blob: 3ebf5a914cf0af0c1a8299157aeacbc6a225e559 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright 2021 Google LLC
*
* Authors: Elena Petrova <lenaptr@google.com>,
* Eric Biggers <ebiggers@google.com>
*
* Self-tests of fips140.ko cryptographic functionality. These are run at
* module load time to fulfill FIPS 140 and NIAP FPT_TST_EXT.1 requirements.
*
* The actual requirements for these self-tests are somewhat vague, but
* section 9 ("Self-Tests") of the FIPS 140-2 Implementation Guidance document
* (https://csrc.nist.gov/csrc/media/projects/cryptographic-module-validation-program/documents/fips140-2/fips1402ig.pdf)
* is somewhat helpful. Basically, all implementations of all FIPS approved
* algorithms (including modes of operation) must be tested. However:
*
* - If an implementation won't be used, it doesn't have to be tested. So
* when multiple implementations of the same algorithm are registered with
* the crypto API, we only have to test the default (highest-priority) one.
*
* - There are provisions for skipping tests that are already sufficiently
* covered by other tests. E.g., HMAC-SHA256 may cover SHA-256.
*
* - Only one test vector is required per algorithm, and it can be generated
* by any known-good implementation or taken from any official document.
*
* - For ciphers, both encryption and decryption must be tested.
*
* - Only one key size per algorithm needs to be tested.
*
* See fips140_selftests[] for the list of tests we've selected. Currently, all
* our test vectors except the DRBG ones were generated by the script
* tools/crypto/gen_fips140_testvecs.py, using the known-good implementations in
* the Python packages hashlib, pycryptodome, and cryptography. The DRBG test
* vectors were manually extracted from
* https://csrc.nist.gov/CSRC/media/Projects/Cryptographic-Algorithm-Validation-Program/documents/drbg/drbgtestvectors.zip.
*
* Note that we don't reuse the upstream crypto API's self-tests
* (crypto/testmgr.{c,h}), for several reasons:
*
* - To meet FIPS requirements, the self-tests must be located within the FIPS
* module boundary (fips140.ko). But testmgr is integrated into the crypto
* API framework and can't be extracted into the module.
*
* - testmgr is much more heavyweight than required for FIPS and NIAP; it
* tests more algorithms and does more tests per algorithm, as it's meant to
* do proper testing and not just meet certification requirements. We need
* tests that can run with minimal overhead on every boot-up.
*
* - Despite being more heavyweight in general, testmgr doesn't test the
* SHA-256 and AES library APIs, despite that being needed here.
*/
#include <crypto/aead.h>
#include <crypto/aes.h>
#include <crypto/drbg.h>
#include <crypto/hash.h>
#include <crypto/internal/cipher.h>
#include <crypto/rng.h>
#include <crypto/sha.h>
#include <crypto/skcipher.h>
#include "fips140-module.h"
/* Test vector for a block cipher algorithm */
struct blockcipher_testvec {
const u8 *key;
size_t key_size;
const u8 *plaintext;
const u8 *ciphertext;
size_t block_size;
};
/* Test vector for an AEAD algorithm */
struct aead_testvec {
const u8 *key;
size_t key_size;
const u8 *iv;
size_t iv_size;
const u8 *assoc;
size_t assoc_size;
const u8 *plaintext;
size_t plaintext_size;
const u8 *ciphertext;
size_t ciphertext_size;
};
/* Test vector for a length-preserving encryption algorithm */
struct skcipher_testvec {
const u8 *key;
size_t key_size;
const u8 *iv;
size_t iv_size;
const u8 *plaintext;
const u8 *ciphertext;
size_t message_size;
};
/* Test vector for a hash algorithm */
struct hash_testvec {
const u8 *key;
size_t key_size;
const u8 *message;
size_t message_size;
const u8 *digest;
size_t digest_size;
};
/* Test vector for a DRBG algorithm */
struct drbg_testvec {
const u8 *entropy;
size_t entropy_size;
const u8 *pers;
size_t pers_size;
const u8 *entpr_a;
const u8 *entpr_b;
size_t entpr_size;
const u8 *add_a;
const u8 *add_b;
size_t add_size;
const u8 *output;
size_t out_size;
};
/*
* A struct which specifies an algorithm name (using crypto API syntax), a test
* function for that algorithm, and a test vector used by that test function.
*/
struct fips_test {
const char *alg;
int __must_check (*func)(const struct fips_test *test);
union {
struct blockcipher_testvec blockcipher;
struct aead_testvec aead;
struct skcipher_testvec skcipher;
struct hash_testvec hash;
struct drbg_testvec drbg;
};
};
/* Maximum IV size (in bytes) among any algorithm tested here */
#define MAX_IV_SIZE 16
static int __init __must_check
fips_check_result(const struct fips_test *test, u8 *result,
const u8 *expected_result, size_t result_size,
const char *operation)
{
#ifdef CONFIG_CRYPTO_FIPS140_MOD_ERROR_INJECTION
/* Inject a failure (via corrupting the result) if requested. */
if (fips140_broken_alg && strcmp(test->alg, fips140_broken_alg) == 0)
result[0] ^= 0xff;
#endif
if (memcmp(result, expected_result, result_size) != 0) {
pr_err("wrong result from %s %s\n", test->alg, operation);
return -EBADMSG;
}
return 0;
}
/*
* None of the algorithms should be ASYNC, as the FIPS module doesn't register
* any ASYNC algorithms. (The ASYNC flag is only declared by hardware
* algorithms, which would need their own FIPS certification.)
*
* Ideally we would verify alg->cra_module == THIS_MODULE here as well, but that
* doesn't work because the files are compiled as built-in code.
*/
static int __init __must_check
fips_validate_alg(const struct crypto_alg *alg)
{
if (alg->cra_flags & CRYPTO_ALG_ASYNC) {
pr_err("unexpectedly got async implementation of %s (%s)\n",
alg->cra_name, alg->cra_driver_name);
return -EINVAL;
}
return 0;
}
/* Test a block cipher using the crypto_cipher API. */
static int __init __must_check
fips_test_blockcipher(const struct fips_test *test)
{
const struct blockcipher_testvec *vec = &test->blockcipher;
struct crypto_cipher *tfm;
u8 block[MAX_CIPHER_BLOCKSIZE];
int err;
if (WARN_ON(vec->block_size > MAX_CIPHER_BLOCKSIZE))
return -EINVAL;
tfm = crypto_alloc_cipher(test->alg, 0, 0);
if (IS_ERR(tfm)) {
err = PTR_ERR(tfm);
pr_err("failed to allocate %s tfm: %d\n", test->alg, err);
return err;
}
err = fips_validate_alg(tfm->base.__crt_alg);
if (err)
goto out;
if (crypto_cipher_blocksize(tfm) != vec->block_size) {
pr_err("%s has wrong block size\n", test->alg);
err = -EINVAL;
goto out;
}
err = crypto_cipher_setkey(tfm, vec->key, vec->key_size);
if (err) {
pr_err("failed to set %s key: %d\n", test->alg, err);
goto out;
}
/* Encrypt the plaintext, then verify the resulting ciphertext. */
memcpy(block, vec->plaintext, vec->block_size);
crypto_cipher_encrypt_one(tfm, block, block);
err = fips_check_result(test, block, vec->ciphertext, vec->block_size,
"encryption");
if (err)
goto out;
/* Decrypt the ciphertext, then verify the resulting plaintext. */
crypto_cipher_decrypt_one(tfm, block, block);
err = fips_check_result(test, block, vec->plaintext, vec->block_size,
"decryption");
out:
crypto_free_cipher(tfm);
return err;
}
/*
* Test for plain AES (no mode of operation). We test this separately from the
* AES modes because the implementation of AES which is used by the "aes"
* crypto_cipher isn't necessarily the same as that used by the AES modes such
* as "ecb(aes)". Similarly, the aes_{encrypt,decrypt}() library functions may
* use a different implementation as well, so we test them separately too.
*/
static int __init __must_check
fips_test_aes(const struct fips_test *test)
{
const struct blockcipher_testvec *vec = &test->blockcipher;
struct crypto_aes_ctx ctx;
u8 block[AES_BLOCK_SIZE];
int err;
if (WARN_ON(vec->block_size != AES_BLOCK_SIZE))
return -EINVAL;
err = fips_test_blockcipher(test);
if (err)
return err;
err = aes_expandkey(&ctx, vec->key, vec->key_size);
if (err) {
pr_err("aes_expandkey() failed: %d\n", err);
return err;
}
aes_encrypt(&ctx, block, vec->plaintext);
err = fips_check_result(test, block, vec->ciphertext, AES_BLOCK_SIZE,
"encryption (library API)");
if (err)
return err;
aes_decrypt(&ctx, block, block);
return fips_check_result(test, block, vec->plaintext, AES_BLOCK_SIZE,
"decryption (library API)");
}
/* Test a length-preserving symmetric cipher using the crypto_skcipher API. */
static int __init __must_check
fips_test_skcipher(const struct fips_test *test)
{
const struct skcipher_testvec *vec = &test->skcipher;
struct crypto_skcipher *tfm;
struct skcipher_request *req = NULL;
u8 *message = NULL;
struct scatterlist sg;
u8 iv[MAX_IV_SIZE];
int err;
if (WARN_ON(vec->iv_size > MAX_IV_SIZE))
return -EINVAL;
tfm = crypto_alloc_skcipher(test->alg, 0, 0);
if (IS_ERR(tfm)) {
err = PTR_ERR(tfm);
pr_err("failed to allocate %s tfm: %d\n", test->alg, err);
return err;
}
err = fips_validate_alg(&crypto_skcipher_alg(tfm)->base);
if (err)
goto out;
if (crypto_skcipher_ivsize(tfm) != vec->iv_size) {
pr_err("%s has wrong IV size\n", test->alg);
err = -EINVAL;
goto out;
}
req = skcipher_request_alloc(tfm, GFP_KERNEL);
message = kmemdup(vec->plaintext, vec->message_size, GFP_KERNEL);
if (!req || !message) {
err = -ENOMEM;
goto out;
}
sg_init_one(&sg, message, vec->message_size);
skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP,
NULL, NULL);
skcipher_request_set_crypt(req, &sg, &sg, vec->message_size, iv);
err = crypto_skcipher_setkey(tfm, vec->key, vec->key_size);
if (err) {
pr_err("failed to set %s key: %d\n", test->alg, err);
goto out;
}
/* Encrypt the plaintext, then verify the resulting ciphertext. */
memcpy(iv, vec->iv, vec->iv_size);
err = crypto_skcipher_encrypt(req);
if (err) {
pr_err("%s encryption failed: %d\n", test->alg, err);
goto out;
}
err = fips_check_result(test, message, vec->ciphertext,
vec->message_size, "encryption");
if (err)
goto out;
/* Decrypt the ciphertext, then verify the resulting plaintext. */
memcpy(iv, vec->iv, vec->iv_size);
err = crypto_skcipher_decrypt(req);
if (err) {
pr_err("%s decryption failed: %d\n", test->alg, err);
goto out;
}
err = fips_check_result(test, message, vec->plaintext,
vec->message_size, "decryption");
out:
kfree(message);
skcipher_request_free(req);
crypto_free_skcipher(tfm);
return err;
}
/* Test an AEAD using the crypto_aead API. */
static int __init __must_check
fips_test_aead(const struct fips_test *test)
{
const struct aead_testvec *vec = &test->aead;
const int tag_size = vec->ciphertext_size - vec->plaintext_size;
struct crypto_aead *tfm;
struct aead_request *req = NULL;
u8 *assoc = NULL;
u8 *message = NULL;
struct scatterlist sg[2];
int sg_idx = 0;
u8 iv[MAX_IV_SIZE];
int err;
if (WARN_ON(vec->iv_size > MAX_IV_SIZE))
return -EINVAL;
if (WARN_ON(vec->ciphertext_size <= vec->plaintext_size))
return -EINVAL;
tfm = crypto_alloc_aead(test->alg, 0, 0);
if (IS_ERR(tfm)) {
err = PTR_ERR(tfm);
pr_err("failed to allocate %s tfm: %d\n", test->alg, err);
return err;
}
err = fips_validate_alg(&crypto_aead_alg(tfm)->base);
if (err)
goto out;
if (crypto_aead_ivsize(tfm) != vec->iv_size) {
pr_err("%s has wrong IV size\n", test->alg);
err = -EINVAL;
goto out;
}
req = aead_request_alloc(tfm, GFP_KERNEL);
assoc = kmemdup(vec->assoc, vec->assoc_size, GFP_KERNEL);
message = kzalloc(vec->ciphertext_size, GFP_KERNEL);
if (!req || !assoc || !message) {
err = -ENOMEM;
goto out;
}
memcpy(message, vec->plaintext, vec->plaintext_size);
sg_init_table(sg, ARRAY_SIZE(sg));
if (vec->assoc_size)
sg_set_buf(&sg[sg_idx++], assoc, vec->assoc_size);
sg_set_buf(&sg[sg_idx++], message, vec->ciphertext_size);
aead_request_set_ad(req, vec->assoc_size);
aead_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
err = crypto_aead_setkey(tfm, vec->key, vec->key_size);
if (err) {
pr_err("failed to set %s key: %d\n", test->alg, err);
goto out;
}
err = crypto_aead_setauthsize(tfm, tag_size);
if (err) {
pr_err("failed to set %s authentication tag size: %d\n",
test->alg, err);
goto out;
}
/*
* Encrypt the plaintext, then verify the resulting ciphertext (which
* includes the authentication tag).
*/
memcpy(iv, vec->iv, vec->iv_size);
aead_request_set_crypt(req, sg, sg, vec->plaintext_size, iv);
err = crypto_aead_encrypt(req);
if (err) {
pr_err("%s encryption failed: %d\n", test->alg, err);
goto out;
}
err = fips_check_result(test, message, vec->ciphertext,
vec->ciphertext_size, "encryption");
if (err)
goto out;
/*
* Decrypt the ciphertext (which includes the authentication tag), then
* verify the resulting plaintext.
*/
memcpy(iv, vec->iv, vec->iv_size);
aead_request_set_crypt(req, sg, sg, vec->ciphertext_size, iv);
err = crypto_aead_decrypt(req);
if (err) {
pr_err("%s decryption failed: %d\n", test->alg, err);
goto out;
}
err = fips_check_result(test, message, vec->plaintext,
vec->plaintext_size, "decryption");
out:
kfree(message);
kfree(assoc);
aead_request_free(req);
crypto_free_aead(tfm);
return err;
}
/*
* Test a hash algorithm using the crypto_shash API.
*
* Note that we don't need to test the crypto_ahash API too, since none of the
* hash algorithms in the FIPS module have the ASYNC flag, and thus there will
* be no hash algorithms that can be accessed only through crypto_ahash.
*/
static int __init __must_check
fips_test_hash(const struct fips_test *test)
{
const struct hash_testvec *vec = &test->hash;
struct crypto_shash *tfm;
u8 digest[HASH_MAX_DIGESTSIZE];
int err;
if (WARN_ON(vec->digest_size > HASH_MAX_DIGESTSIZE))
return -EINVAL;
tfm = crypto_alloc_shash(test->alg, 0, 0);
if (IS_ERR(tfm)) {
err = PTR_ERR(tfm);
pr_err("failed to allocate %s tfm: %d\n", test->alg, err);
return err;
}
err = fips_validate_alg(&crypto_shash_alg(tfm)->base);
if (err)
goto out;
if (crypto_shash_digestsize(tfm) != vec->digest_size) {
pr_err("%s has wrong digest size\n", test->alg);
err = -EINVAL;
goto out;
}
if (vec->key) {
err = crypto_shash_setkey(tfm, vec->key, vec->key_size);
if (err) {
pr_err("failed to set %s key: %d\n", test->alg, err);
goto out;
}
}
err = crypto_shash_tfm_digest(tfm, vec->message, vec->message_size,
digest);
if (err) {
pr_err("%s digest computation failed: %d\n", test->alg, err);
goto out;
}
err = fips_check_result(test, digest, vec->digest, vec->digest_size,
"digest");
out:
crypto_free_shash(tfm);
return err;
}
/*
* Test the sha256() library function, as it may not be covered by the "sha256"
* crypto_shash, and thus may not be covered by the "hmac(sha256)" test we do.
*/
static int __init __must_check
fips_test_sha256_library(const struct fips_test *test)
{
const struct hash_testvec *vec = &test->hash;
u8 digest[SHA256_DIGEST_SIZE];
if (WARN_ON(vec->digest_size != SHA256_DIGEST_SIZE))
return -EINVAL;
sha256(vec->message, vec->message_size, digest);
return fips_check_result(test, digest, vec->digest, vec->digest_size,
"digest (library API)");
}
/* Test a DRBG using the crypto_rng API. */
static int __init __must_check
fips_test_drbg(const struct fips_test *test)
{
const struct drbg_testvec *vec = &test->drbg;
struct crypto_rng *rng;
u8 *output = NULL;
struct drbg_test_data test_data;
struct drbg_string addtl, pers, testentropy;
int err;
rng = crypto_alloc_rng(test->alg, 0, 0);
if (IS_ERR(rng)) {
err = PTR_ERR(rng);
pr_err("failed to allocate %s tfm: %d\n", test->alg, err);
return PTR_ERR(rng);
}
err = fips_validate_alg(&crypto_rng_alg(rng)->base);
if (err)
goto out;
output = kzalloc(vec->out_size, GFP_KERNEL);
if (!output) {
err = -ENOMEM;
goto out;
}
/*
* Initialize the DRBG with the entropy and personalization string given
* in the test vector.
*/
test_data.testentropy = &testentropy;
drbg_string_fill(&testentropy, vec->entropy, vec->entropy_size);
drbg_string_fill(&pers, vec->pers, vec->pers_size);
err = crypto_drbg_reset_test(rng, &pers, &test_data);
if (err) {
pr_err("failed to reset %s\n", test->alg);
goto out;
}
/*
* Generate some random bytes using the additional data string provided
* in the test vector. Also use the additional entropy if provided
* (relevant for the prediction-resistant DRBG variants only).
*/
drbg_string_fill(&addtl, vec->add_a, vec->add_size);
if (vec->entpr_size) {
drbg_string_fill(&testentropy, vec->entpr_a, vec->entpr_size);
err = crypto_drbg_get_bytes_addtl_test(rng, output,
vec->out_size, &addtl,
&test_data);
} else {
err = crypto_drbg_get_bytes_addtl(rng, output, vec->out_size,
&addtl);
}
if (err) {
pr_err("failed to get bytes from %s (try 1): %d\n",
test->alg, err);
goto out;
}
/*
* Do the same again, using a second additional data string, and (when
* applicable) a second additional entropy string.
*/
drbg_string_fill(&addtl, vec->add_b, vec->add_size);
if (test->drbg.entpr_size) {
drbg_string_fill(&testentropy, vec->entpr_b, vec->entpr_size);
err = crypto_drbg_get_bytes_addtl_test(rng, output,
vec->out_size, &addtl,
&test_data);
} else {
err = crypto_drbg_get_bytes_addtl(rng, output, vec->out_size,
&addtl);
}
if (err) {
pr_err("failed to get bytes from %s (try 2): %d\n",
test->alg, err);
goto out;
}
/* Check that the DRBG generated the expected output. */
err = fips_check_result(test, output, vec->output, vec->out_size,
"get_bytes");
out:
kfree(output);
crypto_free_rng(rng);
return err;
}
/* Include the test vectors generated by the Python script. */
#include "fips140-generated-testvecs.h"
/* List of all self-tests. Keep this in sync with fips140_algorithms[]. */
static const struct fips_test fips140_selftests[] __initconst = {
/*
* Tests for AES and AES modes.
*
* The full list of AES algorithms we potentially need to test are AES
* by itself, AES-CBC, AES-CTR, AES-ECB, AES-GCM, and AES-XTS. We can
* follow the FIPS 140-2 Implementation Guidance (IG) document to try to
* reduce this list, but we run into the issue that the architecture-
* specific implementations of these algorithms in Linux often don't
* share the "same" underlying AES implementation. E.g., the ARMv8 CE
* optimized implementations issue ARMv8 CE instructions directly rather
* than going through a separate AES implementation. In this case,
* separate tests are needed according to section 9.2 of the IG.
*/
{
.alg = "aes",
.func = fips_test_aes,
.blockcipher = {
.key = fips_aes_key,
.key_size = sizeof(fips_aes_key),
.plaintext = fips_message,
.ciphertext = fips_aes_ecb_ciphertext,
.block_size = 16,
}
}, {
.alg = "cbc(aes)",
.func = fips_test_skcipher,
.skcipher = {
.key = fips_aes_key,
.key_size = sizeof(fips_aes_key),
.iv = fips_aes_iv,
.iv_size = sizeof(fips_aes_iv),
.plaintext = fips_message,
.ciphertext = fips_aes_cbc_ciphertext,
.message_size = sizeof(fips_message),
}
}, {
.alg = "ctr(aes)",
.func = fips_test_skcipher,
.skcipher = {
.key = fips_aes_key,
.key_size = sizeof(fips_aes_key),
.iv = fips_aes_iv,
.iv_size = sizeof(fips_aes_iv),
.plaintext = fips_message,
.ciphertext = fips_aes_ctr_ciphertext,
.message_size = sizeof(fips_message),
}
}, {
.alg = "ecb(aes)",
.func = fips_test_skcipher,
.skcipher = {
.key = fips_aes_key,
.key_size = sizeof(fips_aes_key),
.plaintext = fips_message,
.ciphertext = fips_aes_ecb_ciphertext,
.message_size = sizeof(fips_message)
}
}, {
.alg = "gcm(aes)",
.func = fips_test_aead,
.aead = {
.key = fips_aes_key,
.key_size = sizeof(fips_aes_key),
.iv = fips_aes_iv,
/* The GCM implementation assumes an IV size of 12. */
.iv_size = 12,
.assoc = fips_aes_gcm_assoc,
.assoc_size = sizeof(fips_aes_gcm_assoc),
.plaintext = fips_message,
.plaintext_size = sizeof(fips_message),
.ciphertext = fips_aes_gcm_ciphertext,
.ciphertext_size = sizeof(fips_aes_gcm_ciphertext),
}
}, {
.alg = "xts(aes)",
.func = fips_test_skcipher,
.skcipher = {
.key = fips_aes_xts_key,
.key_size = sizeof(fips_aes_xts_key),
.iv = fips_aes_iv,
.iv_size = sizeof(fips_aes_iv),
.plaintext = fips_message,
.ciphertext = fips_aes_xts_ciphertext,
.message_size = sizeof(fips_message),
}
/*
* Tests for SHA-1, SHA-256, HMAC-SHA256, and SHA-512.
*
* The selection of these specific tests follows the guidance from
* section 9 of the FIPS 140-2 Implementation Guidance (IG) document to
* achieve a minimal list of tests, rather than testing all of
* SHA-{1,224,256,384,512} and HMAC-SHA{1,224,256,384,512}. As per the
* IG, testing SHA-224 is only required if SHA-256 isn't implemented,
* and testing SHA-384 is only required if SHA-512 isn't implemented.
* Also, HMAC only has to be tested with one underlying SHA, and the
* HMAC test also fulfills the test for its underlying SHA. That would
* result in a test list of e.g. SHA-1, HMAC-SHA256, and SHA-512.
*
* However we also need to take into account cases where implementations
* aren't shared in the "natural" way assumed by the IG. Currently the
* only known exception w.r.t. SHA-* and HMAC-* is the sha256() library
* function which may not be covered by the test of the "hmac(sha256)"
* crypto_shash. So, we test sha256() separately.
*/
}, {
.alg = "sha1",
.func = fips_test_hash,
.hash = {
.message = fips_message,
.message_size = sizeof(fips_message),
.digest = fips_sha1_digest,
.digest_size = sizeof(fips_sha1_digest)
}
}, {
.alg = "sha256",
.func = fips_test_sha256_library,
.hash = {
.message = fips_message,
.message_size = sizeof(fips_message),
.digest = fips_sha256_digest,
.digest_size = sizeof(fips_sha256_digest)
}
}, {
.alg = "hmac(sha256)",
.func = fips_test_hash,
.hash = {
.key = fips_hmac_key,
.key_size = sizeof(fips_hmac_key),
.message = fips_message,
.message_size = sizeof(fips_message),
.digest = fips_hmac_sha256_digest,
.digest_size = sizeof(fips_hmac_sha256_digest)
}
}, {
.alg = "sha512",
.func = fips_test_hash,
.hash = {
.message = fips_message,
.message_size = sizeof(fips_message),
.digest = fips_sha512_digest,
.digest_size = sizeof(fips_sha512_digest)
}
/*
* Tests for DRBG algorithms.
*
* Only the default variant (the one that users get when they request
* "stdrng") is required to be tested, as we don't consider the other
* variants to be used / usable in the FIPS security policy. This is
* similar to how e.g. we don't test both "xts(aes-generic)" and
* "xts-aes-ce" but rather just "xts(aes)".
*
* Currently the default one is "drbg_nopr_hmac_sha256"; however, just
* in case we also test the prediction-resistant enabled variant too.
*/
}, {
.alg = "drbg_nopr_hmac_sha256",
.func = fips_test_drbg,
.drbg = {
.entropy =
"\xf9\x7a\x3c\xfd\x91\xfa\xa0\x46\xb9\xe6\x1b\x94"
"\x93\xd4\x36\xc4\x93\x1f\x60\x4b\x22\xf1\x08\x15"
"\x21\xb3\x41\x91\x51\xe8\xff\x06\x11\xf3\xa7\xd4"
"\x35\x95\x35\x7d\x58\x12\x0b\xd1\xe2\xdd\x8a\xed",
.entropy_size = 48,
.output =
"\xc6\x87\x1c\xff\x08\x24\xfe\x55\xea\x76\x89\xa5"
"\x22\x29\x88\x67\x30\x45\x0e\x5d\x36\x2d\xa5\xbf"
"\x59\x0d\xcf\x9a\xcd\x67\xfe\xd4\xcb\x32\x10\x7d"
"\xf5\xd0\x39\x69\xa6\x6b\x1f\x64\x94\xfd\xf5\xd6"
"\x3d\x5b\x4d\x0d\x34\xea\x73\x99\xa0\x7d\x01\x16"
"\x12\x6d\x0d\x51\x8c\x7c\x55\xba\x46\xe1\x2f\x62"
"\xef\xc8\xfe\x28\xa5\x1c\x9d\x42\x8e\x6d\x37\x1d"
"\x73\x97\xab\x31\x9f\xc7\x3d\xed\x47\x22\xe5\xb4"
"\xf3\x00\x04\x03\x2a\x61\x28\xdf\x5e\x74\x97\xec"
"\xf8\x2c\xa7\xb0\xa5\x0e\x86\x7e\xf6\x72\x8a\x4f"
"\x50\x9a\x8c\x85\x90\x87\x03\x9c",
.out_size = 128,
.add_a =
"\x51\x72\x89\xaf\xe4\x44\xa0\xfe\x5e\xd1\xa4\x1d"
"\xbb\xb5\xeb\x17\x15\x00\x79\xbd\xd3\x1e\x29\xcf"
"\x2f\xf3\x00\x34\xd8\x26\x8e\x3b",
.add_b =
"\x88\x02\x8d\x29\xef\x80\xb4\xe6\xf0\xfe\x12\xf9"
"\x1d\x74\x49\xfe\x75\x06\x26\x82\xe8\x9c\x57\x14"
"\x40\xc0\xc9\xb5\x2c\x42\xa6\xe0",
.add_size = 32,
}
}, {
.alg = "drbg_pr_hmac_sha256",
.func = fips_test_drbg,
.drbg = {
.entropy =
"\xc7\xcc\xbc\x67\x7e\x21\x66\x1e\x27\x2b\x63\xdd"
"\x3a\x78\xdc\xdf\x66\x6d\x3f\x24\xae\xcf\x37\x01"
"\xa9\x0d\x89\x8a\xa7\xdc\x81\x58\xae\xb2\x10\x15"
"\x7e\x18\x44\x6d\x13\xea\xdf\x37\x85\xfe\x81\xfb",
.entropy_size = 48,
.entpr_a =
"\x7b\xa1\x91\x5b\x3c\x04\xc4\x1b\x1d\x19\x2f\x1a"
"\x18\x81\x60\x3c\x6c\x62\x91\xb7\xe9\xf5\xcb\x96"
"\xbb\x81\x6a\xcc\xb5\xae\x55\xb6",
.entpr_b =
"\x99\x2c\xc7\x78\x7e\x3b\x88\x12\xef\xbe\xd3\xd2"
"\x7d\x2a\xa5\x86\xda\x8d\x58\x73\x4a\x0a\xb2\x2e"
"\xbb\x4c\x7e\xe3\x9a\xb6\x81\xc1",
.entpr_size = 32,
.output =
"\x95\x6f\x95\xfc\x3b\xb7\xfe\x3e\xd0\x4e\x1a\x14"
"\x6c\x34\x7f\x7b\x1d\x0d\x63\x5e\x48\x9c\x69\xe6"
"\x46\x07\xd2\x87\xf3\x86\x52\x3d\x98\x27\x5e\xd7"
"\x54\xe7\x75\x50\x4f\xfb\x4d\xfd\xac\x2f\x4b\x77"
"\xcf\x9e\x8e\xcc\x16\xa2\x24\xcd\x53\xde\x3e\xc5"
"\x55\x5d\xd5\x26\x3f\x89\xdf\xca\x8b\x4e\x1e\xb6"
"\x88\x78\x63\x5c\xa2\x63\x98\x4e\x6f\x25\x59\xb1"
"\x5f\x2b\x23\xb0\x4b\xa5\x18\x5d\xc2\x15\x74\x40"
"\x59\x4c\xb4\x1e\xcf\x9a\x36\xfd\x43\xe2\x03\xb8"
"\x59\x91\x30\x89\x2a\xc8\x5a\x43\x23\x7c\x73\x72"
"\xda\x3f\xad\x2b\xba\x00\x6b\xd1",
.out_size = 128,
.add_a =
"\x18\xe8\x17\xff\xef\x39\xc7\x41\x5c\x73\x03\x03"
"\xf6\x3d\xe8\x5f\xc8\xab\xe4\xab\x0f\xad\xe8\xd6"
"\x86\x88\x55\x28\xc1\x69\xdd\x76",
.add_b =
"\xac\x07\xfc\xbe\x87\x0e\xd3\xea\x1f\x7e\xb8\xe7"
"\x9d\xec\xe8\xe7\xbc\xf3\x18\x25\x77\x35\x4a\xaa"
"\x00\x99\x2a\xdd\x0a\x00\x50\x82",
.add_size = 32,
.pers =
"\xbc\x55\xab\x3c\xf6\x52\xb0\x11\x3d\x7b\x90\xb8"
"\x24\xc9\x26\x4e\x5a\x1e\x77\x0d\x3d\x58\x4a\xda"
"\xd1\x81\xe9\xf8\xeb\x30\x8f\x6f",
.pers_size = 32,
}
}
};
bool __init fips140_run_selftests(void)
{
int i;
pr_info("running self-tests\n");
for (i = 0; i < ARRAY_SIZE(fips140_selftests); i++) {
const struct fips_test *test = &fips140_selftests[i];
int err;
err = test->func(test);
if (err) {
pr_emerg("self-tests failed for algorithm %s: %d\n",
test->alg, err);
/* The caller is responsible for calling panic(). */
return false;
}
}
pr_info("all self-tests passed\n");
return true;
}