| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * linux/mm/mincore.c |
| * |
| * Copyright (C) 1994-2006 Linus Torvalds |
| */ |
| |
| /* |
| * The mincore() system call. |
| */ |
| #include <linux/pagemap.h> |
| #include <linux/gfp.h> |
| #include <linux/pagewalk.h> |
| #include <linux/mman.h> |
| #include <linux/syscalls.h> |
| #include <linux/swap.h> |
| #include <linux/swapops.h> |
| #include <linux/shmem_fs.h> |
| #include <linux/hugetlb.h> |
| #include <linux/pgtable.h> |
| |
| #include <linux/uaccess.h> |
| #include "swap.h" |
| |
| static int mincore_hugetlb(pte_t *pte, unsigned long hmask, unsigned long addr, |
| unsigned long end, struct mm_walk *walk) |
| { |
| #ifdef CONFIG_HUGETLB_PAGE |
| unsigned char present; |
| unsigned char *vec = walk->private; |
| |
| /* |
| * Hugepages under user process are always in RAM and never |
| * swapped out, but theoretically it needs to be checked. |
| */ |
| present = pte && !huge_pte_none(huge_ptep_get(pte)); |
| for (; addr != end; vec++, addr += PAGE_SIZE) |
| *vec = present; |
| walk->private = vec; |
| #else |
| BUG(); |
| #endif |
| return 0; |
| } |
| |
| /* |
| * Later we can get more picky about what "in core" means precisely. |
| * For now, simply check to see if the page is in the page cache, |
| * and is up to date; i.e. that no page-in operation would be required |
| * at this time if an application were to map and access this page. |
| */ |
| static unsigned char mincore_page(struct address_space *mapping, pgoff_t index) |
| { |
| unsigned char present = 0; |
| struct page *page; |
| |
| /* |
| * When tmpfs swaps out a page from a file, any process mapping that |
| * file will not get a swp_entry_t in its pte, but rather it is like |
| * any other file mapping (ie. marked !present and faulted in with |
| * tmpfs's .fault). So swapped out tmpfs mappings are tested here. |
| */ |
| page = find_get_incore_page(mapping, index); |
| if (page) { |
| present = PageUptodate(page); |
| put_page(page); |
| } |
| |
| return present; |
| } |
| |
| static int __mincore_unmapped_range(unsigned long addr, unsigned long end, |
| struct vm_area_struct *vma, unsigned char *vec) |
| { |
| unsigned long nr = (end - addr) >> PAGE_SHIFT; |
| int i; |
| |
| if (vma->vm_file) { |
| pgoff_t pgoff; |
| |
| pgoff = linear_page_index(vma, addr); |
| for (i = 0; i < nr; i++, pgoff++) |
| vec[i] = mincore_page(vma->vm_file->f_mapping, pgoff); |
| } else { |
| for (i = 0; i < nr; i++) |
| vec[i] = 0; |
| } |
| return nr; |
| } |
| |
| static int mincore_unmapped_range(unsigned long addr, unsigned long end, |
| __always_unused int depth, |
| struct mm_walk *walk) |
| { |
| walk->private += __mincore_unmapped_range(addr, end, |
| walk->vma, walk->private); |
| return 0; |
| } |
| |
| static int mincore_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, |
| struct mm_walk *walk) |
| { |
| spinlock_t *ptl; |
| struct vm_area_struct *vma = walk->vma; |
| pte_t *ptep; |
| unsigned char *vec = walk->private; |
| int nr = (end - addr) >> PAGE_SHIFT; |
| |
| ptl = pmd_trans_huge_lock(pmd, vma); |
| if (ptl) { |
| memset(vec, 1, nr); |
| spin_unlock(ptl); |
| goto out; |
| } |
| |
| if (pmd_trans_unstable(pmd)) { |
| __mincore_unmapped_range(addr, end, vma, vec); |
| goto out; |
| } |
| |
| ptep = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); |
| for (; addr != end; ptep++, addr += PAGE_SIZE) { |
| pte_t pte = *ptep; |
| |
| /* We need to do cache lookup too for pte markers */ |
| if (pte_none_mostly(pte)) |
| __mincore_unmapped_range(addr, addr + PAGE_SIZE, |
| vma, vec); |
| else if (pte_present(pte)) |
| *vec = 1; |
| else { /* pte is a swap entry */ |
| swp_entry_t entry = pte_to_swp_entry(pte); |
| |
| if (non_swap_entry(entry)) { |
| /* |
| * migration or hwpoison entries are always |
| * uptodate |
| */ |
| *vec = 1; |
| } else { |
| #ifdef CONFIG_SWAP |
| *vec = mincore_page(swap_address_space(entry), |
| swp_offset(entry)); |
| #else |
| WARN_ON(1); |
| *vec = 1; |
| #endif |
| } |
| } |
| vec++; |
| } |
| pte_unmap_unlock(ptep - 1, ptl); |
| out: |
| walk->private += nr; |
| cond_resched(); |
| return 0; |
| } |
| |
| static inline bool can_do_mincore(struct vm_area_struct *vma) |
| { |
| if (vma_is_anonymous(vma)) |
| return true; |
| if (!vma->vm_file) |
| return false; |
| /* |
| * Reveal pagecache information only for non-anonymous mappings that |
| * correspond to the files the calling process could (if tried) open |
| * for writing; otherwise we'd be including shared non-exclusive |
| * mappings, which opens a side channel. |
| */ |
| return inode_owner_or_capable(&init_user_ns, |
| file_inode(vma->vm_file)) || |
| file_permission(vma->vm_file, MAY_WRITE) == 0; |
| } |
| |
| static const struct mm_walk_ops mincore_walk_ops = { |
| .pmd_entry = mincore_pte_range, |
| .pte_hole = mincore_unmapped_range, |
| .hugetlb_entry = mincore_hugetlb, |
| }; |
| |
| /* |
| * Do a chunk of "sys_mincore()". We've already checked |
| * all the arguments, we hold the mmap semaphore: we should |
| * just return the amount of info we're asked for. |
| */ |
| static long do_mincore(unsigned long addr, unsigned long pages, unsigned char *vec) |
| { |
| struct vm_area_struct *vma; |
| unsigned long end; |
| int err; |
| |
| vma = find_vma(current->mm, addr); |
| if (!vma || addr < vma->vm_start) |
| return -ENOMEM; |
| end = min(vma->vm_end, addr + (pages << PAGE_SHIFT)); |
| if (!can_do_mincore(vma)) { |
| unsigned long pages = DIV_ROUND_UP(end - addr, PAGE_SIZE); |
| memset(vec, 1, pages); |
| return pages; |
| } |
| err = walk_page_range(vma->vm_mm, addr, end, &mincore_walk_ops, vec); |
| if (err < 0) |
| return err; |
| return (end - addr) >> PAGE_SHIFT; |
| } |
| |
| /* |
| * The mincore(2) system call. |
| * |
| * mincore() returns the memory residency status of the pages in the |
| * current process's address space specified by [addr, addr + len). |
| * The status is returned in a vector of bytes. The least significant |
| * bit of each byte is 1 if the referenced page is in memory, otherwise |
| * it is zero. |
| * |
| * Because the status of a page can change after mincore() checks it |
| * but before it returns to the application, the returned vector may |
| * contain stale information. Only locked pages are guaranteed to |
| * remain in memory. |
| * |
| * return values: |
| * zero - success |
| * -EFAULT - vec points to an illegal address |
| * -EINVAL - addr is not a multiple of PAGE_SIZE |
| * -ENOMEM - Addresses in the range [addr, addr + len] are |
| * invalid for the address space of this process, or |
| * specify one or more pages which are not currently |
| * mapped |
| * -EAGAIN - A kernel resource was temporarily unavailable. |
| */ |
| SYSCALL_DEFINE3(mincore, unsigned long, start, size_t, len, |
| unsigned char __user *, vec) |
| { |
| long retval; |
| unsigned long pages; |
| unsigned char *tmp; |
| |
| start = untagged_addr(start); |
| |
| /* Check the start address: needs to be page-aligned.. */ |
| if (start & ~PAGE_MASK) |
| return -EINVAL; |
| |
| /* ..and we need to be passed a valid user-space range */ |
| if (!access_ok((void __user *) start, len)) |
| return -ENOMEM; |
| |
| /* This also avoids any overflows on PAGE_ALIGN */ |
| pages = len >> PAGE_SHIFT; |
| pages += (offset_in_page(len)) != 0; |
| |
| if (!access_ok(vec, pages)) |
| return -EFAULT; |
| |
| tmp = (void *) __get_free_page(GFP_USER); |
| if (!tmp) |
| return -EAGAIN; |
| |
| retval = 0; |
| while (pages) { |
| /* |
| * Do at most PAGE_SIZE entries per iteration, due to |
| * the temporary buffer size. |
| */ |
| mmap_read_lock(current->mm); |
| retval = do_mincore(start, min(pages, PAGE_SIZE), tmp); |
| mmap_read_unlock(current->mm); |
| |
| if (retval <= 0) |
| break; |
| if (copy_to_user(vec, tmp, retval)) { |
| retval = -EFAULT; |
| break; |
| } |
| pages -= retval; |
| vec += retval; |
| start += retval << PAGE_SHIFT; |
| retval = 0; |
| } |
| free_page((unsigned long) tmp); |
| return retval; |
| } |