| |
| list_for_each_entry_safe(ctx, tmp, &gc_list, list) { |
| struct net_device *netdev = ctx->netdev; |
| |
| if (netdev && ctx->tx_conf == TLS_HW) { |
| netdev->tlsdev_ops->tls_dev_del(netdev, ctx, |
| TLS_OFFLOAD_CTX_DIR_TX); |
| dev_put(netdev); |
| ctx->netdev = NULL; |
| } |
| |
| list_del(&ctx->list); |
| tls_device_free_ctx(ctx); |
| } |
| } |
| |
| static void tls_device_queue_ctx_destruction(struct tls_context *ctx) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&tls_device_lock, flags); |
| if (unlikely(!refcount_dec_and_test(&ctx->refcount))) |
| goto unlock; |
| |
| list_move_tail(&ctx->list, &tls_device_gc_list); |
| |
| /* schedule_work inside the spinlock |
| * to make sure tls_device_down waits for that work. |
| */ |
| schedule_work(&tls_device_gc_work); |
| unlock: |
| spin_unlock_irqrestore(&tls_device_lock, flags); |
| } |
| |
| /* We assume that the socket is already connected */ |
| static struct net_device *get_netdev_for_sock(struct sock *sk) |
| { |
| struct dst_entry *dst = sk_dst_get(sk); |
| struct net_device *netdev = NULL; |
| |
| if (likely(dst)) { |
| netdev = netdev_sk_get_lowest_dev(dst->dev, sk); |
| dev_hold(netdev); |
| } |
| |
| dst_release(dst); |
| |
| return netdev; |
| } |
| |
| static void destroy_record(struct tls_record_info *record) |
| { |
| int i; |
| |
| for (i = 0; i < record->num_frags; i++) |
| __skb_frag_unref(&record->frags[i], false); |
| kfree(record); |
| } |
| |
| static void delete_all_records(struct tls_offload_context_tx *offload_ctx) |
| { |
| struct tls_record_info *info, *temp; |
| |
| list_for_each_entry_safe(info, temp, &offload_ctx->records_list, list) { |
| list_del(&info->list); |
| destroy_record(info); |
| } |
| |
| offload_ctx->retransmit_hint = NULL; |
| } |
| |
| static void tls_icsk_clean_acked(struct sock *sk, u32 acked_seq) |
| { |
| struct tls_context *tls_ctx = tls_get_ctx(sk); |
| struct tls_record_info *info, *temp; |
| struct tls_offload_context_tx *ctx; |
| u64 deleted_records = 0; |
| unsigned long flags; |
| |
| if (!tls_ctx) |
| return; |
| |
| ctx = tls_offload_ctx_tx(tls_ctx); |
| |
| spin_lock_irqsave(&ctx->lock, flags); |
| info = ctx->retransmit_hint; |
| if (info && !before(acked_seq, info->end_seq)) |
| ctx->retransmit_hint = NULL; |
| |
| list_for_each_entry_safe(info, temp, &ctx->records_list, list) { |
| if (before(acked_seq, info->end_seq)) |
| break; |
| list_del(&info->list); |
| |
| destroy_record(info); |
| deleted_records++; |
| } |
| |
| ctx->unacked_record_sn += deleted_records; |
| spin_unlock_irqrestore(&ctx->lock, flags); |
| } |
| |
| /* At this point, there should be no references on this |
| * socket and no in-flight SKBs associated with this |
| * socket, so it is safe to free all the resources. |
| */ |
| void tls_device_sk_destruct(struct sock *sk) |
| { |
| struct tls_context *tls_ctx = tls_get_ctx(sk); |
| struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx); |
| |
| tls_ctx->sk_destruct(sk); |
| |
| if (tls_ctx->tx_conf == TLS_HW) { |
| if (ctx->open_record) |
| destroy_record(ctx->open_record); |
| delete_all_records(ctx); |
| crypto_free_aead(ctx->aead_send); |
| clean_acked_data_disable(inet_csk(sk)); |
| } |
| |
| tls_device_queue_ctx_destruction(tls_ctx); |
| } |
| EXPORT_SYMBOL_GPL(tls_device_sk_destruct); |
| |
| void tls_device_free_resources_tx(struct sock *sk) |
| { |
| struct tls_context *tls_ctx = tls_get_ctx(sk); |
| |
| tls_free_partial_record(sk, tls_ctx); |
| } |
| |
| void tls_offload_tx_resync_request(struct sock *sk, u32 got_seq, u32 exp_seq) |
| { |
| struct tls_context *tls_ctx = tls_get_ctx(sk); |
| |
| trace_tls_device_tx_resync_req(sk, got_seq, exp_seq); |
| WARN_ON(test_and_set_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags)); |
| } |
| EXPORT_SYMBOL_GPL(tls_offload_tx_resync_request); |
| |
| static void tls_device_resync_tx(struct sock *sk, struct tls_context *tls_ctx, |
| u32 seq) |
| { |
| struct net_device *netdev; |
| struct sk_buff *skb; |
| int err = 0; |
| u8 *rcd_sn; |
| |
| skb = tcp_write_queue_tail(sk); |
| if (skb) |
| TCP_SKB_CB(skb)->eor = 1; |
| |
| rcd_sn = tls_ctx->tx.rec_seq; |
| |
| trace_tls_device_tx_resync_send(sk, seq, rcd_sn); |
| down_read(&device_offload_lock); |
| netdev = tls_ctx->netdev; |
| if (netdev) |
| err = netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq, |
| rcd_sn, |
| TLS_OFFLOAD_CTX_DIR_TX); |
| up_read(&device_offload_lock); |
| if (err) |
| return; |
| |
| clear_bit_unlock(TLS_TX_SYNC_SCHED, &tls_ctx->flags); |
| } |
| |
| static void tls_append_frag(struct tls_record_info *record, |
| struct page_frag *pfrag, |
| int size) |
| { |
| skb_frag_t *frag; |
| |
| frag = &record->frags[record->num_frags - 1]; |
| if (skb_frag_page(frag) == pfrag->page && |
| skb_frag_off(frag) + skb_frag_size(frag) == pfrag->offset) { |
| skb_frag_size_add(frag, size); |
| } else { |
| ++frag; |
| __skb_frag_set_page(frag, pfrag->page); |
| skb_frag_off_set(frag, pfrag->offset); |
| skb_frag_size_set(frag, size); |
| ++record->num_frags; |
| get_page(pfrag->page); |
| } |
| |
| pfrag->offset += size; |
| record->len += size; |
| } |
| |
| static int tls_push_record(struct sock *sk, |
| struct tls_context *ctx, |
| struct tls_offload_context_tx *offload_ctx, |
| struct tls_record_info *record, |
| int flags) |
| { |
| struct tls_prot_info *prot = &ctx->prot_info; |
| struct tcp_sock *tp = tcp_sk(sk); |
| skb_frag_t *frag; |
| int i; |
| |
| record->end_seq = tp->write_seq + record->len; |
| list_add_tail_rcu(&record->list, &offload_ctx->records_list); |
| offload_ctx->open_record = NULL; |
| |
| if (test_bit(TLS_TX_SYNC_SCHED, &ctx->flags)) |
| tls_device_resync_tx(sk, ctx, tp->write_seq); |
| |
| tls_advance_record_sn(sk, prot, &ctx->tx); |
| |
| for (i = 0; i < record->num_frags; i++) { |
| frag = &record->frags[i]; |
| sg_unmark_end(&offload_ctx->sg_tx_data[i]); |
| sg_set_page(&offload_ctx->sg_tx_data[i], skb_frag_page(frag), |
| skb_frag_size(frag), skb_frag_off(frag)); |
| sk_mem_charge(sk, skb_frag_size(frag)); |
| get_page(skb_frag_page(frag)); |
| } |
| sg_mark_end(&offload_ctx->sg_tx_data[record->num_frags - 1]); |
| |
| /* all ready, send */ |
| return tls_push_sg(sk, ctx, offload_ctx->sg_tx_data, 0, flags); |
| } |
| |
| static int tls_device_record_close(struct sock *sk, |
| struct tls_context *ctx, |
| struct tls_record_info *record, |
| struct page_frag *pfrag, |
| unsigned char record_type) |
| { |
| struct tls_prot_info *prot = &ctx->prot_info; |
| int ret; |
| |
| /* append tag |
| * device will fill in the tag, we just need to append a placeholder |
| * use socket memory to improve coalescing (re-using a single buffer |
| * increases frag count) |
| * if we can't allocate memory now, steal some back from data |
| */ |
| if (likely(skb_page_frag_refill(prot->tag_size, pfrag, |
| sk->sk_allocation))) { |
| ret = 0; |
| tls_append_frag(record, pfrag, prot->tag_size); |
| } else { |
| ret = prot->tag_size; |
| if (record->len <= prot->overhead_size) |
| return -ENOMEM; |
| } |
| |
| /* fill prepend */ |
| tls_fill_prepend(ctx, skb_frag_address(&record->frags[0]), |
| record->len - prot->overhead_size, |
| record_type); |
| return ret; |
| } |
| |
| static int tls_create_new_record(struct tls_offload_context_tx *offload_ctx, |
| struct page_frag *pfrag, |
| size_t prepend_size) |
| { |
| struct tls_record_info *record; |
| skb_frag_t *frag; |
| |
| record = kmalloc(sizeof(*record), GFP_KERNEL); |
| if (!record) |
| return -ENOMEM; |
| |
| frag = &record->frags[0]; |
| __skb_frag_set_page(frag, pfrag->page); |
| skb_frag_off_set(frag, pfrag->offset); |
| skb_frag_size_set(frag, prepend_size); |
| |
| get_page(pfrag->page); |
| pfrag->offset += prepend_size; |
| |
| record->num_frags = 1; |
| record->len = prepend_size; |
| offload_ctx->open_record = record; |
| return 0; |
| } |
| |
| static int tls_do_allocation(struct sock *sk, |
| struct tls_offload_context_tx *offload_ctx, |
| struct page_frag *pfrag, |
| size_t prepend_size) |
| { |
| int ret; |
| |
| if (!offload_ctx->open_record) { |
| if (unlikely(!skb_page_frag_refill(prepend_size, pfrag, |
| sk->sk_allocation))) { |
| READ_ONCE(sk->sk_prot)->enter_memory_pressure(sk); |
| sk_stream_moderate_sndbuf(sk); |
| return -ENOMEM; |
| } |
| |
| ret = tls_create_new_record(offload_ctx, pfrag, prepend_size); |
| if (ret) |
| return ret; |
| |
| if (pfrag->size > pfrag->offset) |
| return 0; |
| } |
| |
| if (!sk_page_frag_refill(sk, pfrag)) |
| return -ENOMEM; |
| |
| return 0; |
| } |
| |
| static int tls_device_copy_data(void *addr, size_t bytes, struct iov_iter *i) |
| { |
| size_t pre_copy, nocache; |
| |
| pre_copy = ~((unsigned long)addr - 1) & (SMP_CACHE_BYTES - 1); |
| if (pre_copy) { |
| pre_copy = min(pre_copy, bytes); |
| if (copy_from_iter(addr, pre_copy, i) != pre_copy) |
| return -EFAULT; |
| bytes -= pre_copy; |
| addr += pre_copy; |
| } |
| |
| nocache = round_down(bytes, SMP_CACHE_BYTES); |
| if (copy_from_iter_nocache(addr, nocache, i) != nocache) |
| return -EFAULT; |
| bytes -= nocache; |
| addr += nocache; |
| |
| if (bytes && copy_from_iter(addr, bytes, i) != bytes) |
| return -EFAULT; |
| |
| return 0; |
| } |
| |
| static int tls_push_data(struct sock *sk, |
| struct iov_iter *msg_iter, |
| size_t size, int flags, |
| unsigned char record_type) |
| { |
| struct tls_context *tls_ctx = tls_get_ctx(sk); |
| struct tls_prot_info *prot = &tls_ctx->prot_info; |
| struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx); |
| struct tls_record_info *record; |
| int tls_push_record_flags; |
| struct page_frag *pfrag; |
| size_t orig_size = size; |
| u32 max_open_record_len; |
| bool more = false; |
| bool done = false; |
| int copy, rc = 0; |
| long timeo; |
| |
| if (flags & |
| ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_SENDPAGE_NOTLAST)) |
| return -EOPNOTSUPP; |
| |
| if (unlikely(sk->sk_err)) |
| return -sk->sk_err; |
| |
| flags |= MSG_SENDPAGE_DECRYPTED; |
| tls_push_record_flags = flags | MSG_SENDPAGE_NOTLAST; |
| |
| timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); |
| if (tls_is_partially_sent_record(tls_ctx)) { |
| rc = tls_push_partial_record(sk, tls_ctx, flags); |
| if (rc < 0) |
| return rc; |
| } |
| |
| pfrag = sk_page_frag(sk); |
| |
| /* TLS_HEADER_SIZE is not counted as part of the TLS record, and |
| * we need to leave room for an authentication tag. |
| */ |
| max_open_record_len = TLS_MAX_PAYLOAD_SIZE + |
| prot->prepend_size; |
| do { |
| rc = tls_do_allocation(sk, ctx, pfrag, prot->prepend_size); |
| if (unlikely(rc)) { |
| rc = sk_stream_wait_memory(sk, &timeo); |
| if (!rc) |
| continue; |
| |
| record = ctx->open_record; |
| if (!record) |
| break; |
| handle_error: |
| if (record_type != TLS_RECORD_TYPE_DATA) { |
| /* avoid sending partial |
| * record with type != |
| * application_data |
| */ |
| size = orig_size; |
| destroy_record(record); |
| ctx->open_record = NULL; |
| } else if (record->len > prot->prepend_size) { |
| goto last_record; |
| } |
| |
| break; |
| } |
| |
| record = ctx->open_record; |
| copy = min_t(size_t, size, (pfrag->size - pfrag->offset)); |
| copy = min_t(size_t, copy, (max_open_record_len - record->len)); |
| |
| if (copy) { |
| rc = tls_device_copy_data(page_address(pfrag->page) + |
| pfrag->offset, copy, msg_iter); |
| if (rc) |
| goto handle_error; |
| tls_append_frag(record, pfrag, copy); |
| } |
| |
| size -= copy; |
| if (!size) { |
| last_record: |
| tls_push_record_flags = flags; |
| if (flags & (MSG_SENDPAGE_NOTLAST | MSG_MORE)) { |
| more = true; |
| break; |
| } |
| |
| done = true; |
| } |
| |
| if (done || record->len >= max_open_record_len || |
| (record->num_frags >= MAX_SKB_FRAGS - 1)) { |
| rc = tls_device_record_close(sk, tls_ctx, record, |
| pfrag, record_type); |
| if (rc) { |
| if (rc > 0) { |
| size += rc; |
| } else { |
| size = orig_size; |
| destroy_record(record); |
| ctx->open_record = NULL; |
| break; |
| } |
| } |
| |
| rc = tls_push_record(sk, |
| tls_ctx, |
| ctx, |
| record, |
| tls_push_record_flags); |
| if (rc < 0) |
| break; |
| } |
| } while (!done); |
| |
| tls_ctx->pending_open_record_frags = more; |
| |
| if (orig_size - size > 0) |
| rc = orig_size - size; |
| |
| return rc; |
| } |
| |
| int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) |
| { |
| unsigned char record_type = TLS_RECORD_TYPE_DATA; |
| struct tls_context *tls_ctx = tls_get_ctx(sk); |
| int rc; |
| |
| mutex_lock(&tls_ctx->tx_lock); |
| lock_sock(sk); |
| |
| if (unlikely(msg->msg_controllen)) { |
| rc = tls_proccess_cmsg(sk, msg, &record_type); |
| if (rc) |
| goto out; |
| } |
| |
| rc = tls_push_data(sk, &msg->msg_iter, size, |
| msg->msg_flags, record_type); |
| |
| out: |
| release_sock(sk); |
| mutex_unlock(&tls_ctx->tx_lock); |
| return rc; |
| } |
| |
| int tls_device_sendpage(struct sock *sk, struct page *page, |
| int offset, size_t size, int flags) |
| { |
| struct tls_context *tls_ctx = tls_get_ctx(sk); |
| struct iov_iter msg_iter; |
| char *kaddr; |
| struct kvec iov; |
| int rc; |
| |
| if (flags & MSG_SENDPAGE_NOTLAST) |
| flags |= MSG_MORE; |
| |
| mutex_lock(&tls_ctx->tx_lock); |
| lock_sock(sk); |
| |
| if (flags & MSG_OOB) { |
| rc = -EOPNOTSUPP; |
| goto out; |
| } |
| |
| kaddr = kmap(page); |
| iov.iov_base = kaddr + offset; |
| iov.iov_len = size; |
| iov_iter_kvec(&msg_iter, WRITE, &iov, 1, size); |
| rc = tls_push_data(sk, &msg_iter, size, |
| flags, TLS_RECORD_TYPE_DATA); |
| kunmap(page); |
| |
| out: |
| release_sock(sk); |
| mutex_unlock(&tls_ctx->tx_lock); |
| return rc; |
| } |
| |
| struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context, |
| u32 seq, u64 *p_record_sn) |
| { |
| u64 record_sn = context->hint_record_sn; |
| struct tls_record_info *info, *last; |
| |
| info = context->retransmit_hint; |
| if (!info || |
| before(seq, info->end_seq - info->len)) { |
| /* if retransmit_hint is irrelevant start |
| * from the beginning of the list |
| */ |
| info = list_first_entry_or_null(&context->records_list, |
| struct tls_record_info, list); |
| if (!info) |
| return NULL; |
| /* send the start_marker record if seq number is before the |
| * tls offload start marker sequence number. This record is |
| * required to handle TCP packets which are before TLS offload |
| * started. |
| * And if it's not start marker, look if this seq number |
| * belongs to the list. |
| */ |
| if (likely(!tls_record_is_start_marker(info))) { |
| /* we have the first record, get the last record to see |
| * if this seq number belongs to the list. |
| */ |
| last = list_last_entry(&context->records_list, |
| struct tls_record_info, list); |
| |
| if (!between(seq, tls_record_start_seq(info), |
| last->end_seq)) |
| return NULL; |
| } |
| record_sn = context->unacked_record_sn; |
| } |
| |
| /* We just need the _rcu for the READ_ONCE() */ |
| rcu_read_lock(); |
| list_for_each_entry_from_rcu(info, &context->records_list, list) { |
| if (before(seq, info->end_seq)) { |
| if (!context->retransmit_hint || |
| after(info->end_seq, |
| context->retransmit_hint->end_seq)) { |
| context->hint_record_sn = record_sn; |
| context->retransmit_hint = info; |
| } |
| *p_record_sn = record_sn; |
| goto exit_rcu_unlock; |
| } |
| record_sn++; |
| } |
| info = NULL; |
| |
| exit_rcu_unlock: |
| rcu_read_unlock(); |
| return info; |
| } |
| EXPORT_SYMBOL(tls_get_record); |
| |
| static int tls_device_push_pending_record(struct sock *sk, int flags) |
| { |
| struct iov_iter msg_iter; |
| |
| iov_iter_kvec(&msg_iter, WRITE, NULL, 0, 0); |
| return tls_push_data(sk, &msg_iter, 0, flags, TLS_RECORD_TYPE_DATA); |
| } |
| |
| void tls_device_write_space(struct sock *sk, struct tls_context *ctx) |
| { |
| if (tls_is_partially_sent_record(ctx)) { |
| gfp_t sk_allocation = sk->sk_allocation; |
| |
| WARN_ON_ONCE(sk->sk_write_pending); |
| |
| sk->sk_allocation = GFP_ATOMIC; |
| tls_push_partial_record(sk, ctx, |
| MSG_DONTWAIT | MSG_NOSIGNAL | |
| MSG_SENDPAGE_DECRYPTED); |
| sk->sk_allocation = sk_allocation; |
| } |
| } |
| |
| static void tls_device_resync_rx(struct tls_context *tls_ctx, |
| struct sock *sk, u32 seq, u8 *rcd_sn) |
| { |
| struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx); |
| struct net_device *netdev; |
| |
| trace_tls_device_rx_resync_send(sk, seq, rcd_sn, rx_ctx->resync_type); |
| rcu_read_lock(); |
| netdev = READ_ONCE(tls_ctx->netdev); |
| if (netdev) |
| netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq, rcd_sn, |
| TLS_OFFLOAD_CTX_DIR_RX); |
| rcu_read_unlock(); |
| TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICERESYNC); |
| } |
| |
| static bool |
| tls_device_rx_resync_async(struct tls_offload_resync_async *resync_async, |
| s64 resync_req, u32 *seq, u16 *rcd_delta) |
| { |
| u32 is_async = resync_req & RESYNC_REQ_ASYNC; |
| u32 req_seq = resync_req >> 32; |
| u32 req_end = req_seq + ((resync_req >> 16) & 0xffff); |
| u16 i; |
| |
| *rcd_delta = 0; |
| |
| if (is_async) { |
| /* shouldn't get to wraparound: |
| * too long in async stage, something bad happened |
| */ |
| if (WARN_ON_ONCE(resync_async->rcd_delta == USHRT_MAX)) |
| return false; |
| |
| /* asynchronous stage: log all headers seq such that |
| * req_seq <= seq <= end_seq, and wait for real resync request |
| */ |
| if (before(*seq, req_seq)) |
| return false; |
| if (!after(*seq, req_end) && |
| resync_async->loglen < TLS_DEVICE_RESYNC_ASYNC_LOGMAX) |
| resync_async->log[resync_async->loglen++] = *seq; |
| |
| resync_async->rcd_delta++; |
| |
| return false; |
| } |
| |
| /* synchronous stage: check against the logged entries and |
| * proceed to check the next entries if no match was found |
| */ |
| for (i = 0; i < resync_async->loglen; i++) |
| if (req_seq == resync_async->log[i] && |
| atomic64_try_cmpxchg(&resync_async->req, &resync_req, 0)) { |
| *rcd_delta = resync_async->rcd_delta - i; |
| *seq = req_seq; |
| resync_async->loglen = 0; |
| resync_async->rcd_delta = 0; |
| return true; |
| } |
| |
| resync_async->loglen = 0; |
| resync_async->rcd_delta = 0; |
| |
| if (req_seq == *seq && |
| atomic64_try_cmpxchg(&resync_async->req, |
| &resync_req, 0)) |
| return true; |
| |
| return false; |
| } |
| |
| void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq) |
| { |
| struct tls_context *tls_ctx = tls_get_ctx(sk); |
| struct tls_offload_context_rx *rx_ctx; |
| u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE]; |
| u32 sock_data, is_req_pending; |
| struct tls_prot_info *prot; |
| s64 resync_req; |
| u16 rcd_delta; |
| u32 req_seq; |
| |
| if (tls_ctx->rx_conf != TLS_HW) |
| return; |
| if (unlikely(test_bit(TLS_RX_DEV_DEGRADED, &tls_ctx->flags))) |
| return; |
| |
| prot = &tls_ctx->prot_info; |
| rx_ctx = tls_offload_ctx_rx(tls_ctx); |
| memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size); |
| |
| switch (rx_ctx->resync_type) { |
| case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ: |
| resync_req = atomic64_read(&rx_ctx->resync_req); |
| req_seq = resync_req >> 32; |
| seq += TLS_HEADER_SIZE - 1; |
| is_req_pending = resync_req; |
| |
| if (likely(!is_req_pending) || req_seq != seq || |
| !atomic64_try_cmpxchg(&rx_ctx->resync_req, &resync_req, 0)) |
| return; |
| break; |
| case TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT: |
| if (likely(!rx_ctx->resync_nh_do_now)) |
| return; |
| |
| /* head of next rec is already in, note that the sock_inq will |
| * include the currently parsed message when called from parser |
| */ |
| sock_data = tcp_inq(sk); |
| if (sock_data > rcd_len) { |
| trace_tls_device_rx_resync_nh_delay(sk, sock_data, |
| rcd_len); |
| return; |
| } |
| |
| rx_ctx->resync_nh_do_now = 0; |
| seq += rcd_len; |
| tls_bigint_increment(rcd_sn, prot->rec_seq_size); |
| break; |
| case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC: |
| resync_req = atomic64_read(&rx_ctx->resync_async->req); |
| is_req_pending = resync_req; |
| if (likely(!is_req_pending)) |
| return; |
| |
| if (!tls_device_rx_resync_async(rx_ctx->resync_async, |
| resync_req, &seq, &rcd_delta)) |
| return; |
| tls_bigint_subtract(rcd_sn, rcd_delta); |
| break; |
| } |
| |
| tls_device_resync_rx(tls_ctx, sk, seq, rcd_sn); |
| } |
| |
| static void tls_device_core_ctrl_rx_resync(struct tls_context *tls_ctx, |
| struct tls_offload_context_rx *ctx, |
| struct sock *sk, struct sk_buff *skb) |
| { |
| struct strp_msg *rxm; |
| |
| /* device will request resyncs by itself based on stream scan */ |
| if (ctx->resync_type != TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT) |
| return; |
| /* already scheduled */ |
| if (ctx->resync_nh_do_now) |
| return; |
| /* seen decrypted fragments since last fully-failed record */ |
| if (ctx->resync_nh_reset) { |
| ctx->resync_nh_reset = 0; |
| ctx->resync_nh.decrypted_failed = 1; |
| ctx->resync_nh.decrypted_tgt = TLS_DEVICE_RESYNC_NH_START_IVAL; |
| return; |
| } |
| |
| if (++ctx->resync_nh.decrypted_failed <= ctx->resync_nh.decrypted_tgt) |
| return; |
| |
| /* doing resync, bump the next target in case it fails */ |
| if (ctx->resync_nh.decrypted_tgt < TLS_DEVICE_RESYNC_NH_MAX_IVAL) |
| ctx->resync_nh.decrypted_tgt *= 2; |
| else |
| ctx->resync_nh.decrypted_tgt += TLS_DEVICE_RESYNC_NH_MAX_IVAL; |
| |
| rxm = strp_msg(skb); |
| |
| /* head of next rec is already in, parser will sync for us */ |
| if (tcp_inq(sk) > rxm->full_len) { |
| trace_tls_device_rx_resync_nh_schedule(sk); |
| ctx->resync_nh_do_now = 1; |
| } else { |
| struct tls_prot_info *prot = &tls_ctx->prot_info; |
| u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE]; |
| |
| memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size); |
| tls_bigint_increment(rcd_sn, prot->rec_seq_size); |
| |
| tls_device_resync_rx(tls_ctx, sk, tcp_sk(sk)->copied_seq, |
| rcd_sn); |
| } |
| } |
| |
| static int tls_device_reencrypt(struct sock *sk, struct sk_buff *skb) |
| { |
| struct strp_msg *rxm = strp_msg(skb); |
| int err = 0, offset = rxm->offset, copy, nsg, data_len, pos; |
| struct sk_buff *skb_iter, *unused; |
| struct scatterlist sg[1]; |
| char *orig_buf, *buf; |
| |
| orig_buf = kmalloc(rxm->full_len + TLS_HEADER_SIZE + |
| TLS_CIPHER_AES_GCM_128_IV_SIZE, sk->sk_allocation); |
| if (!orig_buf) |
| return -ENOMEM; |
| buf = orig_buf; |
| |
| nsg = skb_cow_data(skb, 0, &unused); |
| if (unlikely(nsg < 0)) { |
| err = nsg; |
| goto free_buf; |
| } |
| |
| sg_init_table(sg, 1); |
| sg_set_buf(&sg[0], buf, |
| rxm->full_len + TLS_HEADER_SIZE + |
| TLS_CIPHER_AES_GCM_128_IV_SIZE); |
| err = skb_copy_bits(skb, offset, buf, |
| TLS_HEADER_SIZE + TLS_CIPHER_AES_GCM_128_IV_SIZE); |
| if (err) |
| goto free_buf; |
| |
| /* We are interested only in the decrypted data not the auth */ |
| err = decrypt_skb(sk, skb, sg); |
| if (err != -EBADMSG) |
| goto free_buf; |
| else |
| err = 0; |
| |
| data_len = rxm->full_len - TLS_CIPHER_AES_GCM_128_TAG_SIZE; |
| |
| if (skb_pagelen(skb) > offset) { |
| copy = min_t(int, skb_pagelen(skb) - offset, data_len); |
| |
| if (skb->decrypted) { |
| err = skb_store_bits(skb, offset, buf, copy); |
| if (err) |
| goto free_buf; |
| } |
| |
| offset += copy; |
| buf += copy; |
| } |
| |
| pos = skb_pagelen(skb); |
| skb_walk_frags(skb, skb_iter) { |
| int frag_pos; |
| |
| /* Practically all frags must belong to msg if reencrypt |
| * is needed with current strparser and coalescing logic, |
| * but strparser may "get optimized", so let's be safe. |
| */ |
| if (pos + skb_iter->len <= offset) |
| goto done_with_frag; |
| if (pos >= data_len + rxm->offset) |
| break; |
| |
| frag_pos = offset - pos; |
| copy = min_t(int, skb_iter->len - frag_pos, |
| data_len + rxm->offset - offset); |
| |
| if (skb_iter->decrypted) { |
| err = skb_store_bits(skb_iter, frag_pos, buf, copy); |
| if (err) |
| goto free_buf; |
| } |
| |
| offset += copy; |
| buf += copy; |
| done_with_frag: |
| pos += skb_iter->len; |
| } |
| |
| free_buf: |
| kfree(orig_buf); |
| return err; |
| } |
| |
| int tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx, |
| struct sk_buff *skb, struct strp_msg *rxm) |
| { |
| struct tls_offload_context_rx *ctx = tls_offload_ctx_rx(tls_ctx); |
| int is_decrypted = skb->decrypted; |
| int is_encrypted = !is_decrypted; |
| struct sk_buff *skb_iter; |
| |
| /* Check if all the data is decrypted already */ |
| skb_walk_frags(skb, skb_iter) { |
| is_decrypted &= skb_iter->decrypted; |
| is_encrypted &= !skb_iter->decrypted; |
| } |
| |
| trace_tls_device_decrypted(sk, tcp_sk(sk)->copied_seq - rxm->full_len, |
| tls_ctx->rx.rec_seq, rxm->full_len, |
| is_encrypted, is_decrypted); |
| |
| ctx->sw.decrypted |= is_decrypted; |
| |
| if (unlikely(test_bit(TLS_RX_DEV_DEGRADED, &tls_ctx->flags))) { |
| if (likely(is_encrypted || is_decrypted)) |
| return 0; |
| |
| /* After tls_device_down disables the offload, the next SKB will |
| * likely have initial fragments decrypted, and final ones not |
| * decrypted. We need to reencrypt that single SKB. |
| */ |
| return tls_device_reencrypt(sk, skb); |
| } |
| |
| /* Return immediately if the record is either entirely plaintext or |
| * entirely ciphertext. Otherwise handle reencrypt partially decrypted |
| * record. |
| */ |
| if (is_decrypted) { |
| ctx->resync_nh_reset = 1; |
| return 0; |
| } |
| if (is_encrypted) { |
| tls_device_core_ctrl_rx_resync(tls_ctx, ctx, sk, skb); |
| return 0; |
| } |
| |
| ctx->resync_nh_reset = 1; |
| return tls_device_reencrypt(sk, skb); |
| } |
| |
| static void tls_device_attach(struct tls_context *ctx, struct sock *sk, |
| struct net_device *netdev) |
| { |
| if (sk->sk_destruct != tls_device_sk_destruct) { |
| refcount_set(&ctx->refcount, 1); |
| dev_hold(netdev); |
| ctx->netdev = netdev; |
| spin_lock_irq(&tls_device_lock); |
| list_add_tail(&ctx->list, &tls_device_list); |
| spin_unlock_irq(&tls_device_lock); |
| |
| ctx->sk_destruct = sk->sk_destruct; |
| smp_store_release(&sk->sk_destruct, tls_device_sk_destruct); |
| } |
| } |
| |
| int tls_set_device_offload(struct sock *sk, struct tls_context *ctx) |
| { |
| u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size; |
| struct tls_context *tls_ctx = tls_get_ctx(sk); |
| struct tls_prot_info *prot = &tls_ctx->prot_info; |
| struct tls_record_info *start_marker_record; |
| struct tls_offload_context_tx *offload_ctx; |
| struct tls_crypto_info *crypto_info; |
| struct net_device *netdev; |
| char *iv, *rec_seq; |
| struct sk_buff *skb; |
| __be64 rcd_sn; |
| int rc; |
| |
| if (!ctx) |
| return -EINVAL; |
| |
| if (ctx->priv_ctx_tx) |
| return -EEXIST; |
| |
| start_marker_record = kmalloc(sizeof(*start_marker_record), GFP_KERNEL); |
| if (!start_marker_record) |
| return -ENOMEM; |
| |
| offload_ctx = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_TX, GFP_KERNEL); |
| if (!offload_ctx) { |
| rc = -ENOMEM; |
| goto free_marker_record; |
| } |
| |
| crypto_info = &ctx->crypto_send.info; |
| if (crypto_info->version != TLS_1_2_VERSION) { |
| rc = -EOPNOTSUPP; |
| goto free_offload_ctx; |
| } |
| |
| switch (crypto_info->cipher_type) { |
| case TLS_CIPHER_AES_GCM_128: |
| nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; |
| tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE; |
| iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; |
| iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv; |
| rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE; |
| salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE; |
| rec_seq = |
| ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq; |
| break; |
| default: |
| rc = -EINVAL; |
| goto free_offload_ctx; |
| } |
| |
| /* Sanity-check the rec_seq_size for stack allocations */ |
| if (rec_seq_size > TLS_MAX_REC_SEQ_SIZE) { |
| rc = -EINVAL; |
| goto free_offload_ctx; |
| } |
| |
| prot->version = crypto_info->version; |
| prot->cipher_type = crypto_info->cipher_type; |
| prot->prepend_size = TLS_HEADER_SIZE + nonce_size; |
| prot->tag_size = tag_size; |
| prot->overhead_size = prot->prepend_size + prot->tag_size; |
| prot->iv_size = iv_size; |
| prot->salt_size = salt_size; |
| ctx->tx.iv = kmalloc(iv_size + TLS_CIPHER_AES_GCM_128_SALT_SIZE, |
| GFP_KERNEL); |
| if (!ctx->tx.iv) { |
| rc = -ENOMEM; |
| goto free_offload_ctx; |
| } |
| |
| memcpy(ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv, iv_size); |
| |
| prot->rec_seq_size = rec_seq_size; |
| ctx->tx.rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL); |
| if (!ctx->tx.rec_seq) { |
| rc = -ENOMEM; |
| goto free_iv; |
| } |
| |
| rc = tls_sw_fallback_init(sk, offload_ctx, crypto_info); |
| if (rc) |
| goto free_rec_seq; |
| |
| /* start at rec_seq - 1 to account for the start marker record */ |
| memcpy(&rcd_sn, ctx->tx.rec_seq, sizeof(rcd_sn)); |
| offload_ctx->unacked_record_sn = be64_to_cpu(rcd_sn) - 1; |
| |
| start_marker_record->end_seq = tcp_sk(sk)->write_seq; |
| start_marker_record->len = 0; |
| start_marker_record->num_frags = 0; |
| |
| INIT_LIST_HEAD(&offload_ctx->records_list); |
| list_add_tail(&start_marker_record->list, &offload_ctx->records_list); |
| spin_lock_init(&offload_ctx->lock); |
| sg_init_table(offload_ctx->sg_tx_data, |
| ARRAY_SIZE(offload_ctx->sg_tx_data)); |
| |
| clean_acked_data_enable(inet_csk(sk), &tls_icsk_clean_acked); |
| ctx->push_pending_record = tls_device_push_pending_record; |
| |
| /* TLS offload is greatly simplified if we don't send |
| * SKBs where only part of the payload needs to be encrypted. |
| * So mark the last skb in the write queue as end of record. |
| */ |
| skb = tcp_write_queue_tail(sk); |
| if (skb) |
| TCP_SKB_CB(skb)->eor = 1; |
| |
| netdev = get_netdev_for_sock(sk); |
| if (!netdev) { |
| pr_err_ratelimited("%s: netdev not found\n", __func__); |
| rc = -EINVAL; |
| goto disable_cad; |
| } |
| |
| if (!(netdev->features & NETIF_F_HW_TLS_TX)) { |
| rc = -EOPNOTSUPP; |
| goto release_netdev; |
| } |
| |
| /* Avoid offloading if the device is down |
| * We don't want to offload new flows after |
| * the NETDEV_DOWN event |
| * |
| * device_offload_lock is taken in tls_devices's NETDEV_DOWN |
| * handler thus protecting from the device going down before |
| * ctx was added to tls_device_list. |
| */ |
| down_read(&device_offload_lock); |
| if (!(netdev->flags & IFF_UP)) { |
| rc = -EINVAL; |
| goto release_lock; |
| } |
| |
| ctx->priv_ctx_tx = offload_ctx; |
| rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_TX, |
| &ctx->crypto_send.info, |
| tcp_sk(sk)->write_seq); |
| trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_TX, |
| tcp_sk(sk)->write_seq, rec_seq, rc); |
| if (rc) |
| goto release_lock; |
| |
| tls_device_attach(ctx, sk, netdev); |
| up_read(&device_offload_lock); |
| |
| /* following this assignment tls_is_sk_tx_device_offloaded |
| * will return true and the context might be accessed |
| * by the netdev's xmit function. |
| */ |
| smp_store_release(&sk->sk_validate_xmit_skb, tls_validate_xmit_skb); |
| dev_put(netdev); |
| |
| return 0; |
| |
| release_lock: |
| up_read(&device_offload_lock); |
| release_netdev: |
| dev_put(netdev); |
| disable_cad: |
| clean_acked_data_disable(inet_csk(sk)); |
| crypto_free_aead(offload_ctx->aead_send); |
| free_rec_seq: |
| kfree(ctx->tx.rec_seq); |
| free_iv: |
| kfree(ctx->tx.iv); |
| free_offload_ctx: |
| kfree(offload_ctx); |
| ctx->priv_ctx_tx = NULL; |
| free_marker_record: |
| kfree(start_marker_record); |
| return rc; |
| } |
| |
| int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx) |
| { |
| struct tls12_crypto_info_aes_gcm_128 *info; |
| struct tls_offload_context_rx *context; |
| struct net_device *netdev; |
| int rc = 0; |
| |
| if (ctx->crypto_recv.info.version != TLS_1_2_VERSION) |
| return -EOPNOTSUPP; |
| |
| netdev = get_netdev_for_sock(sk); |
| if (!netdev) { |
| pr_err_ratelimited("%s: netdev not found\n", __func__); |
| return -EINVAL; |
| } |
| |
| if (!(netdev->features & NETIF_F_HW_TLS_RX)) { |
| rc = -EOPNOTSUPP; |
| goto release_netdev; |
| } |
| |
| /* Avoid offloading if the device is down |
| * We don't want to offload new flows after |
| * the NETDEV_DOWN event |
| * |
| * device_offload_lock is taken in tls_devices's NETDEV_DOWN |
| * handler thus protecting from the device going down before |
| * ctx was added to tls_device_list. |
| */ |
| down_read(&device_offload_lock); |
| if (!(netdev->flags & IFF_UP)) { |
| rc = -EINVAL; |
| goto release_lock; |
| } |
| |
| context = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_RX, GFP_KERNEL); |
| if (!context) { |
| rc = -ENOMEM; |
| goto release_lock; |
| } |
| context->resync_nh_reset = 1; |
| |
| ctx->priv_ctx_rx = context; |
| rc = tls_set_sw_offload(sk, ctx, 0); |
| if (rc) |
| goto release_ctx; |
| |
| rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_RX, |
| &ctx->crypto_recv.info, |
| tcp_sk(sk)->copied_seq); |
| info = (void *)&ctx->crypto_recv.info; |
| trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_RX, |
| tcp_sk(sk)->copied_seq, info->rec_seq, rc); |
| if (rc) |
| goto free_sw_resources; |
| |
| tls_device_attach(ctx, sk, netdev); |
| up_read(&device_offload_lock); |
| |
| dev_put(netdev); |
| |
| return 0; |
| |
| free_sw_resources: |
| up_read(&device_offload_lock); |
| tls_sw_free_resources_rx(sk); |
| down_read(&device_offload_lock); |
| release_ctx: |
| ctx->priv_ctx_rx = NULL; |
| release_lock: |
| up_read(&device_offload_lock); |
| release_netdev: |
| dev_put(netdev); |
| return rc; |
| } |
| |
| void tls_device_offload_cleanup_rx(struct sock *sk) |
| { |
| struct tls_context *tls_ctx = tls_get_ctx(sk); |
| struct net_device *netdev; |
| |
| down_read(&device_offload_lock); |
| netdev = tls_ctx->netdev; |
| if (!netdev) |
| goto out; |
| |
| netdev->tlsdev_ops->tls_dev_del(netdev, tls_ctx, |
| TLS_OFFLOAD_CTX_DIR_RX); |
| |
| if (tls_ctx->tx_conf != TLS_HW) { |
| dev_put(netdev); |
| tls_ctx->netdev = NULL; |
| } else { |
| set_bit(TLS_RX_DEV_CLOSED, &tls_ctx->flags); |
| } |
| out: |
| up_read(&device_offload_lock); |
| tls_sw_release_resources_rx(sk); |
| } |
| |
| static int tls_device_down(struct net_device *netdev) |
| { |
| struct tls_context *ctx, *tmp; |
| unsigned long flags; |
| LIST_HEAD(list); |
| |
| /* Request a write lock to block new offload attempts */ |
| down_write(&device_offload_lock); |
| |
| spin_lock_irqsave(&tls_device_lock, flags); |
| list_for_each_entry_safe(ctx, tmp, &tls_device_list, list) { |
| if (ctx->netdev != netdev || |
| !refcount_inc_not_zero(&ctx->refcount)) |
| continue; |
| |
| list_move(&ctx->list, &list); |
| } |
| spin_unlock_irqrestore(&tls_device_lock, flags); |
| |
| list_for_each_entry_safe(ctx, tmp, &list, list) { |
| /* Stop offloaded TX and switch to the fallback. |
| * tls_is_sk_tx_device_offloaded will return false. |
| */ |
| WRITE_ONCE(ctx->sk->sk_validate_xmit_skb, tls_validate_xmit_skb_sw); |
| |
| /* Stop the RX and TX resync. |
| * tls_dev_resync must not be called after tls_dev_del. |
| */ |
| WRITE_ONCE(ctx->netdev, NULL); |
| |
| /* Start skipping the RX resync logic completely. */ |
| set_bit(TLS_RX_DEV_DEGRADED, &ctx->flags); |
| |
| /* Sync with inflight packets. After this point: |
| * TX: no non-encrypted packets will be passed to the driver. |
| * RX: resync requests from the driver will be ignored. |
| */ |
| synchronize_net(); |
| |
| /* Release the offload context on the driver side. */ |
| if (ctx->tx_conf == TLS_HW) |
| netdev->tlsdev_ops->tls_dev_del(netdev, ctx, |
| TLS_OFFLOAD_CTX_DIR_TX); |
| if (ctx->rx_conf == TLS_HW && |
| !test_bit(TLS_RX_DEV_CLOSED, &ctx->flags)) |
| netdev->tlsdev_ops->tls_dev_del(netdev, ctx, |
| TLS_OFFLOAD_CTX_DIR_RX); |
| |
| dev_put(netdev); |
| |
| /* Move the context to a separate list for two reasons: |
| * 1. When the context is deallocated, list_del is called. |
| * 2. It's no longer an offloaded context, so we don't want to |
| * run offload-specific code on this context. |
| */ |
| spin_lock_irqsave(&tls_device_lock, flags); |
| list_move_tail(&ctx->list, &tls_device_down_list); |
| spin_unlock_irqrestore(&tls_device_lock, flags); |
| |
| /* Device contexts for RX and TX will be freed in on sk_destruct |
| * by tls_device_free_ctx. rx_conf and tx_conf stay in TLS_HW. |
| * Now release the ref taken above. |
| */ |
| if (refcount_dec_and_test(&ctx->refcount)) { |
| /* sk_destruct ran after tls_device_down took a ref, and |
| * it returned early. Complete the destruction here. |
| */ |
| list_del(&ctx->list); |
| tls_device_free_ctx(ctx); |
| } |
| } |
| |
| up_write(&device_offload_lock); |
| |
| flush_work(&tls_device_gc_work); |
| |
| return NOTIFY_DONE; |
| } |
| |
| static int tls_dev_event(struct notifier_block *this, unsigned long event, |
| void *ptr) |
| { |
| struct net_device *dev = netdev_notifier_info_to_dev(ptr); |
| |
| if (!dev->tlsdev_ops && |
| !(dev->features & (NETIF_F_HW_TLS_RX | NETIF_F_HW_TLS_TX))) |
| return NOTIFY_DONE; |
| |
| switch (event) { |
| case NETDEV_REGISTER: |
| case NETDEV_FEAT_CHANGE: |
| if (netif_is_bond_master(dev)) |
| return NOTIFY_DONE; |
| if ((dev->features & NETIF_F_HW_TLS_RX) && |
| !dev->tlsdev_ops->tls_dev_resync) |
| return NOTIFY_BAD; |
| |
| if (dev->tlsdev_ops && |
| dev->tlsdev_ops->tls_dev_add && |
| dev->tlsdev_ops->tls_dev_del) |
| return NOTIFY_DONE; |
| else |
| return NOTIFY_BAD; |
| case NETDEV_DOWN: |
| return tls_device_down(dev); |
| } |
| return NOTIFY_DONE; |
| } |
| |
| static struct notifier_block tls_dev_notifier = { |
| .notifier_call = tls_dev_event, |
| }; |
| |
| int __init tls_device_init(void) |
| { |
| return register_netdevice_notifier(&tls_dev_notifier); |
| } |
| |
| void __exit tls_device_cleanup(void) |
| { |
| unregister_netdevice_notifier(&tls_dev_notifier); |
| flush_work(&tls_device_gc_work); |
| clean_acked_data_flush(); |
| } |