blob: 03757f88890b3c5e15ea652198584660c87b4817 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Block crypto operations until tests complete
*
* Copyright 2021 Google LLC
*
* This file defines the fips140_crypto_register_*() functions, to which all
* calls to crypto_register_*() in the module are redirected. These functions
* override the tfm initialization function of each algorithm to insert a wait
* for the module having completed its self-tests and integrity check.
*
* The exact field that we override depends on the algorithm type. For
* algorithm types that have a strongly-typed initialization function pointer
* (e.g. skcipher), we must override that, since cra_init isn't guaranteed to be
* called for those despite the field being present in the base struct. For the
* other algorithm types (e.g. "cipher") we must override cra_init.
*
* All of this applies to both normal algorithms and template instances.
*
* The purpose of all of this is to meet a FIPS requirement where the module
* must not produce any output from cryptographic algorithms until it completes
* its tests. Technically this is impossible, but this solution meets the
* intent of the requirement, assuming the user makes a supported sequence of
* API calls. Note that we can't simply run the tests before registering the
* algorithms, as the algorithms must be registered in order to run the tests.
*
* It would be much easier to handle this in the kernel's crypto API framework.
* Unfortunately, that was deemed insufficient because the module itself is
* required to do the enforcement. What is *actually* required is still very
* vague, but the approach implemented here should meet the requirement.
*/
/*
* This file is the one place in fips140.ko that needs to call the kernel's real
* algorithm registration functions, so #undefine all the macros from
* fips140-defs.h so that the "fips140_" prefix doesn't automatically get added.
*/
#undef aead_register_instance
#undef ahash_register_instance
#undef crypto_register_aead
#undef crypto_register_aeads
#undef crypto_register_ahash
#undef crypto_register_ahashes
#undef crypto_register_alg
#undef crypto_register_algs
#undef crypto_register_rng
#undef crypto_register_rngs
#undef crypto_register_shash
#undef crypto_register_shashes
#undef crypto_register_skcipher
#undef crypto_register_skciphers
#undef shash_register_instance
#undef skcipher_register_instance
#include <crypto/algapi.h>
#include <crypto/internal/aead.h>
#include <crypto/internal/hash.h>
#include <crypto/internal/rng.h>
#include <crypto/internal/skcipher.h>
#include <linux/xarray.h>
#include "fips140-module.h"
/* Indicates whether the self-tests and integrity check have completed */
DECLARE_COMPLETION(fips140_tests_done);
/* The thread running the self-tests and integrity check */
struct task_struct *fips140_init_thread;
/*
* Map from crypto_alg to original initialization function (possibly NULL)
*
* Note: unregistering an algorithm will leak its map entry, as we don't bother
* to remove it. This should be fine since fips140.ko can't be unloaded. The
* proper solution would be to store the original function pointer in a new
* field in 'struct crypto_alg', but that would require kernel support.
*/
static DEFINE_XARRAY(fips140_init_func_map);
static bool fips140_ready(void)
{
return completion_done(&fips140_tests_done);
}
/*
* Wait until crypto operations are allowed to proceed. Return true if the
* tests are done, or false if the caller is the thread running the tests so it
* is allowed to proceed anyway.
*/
static bool fips140_wait_until_ready(struct crypto_alg *alg)
{
if (fips140_ready())
return true;
/*
* The thread running the tests must not wait. Since tfms can only be
* allocated in task context, we can reliably determine whether the
* invocation is from that thread or not by checking 'current'.
*/
if (current == fips140_init_thread)
return false;
pr_info("blocking user of %s until tests complete\n",
alg->cra_driver_name);
wait_for_completion(&fips140_tests_done);
pr_info("tests done, allowing %s to proceed\n", alg->cra_driver_name);
return true;
}
static int fips140_store_init_function(struct crypto_alg *alg, void *func)
{
void *ret;
/*
* The XArray API requires 4-byte aligned values. Although function
* pointers in general aren't guaranteed to be 4-byte aligned, it should
* be the case for the platforms this module is used on.
*/
if (WARN_ON((unsigned long)func & 3))
return -EINVAL;
ret = xa_store(&fips140_init_func_map, (unsigned long)alg, func,
GFP_KERNEL);
return xa_err(ret);
}
/* Get the algorithm's original initialization function (possibly NULL) */
static void *fips140_load_init_function(struct crypto_alg *alg)
{
return xa_load(&fips140_init_func_map, (unsigned long)alg);
}
/* tfm initialization function overrides */
static int fips140_alg_init_tfm(struct crypto_tfm *tfm)
{
struct crypto_alg *alg = tfm->__crt_alg;
int (*cra_init)(struct crypto_tfm *tfm) =
fips140_load_init_function(alg);
if (fips140_wait_until_ready(alg))
WRITE_ONCE(alg->cra_init, cra_init);
return cra_init ? cra_init(tfm) : 0;
}
static int fips140_aead_init_tfm(struct crypto_aead *tfm)
{
struct aead_alg *alg = crypto_aead_alg(tfm);
int (*init)(struct crypto_aead *tfm) =
fips140_load_init_function(&alg->base);
if (fips140_wait_until_ready(&alg->base))
WRITE_ONCE(alg->init, init);
return init ? init(tfm) : 0;
}
static int fips140_ahash_init_tfm(struct crypto_ahash *tfm)
{
struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
struct ahash_alg *alg = container_of(halg, struct ahash_alg, halg);
int (*init_tfm)(struct crypto_ahash *tfm) =
fips140_load_init_function(&halg->base);
if (fips140_wait_until_ready(&halg->base))
WRITE_ONCE(alg->init_tfm, init_tfm);
return init_tfm ? init_tfm(tfm) : 0;
}
static int fips140_shash_init_tfm(struct crypto_shash *tfm)
{
struct shash_alg *alg = crypto_shash_alg(tfm);
int (*init_tfm)(struct crypto_shash *tfm) =
fips140_load_init_function(&alg->base);
if (fips140_wait_until_ready(&alg->base))
WRITE_ONCE(alg->init_tfm, init_tfm);
return init_tfm ? init_tfm(tfm) : 0;
}
static int fips140_skcipher_init_tfm(struct crypto_skcipher *tfm)
{
struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
int (*init)(struct crypto_skcipher *tfm) =
fips140_load_init_function(&alg->base);
if (fips140_wait_until_ready(&alg->base))
WRITE_ONCE(alg->init, init);
return init ? init(tfm) : 0;
}
/* Single algorithm registration */
#define prepare_alg(alg, base_alg, field, wrapper_func) \
({ \
int err = 0; \
\
if (!fips140_ready() && alg->field != wrapper_func) { \
err = fips140_store_init_function(base_alg, alg->field);\
if (err == 0) \
alg->field = wrapper_func; \
} \
err; \
})
static int fips140_prepare_alg(struct crypto_alg *alg)
{
/*
* Override cra_init. This is only for algorithm types like cipher and
* rng that don't have a strongly-typed initialization function.
*/
return prepare_alg(alg, alg, cra_init, fips140_alg_init_tfm);
}
static int fips140_prepare_aead_alg(struct aead_alg *alg)
{
return prepare_alg(alg, &alg->base, init, fips140_aead_init_tfm);
}
static int fips140_prepare_ahash_alg(struct ahash_alg *alg)
{
return prepare_alg(alg, &alg->halg.base, init_tfm,
fips140_ahash_init_tfm);
}
static int fips140_prepare_rng_alg(struct rng_alg *alg)
{
/*
* rng doesn't have a strongly-typed initialization function, so we must
* treat rng algorithms as "generic" algorithms.
*/
return fips140_prepare_alg(&alg->base);
}
static int fips140_prepare_shash_alg(struct shash_alg *alg)
{
return prepare_alg(alg, &alg->base, init_tfm, fips140_shash_init_tfm);
}
static int fips140_prepare_skcipher_alg(struct skcipher_alg *alg)
{
return prepare_alg(alg, &alg->base, init, fips140_skcipher_init_tfm);
}
int fips140_crypto_register_alg(struct crypto_alg *alg)
{
return fips140_prepare_alg(alg) ?: crypto_register_alg(alg);
}
int fips140_crypto_register_aead(struct aead_alg *alg)
{
return fips140_prepare_aead_alg(alg) ?: crypto_register_aead(alg);
}
int fips140_crypto_register_ahash(struct ahash_alg *alg)
{
return fips140_prepare_ahash_alg(alg) ?: crypto_register_ahash(alg);
}
int fips140_crypto_register_rng(struct rng_alg *alg)
{
return fips140_prepare_rng_alg(alg) ?: crypto_register_rng(alg);
}
int fips140_crypto_register_shash(struct shash_alg *alg)
{
return fips140_prepare_shash_alg(alg) ?: crypto_register_shash(alg);
}
int fips140_crypto_register_skcipher(struct skcipher_alg *alg)
{
return fips140_prepare_skcipher_alg(alg) ?:
crypto_register_skcipher(alg);
}
/* Instance registration */
int fips140_aead_register_instance(struct crypto_template *tmpl,
struct aead_instance *inst)
{
return fips140_prepare_aead_alg(&inst->alg) ?:
aead_register_instance(tmpl, inst);
}
int fips140_ahash_register_instance(struct crypto_template *tmpl,
struct ahash_instance *inst)
{
return fips140_prepare_ahash_alg(&inst->alg) ?:
ahash_register_instance(tmpl, inst);
}
int fips140_shash_register_instance(struct crypto_template *tmpl,
struct shash_instance *inst)
{
return fips140_prepare_shash_alg(&inst->alg) ?:
shash_register_instance(tmpl, inst);
}
int fips140_skcipher_register_instance(struct crypto_template *tmpl,
struct skcipher_instance *inst)
{
return fips140_prepare_skcipher_alg(&inst->alg) ?:
skcipher_register_instance(tmpl, inst);
}
/* Bulk algorithm registration */
int fips140_crypto_register_algs(struct crypto_alg *algs, int count)
{
int i;
int err;
for (i = 0; i < count; i++) {
err = fips140_prepare_alg(&algs[i]);
if (err)
return err;
}
return crypto_register_algs(algs, count);
}
int fips140_crypto_register_aeads(struct aead_alg *algs, int count)
{
int i;
int err;
for (i = 0; i < count; i++) {
err = fips140_prepare_aead_alg(&algs[i]);
if (err)
return err;
}
return crypto_register_aeads(algs, count);
}
int fips140_crypto_register_ahashes(struct ahash_alg *algs, int count)
{
int i;
int err;
for (i = 0; i < count; i++) {
err = fips140_prepare_ahash_alg(&algs[i]);
if (err)
return err;
}
return crypto_register_ahashes(algs, count);
}
int fips140_crypto_register_rngs(struct rng_alg *algs, int count)
{
int i;
int err;
for (i = 0; i < count; i++) {
err = fips140_prepare_rng_alg(&algs[i]);
if (err)
return err;
}
return crypto_register_rngs(algs, count);
}
int fips140_crypto_register_shashes(struct shash_alg *algs, int count)
{
int i;
int err;
for (i = 0; i < count; i++) {
err = fips140_prepare_shash_alg(&algs[i]);
if (err)
return err;
}
return crypto_register_shashes(algs, count);
}
int fips140_crypto_register_skciphers(struct skcipher_alg *algs, int count)
{
int i;
int err;
for (i = 0; i < count; i++) {
err = fips140_prepare_skcipher_alg(&algs[i]);
if (err)
return err;
}
return crypto_register_skciphers(algs, count);
}