| // SPDX-License-Identifier: GPL-2.0-only | 
 | #include <crypto/hash.h> | 
 | #include <linux/export.h> | 
 | #include <linux/bvec.h> | 
 | #include <linux/fault-inject-usercopy.h> | 
 | #include <linux/uio.h> | 
 | #include <linux/pagemap.h> | 
 | #include <linux/highmem.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/vmalloc.h> | 
 | #include <linux/splice.h> | 
 | #include <linux/compat.h> | 
 | #include <net/checksum.h> | 
 | #include <linux/scatterlist.h> | 
 | #include <linux/instrumented.h> | 
 |  | 
 | #define PIPE_PARANOIA /* for now */ | 
 |  | 
 | /* covers ubuf and kbuf alike */ | 
 | #define iterate_buf(i, n, base, len, off, __p, STEP) {		\ | 
 | 	size_t __maybe_unused off = 0;				\ | 
 | 	len = n;						\ | 
 | 	base = __p + i->iov_offset;				\ | 
 | 	len -= (STEP);						\ | 
 | 	i->iov_offset += len;					\ | 
 | 	n = len;						\ | 
 | } | 
 |  | 
 | /* covers iovec and kvec alike */ | 
 | #define iterate_iovec(i, n, base, len, off, __p, STEP) {	\ | 
 | 	size_t off = 0;						\ | 
 | 	size_t skip = i->iov_offset;				\ | 
 | 	do {							\ | 
 | 		len = min(n, __p->iov_len - skip);		\ | 
 | 		if (likely(len)) {				\ | 
 | 			base = __p->iov_base + skip;		\ | 
 | 			len -= (STEP);				\ | 
 | 			off += len;				\ | 
 | 			skip += len;				\ | 
 | 			n -= len;				\ | 
 | 			if (skip < __p->iov_len)		\ | 
 | 				break;				\ | 
 | 		}						\ | 
 | 		__p++;						\ | 
 | 		skip = 0;					\ | 
 | 	} while (n);						\ | 
 | 	i->iov_offset = skip;					\ | 
 | 	n = off;						\ | 
 | } | 
 |  | 
 | #define iterate_bvec(i, n, base, len, off, p, STEP) {		\ | 
 | 	size_t off = 0;						\ | 
 | 	unsigned skip = i->iov_offset;				\ | 
 | 	while (n) {						\ | 
 | 		unsigned offset = p->bv_offset + skip;		\ | 
 | 		unsigned left;					\ | 
 | 		void *kaddr = kmap_local_page(p->bv_page +	\ | 
 | 					offset / PAGE_SIZE);	\ | 
 | 		base = kaddr + offset % PAGE_SIZE;		\ | 
 | 		len = min(min(n, (size_t)(p->bv_len - skip)),	\ | 
 | 		     (size_t)(PAGE_SIZE - offset % PAGE_SIZE));	\ | 
 | 		left = (STEP);					\ | 
 | 		kunmap_local(kaddr);				\ | 
 | 		len -= left;					\ | 
 | 		off += len;					\ | 
 | 		skip += len;					\ | 
 | 		if (skip == p->bv_len) {			\ | 
 | 			skip = 0;				\ | 
 | 			p++;					\ | 
 | 		}						\ | 
 | 		n -= len;					\ | 
 | 		if (left)					\ | 
 | 			break;					\ | 
 | 	}							\ | 
 | 	i->iov_offset = skip;					\ | 
 | 	n = off;						\ | 
 | } | 
 |  | 
 | #define iterate_xarray(i, n, base, len, __off, STEP) {		\ | 
 | 	__label__ __out;					\ | 
 | 	size_t __off = 0;					\ | 
 | 	struct folio *folio;					\ | 
 | 	loff_t start = i->xarray_start + i->iov_offset;		\ | 
 | 	pgoff_t index = start / PAGE_SIZE;			\ | 
 | 	XA_STATE(xas, i->xarray, index);			\ | 
 | 								\ | 
 | 	len = PAGE_SIZE - offset_in_page(start);		\ | 
 | 	rcu_read_lock();					\ | 
 | 	xas_for_each(&xas, folio, ULONG_MAX) {			\ | 
 | 		unsigned left;					\ | 
 | 		size_t offset;					\ | 
 | 		if (xas_retry(&xas, folio))			\ | 
 | 			continue;				\ | 
 | 		if (WARN_ON(xa_is_value(folio)))		\ | 
 | 			break;					\ | 
 | 		if (WARN_ON(folio_test_hugetlb(folio)))		\ | 
 | 			break;					\ | 
 | 		offset = offset_in_folio(folio, start + __off);	\ | 
 | 		while (offset < folio_size(folio)) {		\ | 
 | 			base = kmap_local_folio(folio, offset);	\ | 
 | 			len = min(n, len);			\ | 
 | 			left = (STEP);				\ | 
 | 			kunmap_local(base);			\ | 
 | 			len -= left;				\ | 
 | 			__off += len;				\ | 
 | 			n -= len;				\ | 
 | 			if (left || n == 0)			\ | 
 | 				goto __out;			\ | 
 | 			offset += len;				\ | 
 | 			len = PAGE_SIZE;			\ | 
 | 		}						\ | 
 | 	}							\ | 
 | __out:								\ | 
 | 	rcu_read_unlock();					\ | 
 | 	i->iov_offset += __off;					\ | 
 | 	n = __off;						\ | 
 | } | 
 |  | 
 | #define __iterate_and_advance(i, n, base, len, off, I, K) {	\ | 
 | 	if (unlikely(i->count < n))				\ | 
 | 		n = i->count;					\ | 
 | 	if (likely(n)) {					\ | 
 | 		if (likely(iter_is_ubuf(i))) {			\ | 
 | 			void __user *base;			\ | 
 | 			size_t len;				\ | 
 | 			iterate_buf(i, n, base, len, off,	\ | 
 | 						i->ubuf, (I)) 	\ | 
 | 		} else if (likely(iter_is_iovec(i))) {		\ | 
 | 			const struct iovec *iov = iter_iov(i);	\ | 
 | 			void __user *base;			\ | 
 | 			size_t len;				\ | 
 | 			iterate_iovec(i, n, base, len, off,	\ | 
 | 						iov, (I))	\ | 
 | 			i->nr_segs -= iov - iter_iov(i);	\ | 
 | 			i->__iov = iov;				\ | 
 | 		} else if (iov_iter_is_bvec(i)) {		\ | 
 | 			const struct bio_vec *bvec = i->bvec;	\ | 
 | 			void *base;				\ | 
 | 			size_t len;				\ | 
 | 			iterate_bvec(i, n, base, len, off,	\ | 
 | 						bvec, (K))	\ | 
 | 			i->nr_segs -= bvec - i->bvec;		\ | 
 | 			i->bvec = bvec;				\ | 
 | 		} else if (iov_iter_is_kvec(i)) {		\ | 
 | 			const struct kvec *kvec = i->kvec;	\ | 
 | 			void *base;				\ | 
 | 			size_t len;				\ | 
 | 			iterate_iovec(i, n, base, len, off,	\ | 
 | 						kvec, (K))	\ | 
 | 			i->nr_segs -= kvec - i->kvec;		\ | 
 | 			i->kvec = kvec;				\ | 
 | 		} else if (iov_iter_is_xarray(i)) {		\ | 
 | 			void *base;				\ | 
 | 			size_t len;				\ | 
 | 			iterate_xarray(i, n, base, len, off,	\ | 
 | 							(K))	\ | 
 | 		}						\ | 
 | 		i->count -= n;					\ | 
 | 	}							\ | 
 | } | 
 | #define iterate_and_advance(i, n, base, len, off, I, K) \ | 
 | 	__iterate_and_advance(i, n, base, len, off, I, ((void)(K),0)) | 
 |  | 
 | static int copyout(void __user *to, const void *from, size_t n) | 
 | { | 
 | 	if (should_fail_usercopy()) | 
 | 		return n; | 
 | 	if (access_ok(to, n)) { | 
 | 		instrument_copy_to_user(to, from, n); | 
 | 		n = raw_copy_to_user(to, from, n); | 
 | 	} | 
 | 	return n; | 
 | } | 
 |  | 
 | static int copyout_nofault(void __user *to, const void *from, size_t n) | 
 | { | 
 | 	long res; | 
 |  | 
 | 	if (should_fail_usercopy()) | 
 | 		return n; | 
 |  | 
 | 	res = copy_to_user_nofault(to, from, n); | 
 |  | 
 | 	return res < 0 ? n : res; | 
 | } | 
 |  | 
 | static int copyin(void *to, const void __user *from, size_t n) | 
 | { | 
 | 	size_t res = n; | 
 |  | 
 | 	if (should_fail_usercopy()) | 
 | 		return n; | 
 | 	if (access_ok(from, n)) { | 
 | 		instrument_copy_from_user_before(to, from, n); | 
 | 		res = raw_copy_from_user(to, from, n); | 
 | 		instrument_copy_from_user_after(to, from, n, res); | 
 | 	} | 
 | 	return res; | 
 | } | 
 |  | 
 | #ifdef PIPE_PARANOIA | 
 | static bool sanity(const struct iov_iter *i) | 
 | { | 
 | 	struct pipe_inode_info *pipe = i->pipe; | 
 | 	unsigned int p_head = pipe->head; | 
 | 	unsigned int p_tail = pipe->tail; | 
 | 	unsigned int p_occupancy = pipe_occupancy(p_head, p_tail); | 
 | 	unsigned int i_head = i->head; | 
 | 	unsigned int idx; | 
 |  | 
 | 	if (i->last_offset) { | 
 | 		struct pipe_buffer *p; | 
 | 		if (unlikely(p_occupancy == 0)) | 
 | 			goto Bad;	// pipe must be non-empty | 
 | 		if (unlikely(i_head != p_head - 1)) | 
 | 			goto Bad;	// must be at the last buffer... | 
 |  | 
 | 		p = pipe_buf(pipe, i_head); | 
 | 		if (unlikely(p->offset + p->len != abs(i->last_offset))) | 
 | 			goto Bad;	// ... at the end of segment | 
 | 	} else { | 
 | 		if (i_head != p_head) | 
 | 			goto Bad;	// must be right after the last buffer | 
 | 	} | 
 | 	return true; | 
 | Bad: | 
 | 	printk(KERN_ERR "idx = %d, offset = %d\n", i_head, i->last_offset); | 
 | 	printk(KERN_ERR "head = %d, tail = %d, buffers = %d\n", | 
 | 			p_head, p_tail, pipe->ring_size); | 
 | 	for (idx = 0; idx < pipe->ring_size; idx++) | 
 | 		printk(KERN_ERR "[%p %p %d %d]\n", | 
 | 			pipe->bufs[idx].ops, | 
 | 			pipe->bufs[idx].page, | 
 | 			pipe->bufs[idx].offset, | 
 | 			pipe->bufs[idx].len); | 
 | 	WARN_ON(1); | 
 | 	return false; | 
 | } | 
 | #else | 
 | #define sanity(i) true | 
 | #endif | 
 |  | 
 | static struct page *push_anon(struct pipe_inode_info *pipe, unsigned size) | 
 | { | 
 | 	struct page *page = alloc_page(GFP_USER); | 
 | 	if (page) { | 
 | 		struct pipe_buffer *buf = pipe_buf(pipe, pipe->head++); | 
 | 		*buf = (struct pipe_buffer) { | 
 | 			.ops = &default_pipe_buf_ops, | 
 | 			.page = page, | 
 | 			.offset = 0, | 
 | 			.len = size | 
 | 		}; | 
 | 	} | 
 | 	return page; | 
 | } | 
 |  | 
 | static void push_page(struct pipe_inode_info *pipe, struct page *page, | 
 | 			unsigned int offset, unsigned int size) | 
 | { | 
 | 	struct pipe_buffer *buf = pipe_buf(pipe, pipe->head++); | 
 | 	*buf = (struct pipe_buffer) { | 
 | 		.ops = &page_cache_pipe_buf_ops, | 
 | 		.page = page, | 
 | 		.offset = offset, | 
 | 		.len = size | 
 | 	}; | 
 | 	get_page(page); | 
 | } | 
 |  | 
 | static inline int last_offset(const struct pipe_buffer *buf) | 
 | { | 
 | 	if (buf->ops == &default_pipe_buf_ops) | 
 | 		return buf->len;	// buf->offset is 0 for those | 
 | 	else | 
 | 		return -(buf->offset + buf->len); | 
 | } | 
 |  | 
 | static struct page *append_pipe(struct iov_iter *i, size_t size, | 
 | 				unsigned int *off) | 
 | { | 
 | 	struct pipe_inode_info *pipe = i->pipe; | 
 | 	int offset = i->last_offset; | 
 | 	struct pipe_buffer *buf; | 
 | 	struct page *page; | 
 |  | 
 | 	if (offset > 0 && offset < PAGE_SIZE) { | 
 | 		// some space in the last buffer; add to it | 
 | 		buf = pipe_buf(pipe, pipe->head - 1); | 
 | 		size = min_t(size_t, size, PAGE_SIZE - offset); | 
 | 		buf->len += size; | 
 | 		i->last_offset += size; | 
 | 		i->count -= size; | 
 | 		*off = offset; | 
 | 		return buf->page; | 
 | 	} | 
 | 	// OK, we need a new buffer | 
 | 	*off = 0; | 
 | 	size = min_t(size_t, size, PAGE_SIZE); | 
 | 	if (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) | 
 | 		return NULL; | 
 | 	page = push_anon(pipe, size); | 
 | 	if (!page) | 
 | 		return NULL; | 
 | 	i->head = pipe->head - 1; | 
 | 	i->last_offset = size; | 
 | 	i->count -= size; | 
 | 	return page; | 
 | } | 
 |  | 
 | static size_t copy_page_to_iter_pipe(struct page *page, size_t offset, size_t bytes, | 
 | 			 struct iov_iter *i) | 
 | { | 
 | 	struct pipe_inode_info *pipe = i->pipe; | 
 | 	unsigned int head = pipe->head; | 
 |  | 
 | 	if (unlikely(bytes > i->count)) | 
 | 		bytes = i->count; | 
 |  | 
 | 	if (unlikely(!bytes)) | 
 | 		return 0; | 
 |  | 
 | 	if (!sanity(i)) | 
 | 		return 0; | 
 |  | 
 | 	if (offset && i->last_offset == -offset) { // could we merge it? | 
 | 		struct pipe_buffer *buf = pipe_buf(pipe, head - 1); | 
 | 		if (buf->page == page) { | 
 | 			buf->len += bytes; | 
 | 			i->last_offset -= bytes; | 
 | 			i->count -= bytes; | 
 | 			return bytes; | 
 | 		} | 
 | 	} | 
 | 	if (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) | 
 | 		return 0; | 
 |  | 
 | 	push_page(pipe, page, offset, bytes); | 
 | 	i->last_offset = -(offset + bytes); | 
 | 	i->head = head; | 
 | 	i->count -= bytes; | 
 | 	return bytes; | 
 | } | 
 |  | 
 | /* | 
 |  * fault_in_iov_iter_readable - fault in iov iterator for reading | 
 |  * @i: iterator | 
 |  * @size: maximum length | 
 |  * | 
 |  * Fault in one or more iovecs of the given iov_iter, to a maximum length of | 
 |  * @size.  For each iovec, fault in each page that constitutes the iovec. | 
 |  * | 
 |  * Returns the number of bytes not faulted in (like copy_to_user() and | 
 |  * copy_from_user()). | 
 |  * | 
 |  * Always returns 0 for non-userspace iterators. | 
 |  */ | 
 | size_t fault_in_iov_iter_readable(const struct iov_iter *i, size_t size) | 
 | { | 
 | 	if (iter_is_ubuf(i)) { | 
 | 		size_t n = min(size, iov_iter_count(i)); | 
 | 		n -= fault_in_readable(i->ubuf + i->iov_offset, n); | 
 | 		return size - n; | 
 | 	} else if (iter_is_iovec(i)) { | 
 | 		size_t count = min(size, iov_iter_count(i)); | 
 | 		const struct iovec *p; | 
 | 		size_t skip; | 
 |  | 
 | 		size -= count; | 
 | 		for (p = iter_iov(i), skip = i->iov_offset; count; p++, skip = 0) { | 
 | 			size_t len = min(count, p->iov_len - skip); | 
 | 			size_t ret; | 
 |  | 
 | 			if (unlikely(!len)) | 
 | 				continue; | 
 | 			ret = fault_in_readable(p->iov_base + skip, len); | 
 | 			count -= len - ret; | 
 | 			if (ret) | 
 | 				break; | 
 | 		} | 
 | 		return count + size; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL(fault_in_iov_iter_readable); | 
 |  | 
 | /* | 
 |  * fault_in_iov_iter_writeable - fault in iov iterator for writing | 
 |  * @i: iterator | 
 |  * @size: maximum length | 
 |  * | 
 |  * Faults in the iterator using get_user_pages(), i.e., without triggering | 
 |  * hardware page faults.  This is primarily useful when we already know that | 
 |  * some or all of the pages in @i aren't in memory. | 
 |  * | 
 |  * Returns the number of bytes not faulted in, like copy_to_user() and | 
 |  * copy_from_user(). | 
 |  * | 
 |  * Always returns 0 for non-user-space iterators. | 
 |  */ | 
 | size_t fault_in_iov_iter_writeable(const struct iov_iter *i, size_t size) | 
 | { | 
 | 	if (iter_is_ubuf(i)) { | 
 | 		size_t n = min(size, iov_iter_count(i)); | 
 | 		n -= fault_in_safe_writeable(i->ubuf + i->iov_offset, n); | 
 | 		return size - n; | 
 | 	} else if (iter_is_iovec(i)) { | 
 | 		size_t count = min(size, iov_iter_count(i)); | 
 | 		const struct iovec *p; | 
 | 		size_t skip; | 
 |  | 
 | 		size -= count; | 
 | 		for (p = iter_iov(i), skip = i->iov_offset; count; p++, skip = 0) { | 
 | 			size_t len = min(count, p->iov_len - skip); | 
 | 			size_t ret; | 
 |  | 
 | 			if (unlikely(!len)) | 
 | 				continue; | 
 | 			ret = fault_in_safe_writeable(p->iov_base + skip, len); | 
 | 			count -= len - ret; | 
 | 			if (ret) | 
 | 				break; | 
 | 		} | 
 | 		return count + size; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL(fault_in_iov_iter_writeable); | 
 |  | 
 | void iov_iter_init(struct iov_iter *i, unsigned int direction, | 
 | 			const struct iovec *iov, unsigned long nr_segs, | 
 | 			size_t count) | 
 | { | 
 | 	WARN_ON(direction & ~(READ | WRITE)); | 
 | 	*i = (struct iov_iter) { | 
 | 		.iter_type = ITER_IOVEC, | 
 | 		.copy_mc = false, | 
 | 		.nofault = false, | 
 | 		.user_backed = true, | 
 | 		.data_source = direction, | 
 | 		.__iov = iov, | 
 | 		.nr_segs = nr_segs, | 
 | 		.iov_offset = 0, | 
 | 		.count = count | 
 | 	}; | 
 | } | 
 | EXPORT_SYMBOL(iov_iter_init); | 
 |  | 
 | // returns the offset in partial buffer (if any) | 
 | static inline unsigned int pipe_npages(const struct iov_iter *i, int *npages) | 
 | { | 
 | 	struct pipe_inode_info *pipe = i->pipe; | 
 | 	int used = pipe->head - pipe->tail; | 
 | 	int off = i->last_offset; | 
 |  | 
 | 	*npages = max((int)pipe->max_usage - used, 0); | 
 |  | 
 | 	if (off > 0 && off < PAGE_SIZE) { // anon and not full | 
 | 		(*npages)++; | 
 | 		return off; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static size_t copy_pipe_to_iter(const void *addr, size_t bytes, | 
 | 				struct iov_iter *i) | 
 | { | 
 | 	unsigned int off, chunk; | 
 |  | 
 | 	if (unlikely(bytes > i->count)) | 
 | 		bytes = i->count; | 
 | 	if (unlikely(!bytes)) | 
 | 		return 0; | 
 |  | 
 | 	if (!sanity(i)) | 
 | 		return 0; | 
 |  | 
 | 	for (size_t n = bytes; n; n -= chunk) { | 
 | 		struct page *page = append_pipe(i, n, &off); | 
 | 		chunk = min_t(size_t, n, PAGE_SIZE - off); | 
 | 		if (!page) | 
 | 			return bytes - n; | 
 | 		memcpy_to_page(page, off, addr, chunk); | 
 | 		addr += chunk; | 
 | 	} | 
 | 	return bytes; | 
 | } | 
 |  | 
 | static __wsum csum_and_memcpy(void *to, const void *from, size_t len, | 
 | 			      __wsum sum, size_t off) | 
 | { | 
 | 	__wsum next = csum_partial_copy_nocheck(from, to, len); | 
 | 	return csum_block_add(sum, next, off); | 
 | } | 
 |  | 
 | static size_t csum_and_copy_to_pipe_iter(const void *addr, size_t bytes, | 
 | 					 struct iov_iter *i, __wsum *sump) | 
 | { | 
 | 	__wsum sum = *sump; | 
 | 	size_t off = 0; | 
 | 	unsigned int chunk, r; | 
 |  | 
 | 	if (unlikely(bytes > i->count)) | 
 | 		bytes = i->count; | 
 | 	if (unlikely(!bytes)) | 
 | 		return 0; | 
 |  | 
 | 	if (!sanity(i)) | 
 | 		return 0; | 
 |  | 
 | 	while (bytes) { | 
 | 		struct page *page = append_pipe(i, bytes, &r); | 
 | 		char *p; | 
 |  | 
 | 		if (!page) | 
 | 			break; | 
 | 		chunk = min_t(size_t, bytes, PAGE_SIZE - r); | 
 | 		p = kmap_local_page(page); | 
 | 		sum = csum_and_memcpy(p + r, addr + off, chunk, sum, off); | 
 | 		kunmap_local(p); | 
 | 		off += chunk; | 
 | 		bytes -= chunk; | 
 | 	} | 
 | 	*sump = sum; | 
 | 	return off; | 
 | } | 
 |  | 
 | size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i) | 
 | { | 
 | 	if (WARN_ON_ONCE(i->data_source)) | 
 | 		return 0; | 
 | 	if (unlikely(iov_iter_is_pipe(i))) | 
 | 		return copy_pipe_to_iter(addr, bytes, i); | 
 | 	if (user_backed_iter(i)) | 
 | 		might_fault(); | 
 | 	iterate_and_advance(i, bytes, base, len, off, | 
 | 		copyout(base, addr + off, len), | 
 | 		memcpy(base, addr + off, len) | 
 | 	) | 
 |  | 
 | 	return bytes; | 
 | } | 
 | EXPORT_SYMBOL(_copy_to_iter); | 
 |  | 
 | #ifdef CONFIG_ARCH_HAS_COPY_MC | 
 | static int copyout_mc(void __user *to, const void *from, size_t n) | 
 | { | 
 | 	if (access_ok(to, n)) { | 
 | 		instrument_copy_to_user(to, from, n); | 
 | 		n = copy_mc_to_user((__force void *) to, from, n); | 
 | 	} | 
 | 	return n; | 
 | } | 
 |  | 
 | static size_t copy_mc_pipe_to_iter(const void *addr, size_t bytes, | 
 | 				struct iov_iter *i) | 
 | { | 
 | 	size_t xfer = 0; | 
 | 	unsigned int off, chunk; | 
 |  | 
 | 	if (unlikely(bytes > i->count)) | 
 | 		bytes = i->count; | 
 | 	if (unlikely(!bytes)) | 
 | 		return 0; | 
 |  | 
 | 	if (!sanity(i)) | 
 | 		return 0; | 
 |  | 
 | 	while (bytes) { | 
 | 		struct page *page = append_pipe(i, bytes, &off); | 
 | 		unsigned long rem; | 
 | 		char *p; | 
 |  | 
 | 		if (!page) | 
 | 			break; | 
 | 		chunk = min_t(size_t, bytes, PAGE_SIZE - off); | 
 | 		p = kmap_local_page(page); | 
 | 		rem = copy_mc_to_kernel(p + off, addr + xfer, chunk); | 
 | 		chunk -= rem; | 
 | 		kunmap_local(p); | 
 | 		xfer += chunk; | 
 | 		bytes -= chunk; | 
 | 		if (rem) { | 
 | 			iov_iter_revert(i, rem); | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	return xfer; | 
 | } | 
 |  | 
 | /** | 
 |  * _copy_mc_to_iter - copy to iter with source memory error exception handling | 
 |  * @addr: source kernel address | 
 |  * @bytes: total transfer length | 
 |  * @i: destination iterator | 
 |  * | 
 |  * The pmem driver deploys this for the dax operation | 
 |  * (dax_copy_to_iter()) for dax reads (bypass page-cache and the | 
 |  * block-layer). Upon #MC read(2) aborts and returns EIO or the bytes | 
 |  * successfully copied. | 
 |  * | 
 |  * The main differences between this and typical _copy_to_iter(). | 
 |  * | 
 |  * * Typical tail/residue handling after a fault retries the copy | 
 |  *   byte-by-byte until the fault happens again. Re-triggering machine | 
 |  *   checks is potentially fatal so the implementation uses source | 
 |  *   alignment and poison alignment assumptions to avoid re-triggering | 
 |  *   hardware exceptions. | 
 |  * | 
 |  * * ITER_KVEC, ITER_PIPE, and ITER_BVEC can return short copies. | 
 |  *   Compare to copy_to_iter() where only ITER_IOVEC attempts might return | 
 |  *   a short copy. | 
 |  * | 
 |  * Return: number of bytes copied (may be %0) | 
 |  */ | 
 | size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i) | 
 | { | 
 | 	if (WARN_ON_ONCE(i->data_source)) | 
 | 		return 0; | 
 | 	if (unlikely(iov_iter_is_pipe(i))) | 
 | 		return copy_mc_pipe_to_iter(addr, bytes, i); | 
 | 	if (user_backed_iter(i)) | 
 | 		might_fault(); | 
 | 	__iterate_and_advance(i, bytes, base, len, off, | 
 | 		copyout_mc(base, addr + off, len), | 
 | 		copy_mc_to_kernel(base, addr + off, len) | 
 | 	) | 
 |  | 
 | 	return bytes; | 
 | } | 
 | EXPORT_SYMBOL_GPL(_copy_mc_to_iter); | 
 | #endif /* CONFIG_ARCH_HAS_COPY_MC */ | 
 |  | 
 | static void *memcpy_from_iter(struct iov_iter *i, void *to, const void *from, | 
 | 				 size_t size) | 
 | { | 
 | 	if (iov_iter_is_copy_mc(i)) | 
 | 		return (void *)copy_mc_to_kernel(to, from, size); | 
 | 	return memcpy(to, from, size); | 
 | } | 
 |  | 
 | size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i) | 
 | { | 
 | 	if (WARN_ON_ONCE(!i->data_source)) | 
 | 		return 0; | 
 |  | 
 | 	if (user_backed_iter(i)) | 
 | 		might_fault(); | 
 | 	iterate_and_advance(i, bytes, base, len, off, | 
 | 		copyin(addr + off, base, len), | 
 | 		memcpy_from_iter(i, addr + off, base, len) | 
 | 	) | 
 |  | 
 | 	return bytes; | 
 | } | 
 | EXPORT_SYMBOL(_copy_from_iter); | 
 |  | 
 | size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i) | 
 | { | 
 | 	if (WARN_ON_ONCE(!i->data_source)) | 
 | 		return 0; | 
 |  | 
 | 	iterate_and_advance(i, bytes, base, len, off, | 
 | 		__copy_from_user_inatomic_nocache(addr + off, base, len), | 
 | 		memcpy(addr + off, base, len) | 
 | 	) | 
 |  | 
 | 	return bytes; | 
 | } | 
 | EXPORT_SYMBOL(_copy_from_iter_nocache); | 
 |  | 
 | #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE | 
 | /** | 
 |  * _copy_from_iter_flushcache - write destination through cpu cache | 
 |  * @addr: destination kernel address | 
 |  * @bytes: total transfer length | 
 |  * @i: source iterator | 
 |  * | 
 |  * The pmem driver arranges for filesystem-dax to use this facility via | 
 |  * dax_copy_from_iter() for ensuring that writes to persistent memory | 
 |  * are flushed through the CPU cache. It is differentiated from | 
 |  * _copy_from_iter_nocache() in that guarantees all data is flushed for | 
 |  * all iterator types. The _copy_from_iter_nocache() only attempts to | 
 |  * bypass the cache for the ITER_IOVEC case, and on some archs may use | 
 |  * instructions that strand dirty-data in the cache. | 
 |  * | 
 |  * Return: number of bytes copied (may be %0) | 
 |  */ | 
 | size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i) | 
 | { | 
 | 	if (WARN_ON_ONCE(!i->data_source)) | 
 | 		return 0; | 
 |  | 
 | 	iterate_and_advance(i, bytes, base, len, off, | 
 | 		__copy_from_user_flushcache(addr + off, base, len), | 
 | 		memcpy_flushcache(addr + off, base, len) | 
 | 	) | 
 |  | 
 | 	return bytes; | 
 | } | 
 | EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache); | 
 | #endif | 
 |  | 
 | static inline bool page_copy_sane(struct page *page, size_t offset, size_t n) | 
 | { | 
 | 	struct page *head; | 
 | 	size_t v = n + offset; | 
 |  | 
 | 	/* | 
 | 	 * The general case needs to access the page order in order | 
 | 	 * to compute the page size. | 
 | 	 * However, we mostly deal with order-0 pages and thus can | 
 | 	 * avoid a possible cache line miss for requests that fit all | 
 | 	 * page orders. | 
 | 	 */ | 
 | 	if (n <= v && v <= PAGE_SIZE) | 
 | 		return true; | 
 |  | 
 | 	head = compound_head(page); | 
 | 	v += (page - head) << PAGE_SHIFT; | 
 |  | 
 | 	if (WARN_ON(n > v || v > page_size(head))) | 
 | 		return false; | 
 | 	return true; | 
 | } | 
 |  | 
 | size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes, | 
 | 			 struct iov_iter *i) | 
 | { | 
 | 	size_t res = 0; | 
 | 	if (!page_copy_sane(page, offset, bytes)) | 
 | 		return 0; | 
 | 	if (WARN_ON_ONCE(i->data_source)) | 
 | 		return 0; | 
 | 	if (unlikely(iov_iter_is_pipe(i))) | 
 | 		return copy_page_to_iter_pipe(page, offset, bytes, i); | 
 | 	page += offset / PAGE_SIZE; // first subpage | 
 | 	offset %= PAGE_SIZE; | 
 | 	while (1) { | 
 | 		void *kaddr = kmap_local_page(page); | 
 | 		size_t n = min(bytes, (size_t)PAGE_SIZE - offset); | 
 | 		n = _copy_to_iter(kaddr + offset, n, i); | 
 | 		kunmap_local(kaddr); | 
 | 		res += n; | 
 | 		bytes -= n; | 
 | 		if (!bytes || !n) | 
 | 			break; | 
 | 		offset += n; | 
 | 		if (offset == PAGE_SIZE) { | 
 | 			page++; | 
 | 			offset = 0; | 
 | 		} | 
 | 	} | 
 | 	return res; | 
 | } | 
 | EXPORT_SYMBOL(copy_page_to_iter); | 
 |  | 
 | size_t copy_page_to_iter_nofault(struct page *page, unsigned offset, size_t bytes, | 
 | 				 struct iov_iter *i) | 
 | { | 
 | 	size_t res = 0; | 
 |  | 
 | 	if (!page_copy_sane(page, offset, bytes)) | 
 | 		return 0; | 
 | 	if (WARN_ON_ONCE(i->data_source)) | 
 | 		return 0; | 
 | 	if (unlikely(iov_iter_is_pipe(i))) | 
 | 		return copy_page_to_iter_pipe(page, offset, bytes, i); | 
 | 	page += offset / PAGE_SIZE; // first subpage | 
 | 	offset %= PAGE_SIZE; | 
 | 	while (1) { | 
 | 		void *kaddr = kmap_local_page(page); | 
 | 		size_t n = min(bytes, (size_t)PAGE_SIZE - offset); | 
 |  | 
 | 		iterate_and_advance(i, n, base, len, off, | 
 | 			copyout_nofault(base, kaddr + offset + off, len), | 
 | 			memcpy(base, kaddr + offset + off, len) | 
 | 		) | 
 | 		kunmap_local(kaddr); | 
 | 		res += n; | 
 | 		bytes -= n; | 
 | 		if (!bytes || !n) | 
 | 			break; | 
 | 		offset += n; | 
 | 		if (offset == PAGE_SIZE) { | 
 | 			page++; | 
 | 			offset = 0; | 
 | 		} | 
 | 	} | 
 | 	return res; | 
 | } | 
 | EXPORT_SYMBOL(copy_page_to_iter_nofault); | 
 |  | 
 | size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes, | 
 | 			 struct iov_iter *i) | 
 | { | 
 | 	size_t res = 0; | 
 | 	if (!page_copy_sane(page, offset, bytes)) | 
 | 		return 0; | 
 | 	page += offset / PAGE_SIZE; // first subpage | 
 | 	offset %= PAGE_SIZE; | 
 | 	while (1) { | 
 | 		void *kaddr = kmap_local_page(page); | 
 | 		size_t n = min(bytes, (size_t)PAGE_SIZE - offset); | 
 | 		n = _copy_from_iter(kaddr + offset, n, i); | 
 | 		kunmap_local(kaddr); | 
 | 		res += n; | 
 | 		bytes -= n; | 
 | 		if (!bytes || !n) | 
 | 			break; | 
 | 		offset += n; | 
 | 		if (offset == PAGE_SIZE) { | 
 | 			page++; | 
 | 			offset = 0; | 
 | 		} | 
 | 	} | 
 | 	return res; | 
 | } | 
 | EXPORT_SYMBOL(copy_page_from_iter); | 
 |  | 
 | static size_t pipe_zero(size_t bytes, struct iov_iter *i) | 
 | { | 
 | 	unsigned int chunk, off; | 
 |  | 
 | 	if (unlikely(bytes > i->count)) | 
 | 		bytes = i->count; | 
 | 	if (unlikely(!bytes)) | 
 | 		return 0; | 
 |  | 
 | 	if (!sanity(i)) | 
 | 		return 0; | 
 |  | 
 | 	for (size_t n = bytes; n; n -= chunk) { | 
 | 		struct page *page = append_pipe(i, n, &off); | 
 | 		char *p; | 
 |  | 
 | 		if (!page) | 
 | 			return bytes - n; | 
 | 		chunk = min_t(size_t, n, PAGE_SIZE - off); | 
 | 		p = kmap_local_page(page); | 
 | 		memset(p + off, 0, chunk); | 
 | 		kunmap_local(p); | 
 | 	} | 
 | 	return bytes; | 
 | } | 
 |  | 
 | size_t iov_iter_zero(size_t bytes, struct iov_iter *i) | 
 | { | 
 | 	if (unlikely(iov_iter_is_pipe(i))) | 
 | 		return pipe_zero(bytes, i); | 
 | 	iterate_and_advance(i, bytes, base, len, count, | 
 | 		clear_user(base, len), | 
 | 		memset(base, 0, len) | 
 | 	) | 
 |  | 
 | 	return bytes; | 
 | } | 
 | EXPORT_SYMBOL(iov_iter_zero); | 
 |  | 
 | size_t copy_page_from_iter_atomic(struct page *page, unsigned offset, size_t bytes, | 
 | 				  struct iov_iter *i) | 
 | { | 
 | 	char *kaddr = kmap_atomic(page), *p = kaddr + offset; | 
 | 	if (!page_copy_sane(page, offset, bytes)) { | 
 | 		kunmap_atomic(kaddr); | 
 | 		return 0; | 
 | 	} | 
 | 	if (WARN_ON_ONCE(!i->data_source)) { | 
 | 		kunmap_atomic(kaddr); | 
 | 		return 0; | 
 | 	} | 
 | 	iterate_and_advance(i, bytes, base, len, off, | 
 | 		copyin(p + off, base, len), | 
 | 		memcpy_from_iter(i, p + off, base, len) | 
 | 	) | 
 | 	kunmap_atomic(kaddr); | 
 | 	return bytes; | 
 | } | 
 | EXPORT_SYMBOL(copy_page_from_iter_atomic); | 
 |  | 
 | static void pipe_advance(struct iov_iter *i, size_t size) | 
 | { | 
 | 	struct pipe_inode_info *pipe = i->pipe; | 
 | 	int off = i->last_offset; | 
 |  | 
 | 	if (!off && !size) { | 
 | 		pipe_discard_from(pipe, i->start_head); // discard everything | 
 | 		return; | 
 | 	} | 
 | 	i->count -= size; | 
 | 	while (1) { | 
 | 		struct pipe_buffer *buf = pipe_buf(pipe, i->head); | 
 | 		if (off) /* make it relative to the beginning of buffer */ | 
 | 			size += abs(off) - buf->offset; | 
 | 		if (size <= buf->len) { | 
 | 			buf->len = size; | 
 | 			i->last_offset = last_offset(buf); | 
 | 			break; | 
 | 		} | 
 | 		size -= buf->len; | 
 | 		i->head++; | 
 | 		off = 0; | 
 | 	} | 
 | 	pipe_discard_from(pipe, i->head + 1); // discard everything past this one | 
 | } | 
 |  | 
 | static void iov_iter_bvec_advance(struct iov_iter *i, size_t size) | 
 | { | 
 | 	const struct bio_vec *bvec, *end; | 
 |  | 
 | 	if (!i->count) | 
 | 		return; | 
 | 	i->count -= size; | 
 |  | 
 | 	size += i->iov_offset; | 
 |  | 
 | 	for (bvec = i->bvec, end = bvec + i->nr_segs; bvec < end; bvec++) { | 
 | 		if (likely(size < bvec->bv_len)) | 
 | 			break; | 
 | 		size -= bvec->bv_len; | 
 | 	} | 
 | 	i->iov_offset = size; | 
 | 	i->nr_segs -= bvec - i->bvec; | 
 | 	i->bvec = bvec; | 
 | } | 
 |  | 
 | static void iov_iter_iovec_advance(struct iov_iter *i, size_t size) | 
 | { | 
 | 	const struct iovec *iov, *end; | 
 |  | 
 | 	if (!i->count) | 
 | 		return; | 
 | 	i->count -= size; | 
 |  | 
 | 	size += i->iov_offset; // from beginning of current segment | 
 | 	for (iov = iter_iov(i), end = iov + i->nr_segs; iov < end; iov++) { | 
 | 		if (likely(size < iov->iov_len)) | 
 | 			break; | 
 | 		size -= iov->iov_len; | 
 | 	} | 
 | 	i->iov_offset = size; | 
 | 	i->nr_segs -= iov - iter_iov(i); | 
 | 	i->__iov = iov; | 
 | } | 
 |  | 
 | void iov_iter_advance(struct iov_iter *i, size_t size) | 
 | { | 
 | 	if (unlikely(i->count < size)) | 
 | 		size = i->count; | 
 | 	if (likely(iter_is_ubuf(i)) || unlikely(iov_iter_is_xarray(i))) { | 
 | 		i->iov_offset += size; | 
 | 		i->count -= size; | 
 | 	} else if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) { | 
 | 		/* iovec and kvec have identical layouts */ | 
 | 		iov_iter_iovec_advance(i, size); | 
 | 	} else if (iov_iter_is_bvec(i)) { | 
 | 		iov_iter_bvec_advance(i, size); | 
 | 	} else if (iov_iter_is_pipe(i)) { | 
 | 		pipe_advance(i, size); | 
 | 	} else if (iov_iter_is_discard(i)) { | 
 | 		i->count -= size; | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL(iov_iter_advance); | 
 |  | 
 | void iov_iter_revert(struct iov_iter *i, size_t unroll) | 
 | { | 
 | 	if (!unroll) | 
 | 		return; | 
 | 	if (WARN_ON(unroll > MAX_RW_COUNT)) | 
 | 		return; | 
 | 	i->count += unroll; | 
 | 	if (unlikely(iov_iter_is_pipe(i))) { | 
 | 		struct pipe_inode_info *pipe = i->pipe; | 
 | 		unsigned int head = pipe->head; | 
 |  | 
 | 		while (head > i->start_head) { | 
 | 			struct pipe_buffer *b = pipe_buf(pipe, --head); | 
 | 			if (unroll < b->len) { | 
 | 				b->len -= unroll; | 
 | 				i->last_offset = last_offset(b); | 
 | 				i->head = head; | 
 | 				return; | 
 | 			} | 
 | 			unroll -= b->len; | 
 | 			pipe_buf_release(pipe, b); | 
 | 			pipe->head--; | 
 | 		} | 
 | 		i->last_offset = 0; | 
 | 		i->head = head; | 
 | 		return; | 
 | 	} | 
 | 	if (unlikely(iov_iter_is_discard(i))) | 
 | 		return; | 
 | 	if (unroll <= i->iov_offset) { | 
 | 		i->iov_offset -= unroll; | 
 | 		return; | 
 | 	} | 
 | 	unroll -= i->iov_offset; | 
 | 	if (iov_iter_is_xarray(i) || iter_is_ubuf(i)) { | 
 | 		BUG(); /* We should never go beyond the start of the specified | 
 | 			* range since we might then be straying into pages that | 
 | 			* aren't pinned. | 
 | 			*/ | 
 | 	} else if (iov_iter_is_bvec(i)) { | 
 | 		const struct bio_vec *bvec = i->bvec; | 
 | 		while (1) { | 
 | 			size_t n = (--bvec)->bv_len; | 
 | 			i->nr_segs++; | 
 | 			if (unroll <= n) { | 
 | 				i->bvec = bvec; | 
 | 				i->iov_offset = n - unroll; | 
 | 				return; | 
 | 			} | 
 | 			unroll -= n; | 
 | 		} | 
 | 	} else { /* same logics for iovec and kvec */ | 
 | 		const struct iovec *iov = iter_iov(i); | 
 | 		while (1) { | 
 | 			size_t n = (--iov)->iov_len; | 
 | 			i->nr_segs++; | 
 | 			if (unroll <= n) { | 
 | 				i->__iov = iov; | 
 | 				i->iov_offset = n - unroll; | 
 | 				return; | 
 | 			} | 
 | 			unroll -= n; | 
 | 		} | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL(iov_iter_revert); | 
 |  | 
 | /* | 
 |  * Return the count of just the current iov_iter segment. | 
 |  */ | 
 | size_t iov_iter_single_seg_count(const struct iov_iter *i) | 
 | { | 
 | 	if (i->nr_segs > 1) { | 
 | 		if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) | 
 | 			return min(i->count, iter_iov(i)->iov_len - i->iov_offset); | 
 | 		if (iov_iter_is_bvec(i)) | 
 | 			return min(i->count, i->bvec->bv_len - i->iov_offset); | 
 | 	} | 
 | 	return i->count; | 
 | } | 
 | EXPORT_SYMBOL(iov_iter_single_seg_count); | 
 |  | 
 | void iov_iter_kvec(struct iov_iter *i, unsigned int direction, | 
 | 			const struct kvec *kvec, unsigned long nr_segs, | 
 | 			size_t count) | 
 | { | 
 | 	WARN_ON(direction & ~(READ | WRITE)); | 
 | 	*i = (struct iov_iter){ | 
 | 		.iter_type = ITER_KVEC, | 
 | 		.copy_mc = false, | 
 | 		.data_source = direction, | 
 | 		.kvec = kvec, | 
 | 		.nr_segs = nr_segs, | 
 | 		.iov_offset = 0, | 
 | 		.count = count | 
 | 	}; | 
 | } | 
 | EXPORT_SYMBOL(iov_iter_kvec); | 
 |  | 
 | void iov_iter_bvec(struct iov_iter *i, unsigned int direction, | 
 | 			const struct bio_vec *bvec, unsigned long nr_segs, | 
 | 			size_t count) | 
 | { | 
 | 	WARN_ON(direction & ~(READ | WRITE)); | 
 | 	*i = (struct iov_iter){ | 
 | 		.iter_type = ITER_BVEC, | 
 | 		.copy_mc = false, | 
 | 		.data_source = direction, | 
 | 		.bvec = bvec, | 
 | 		.nr_segs = nr_segs, | 
 | 		.iov_offset = 0, | 
 | 		.count = count | 
 | 	}; | 
 | } | 
 | EXPORT_SYMBOL(iov_iter_bvec); | 
 |  | 
 | void iov_iter_pipe(struct iov_iter *i, unsigned int direction, | 
 | 			struct pipe_inode_info *pipe, | 
 | 			size_t count) | 
 | { | 
 | 	BUG_ON(direction != READ); | 
 | 	WARN_ON(pipe_full(pipe->head, pipe->tail, pipe->ring_size)); | 
 | 	*i = (struct iov_iter){ | 
 | 		.iter_type = ITER_PIPE, | 
 | 		.data_source = false, | 
 | 		.pipe = pipe, | 
 | 		.head = pipe->head, | 
 | 		.start_head = pipe->head, | 
 | 		.last_offset = 0, | 
 | 		.count = count | 
 | 	}; | 
 | } | 
 | EXPORT_SYMBOL(iov_iter_pipe); | 
 |  | 
 | /** | 
 |  * iov_iter_xarray - Initialise an I/O iterator to use the pages in an xarray | 
 |  * @i: The iterator to initialise. | 
 |  * @direction: The direction of the transfer. | 
 |  * @xarray: The xarray to access. | 
 |  * @start: The start file position. | 
 |  * @count: The size of the I/O buffer in bytes. | 
 |  * | 
 |  * Set up an I/O iterator to either draw data out of the pages attached to an | 
 |  * inode or to inject data into those pages.  The pages *must* be prevented | 
 |  * from evaporation, either by taking a ref on them or locking them by the | 
 |  * caller. | 
 |  */ | 
 | void iov_iter_xarray(struct iov_iter *i, unsigned int direction, | 
 | 		     struct xarray *xarray, loff_t start, size_t count) | 
 | { | 
 | 	BUG_ON(direction & ~1); | 
 | 	*i = (struct iov_iter) { | 
 | 		.iter_type = ITER_XARRAY, | 
 | 		.copy_mc = false, | 
 | 		.data_source = direction, | 
 | 		.xarray = xarray, | 
 | 		.xarray_start = start, | 
 | 		.count = count, | 
 | 		.iov_offset = 0 | 
 | 	}; | 
 | } | 
 | EXPORT_SYMBOL(iov_iter_xarray); | 
 |  | 
 | /** | 
 |  * iov_iter_discard - Initialise an I/O iterator that discards data | 
 |  * @i: The iterator to initialise. | 
 |  * @direction: The direction of the transfer. | 
 |  * @count: The size of the I/O buffer in bytes. | 
 |  * | 
 |  * Set up an I/O iterator that just discards everything that's written to it. | 
 |  * It's only available as a READ iterator. | 
 |  */ | 
 | void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count) | 
 | { | 
 | 	BUG_ON(direction != READ); | 
 | 	*i = (struct iov_iter){ | 
 | 		.iter_type = ITER_DISCARD, | 
 | 		.copy_mc = false, | 
 | 		.data_source = false, | 
 | 		.count = count, | 
 | 		.iov_offset = 0 | 
 | 	}; | 
 | } | 
 | EXPORT_SYMBOL(iov_iter_discard); | 
 |  | 
 | static bool iov_iter_aligned_iovec(const struct iov_iter *i, unsigned addr_mask, | 
 | 				   unsigned len_mask) | 
 | { | 
 | 	size_t size = i->count; | 
 | 	size_t skip = i->iov_offset; | 
 | 	unsigned k; | 
 |  | 
 | 	for (k = 0; k < i->nr_segs; k++, skip = 0) { | 
 | 		const struct iovec *iov = iter_iov(i) + k; | 
 | 		size_t len = iov->iov_len - skip; | 
 |  | 
 | 		if (len > size) | 
 | 			len = size; | 
 | 		if (len & len_mask) | 
 | 			return false; | 
 | 		if ((unsigned long)(iov->iov_base + skip) & addr_mask) | 
 | 			return false; | 
 |  | 
 | 		size -= len; | 
 | 		if (!size) | 
 | 			break; | 
 | 	} | 
 | 	return true; | 
 | } | 
 |  | 
 | static bool iov_iter_aligned_bvec(const struct iov_iter *i, unsigned addr_mask, | 
 | 				  unsigned len_mask) | 
 | { | 
 | 	size_t size = i->count; | 
 | 	unsigned skip = i->iov_offset; | 
 | 	unsigned k; | 
 |  | 
 | 	for (k = 0; k < i->nr_segs; k++, skip = 0) { | 
 | 		size_t len = i->bvec[k].bv_len - skip; | 
 |  | 
 | 		if (len > size) | 
 | 			len = size; | 
 | 		if (len & len_mask) | 
 | 			return false; | 
 | 		if ((unsigned long)(i->bvec[k].bv_offset + skip) & addr_mask) | 
 | 			return false; | 
 |  | 
 | 		size -= len; | 
 | 		if (!size) | 
 | 			break; | 
 | 	} | 
 | 	return true; | 
 | } | 
 |  | 
 | /** | 
 |  * iov_iter_is_aligned() - Check if the addresses and lengths of each segments | 
 |  * 	are aligned to the parameters. | 
 |  * | 
 |  * @i: &struct iov_iter to restore | 
 |  * @addr_mask: bit mask to check against the iov element's addresses | 
 |  * @len_mask: bit mask to check against the iov element's lengths | 
 |  * | 
 |  * Return: false if any addresses or lengths intersect with the provided masks | 
 |  */ | 
 | bool iov_iter_is_aligned(const struct iov_iter *i, unsigned addr_mask, | 
 | 			 unsigned len_mask) | 
 | { | 
 | 	if (likely(iter_is_ubuf(i))) { | 
 | 		if (i->count & len_mask) | 
 | 			return false; | 
 | 		if ((unsigned long)(i->ubuf + i->iov_offset) & addr_mask) | 
 | 			return false; | 
 | 		return true; | 
 | 	} | 
 |  | 
 | 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) | 
 | 		return iov_iter_aligned_iovec(i, addr_mask, len_mask); | 
 |  | 
 | 	if (iov_iter_is_bvec(i)) | 
 | 		return iov_iter_aligned_bvec(i, addr_mask, len_mask); | 
 |  | 
 | 	if (iov_iter_is_pipe(i)) { | 
 | 		size_t size = i->count; | 
 |  | 
 | 		if (size & len_mask) | 
 | 			return false; | 
 | 		if (size && i->last_offset > 0) { | 
 | 			if (i->last_offset & addr_mask) | 
 | 				return false; | 
 | 		} | 
 |  | 
 | 		return true; | 
 | 	} | 
 |  | 
 | 	if (iov_iter_is_xarray(i)) { | 
 | 		if (i->count & len_mask) | 
 | 			return false; | 
 | 		if ((i->xarray_start + i->iov_offset) & addr_mask) | 
 | 			return false; | 
 | 	} | 
 |  | 
 | 	return true; | 
 | } | 
 | EXPORT_SYMBOL_GPL(iov_iter_is_aligned); | 
 |  | 
 | static unsigned long iov_iter_alignment_iovec(const struct iov_iter *i) | 
 | { | 
 | 	unsigned long res = 0; | 
 | 	size_t size = i->count; | 
 | 	size_t skip = i->iov_offset; | 
 | 	unsigned k; | 
 |  | 
 | 	for (k = 0; k < i->nr_segs; k++, skip = 0) { | 
 | 		const struct iovec *iov = iter_iov(i) + k; | 
 | 		size_t len = iov->iov_len - skip; | 
 | 		if (len) { | 
 | 			res |= (unsigned long)iov->iov_base + skip; | 
 | 			if (len > size) | 
 | 				len = size; | 
 | 			res |= len; | 
 | 			size -= len; | 
 | 			if (!size) | 
 | 				break; | 
 | 		} | 
 | 	} | 
 | 	return res; | 
 | } | 
 |  | 
 | static unsigned long iov_iter_alignment_bvec(const struct iov_iter *i) | 
 | { | 
 | 	unsigned res = 0; | 
 | 	size_t size = i->count; | 
 | 	unsigned skip = i->iov_offset; | 
 | 	unsigned k; | 
 |  | 
 | 	for (k = 0; k < i->nr_segs; k++, skip = 0) { | 
 | 		size_t len = i->bvec[k].bv_len - skip; | 
 | 		res |= (unsigned long)i->bvec[k].bv_offset + skip; | 
 | 		if (len > size) | 
 | 			len = size; | 
 | 		res |= len; | 
 | 		size -= len; | 
 | 		if (!size) | 
 | 			break; | 
 | 	} | 
 | 	return res; | 
 | } | 
 |  | 
 | unsigned long iov_iter_alignment(const struct iov_iter *i) | 
 | { | 
 | 	if (likely(iter_is_ubuf(i))) { | 
 | 		size_t size = i->count; | 
 | 		if (size) | 
 | 			return ((unsigned long)i->ubuf + i->iov_offset) | size; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* iovec and kvec have identical layouts */ | 
 | 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) | 
 | 		return iov_iter_alignment_iovec(i); | 
 |  | 
 | 	if (iov_iter_is_bvec(i)) | 
 | 		return iov_iter_alignment_bvec(i); | 
 |  | 
 | 	if (iov_iter_is_pipe(i)) { | 
 | 		size_t size = i->count; | 
 |  | 
 | 		if (size && i->last_offset > 0) | 
 | 			return size | i->last_offset; | 
 | 		return size; | 
 | 	} | 
 |  | 
 | 	if (iov_iter_is_xarray(i)) | 
 | 		return (i->xarray_start + i->iov_offset) | i->count; | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL(iov_iter_alignment); | 
 |  | 
 | unsigned long iov_iter_gap_alignment(const struct iov_iter *i) | 
 | { | 
 | 	unsigned long res = 0; | 
 | 	unsigned long v = 0; | 
 | 	size_t size = i->count; | 
 | 	unsigned k; | 
 |  | 
 | 	if (iter_is_ubuf(i)) | 
 | 		return 0; | 
 |  | 
 | 	if (WARN_ON(!iter_is_iovec(i))) | 
 | 		return ~0U; | 
 |  | 
 | 	for (k = 0; k < i->nr_segs; k++) { | 
 | 		const struct iovec *iov = iter_iov(i) + k; | 
 | 		if (iov->iov_len) { | 
 | 			unsigned long base = (unsigned long)iov->iov_base; | 
 | 			if (v) // if not the first one | 
 | 				res |= base | v; // this start | previous end | 
 | 			v = base + iov->iov_len; | 
 | 			if (size <= iov->iov_len) | 
 | 				break; | 
 | 			size -= iov->iov_len; | 
 | 		} | 
 | 	} | 
 | 	return res; | 
 | } | 
 | EXPORT_SYMBOL(iov_iter_gap_alignment); | 
 |  | 
 | static int want_pages_array(struct page ***res, size_t size, | 
 | 			    size_t start, unsigned int maxpages) | 
 | { | 
 | 	unsigned int count = DIV_ROUND_UP(size + start, PAGE_SIZE); | 
 |  | 
 | 	if (count > maxpages) | 
 | 		count = maxpages; | 
 | 	WARN_ON(!count);	// caller should've prevented that | 
 | 	if (!*res) { | 
 | 		*res = kvmalloc_array(count, sizeof(struct page *), GFP_KERNEL); | 
 | 		if (!*res) | 
 | 			return 0; | 
 | 	} | 
 | 	return count; | 
 | } | 
 |  | 
 | static ssize_t pipe_get_pages(struct iov_iter *i, | 
 | 		   struct page ***pages, size_t maxsize, unsigned maxpages, | 
 | 		   size_t *start) | 
 | { | 
 | 	unsigned int npages, count, off, chunk; | 
 | 	struct page **p; | 
 | 	size_t left; | 
 |  | 
 | 	if (!sanity(i)) | 
 | 		return -EFAULT; | 
 |  | 
 | 	*start = off = pipe_npages(i, &npages); | 
 | 	if (!npages) | 
 | 		return -EFAULT; | 
 | 	count = want_pages_array(pages, maxsize, off, min(npages, maxpages)); | 
 | 	if (!count) | 
 | 		return -ENOMEM; | 
 | 	p = *pages; | 
 | 	for (npages = 0, left = maxsize ; npages < count; npages++, left -= chunk) { | 
 | 		struct page *page = append_pipe(i, left, &off); | 
 | 		if (!page) | 
 | 			break; | 
 | 		chunk = min_t(size_t, left, PAGE_SIZE - off); | 
 | 		get_page(*p++ = page); | 
 | 	} | 
 | 	if (!npages) | 
 | 		return -EFAULT; | 
 | 	return maxsize - left; | 
 | } | 
 |  | 
 | static ssize_t iter_xarray_populate_pages(struct page **pages, struct xarray *xa, | 
 | 					  pgoff_t index, unsigned int nr_pages) | 
 | { | 
 | 	XA_STATE(xas, xa, index); | 
 | 	struct page *page; | 
 | 	unsigned int ret = 0; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	for (page = xas_load(&xas); page; page = xas_next(&xas)) { | 
 | 		if (xas_retry(&xas, page)) | 
 | 			continue; | 
 |  | 
 | 		/* Has the page moved or been split? */ | 
 | 		if (unlikely(page != xas_reload(&xas))) { | 
 | 			xas_reset(&xas); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		pages[ret] = find_subpage(page, xas.xa_index); | 
 | 		get_page(pages[ret]); | 
 | 		if (++ret == nr_pages) | 
 | 			break; | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static ssize_t iter_xarray_get_pages(struct iov_iter *i, | 
 | 				     struct page ***pages, size_t maxsize, | 
 | 				     unsigned maxpages, size_t *_start_offset) | 
 | { | 
 | 	unsigned nr, offset, count; | 
 | 	pgoff_t index; | 
 | 	loff_t pos; | 
 |  | 
 | 	pos = i->xarray_start + i->iov_offset; | 
 | 	index = pos >> PAGE_SHIFT; | 
 | 	offset = pos & ~PAGE_MASK; | 
 | 	*_start_offset = offset; | 
 |  | 
 | 	count = want_pages_array(pages, maxsize, offset, maxpages); | 
 | 	if (!count) | 
 | 		return -ENOMEM; | 
 | 	nr = iter_xarray_populate_pages(*pages, i->xarray, index, count); | 
 | 	if (nr == 0) | 
 | 		return 0; | 
 |  | 
 | 	maxsize = min_t(size_t, nr * PAGE_SIZE - offset, maxsize); | 
 | 	i->iov_offset += maxsize; | 
 | 	i->count -= maxsize; | 
 | 	return maxsize; | 
 | } | 
 |  | 
 | /* must be done on non-empty ITER_UBUF or ITER_IOVEC one */ | 
 | static unsigned long first_iovec_segment(const struct iov_iter *i, size_t *size) | 
 | { | 
 | 	size_t skip; | 
 | 	long k; | 
 |  | 
 | 	if (iter_is_ubuf(i)) | 
 | 		return (unsigned long)i->ubuf + i->iov_offset; | 
 |  | 
 | 	for (k = 0, skip = i->iov_offset; k < i->nr_segs; k++, skip = 0) { | 
 | 		const struct iovec *iov = iter_iov(i) + k; | 
 | 		size_t len = iov->iov_len - skip; | 
 |  | 
 | 		if (unlikely(!len)) | 
 | 			continue; | 
 | 		if (*size > len) | 
 | 			*size = len; | 
 | 		return (unsigned long)iov->iov_base + skip; | 
 | 	} | 
 | 	BUG(); // if it had been empty, we wouldn't get called | 
 | } | 
 |  | 
 | /* must be done on non-empty ITER_BVEC one */ | 
 | static struct page *first_bvec_segment(const struct iov_iter *i, | 
 | 				       size_t *size, size_t *start) | 
 | { | 
 | 	struct page *page; | 
 | 	size_t skip = i->iov_offset, len; | 
 |  | 
 | 	len = i->bvec->bv_len - skip; | 
 | 	if (*size > len) | 
 | 		*size = len; | 
 | 	skip += i->bvec->bv_offset; | 
 | 	page = i->bvec->bv_page + skip / PAGE_SIZE; | 
 | 	*start = skip % PAGE_SIZE; | 
 | 	return page; | 
 | } | 
 |  | 
 | static ssize_t __iov_iter_get_pages_alloc(struct iov_iter *i, | 
 | 		   struct page ***pages, size_t maxsize, | 
 | 		   unsigned int maxpages, size_t *start, | 
 | 		   iov_iter_extraction_t extraction_flags) | 
 | { | 
 | 	unsigned int n, gup_flags = 0; | 
 |  | 
 | 	if (maxsize > i->count) | 
 | 		maxsize = i->count; | 
 | 	if (!maxsize) | 
 | 		return 0; | 
 | 	if (maxsize > MAX_RW_COUNT) | 
 | 		maxsize = MAX_RW_COUNT; | 
 | 	if (extraction_flags & ITER_ALLOW_P2PDMA) | 
 | 		gup_flags |= FOLL_PCI_P2PDMA; | 
 |  | 
 | 	if (likely(user_backed_iter(i))) { | 
 | 		unsigned long addr; | 
 | 		int res; | 
 |  | 
 | 		if (iov_iter_rw(i) != WRITE) | 
 | 			gup_flags |= FOLL_WRITE; | 
 | 		if (i->nofault) | 
 | 			gup_flags |= FOLL_NOFAULT; | 
 |  | 
 | 		addr = first_iovec_segment(i, &maxsize); | 
 | 		*start = addr % PAGE_SIZE; | 
 | 		addr &= PAGE_MASK; | 
 | 		n = want_pages_array(pages, maxsize, *start, maxpages); | 
 | 		if (!n) | 
 | 			return -ENOMEM; | 
 | 		res = get_user_pages_fast(addr, n, gup_flags, *pages); | 
 | 		if (unlikely(res <= 0)) | 
 | 			return res; | 
 | 		maxsize = min_t(size_t, maxsize, res * PAGE_SIZE - *start); | 
 | 		iov_iter_advance(i, maxsize); | 
 | 		return maxsize; | 
 | 	} | 
 | 	if (iov_iter_is_bvec(i)) { | 
 | 		struct page **p; | 
 | 		struct page *page; | 
 |  | 
 | 		page = first_bvec_segment(i, &maxsize, start); | 
 | 		n = want_pages_array(pages, maxsize, *start, maxpages); | 
 | 		if (!n) | 
 | 			return -ENOMEM; | 
 | 		p = *pages; | 
 | 		for (int k = 0; k < n; k++) | 
 | 			get_page(p[k] = page + k); | 
 | 		maxsize = min_t(size_t, maxsize, n * PAGE_SIZE - *start); | 
 | 		i->count -= maxsize; | 
 | 		i->iov_offset += maxsize; | 
 | 		if (i->iov_offset == i->bvec->bv_len) { | 
 | 			i->iov_offset = 0; | 
 | 			i->bvec++; | 
 | 			i->nr_segs--; | 
 | 		} | 
 | 		return maxsize; | 
 | 	} | 
 | 	if (iov_iter_is_pipe(i)) | 
 | 		return pipe_get_pages(i, pages, maxsize, maxpages, start); | 
 | 	if (iov_iter_is_xarray(i)) | 
 | 		return iter_xarray_get_pages(i, pages, maxsize, maxpages, start); | 
 | 	return -EFAULT; | 
 | } | 
 |  | 
 | ssize_t iov_iter_get_pages(struct iov_iter *i, | 
 | 		   struct page **pages, size_t maxsize, unsigned maxpages, | 
 | 		   size_t *start, iov_iter_extraction_t extraction_flags) | 
 | { | 
 | 	if (!maxpages) | 
 | 		return 0; | 
 | 	BUG_ON(!pages); | 
 |  | 
 | 	return __iov_iter_get_pages_alloc(i, &pages, maxsize, maxpages, | 
 | 					  start, extraction_flags); | 
 | } | 
 | EXPORT_SYMBOL_GPL(iov_iter_get_pages); | 
 |  | 
 | ssize_t iov_iter_get_pages2(struct iov_iter *i, struct page **pages, | 
 | 		size_t maxsize, unsigned maxpages, size_t *start) | 
 | { | 
 | 	return iov_iter_get_pages(i, pages, maxsize, maxpages, start, 0); | 
 | } | 
 | EXPORT_SYMBOL(iov_iter_get_pages2); | 
 |  | 
 | ssize_t iov_iter_get_pages_alloc(struct iov_iter *i, | 
 | 		   struct page ***pages, size_t maxsize, | 
 | 		   size_t *start, iov_iter_extraction_t extraction_flags) | 
 | { | 
 | 	ssize_t len; | 
 |  | 
 | 	*pages = NULL; | 
 |  | 
 | 	len = __iov_iter_get_pages_alloc(i, pages, maxsize, ~0U, start, | 
 | 					 extraction_flags); | 
 | 	if (len <= 0) { | 
 | 		kvfree(*pages); | 
 | 		*pages = NULL; | 
 | 	} | 
 | 	return len; | 
 | } | 
 | EXPORT_SYMBOL_GPL(iov_iter_get_pages_alloc); | 
 |  | 
 | ssize_t iov_iter_get_pages_alloc2(struct iov_iter *i, | 
 | 		struct page ***pages, size_t maxsize, size_t *start) | 
 | { | 
 | 	return iov_iter_get_pages_alloc(i, pages, maxsize, start, 0); | 
 | } | 
 | EXPORT_SYMBOL(iov_iter_get_pages_alloc2); | 
 |  | 
 | size_t csum_and_copy_from_iter(void *addr, size_t bytes, __wsum *csum, | 
 | 			       struct iov_iter *i) | 
 | { | 
 | 	__wsum sum, next; | 
 | 	sum = *csum; | 
 | 	if (WARN_ON_ONCE(!i->data_source)) | 
 | 		return 0; | 
 |  | 
 | 	iterate_and_advance(i, bytes, base, len, off, ({ | 
 | 		next = csum_and_copy_from_user(base, addr + off, len); | 
 | 		sum = csum_block_add(sum, next, off); | 
 | 		next ? 0 : len; | 
 | 	}), ({ | 
 | 		sum = csum_and_memcpy(addr + off, base, len, sum, off); | 
 | 	}) | 
 | 	) | 
 | 	*csum = sum; | 
 | 	return bytes; | 
 | } | 
 | EXPORT_SYMBOL(csum_and_copy_from_iter); | 
 |  | 
 | size_t csum_and_copy_to_iter(const void *addr, size_t bytes, void *_csstate, | 
 | 			     struct iov_iter *i) | 
 | { | 
 | 	struct csum_state *csstate = _csstate; | 
 | 	__wsum sum, next; | 
 |  | 
 | 	if (WARN_ON_ONCE(i->data_source)) | 
 | 		return 0; | 
 | 	if (unlikely(iov_iter_is_discard(i))) { | 
 | 		// can't use csum_memcpy() for that one - data is not copied | 
 | 		csstate->csum = csum_block_add(csstate->csum, | 
 | 					       csum_partial(addr, bytes, 0), | 
 | 					       csstate->off); | 
 | 		csstate->off += bytes; | 
 | 		return bytes; | 
 | 	} | 
 |  | 
 | 	sum = csum_shift(csstate->csum, csstate->off); | 
 | 	if (unlikely(iov_iter_is_pipe(i))) | 
 | 		bytes = csum_and_copy_to_pipe_iter(addr, bytes, i, &sum); | 
 | 	else iterate_and_advance(i, bytes, base, len, off, ({ | 
 | 		next = csum_and_copy_to_user(addr + off, base, len); | 
 | 		sum = csum_block_add(sum, next, off); | 
 | 		next ? 0 : len; | 
 | 	}), ({ | 
 | 		sum = csum_and_memcpy(base, addr + off, len, sum, off); | 
 | 	}) | 
 | 	) | 
 | 	csstate->csum = csum_shift(sum, csstate->off); | 
 | 	csstate->off += bytes; | 
 | 	return bytes; | 
 | } | 
 | EXPORT_SYMBOL(csum_and_copy_to_iter); | 
 |  | 
 | size_t hash_and_copy_to_iter(const void *addr, size_t bytes, void *hashp, | 
 | 		struct iov_iter *i) | 
 | { | 
 | #ifdef CONFIG_CRYPTO_HASH | 
 | 	struct ahash_request *hash = hashp; | 
 | 	struct scatterlist sg; | 
 | 	size_t copied; | 
 |  | 
 | 	copied = copy_to_iter(addr, bytes, i); | 
 | 	sg_init_one(&sg, addr, copied); | 
 | 	ahash_request_set_crypt(hash, &sg, NULL, copied); | 
 | 	crypto_ahash_update(hash); | 
 | 	return copied; | 
 | #else | 
 | 	return 0; | 
 | #endif | 
 | } | 
 | EXPORT_SYMBOL(hash_and_copy_to_iter); | 
 |  | 
 | static int iov_npages(const struct iov_iter *i, int maxpages) | 
 | { | 
 | 	size_t skip = i->iov_offset, size = i->count; | 
 | 	const struct iovec *p; | 
 | 	int npages = 0; | 
 |  | 
 | 	for (p = iter_iov(i); size; skip = 0, p++) { | 
 | 		unsigned offs = offset_in_page(p->iov_base + skip); | 
 | 		size_t len = min(p->iov_len - skip, size); | 
 |  | 
 | 		if (len) { | 
 | 			size -= len; | 
 | 			npages += DIV_ROUND_UP(offs + len, PAGE_SIZE); | 
 | 			if (unlikely(npages > maxpages)) | 
 | 				return maxpages; | 
 | 		} | 
 | 	} | 
 | 	return npages; | 
 | } | 
 |  | 
 | static int bvec_npages(const struct iov_iter *i, int maxpages) | 
 | { | 
 | 	size_t skip = i->iov_offset, size = i->count; | 
 | 	const struct bio_vec *p; | 
 | 	int npages = 0; | 
 |  | 
 | 	for (p = i->bvec; size; skip = 0, p++) { | 
 | 		unsigned offs = (p->bv_offset + skip) % PAGE_SIZE; | 
 | 		size_t len = min(p->bv_len - skip, size); | 
 |  | 
 | 		size -= len; | 
 | 		npages += DIV_ROUND_UP(offs + len, PAGE_SIZE); | 
 | 		if (unlikely(npages > maxpages)) | 
 | 			return maxpages; | 
 | 	} | 
 | 	return npages; | 
 | } | 
 |  | 
 | int iov_iter_npages(const struct iov_iter *i, int maxpages) | 
 | { | 
 | 	if (unlikely(!i->count)) | 
 | 		return 0; | 
 | 	if (likely(iter_is_ubuf(i))) { | 
 | 		unsigned offs = offset_in_page(i->ubuf + i->iov_offset); | 
 | 		int npages = DIV_ROUND_UP(offs + i->count, PAGE_SIZE); | 
 | 		return min(npages, maxpages); | 
 | 	} | 
 | 	/* iovec and kvec have identical layouts */ | 
 | 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) | 
 | 		return iov_npages(i, maxpages); | 
 | 	if (iov_iter_is_bvec(i)) | 
 | 		return bvec_npages(i, maxpages); | 
 | 	if (iov_iter_is_pipe(i)) { | 
 | 		int npages; | 
 |  | 
 | 		if (!sanity(i)) | 
 | 			return 0; | 
 |  | 
 | 		pipe_npages(i, &npages); | 
 | 		return min(npages, maxpages); | 
 | 	} | 
 | 	if (iov_iter_is_xarray(i)) { | 
 | 		unsigned offset = (i->xarray_start + i->iov_offset) % PAGE_SIZE; | 
 | 		int npages = DIV_ROUND_UP(offset + i->count, PAGE_SIZE); | 
 | 		return min(npages, maxpages); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL(iov_iter_npages); | 
 |  | 
 | const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags) | 
 | { | 
 | 	*new = *old; | 
 | 	if (unlikely(iov_iter_is_pipe(new))) { | 
 | 		WARN_ON(1); | 
 | 		return NULL; | 
 | 	} | 
 | 	if (iov_iter_is_bvec(new)) | 
 | 		return new->bvec = kmemdup(new->bvec, | 
 | 				    new->nr_segs * sizeof(struct bio_vec), | 
 | 				    flags); | 
 | 	else if (iov_iter_is_kvec(new) || iter_is_iovec(new)) | 
 | 		/* iovec and kvec have identical layout */ | 
 | 		return new->__iov = kmemdup(new->__iov, | 
 | 				   new->nr_segs * sizeof(struct iovec), | 
 | 				   flags); | 
 | 	return NULL; | 
 | } | 
 | EXPORT_SYMBOL(dup_iter); | 
 |  | 
 | static __noclone int copy_compat_iovec_from_user(struct iovec *iov, | 
 | 		const struct iovec __user *uvec, unsigned long nr_segs) | 
 | { | 
 | 	const struct compat_iovec __user *uiov = | 
 | 		(const struct compat_iovec __user *)uvec; | 
 | 	int ret = -EFAULT, i; | 
 |  | 
 | 	if (!user_access_begin(uiov, nr_segs * sizeof(*uiov))) | 
 | 		return -EFAULT; | 
 |  | 
 | 	for (i = 0; i < nr_segs; i++) { | 
 | 		compat_uptr_t buf; | 
 | 		compat_ssize_t len; | 
 |  | 
 | 		unsafe_get_user(len, &uiov[i].iov_len, uaccess_end); | 
 | 		unsafe_get_user(buf, &uiov[i].iov_base, uaccess_end); | 
 |  | 
 | 		/* check for compat_size_t not fitting in compat_ssize_t .. */ | 
 | 		if (len < 0) { | 
 | 			ret = -EINVAL; | 
 | 			goto uaccess_end; | 
 | 		} | 
 | 		iov[i].iov_base = compat_ptr(buf); | 
 | 		iov[i].iov_len = len; | 
 | 	} | 
 |  | 
 | 	ret = 0; | 
 | uaccess_end: | 
 | 	user_access_end(); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int copy_iovec_from_user(struct iovec *iov, | 
 | 		const struct iovec __user *uiov, unsigned long nr_segs) | 
 | { | 
 | 	int ret = -EFAULT; | 
 |  | 
 | 	if (!user_access_begin(uiov, nr_segs * sizeof(*uiov))) | 
 | 		return -EFAULT; | 
 |  | 
 | 	do { | 
 | 		void __user *buf; | 
 | 		ssize_t len; | 
 |  | 
 | 		unsafe_get_user(len, &uiov->iov_len, uaccess_end); | 
 | 		unsafe_get_user(buf, &uiov->iov_base, uaccess_end); | 
 |  | 
 | 		/* check for size_t not fitting in ssize_t .. */ | 
 | 		if (unlikely(len < 0)) { | 
 | 			ret = -EINVAL; | 
 | 			goto uaccess_end; | 
 | 		} | 
 | 		iov->iov_base = buf; | 
 | 		iov->iov_len = len; | 
 |  | 
 | 		uiov++; iov++; | 
 | 	} while (--nr_segs); | 
 |  | 
 | 	ret = 0; | 
 | uaccess_end: | 
 | 	user_access_end(); | 
 | 	return ret; | 
 | } | 
 |  | 
 | struct iovec *iovec_from_user(const struct iovec __user *uvec, | 
 | 		unsigned long nr_segs, unsigned long fast_segs, | 
 | 		struct iovec *fast_iov, bool compat) | 
 | { | 
 | 	struct iovec *iov = fast_iov; | 
 | 	int ret; | 
 |  | 
 | 	/* | 
 | 	 * SuS says "The readv() function *may* fail if the iovcnt argument was | 
 | 	 * less than or equal to 0, or greater than {IOV_MAX}.  Linux has | 
 | 	 * traditionally returned zero for zero segments, so... | 
 | 	 */ | 
 | 	if (nr_segs == 0) | 
 | 		return iov; | 
 | 	if (nr_segs > UIO_MAXIOV) | 
 | 		return ERR_PTR(-EINVAL); | 
 | 	if (nr_segs > fast_segs) { | 
 | 		iov = kmalloc_array(nr_segs, sizeof(struct iovec), GFP_KERNEL); | 
 | 		if (!iov) | 
 | 			return ERR_PTR(-ENOMEM); | 
 | 	} | 
 |  | 
 | 	if (unlikely(compat)) | 
 | 		ret = copy_compat_iovec_from_user(iov, uvec, nr_segs); | 
 | 	else | 
 | 		ret = copy_iovec_from_user(iov, uvec, nr_segs); | 
 | 	if (ret) { | 
 | 		if (iov != fast_iov) | 
 | 			kfree(iov); | 
 | 		return ERR_PTR(ret); | 
 | 	} | 
 |  | 
 | 	return iov; | 
 | } | 
 |  | 
 | /* | 
 |  * Single segment iovec supplied by the user, import it as ITER_UBUF. | 
 |  */ | 
 | static ssize_t __import_iovec_ubuf(int type, const struct iovec __user *uvec, | 
 | 				   struct iovec **iovp, struct iov_iter *i, | 
 | 				   bool compat) | 
 | { | 
 | 	struct iovec *iov = *iovp; | 
 | 	ssize_t ret; | 
 |  | 
 | 	if (compat) | 
 | 		ret = copy_compat_iovec_from_user(iov, uvec, 1); | 
 | 	else | 
 | 		ret = copy_iovec_from_user(iov, uvec, 1); | 
 | 	if (unlikely(ret)) | 
 | 		return ret; | 
 |  | 
 | 	ret = import_ubuf(type, iov->iov_base, iov->iov_len, i); | 
 | 	if (unlikely(ret)) | 
 | 		return ret; | 
 | 	*iovp = NULL; | 
 | 	return i->count; | 
 | } | 
 |  | 
 | ssize_t __import_iovec(int type, const struct iovec __user *uvec, | 
 | 		 unsigned nr_segs, unsigned fast_segs, struct iovec **iovp, | 
 | 		 struct iov_iter *i, bool compat) | 
 | { | 
 | 	ssize_t total_len = 0; | 
 | 	unsigned long seg; | 
 | 	struct iovec *iov; | 
 |  | 
 | 	if (nr_segs == 1) | 
 | 		return __import_iovec_ubuf(type, uvec, iovp, i, compat); | 
 |  | 
 | 	iov = iovec_from_user(uvec, nr_segs, fast_segs, *iovp, compat); | 
 | 	if (IS_ERR(iov)) { | 
 | 		*iovp = NULL; | 
 | 		return PTR_ERR(iov); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * According to the Single Unix Specification we should return EINVAL if | 
 | 	 * an element length is < 0 when cast to ssize_t or if the total length | 
 | 	 * would overflow the ssize_t return value of the system call. | 
 | 	 * | 
 | 	 * Linux caps all read/write calls to MAX_RW_COUNT, and avoids the | 
 | 	 * overflow case. | 
 | 	 */ | 
 | 	for (seg = 0; seg < nr_segs; seg++) { | 
 | 		ssize_t len = (ssize_t)iov[seg].iov_len; | 
 |  | 
 | 		if (!access_ok(iov[seg].iov_base, len)) { | 
 | 			if (iov != *iovp) | 
 | 				kfree(iov); | 
 | 			*iovp = NULL; | 
 | 			return -EFAULT; | 
 | 		} | 
 |  | 
 | 		if (len > MAX_RW_COUNT - total_len) { | 
 | 			len = MAX_RW_COUNT - total_len; | 
 | 			iov[seg].iov_len = len; | 
 | 		} | 
 | 		total_len += len; | 
 | 	} | 
 |  | 
 | 	iov_iter_init(i, type, iov, nr_segs, total_len); | 
 | 	if (iov == *iovp) | 
 | 		*iovp = NULL; | 
 | 	else | 
 | 		*iovp = iov; | 
 | 	return total_len; | 
 | } | 
 |  | 
 | /** | 
 |  * import_iovec() - Copy an array of &struct iovec from userspace | 
 |  *     into the kernel, check that it is valid, and initialize a new | 
 |  *     &struct iov_iter iterator to access it. | 
 |  * | 
 |  * @type: One of %READ or %WRITE. | 
 |  * @uvec: Pointer to the userspace array. | 
 |  * @nr_segs: Number of elements in userspace array. | 
 |  * @fast_segs: Number of elements in @iov. | 
 |  * @iovp: (input and output parameter) Pointer to pointer to (usually small | 
 |  *     on-stack) kernel array. | 
 |  * @i: Pointer to iterator that will be initialized on success. | 
 |  * | 
 |  * If the array pointed to by *@iov is large enough to hold all @nr_segs, | 
 |  * then this function places %NULL in *@iov on return. Otherwise, a new | 
 |  * array will be allocated and the result placed in *@iov. This means that | 
 |  * the caller may call kfree() on *@iov regardless of whether the small | 
 |  * on-stack array was used or not (and regardless of whether this function | 
 |  * returns an error or not). | 
 |  * | 
 |  * Return: Negative error code on error, bytes imported on success | 
 |  */ | 
 | ssize_t import_iovec(int type, const struct iovec __user *uvec, | 
 | 		 unsigned nr_segs, unsigned fast_segs, | 
 | 		 struct iovec **iovp, struct iov_iter *i) | 
 | { | 
 | 	return __import_iovec(type, uvec, nr_segs, fast_segs, iovp, i, | 
 | 			      in_compat_syscall()); | 
 | } | 
 | EXPORT_SYMBOL(import_iovec); | 
 |  | 
 | int import_single_range(int rw, void __user *buf, size_t len, | 
 | 		 struct iovec *iov, struct iov_iter *i) | 
 | { | 
 | 	if (len > MAX_RW_COUNT) | 
 | 		len = MAX_RW_COUNT; | 
 | 	if (unlikely(!access_ok(buf, len))) | 
 | 		return -EFAULT; | 
 |  | 
 | 	iov_iter_ubuf(i, rw, buf, len); | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL(import_single_range); | 
 |  | 
 | int import_ubuf(int rw, void __user *buf, size_t len, struct iov_iter *i) | 
 | { | 
 | 	if (len > MAX_RW_COUNT) | 
 | 		len = MAX_RW_COUNT; | 
 | 	if (unlikely(!access_ok(buf, len))) | 
 | 		return -EFAULT; | 
 |  | 
 | 	iov_iter_ubuf(i, rw, buf, len); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * iov_iter_restore() - Restore a &struct iov_iter to the same state as when | 
 |  *     iov_iter_save_state() was called. | 
 |  * | 
 |  * @i: &struct iov_iter to restore | 
 |  * @state: state to restore from | 
 |  * | 
 |  * Used after iov_iter_save_state() to bring restore @i, if operations may | 
 |  * have advanced it. | 
 |  * | 
 |  * Note: only works on ITER_IOVEC, ITER_BVEC, and ITER_KVEC | 
 |  */ | 
 | void iov_iter_restore(struct iov_iter *i, struct iov_iter_state *state) | 
 | { | 
 | 	if (WARN_ON_ONCE(!iov_iter_is_bvec(i) && !iter_is_iovec(i) && | 
 | 			 !iter_is_ubuf(i)) && !iov_iter_is_kvec(i)) | 
 | 		return; | 
 | 	i->iov_offset = state->iov_offset; | 
 | 	i->count = state->count; | 
 | 	if (iter_is_ubuf(i)) | 
 | 		return; | 
 | 	/* | 
 | 	 * For the *vec iters, nr_segs + iov is constant - if we increment | 
 | 	 * the vec, then we also decrement the nr_segs count. Hence we don't | 
 | 	 * need to track both of these, just one is enough and we can deduct | 
 | 	 * the other from that. ITER_KVEC and ITER_IOVEC are the same struct | 
 | 	 * size, so we can just increment the iov pointer as they are unionzed. | 
 | 	 * ITER_BVEC _may_ be the same size on some archs, but on others it is | 
 | 	 * not. Be safe and handle it separately. | 
 | 	 */ | 
 | 	BUILD_BUG_ON(sizeof(struct iovec) != sizeof(struct kvec)); | 
 | 	if (iov_iter_is_bvec(i)) | 
 | 		i->bvec -= state->nr_segs - i->nr_segs; | 
 | 	else | 
 | 		i->__iov -= state->nr_segs - i->nr_segs; | 
 | 	i->nr_segs = state->nr_segs; | 
 | } | 
 |  | 
 | /* | 
 |  * Extract a list of contiguous pages from an ITER_XARRAY iterator.  This does not | 
 |  * get references on the pages, nor does it get a pin on them. | 
 |  */ | 
 | static ssize_t iov_iter_extract_xarray_pages(struct iov_iter *i, | 
 | 					     struct page ***pages, size_t maxsize, | 
 | 					     unsigned int maxpages, | 
 | 					     iov_iter_extraction_t extraction_flags, | 
 | 					     size_t *offset0) | 
 | { | 
 | 	struct page *page, **p; | 
 | 	unsigned int nr = 0, offset; | 
 | 	loff_t pos = i->xarray_start + i->iov_offset; | 
 | 	pgoff_t index = pos >> PAGE_SHIFT; | 
 | 	XA_STATE(xas, i->xarray, index); | 
 |  | 
 | 	offset = pos & ~PAGE_MASK; | 
 | 	*offset0 = offset; | 
 |  | 
 | 	maxpages = want_pages_array(pages, maxsize, offset, maxpages); | 
 | 	if (!maxpages) | 
 | 		return -ENOMEM; | 
 | 	p = *pages; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	for (page = xas_load(&xas); page; page = xas_next(&xas)) { | 
 | 		if (xas_retry(&xas, page)) | 
 | 			continue; | 
 |  | 
 | 		/* Has the page moved or been split? */ | 
 | 		if (unlikely(page != xas_reload(&xas))) { | 
 | 			xas_reset(&xas); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		p[nr++] = find_subpage(page, xas.xa_index); | 
 | 		if (nr == maxpages) | 
 | 			break; | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	maxsize = min_t(size_t, nr * PAGE_SIZE - offset, maxsize); | 
 | 	iov_iter_advance(i, maxsize); | 
 | 	return maxsize; | 
 | } | 
 |  | 
 | /* | 
 |  * Extract a list of contiguous pages from an ITER_BVEC iterator.  This does | 
 |  * not get references on the pages, nor does it get a pin on them. | 
 |  */ | 
 | static ssize_t iov_iter_extract_bvec_pages(struct iov_iter *i, | 
 | 					   struct page ***pages, size_t maxsize, | 
 | 					   unsigned int maxpages, | 
 | 					   iov_iter_extraction_t extraction_flags, | 
 | 					   size_t *offset0) | 
 | { | 
 | 	struct page **p, *page; | 
 | 	size_t skip = i->iov_offset, offset; | 
 | 	int k; | 
 |  | 
 | 	for (;;) { | 
 | 		if (i->nr_segs == 0) | 
 | 			return 0; | 
 | 		maxsize = min(maxsize, i->bvec->bv_len - skip); | 
 | 		if (maxsize) | 
 | 			break; | 
 | 		i->iov_offset = 0; | 
 | 		i->nr_segs--; | 
 | 		i->bvec++; | 
 | 		skip = 0; | 
 | 	} | 
 |  | 
 | 	skip += i->bvec->bv_offset; | 
 | 	page = i->bvec->bv_page + skip / PAGE_SIZE; | 
 | 	offset = skip % PAGE_SIZE; | 
 | 	*offset0 = offset; | 
 |  | 
 | 	maxpages = want_pages_array(pages, maxsize, offset, maxpages); | 
 | 	if (!maxpages) | 
 | 		return -ENOMEM; | 
 | 	p = *pages; | 
 | 	for (k = 0; k < maxpages; k++) | 
 | 		p[k] = page + k; | 
 |  | 
 | 	maxsize = min_t(size_t, maxsize, maxpages * PAGE_SIZE - offset); | 
 | 	iov_iter_advance(i, maxsize); | 
 | 	return maxsize; | 
 | } | 
 |  | 
 | /* | 
 |  * Extract a list of virtually contiguous pages from an ITER_KVEC iterator. | 
 |  * This does not get references on the pages, nor does it get a pin on them. | 
 |  */ | 
 | static ssize_t iov_iter_extract_kvec_pages(struct iov_iter *i, | 
 | 					   struct page ***pages, size_t maxsize, | 
 | 					   unsigned int maxpages, | 
 | 					   iov_iter_extraction_t extraction_flags, | 
 | 					   size_t *offset0) | 
 | { | 
 | 	struct page **p, *page; | 
 | 	const void *kaddr; | 
 | 	size_t skip = i->iov_offset, offset, len; | 
 | 	int k; | 
 |  | 
 | 	for (;;) { | 
 | 		if (i->nr_segs == 0) | 
 | 			return 0; | 
 | 		maxsize = min(maxsize, i->kvec->iov_len - skip); | 
 | 		if (maxsize) | 
 | 			break; | 
 | 		i->iov_offset = 0; | 
 | 		i->nr_segs--; | 
 | 		i->kvec++; | 
 | 		skip = 0; | 
 | 	} | 
 |  | 
 | 	kaddr = i->kvec->iov_base + skip; | 
 | 	offset = (unsigned long)kaddr & ~PAGE_MASK; | 
 | 	*offset0 = offset; | 
 |  | 
 | 	maxpages = want_pages_array(pages, maxsize, offset, maxpages); | 
 | 	if (!maxpages) | 
 | 		return -ENOMEM; | 
 | 	p = *pages; | 
 |  | 
 | 	kaddr -= offset; | 
 | 	len = offset + maxsize; | 
 | 	for (k = 0; k < maxpages; k++) { | 
 | 		size_t seg = min_t(size_t, len, PAGE_SIZE); | 
 |  | 
 | 		if (is_vmalloc_or_module_addr(kaddr)) | 
 | 			page = vmalloc_to_page(kaddr); | 
 | 		else | 
 | 			page = virt_to_page(kaddr); | 
 |  | 
 | 		p[k] = page; | 
 | 		len -= seg; | 
 | 		kaddr += PAGE_SIZE; | 
 | 	} | 
 |  | 
 | 	maxsize = min_t(size_t, maxsize, maxpages * PAGE_SIZE - offset); | 
 | 	iov_iter_advance(i, maxsize); | 
 | 	return maxsize; | 
 | } | 
 |  | 
 | /* | 
 |  * Extract a list of contiguous pages from a user iterator and get a pin on | 
 |  * each of them.  This should only be used if the iterator is user-backed | 
 |  * (IOBUF/UBUF). | 
 |  * | 
 |  * It does not get refs on the pages, but the pages must be unpinned by the | 
 |  * caller once the transfer is complete. | 
 |  * | 
 |  * This is safe to be used where background IO/DMA *is* going to be modifying | 
 |  * the buffer; using a pin rather than a ref makes forces fork() to give the | 
 |  * child a copy of the page. | 
 |  */ | 
 | static ssize_t iov_iter_extract_user_pages(struct iov_iter *i, | 
 | 					   struct page ***pages, | 
 | 					   size_t maxsize, | 
 | 					   unsigned int maxpages, | 
 | 					   iov_iter_extraction_t extraction_flags, | 
 | 					   size_t *offset0) | 
 | { | 
 | 	unsigned long addr; | 
 | 	unsigned int gup_flags = 0; | 
 | 	size_t offset; | 
 | 	int res; | 
 |  | 
 | 	if (i->data_source == ITER_DEST) | 
 | 		gup_flags |= FOLL_WRITE; | 
 | 	if (extraction_flags & ITER_ALLOW_P2PDMA) | 
 | 		gup_flags |= FOLL_PCI_P2PDMA; | 
 | 	if (i->nofault) | 
 | 		gup_flags |= FOLL_NOFAULT; | 
 |  | 
 | 	addr = first_iovec_segment(i, &maxsize); | 
 | 	*offset0 = offset = addr % PAGE_SIZE; | 
 | 	addr &= PAGE_MASK; | 
 | 	maxpages = want_pages_array(pages, maxsize, offset, maxpages); | 
 | 	if (!maxpages) | 
 | 		return -ENOMEM; | 
 | 	res = pin_user_pages_fast(addr, maxpages, gup_flags, *pages); | 
 | 	if (unlikely(res <= 0)) | 
 | 		return res; | 
 | 	maxsize = min_t(size_t, maxsize, res * PAGE_SIZE - offset); | 
 | 	iov_iter_advance(i, maxsize); | 
 | 	return maxsize; | 
 | } | 
 |  | 
 | /** | 
 |  * iov_iter_extract_pages - Extract a list of contiguous pages from an iterator | 
 |  * @i: The iterator to extract from | 
 |  * @pages: Where to return the list of pages | 
 |  * @maxsize: The maximum amount of iterator to extract | 
 |  * @maxpages: The maximum size of the list of pages | 
 |  * @extraction_flags: Flags to qualify request | 
 |  * @offset0: Where to return the starting offset into (*@pages)[0] | 
 |  * | 
 |  * Extract a list of contiguous pages from the current point of the iterator, | 
 |  * advancing the iterator.  The maximum number of pages and the maximum amount | 
 |  * of page contents can be set. | 
 |  * | 
 |  * If *@pages is NULL, a page list will be allocated to the required size and | 
 |  * *@pages will be set to its base.  If *@pages is not NULL, it will be assumed | 
 |  * that the caller allocated a page list at least @maxpages in size and this | 
 |  * will be filled in. | 
 |  * | 
 |  * @extraction_flags can have ITER_ALLOW_P2PDMA set to request peer-to-peer DMA | 
 |  * be allowed on the pages extracted. | 
 |  * | 
 |  * The iov_iter_extract_will_pin() function can be used to query how cleanup | 
 |  * should be performed. | 
 |  * | 
 |  * Extra refs or pins on the pages may be obtained as follows: | 
 |  * | 
 |  *  (*) If the iterator is user-backed (ITER_IOVEC/ITER_UBUF), pins will be | 
 |  *      added to the pages, but refs will not be taken. | 
 |  *      iov_iter_extract_will_pin() will return true. | 
 |  * | 
 |  *  (*) If the iterator is ITER_KVEC, ITER_BVEC or ITER_XARRAY, the pages are | 
 |  *      merely listed; no extra refs or pins are obtained. | 
 |  *      iov_iter_extract_will_pin() will return 0. | 
 |  * | 
 |  * Note also: | 
 |  * | 
 |  *  (*) Use with ITER_DISCARD is not supported as that has no content. | 
 |  * | 
 |  * On success, the function sets *@pages to the new pagelist, if allocated, and | 
 |  * sets *offset0 to the offset into the first page. | 
 |  * | 
 |  * It may also return -ENOMEM and -EFAULT. | 
 |  */ | 
 | ssize_t iov_iter_extract_pages(struct iov_iter *i, | 
 | 			       struct page ***pages, | 
 | 			       size_t maxsize, | 
 | 			       unsigned int maxpages, | 
 | 			       iov_iter_extraction_t extraction_flags, | 
 | 			       size_t *offset0) | 
 | { | 
 | 	maxsize = min_t(size_t, min_t(size_t, maxsize, i->count), MAX_RW_COUNT); | 
 | 	if (!maxsize) | 
 | 		return 0; | 
 |  | 
 | 	if (likely(user_backed_iter(i))) | 
 | 		return iov_iter_extract_user_pages(i, pages, maxsize, | 
 | 						   maxpages, extraction_flags, | 
 | 						   offset0); | 
 | 	if (iov_iter_is_kvec(i)) | 
 | 		return iov_iter_extract_kvec_pages(i, pages, maxsize, | 
 | 						   maxpages, extraction_flags, | 
 | 						   offset0); | 
 | 	if (iov_iter_is_bvec(i)) | 
 | 		return iov_iter_extract_bvec_pages(i, pages, maxsize, | 
 | 						   maxpages, extraction_flags, | 
 | 						   offset0); | 
 | 	if (iov_iter_is_xarray(i)) | 
 | 		return iov_iter_extract_xarray_pages(i, pages, maxsize, | 
 | 						     maxpages, extraction_flags, | 
 | 						     offset0); | 
 | 	return -EFAULT; | 
 | } | 
 | EXPORT_SYMBOL_GPL(iov_iter_extract_pages); |