blob: 53fb2d4bb0bd11c9038b2b05c42979dee3bd722a [file] [log] [blame]
#include "wilc_wfi_cfgoperations.h"
#include "host_interface.h"
#include <linux/errno.h>
#define NO_ENCRYPT 0
#define ENCRYPT_ENABLED BIT(0)
#define WEP BIT(1)
#define WEP_EXTENDED BIT(2)
#define WPA BIT(3)
#define WPA2 BIT(4)
#define AES BIT(5)
#define TKIP BIT(6)
#define FRAME_TYPE_ID 0
#define ACTION_CAT_ID 24
#define ACTION_SUBTYPE_ID 25
#define P2P_PUB_ACTION_SUBTYPE 30
#define ACTION_FRAME 0xd0
#define GO_INTENT_ATTR_ID 0x04
#define CHANLIST_ATTR_ID 0x0b
#define OPERCHAN_ATTR_ID 0x11
#define PUB_ACTION_ATTR_ID 0x04
#define P2PELEM_ATTR_ID 0xdd
#define GO_NEG_REQ 0x00
#define GO_NEG_RSP 0x01
#define GO_NEG_CONF 0x02
#define P2P_INV_REQ 0x03
#define P2P_INV_RSP 0x04
#define PUBLIC_ACT_VENDORSPEC 0x09
#define GAS_INTIAL_REQ 0x0a
#define GAS_INTIAL_RSP 0x0b
#define INVALID_CHANNEL 0
#define nl80211_SCAN_RESULT_EXPIRE (3 * HZ)
#define SCAN_RESULT_EXPIRE (40 * HZ)
static const u32 cipher_suites[] = {
WLAN_CIPHER_SUITE_WEP40,
WLAN_CIPHER_SUITE_WEP104,
WLAN_CIPHER_SUITE_TKIP,
WLAN_CIPHER_SUITE_CCMP,
WLAN_CIPHER_SUITE_AES_CMAC,
};
static const struct ieee80211_txrx_stypes
wilc_wfi_cfg80211_mgmt_types[NUM_NL80211_IFTYPES] = {
[NL80211_IFTYPE_STATION] = {
.tx = 0xffff,
.rx = BIT(IEEE80211_STYPE_ACTION >> 4) |
BIT(IEEE80211_STYPE_PROBE_REQ >> 4)
},
[NL80211_IFTYPE_AP] = {
.tx = 0xffff,
.rx = BIT(IEEE80211_STYPE_ASSOC_REQ >> 4) |
BIT(IEEE80211_STYPE_REASSOC_REQ >> 4) |
BIT(IEEE80211_STYPE_PROBE_REQ >> 4) |
BIT(IEEE80211_STYPE_DISASSOC >> 4) |
BIT(IEEE80211_STYPE_AUTH >> 4) |
BIT(IEEE80211_STYPE_DEAUTH >> 4) |
BIT(IEEE80211_STYPE_ACTION >> 4)
},
[NL80211_IFTYPE_P2P_CLIENT] = {
.tx = 0xffff,
.rx = BIT(IEEE80211_STYPE_ACTION >> 4) |
BIT(IEEE80211_STYPE_PROBE_REQ >> 4) |
BIT(IEEE80211_STYPE_ASSOC_REQ >> 4) |
BIT(IEEE80211_STYPE_REASSOC_REQ >> 4) |
BIT(IEEE80211_STYPE_DISASSOC >> 4) |
BIT(IEEE80211_STYPE_AUTH >> 4) |
BIT(IEEE80211_STYPE_DEAUTH >> 4)
}
};
#define WILC_WFI_DWELL_PASSIVE 100
#define WILC_WFI_DWELL_ACTIVE 40
#define TCP_ACK_FILTER_LINK_SPEED_THRESH 54
#define DEFAULT_LINK_SPEED 72
#define IS_MANAGMEMENT 0x100
#define IS_MANAGMEMENT_CALLBACK 0x080
#define IS_MGMT_STATUS_SUCCES 0x040
#define GET_PKT_OFFSET(a) (((a) >> 22) & 0x1ff)
extern int wilc_mac_open(struct net_device *ndev);
extern int wilc_mac_close(struct net_device *ndev);
static tstrNetworkInfo last_scanned_shadow[MAX_NUM_SCANNED_NETWORKS_SHADOW];
static u32 last_scanned_cnt;
struct timer_list wilc_during_ip_timer;
static struct timer_list hAgingTimer;
static u8 op_ifcs;
u8 wilc_initialized = 1;
#define CHAN2G(_channel, _freq, _flags) { \
.band = IEEE80211_BAND_2GHZ, \
.center_freq = (_freq), \
.hw_value = (_channel), \
.flags = (_flags), \
.max_antenna_gain = 0, \
.max_power = 30, \
}
static struct ieee80211_channel ieee80211_2ghz_channels[] = {
CHAN2G(1, 2412, 0),
CHAN2G(2, 2417, 0),
CHAN2G(3, 2422, 0),
CHAN2G(4, 2427, 0),
CHAN2G(5, 2432, 0),
CHAN2G(6, 2437, 0),
CHAN2G(7, 2442, 0),
CHAN2G(8, 2447, 0),
CHAN2G(9, 2452, 0),
CHAN2G(10, 2457, 0),
CHAN2G(11, 2462, 0),
CHAN2G(12, 2467, 0),
CHAN2G(13, 2472, 0),
CHAN2G(14, 2484, 0),
};
#define RATETAB_ENT(_rate, _hw_value, _flags) { \
.bitrate = (_rate), \
.hw_value = (_hw_value), \
.flags = (_flags), \
}
static struct ieee80211_rate ieee80211_bitrates[] = {
RATETAB_ENT(10, 0, 0),
RATETAB_ENT(20, 1, 0),
RATETAB_ENT(55, 2, 0),
RATETAB_ENT(110, 3, 0),
RATETAB_ENT(60, 9, 0),
RATETAB_ENT(90, 6, 0),
RATETAB_ENT(120, 7, 0),
RATETAB_ENT(180, 8, 0),
RATETAB_ENT(240, 9, 0),
RATETAB_ENT(360, 10, 0),
RATETAB_ENT(480, 11, 0),
RATETAB_ENT(540, 12, 0),
};
struct p2p_mgmt_data {
int size;
u8 *buff;
};
static u8 wlan_channel = INVALID_CHANNEL;
static u8 curr_channel;
static u8 p2p_oui[] = {0x50, 0x6f, 0x9A, 0x09};
static u8 p2p_local_random = 0x01;
static u8 p2p_recv_random = 0x00;
static u8 p2p_vendor_spec[] = {0xdd, 0x05, 0x00, 0x08, 0x40, 0x03};
static bool wilc_ie;
static struct ieee80211_supported_band WILC_WFI_band_2ghz = {
.channels = ieee80211_2ghz_channels,
.n_channels = ARRAY_SIZE(ieee80211_2ghz_channels),
.bitrates = ieee80211_bitrates,
.n_bitrates = ARRAY_SIZE(ieee80211_bitrates),
};
struct add_key_params {
u8 key_idx;
bool pairwise;
u8 *mac_addr;
};
static struct add_key_params g_add_gtk_key_params;
static struct wilc_wfi_key g_key_gtk_params;
static struct add_key_params g_add_ptk_key_params;
static struct wilc_wfi_key g_key_ptk_params;
static struct wilc_wfi_wep_key g_key_wep_params;
static bool g_ptk_keys_saved;
static bool g_gtk_keys_saved;
static bool g_wep_keys_saved;
#define AGING_TIME (9 * 1000)
#define during_ip_time 15000
static void clear_shadow_scan(void)
{
int i;
if (op_ifcs == 0) {
del_timer_sync(&hAgingTimer);
PRINT_INFO(CORECONFIG_DBG, "destroy aging timer\n");
for (i = 0; i < last_scanned_cnt; i++) {
if (last_scanned_shadow[last_scanned_cnt].pu8IEs) {
kfree(last_scanned_shadow[i].pu8IEs);
last_scanned_shadow[last_scanned_cnt].pu8IEs = NULL;
}
wilc_free_join_params(last_scanned_shadow[i].pJoinParams);
last_scanned_shadow[i].pJoinParams = NULL;
}
last_scanned_cnt = 0;
}
}
static u32 get_rssi_avg(tstrNetworkInfo *network_info)
{
u8 i;
int rssi_v = 0;
u8 num_rssi = (network_info->strRssi.u8Full) ? NUM_RSSI : (network_info->strRssi.u8Index);
for (i = 0; i < num_rssi; i++)
rssi_v += network_info->strRssi.as8RSSI[i];
rssi_v /= num_rssi;
return rssi_v;
}
static void refresh_scan(void *user_void, u8 all, bool direct_scan)
{
struct wilc_priv *priv;
struct wiphy *wiphy;
struct cfg80211_bss *bss = NULL;
int i;
int rssi = 0;
priv = (struct wilc_priv *)user_void;
wiphy = priv->dev->ieee80211_ptr->wiphy;
for (i = 0; i < last_scanned_cnt; i++) {
tstrNetworkInfo *network_info;
network_info = &last_scanned_shadow[i];
if (!network_info->u8Found || all) {
s32 freq;
struct ieee80211_channel *channel;
if (network_info) {
freq = ieee80211_channel_to_frequency((s32)network_info->u8channel, IEEE80211_BAND_2GHZ);
channel = ieee80211_get_channel(wiphy, freq);
rssi = get_rssi_avg(network_info);
if (memcmp("DIRECT-", network_info->au8ssid, 7) ||
direct_scan) {
bss = cfg80211_inform_bss(wiphy, channel, CFG80211_BSS_FTYPE_UNKNOWN, network_info->au8bssid, network_info->u64Tsf, network_info->u16CapInfo,
network_info->u16BeaconPeriod, (const u8 *)network_info->pu8IEs,
(size_t)network_info->u16IEsLen, (((s32)rssi) * 100), GFP_KERNEL);
cfg80211_put_bss(wiphy, bss);
}
}
}
}
}
static void reset_shadow_found(void)
{
int i;
for (i = 0; i < last_scanned_cnt; i++)
last_scanned_shadow[i].u8Found = 0;
}
static void update_scan_time(void)
{
int i;
for (i = 0; i < last_scanned_cnt; i++)
last_scanned_shadow[i].u32TimeRcvdInScan = jiffies;
}
static void remove_network_from_shadow(unsigned long arg)
{
unsigned long now = jiffies;
int i, j;
for (i = 0; i < last_scanned_cnt; i++) {
if (time_after(now, last_scanned_shadow[i].u32TimeRcvdInScan + (unsigned long)(SCAN_RESULT_EXPIRE))) {
PRINT_D(CFG80211_DBG, "Network expired in ScanShadow: %s\n", last_scanned_shadow[i].au8ssid);
kfree(last_scanned_shadow[i].pu8IEs);
last_scanned_shadow[i].pu8IEs = NULL;
wilc_free_join_params(last_scanned_shadow[i].pJoinParams);
for (j = i; (j < last_scanned_cnt - 1); j++)
last_scanned_shadow[j] = last_scanned_shadow[j + 1];
last_scanned_cnt--;
}
}
PRINT_D(CFG80211_DBG, "Number of cached networks: %d\n",
last_scanned_cnt);
if (last_scanned_cnt != 0) {
hAgingTimer.data = arg;
mod_timer(&hAgingTimer, jiffies + msecs_to_jiffies(AGING_TIME));
} else {
PRINT_D(CFG80211_DBG, "No need to restart Aging timer\n");
}
}
static void clear_duringIP(unsigned long arg)
{
PRINT_D(GENERIC_DBG, "GO:IP Obtained , enable scan\n");
wilc_optaining_ip = false;
}
static int is_network_in_shadow(tstrNetworkInfo *pstrNetworkInfo,
void *user_void)
{
int state = -1;
int i;
if (last_scanned_cnt == 0) {
PRINT_D(CFG80211_DBG, "Starting Aging timer\n");
hAgingTimer.data = (unsigned long)user_void;
mod_timer(&hAgingTimer, jiffies + msecs_to_jiffies(AGING_TIME));
state = -1;
} else {
for (i = 0; i < last_scanned_cnt; i++) {
if (memcmp(last_scanned_shadow[i].au8bssid,
pstrNetworkInfo->au8bssid, 6) == 0) {
state = i;
break;
}
}
}
return state;
}
static void add_network_to_shadow(tstrNetworkInfo *pstrNetworkInfo,
void *user_void, void *pJoinParams)
{
int ap_found = is_network_in_shadow(pstrNetworkInfo, user_void);
u32 ap_index = 0;
u8 rssi_index = 0;
if (last_scanned_cnt >= MAX_NUM_SCANNED_NETWORKS_SHADOW) {
PRINT_D(CFG80211_DBG, "Shadow network reached its maximum limit\n");
return;
}
if (ap_found == -1) {
ap_index = last_scanned_cnt;
last_scanned_cnt++;
} else {
ap_index = ap_found;
}
rssi_index = last_scanned_shadow[ap_index].strRssi.u8Index;
last_scanned_shadow[ap_index].strRssi.as8RSSI[rssi_index++] = pstrNetworkInfo->s8rssi;
if (rssi_index == NUM_RSSI) {
rssi_index = 0;
last_scanned_shadow[ap_index].strRssi.u8Full = 1;
}
last_scanned_shadow[ap_index].strRssi.u8Index = rssi_index;
last_scanned_shadow[ap_index].s8rssi = pstrNetworkInfo->s8rssi;
last_scanned_shadow[ap_index].u16CapInfo = pstrNetworkInfo->u16CapInfo;
last_scanned_shadow[ap_index].u8SsidLen = pstrNetworkInfo->u8SsidLen;
memcpy(last_scanned_shadow[ap_index].au8ssid,
pstrNetworkInfo->au8ssid, pstrNetworkInfo->u8SsidLen);
memcpy(last_scanned_shadow[ap_index].au8bssid,
pstrNetworkInfo->au8bssid, ETH_ALEN);
last_scanned_shadow[ap_index].u16BeaconPeriod = pstrNetworkInfo->u16BeaconPeriod;
last_scanned_shadow[ap_index].u8DtimPeriod = pstrNetworkInfo->u8DtimPeriod;
last_scanned_shadow[ap_index].u8channel = pstrNetworkInfo->u8channel;
last_scanned_shadow[ap_index].u16IEsLen = pstrNetworkInfo->u16IEsLen;
last_scanned_shadow[ap_index].u64Tsf = pstrNetworkInfo->u64Tsf;
if (ap_found != -1)
kfree(last_scanned_shadow[ap_index].pu8IEs);
last_scanned_shadow[ap_index].pu8IEs =
kmalloc(pstrNetworkInfo->u16IEsLen, GFP_KERNEL);
memcpy(last_scanned_shadow[ap_index].pu8IEs,
pstrNetworkInfo->pu8IEs, pstrNetworkInfo->u16IEsLen);
last_scanned_shadow[ap_index].u32TimeRcvdInScan = jiffies;
last_scanned_shadow[ap_index].u32TimeRcvdInScanCached = jiffies;
last_scanned_shadow[ap_index].u8Found = 1;
if (ap_found != -1)
wilc_free_join_params(last_scanned_shadow[ap_index].pJoinParams);
last_scanned_shadow[ap_index].pJoinParams = pJoinParams;
}
static void CfgScanResult(enum scan_event scan_event,
tstrNetworkInfo *network_info,
void *user_void,
void *join_params)
{
struct wilc_priv *priv;
struct wiphy *wiphy;
s32 s32Freq;
struct ieee80211_channel *channel;
struct cfg80211_bss *bss = NULL;
priv = (struct wilc_priv *)user_void;
if (priv->bCfgScanning) {
if (scan_event == SCAN_EVENT_NETWORK_FOUND) {
wiphy = priv->dev->ieee80211_ptr->wiphy;
if (!wiphy)
return;
if (wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
(((s32)network_info->s8rssi * 100) < 0 ||
((s32)network_info->s8rssi * 100) > 100)) {
PRINT_ER("wiphy signal type fial\n");
return;
}
if (network_info) {
s32Freq = ieee80211_channel_to_frequency((s32)network_info->u8channel, IEEE80211_BAND_2GHZ);
channel = ieee80211_get_channel(wiphy, s32Freq);
if (!channel)
return;
PRINT_INFO(CFG80211_DBG, "Network Info:: CHANNEL Frequency: %d, RSSI: %d, CapabilityInfo: %d,"
"BeaconPeriod: %d\n", channel->center_freq, (((s32)network_info->s8rssi) * 100),
network_info->u16CapInfo, network_info->u16BeaconPeriod);
if (network_info->bNewNetwork) {
if (priv->u32RcvdChCount < MAX_NUM_SCANNED_NETWORKS) {
PRINT_D(CFG80211_DBG, "Network %s found\n", network_info->au8ssid);
priv->u32RcvdChCount++;
if (!join_params)
PRINT_INFO(CORECONFIG_DBG, ">> Something really bad happened\n");
add_network_to_shadow(network_info, priv, join_params);
if (!(memcmp("DIRECT-", network_info->au8ssid, 7))) {
bss = cfg80211_inform_bss(wiphy, channel, CFG80211_BSS_FTYPE_UNKNOWN, network_info->au8bssid, network_info->u64Tsf, network_info->u16CapInfo,
network_info->u16BeaconPeriod, (const u8 *)network_info->pu8IEs,
(size_t)network_info->u16IEsLen, (((s32)network_info->s8rssi) * 100), GFP_KERNEL);
cfg80211_put_bss(wiphy, bss);
}
} else {
PRINT_ER("Discovered networks exceeded the max limit\n");
}
} else {
u32 i;
for (i = 0; i < priv->u32RcvdChCount; i++) {
if (memcmp(last_scanned_shadow[i].au8bssid, network_info->au8bssid, 6) == 0) {
PRINT_D(CFG80211_DBG, "Update RSSI of %s\n", last_scanned_shadow[i].au8ssid);
last_scanned_shadow[i].s8rssi = network_info->s8rssi;
last_scanned_shadow[i].u32TimeRcvdInScan = jiffies;
break;
}
}
}
}
} else if (scan_event == SCAN_EVENT_DONE) {
PRINT_D(CFG80211_DBG, "Scan Done[%p]\n", priv->dev);
PRINT_D(CFG80211_DBG, "Refreshing Scan ...\n");
refresh_scan(priv, 1, false);
if (priv->u32RcvdChCount > 0)
PRINT_D(CFG80211_DBG, "%d Network(s) found\n", priv->u32RcvdChCount);
else
PRINT_D(CFG80211_DBG, "No networks found\n");
down(&(priv->hSemScanReq));
if (priv->pstrScanReq) {
cfg80211_scan_done(priv->pstrScanReq, false);
priv->u32RcvdChCount = 0;
priv->bCfgScanning = false;
priv->pstrScanReq = NULL;
}
up(&(priv->hSemScanReq));
} else if (scan_event == SCAN_EVENT_ABORTED) {
down(&(priv->hSemScanReq));
PRINT_D(CFG80211_DBG, "Scan Aborted\n");
if (priv->pstrScanReq) {
update_scan_time();
refresh_scan(priv, 1, false);
cfg80211_scan_done(priv->pstrScanReq, false);
priv->bCfgScanning = false;
priv->pstrScanReq = NULL;
}
up(&(priv->hSemScanReq));
}
}
}
int wilc_connecting;
static void CfgConnectResult(enum conn_event enuConnDisconnEvent,
tstrConnectInfo *pstrConnectInfo,
u8 u8MacStatus,
tstrDisconnectNotifInfo *pstrDisconnectNotifInfo,
void *pUserVoid)
{
struct wilc_priv *priv;
struct net_device *dev;
struct host_if_drv *pstrWFIDrv;
u8 NullBssid[ETH_ALEN] = {0};
struct wilc *wl;
struct wilc_vif *vif;
wilc_connecting = 0;
priv = (struct wilc_priv *)pUserVoid;
dev = priv->dev;
vif = netdev_priv(dev);
wl = vif->wilc;
pstrWFIDrv = (struct host_if_drv *)priv->hWILCWFIDrv;
if (enuConnDisconnEvent == CONN_DISCONN_EVENT_CONN_RESP) {
u16 u16ConnectStatus;
u16ConnectStatus = pstrConnectInfo->u16ConnectStatus;
PRINT_D(CFG80211_DBG, " Connection response received = %d\n", u8MacStatus);
if ((u8MacStatus == MAC_DISCONNECTED) &&
(pstrConnectInfo->u16ConnectStatus == SUCCESSFUL_STATUSCODE)) {
u16ConnectStatus = WLAN_STATUS_UNSPECIFIED_FAILURE;
wilc_wlan_set_bssid(priv->dev, NullBssid);
eth_zero_addr(wilc_connected_ssid);
if (!pstrWFIDrv->p2p_connect)
wlan_channel = INVALID_CHANNEL;
PRINT_ER("Unspecified failure: Connection status %d : MAC status = %d\n", u16ConnectStatus, u8MacStatus);
}
if (u16ConnectStatus == WLAN_STATUS_SUCCESS) {
bool bNeedScanRefresh = false;
u32 i;
PRINT_INFO(CFG80211_DBG, "Connection Successful:: BSSID: %x%x%x%x%x%x\n", pstrConnectInfo->au8bssid[0],
pstrConnectInfo->au8bssid[1], pstrConnectInfo->au8bssid[2], pstrConnectInfo->au8bssid[3], pstrConnectInfo->au8bssid[4], pstrConnectInfo->au8bssid[5]);
memcpy(priv->au8AssociatedBss, pstrConnectInfo->au8bssid, ETH_ALEN);
for (i = 0; i < last_scanned_cnt; i++) {
if (memcmp(last_scanned_shadow[i].au8bssid,
pstrConnectInfo->au8bssid, ETH_ALEN) == 0) {
unsigned long now = jiffies;
if (time_after(now,
last_scanned_shadow[i].u32TimeRcvdInScanCached + (unsigned long)(nl80211_SCAN_RESULT_EXPIRE - (1 * HZ)))) {
bNeedScanRefresh = true;
}
break;
}
}
if (bNeedScanRefresh)
refresh_scan(priv, 1, true);
}
PRINT_D(CFG80211_DBG, "Association request info elements length = %zu\n", pstrConnectInfo->ReqIEsLen);
PRINT_D(CFG80211_DBG, "Association response info elements length = %d\n", pstrConnectInfo->u16RespIEsLen);
cfg80211_connect_result(dev, pstrConnectInfo->au8bssid,
pstrConnectInfo->pu8ReqIEs, pstrConnectInfo->ReqIEsLen,
pstrConnectInfo->pu8RespIEs, pstrConnectInfo->u16RespIEsLen,
u16ConnectStatus, GFP_KERNEL);
} else if (enuConnDisconnEvent == CONN_DISCONN_EVENT_DISCONN_NOTIF) {
wilc_optaining_ip = false;
PRINT_ER("Received MAC_DISCONNECTED from firmware with reason %d on dev [%p]\n",
pstrDisconnectNotifInfo->u16reason, priv->dev);
p2p_local_random = 0x01;
p2p_recv_random = 0x00;
wilc_ie = false;
eth_zero_addr(priv->au8AssociatedBss);
wilc_wlan_set_bssid(priv->dev, NullBssid);
eth_zero_addr(wilc_connected_ssid);
if (!pstrWFIDrv->p2p_connect)
wlan_channel = INVALID_CHANNEL;
if ((pstrWFIDrv->IFC_UP) && (dev == wl->vif[1]->ndev)) {
pstrDisconnectNotifInfo->u16reason = 3;
} else if ((!pstrWFIDrv->IFC_UP) && (dev == wl->vif[1]->ndev)) {
pstrDisconnectNotifInfo->u16reason = 1;
}
cfg80211_disconnected(dev, pstrDisconnectNotifInfo->u16reason, pstrDisconnectNotifInfo->ie,
pstrDisconnectNotifInfo->ie_len, false,
GFP_KERNEL);
}
}
static int set_channel(struct wiphy *wiphy,
struct cfg80211_chan_def *chandef)
{
u32 channelnum = 0;
struct wilc_priv *priv;
int result = 0;
struct wilc_vif *vif;
priv = wiphy_priv(wiphy);
vif = netdev_priv(priv->dev);
channelnum = ieee80211_frequency_to_channel(chandef->chan->center_freq);
PRINT_D(CFG80211_DBG, "Setting channel %d with frequency %d\n", channelnum, chandef->chan->center_freq);
curr_channel = channelnum;
result = wilc_set_mac_chnl_num(vif, channelnum);
if (result != 0)
PRINT_ER("Error in setting channel %d\n", channelnum);
return result;
}
static int scan(struct wiphy *wiphy, struct cfg80211_scan_request *request)
{
struct wilc_priv *priv;
u32 i;
s32 s32Error = 0;
u8 au8ScanChanList[MAX_NUM_SCANNED_NETWORKS];
struct hidden_network strHiddenNetwork;
struct wilc_vif *vif;
priv = wiphy_priv(wiphy);
vif = netdev_priv(priv->dev);
priv->pstrScanReq = request;
priv->u32RcvdChCount = 0;
wilc_set_wfi_drv_handler(vif, wilc_get_vif_idx(vif));
reset_shadow_found();
priv->bCfgScanning = true;
if (request->n_channels <= MAX_NUM_SCANNED_NETWORKS) {
for (i = 0; i < request->n_channels; i++) {
au8ScanChanList[i] = (u8)ieee80211_frequency_to_channel(request->channels[i]->center_freq);
PRINT_INFO(CFG80211_DBG, "ScanChannel List[%d] = %d,", i, au8ScanChanList[i]);
}
PRINT_D(CFG80211_DBG, "Requested num of scan channel %d\n", request->n_channels);
PRINT_D(CFG80211_DBG, "Scan Request IE len = %zu\n", request->ie_len);
PRINT_D(CFG80211_DBG, "Number of SSIDs %d\n", request->n_ssids);
if (request->n_ssids >= 1) {
strHiddenNetwork.pstrHiddenNetworkInfo = kmalloc(request->n_ssids * sizeof(struct hidden_network), GFP_KERNEL);
strHiddenNetwork.u8ssidnum = request->n_ssids;
for (i = 0; i < request->n_ssids; i++) {
if (request->ssids[i].ssid &&
request->ssids[i].ssid_len != 0) {
strHiddenNetwork.pstrHiddenNetworkInfo[i].pu8ssid = kmalloc(request->ssids[i].ssid_len, GFP_KERNEL);
memcpy(strHiddenNetwork.pstrHiddenNetworkInfo[i].pu8ssid, request->ssids[i].ssid, request->ssids[i].ssid_len);
strHiddenNetwork.pstrHiddenNetworkInfo[i].u8ssidlen = request->ssids[i].ssid_len;
} else {
PRINT_D(CFG80211_DBG, "Received one NULL SSID\n");
strHiddenNetwork.u8ssidnum -= 1;
}
}
PRINT_D(CFG80211_DBG, "Trigger Scan Request\n");
s32Error = wilc_scan(vif, USER_SCAN, ACTIVE_SCAN,
au8ScanChanList,
request->n_channels,
(const u8 *)request->ie,
request->ie_len, CfgScanResult,
(void *)priv, &strHiddenNetwork);
} else {
PRINT_D(CFG80211_DBG, "Trigger Scan Request\n");
s32Error = wilc_scan(vif, USER_SCAN, ACTIVE_SCAN,
au8ScanChanList,
request->n_channels,
(const u8 *)request->ie,
request->ie_len, CfgScanResult,
(void *)priv, NULL);
}
} else {
PRINT_ER("Requested num of scanned channels is greater than the max, supported"
" channels\n");
}
if (s32Error != 0) {
s32Error = -EBUSY;
PRINT_WRN(CFG80211_DBG, "Device is busy: Error(%d)\n", s32Error);
}
return s32Error;
}
static int connect(struct wiphy *wiphy, struct net_device *dev,
struct cfg80211_connect_params *sme)
{
s32 s32Error = 0;
u32 i;
u8 u8security = NO_ENCRYPT;
enum AUTHTYPE tenuAuth_type = ANY;
char *pcgroup_encrypt_val = NULL;
char *pccipher_group = NULL;
char *pcwpa_version = NULL;
struct wilc_priv *priv;
struct host_if_drv *pstrWFIDrv;
tstrNetworkInfo *pstrNetworkInfo = NULL;
struct wilc_vif *vif;
wilc_connecting = 1;
priv = wiphy_priv(wiphy);
vif = netdev_priv(priv->dev);
pstrWFIDrv = (struct host_if_drv *)(priv->hWILCWFIDrv);
wilc_set_wfi_drv_handler(vif, wilc_get_vif_idx(vif));
PRINT_D(CFG80211_DBG, "Connecting to SSID [%s] on netdev [%p] host if [%p]\n", sme->ssid, dev, priv->hWILCWFIDrv);
if (!(strncmp(sme->ssid, "DIRECT-", 7))) {
PRINT_D(CFG80211_DBG, "Connected to Direct network,OBSS disabled\n");
pstrWFIDrv->p2p_connect = 1;
} else {
pstrWFIDrv->p2p_connect = 0;
}
PRINT_INFO(CFG80211_DBG, "Required SSID = %s\n , AuthType = %d\n", sme->ssid, sme->auth_type);
for (i = 0; i < last_scanned_cnt; i++) {
if ((sme->ssid_len == last_scanned_shadow[i].u8SsidLen) &&
memcmp(last_scanned_shadow[i].au8ssid,
sme->ssid,
sme->ssid_len) == 0) {
PRINT_INFO(CFG80211_DBG, "Network with required SSID is found %s\n", sme->ssid);
if (!sme->bssid) {
PRINT_INFO(CFG80211_DBG, "BSSID is not passed from the user\n");
break;
} else {
if (memcmp(last_scanned_shadow[i].au8bssid,
sme->bssid,
ETH_ALEN) == 0) {
PRINT_INFO(CFG80211_DBG, "BSSID is passed from the user and matched\n");
break;
}
}
}
}
if (i < last_scanned_cnt) {
PRINT_D(CFG80211_DBG, "Required bss is in scan results\n");
pstrNetworkInfo = &last_scanned_shadow[i];
PRINT_INFO(CFG80211_DBG, "network BSSID to be associated: %x%x%x%x%x%x\n",
pstrNetworkInfo->au8bssid[0], pstrNetworkInfo->au8bssid[1],
pstrNetworkInfo->au8bssid[2], pstrNetworkInfo->au8bssid[3],
pstrNetworkInfo->au8bssid[4], pstrNetworkInfo->au8bssid[5]);
} else {
s32Error = -ENOENT;
if (last_scanned_cnt == 0)
PRINT_D(CFG80211_DBG, "No Scan results yet\n");
else
PRINT_D(CFG80211_DBG, "Required bss not in scan results: Error(%d)\n", s32Error);
goto done;
}
priv->WILC_WFI_wep_default = 0;
memset(priv->WILC_WFI_wep_key, 0, sizeof(priv->WILC_WFI_wep_key));
memset(priv->WILC_WFI_wep_key_len, 0, sizeof(priv->WILC_WFI_wep_key_len));
PRINT_INFO(CFG80211_DBG, "sme->crypto.wpa_versions=%x\n", sme->crypto.wpa_versions);
PRINT_INFO(CFG80211_DBG, "sme->crypto.cipher_group=%x\n", sme->crypto.cipher_group);
PRINT_INFO(CFG80211_DBG, "sme->crypto.n_ciphers_pairwise=%d\n", sme->crypto.n_ciphers_pairwise);
if (INFO) {
for (i = 0; i < sme->crypto.n_ciphers_pairwise; i++)
PRINT_D(CORECONFIG_DBG, "sme->crypto.ciphers_pairwise[%d]=%x\n", i, sme->crypto.ciphers_pairwise[i]);
}
if (sme->crypto.cipher_group != NO_ENCRYPT) {
pcwpa_version = "Default";
PRINT_D(CORECONFIG_DBG, ">> sme->crypto.wpa_versions: %x\n", sme->crypto.wpa_versions);
if (sme->crypto.cipher_group == WLAN_CIPHER_SUITE_WEP40) {
u8security = ENCRYPT_ENABLED | WEP;
pcgroup_encrypt_val = "WEP40";
pccipher_group = "WLAN_CIPHER_SUITE_WEP40";
PRINT_INFO(CFG80211_DBG, "WEP Default Key Idx = %d\n", sme->key_idx);
if (INFO) {
for (i = 0; i < sme->key_len; i++)
PRINT_D(CORECONFIG_DBG, "WEP Key Value[%d] = %d\n", i, sme->key[i]);
}
priv->WILC_WFI_wep_default = sme->key_idx;
priv->WILC_WFI_wep_key_len[sme->key_idx] = sme->key_len;
memcpy(priv->WILC_WFI_wep_key[sme->key_idx], sme->key, sme->key_len);
g_key_wep_params.key_len = sme->key_len;
g_key_wep_params.key = kmalloc(sme->key_len, GFP_KERNEL);
memcpy(g_key_wep_params.key, sme->key, sme->key_len);
g_key_wep_params.key_idx = sme->key_idx;
g_wep_keys_saved = true;
wilc_set_wep_default_keyid(vif, sme->key_idx);
wilc_add_wep_key_bss_sta(vif, sme->key, sme->key_len,
sme->key_idx);
} else if (sme->crypto.cipher_group == WLAN_CIPHER_SUITE_WEP104) {
u8security = ENCRYPT_ENABLED | WEP | WEP_EXTENDED;
pcgroup_encrypt_val = "WEP104";
pccipher_group = "WLAN_CIPHER_SUITE_WEP104";
priv->WILC_WFI_wep_default = sme->key_idx;
priv->WILC_WFI_wep_key_len[sme->key_idx] = sme->key_len;
memcpy(priv->WILC_WFI_wep_key[sme->key_idx], sme->key, sme->key_len);
g_key_wep_params.key_len = sme->key_len;
g_key_wep_params.key = kmalloc(sme->key_len, GFP_KERNEL);
memcpy(g_key_wep_params.key, sme->key, sme->key_len);
g_key_wep_params.key_idx = sme->key_idx;
g_wep_keys_saved = true;
wilc_set_wep_default_keyid(vif, sme->key_idx);
wilc_add_wep_key_bss_sta(vif, sme->key, sme->key_len,
sme->key_idx);
} else if (sme->crypto.wpa_versions & NL80211_WPA_VERSION_2) {
if (sme->crypto.cipher_group == WLAN_CIPHER_SUITE_TKIP) {
u8security = ENCRYPT_ENABLED | WPA2 | TKIP;
pcgroup_encrypt_val = "WPA2_TKIP";
pccipher_group = "TKIP";
} else {
u8security = ENCRYPT_ENABLED | WPA2 | AES;
pcgroup_encrypt_val = "WPA2_AES";
pccipher_group = "AES";
}
pcwpa_version = "WPA_VERSION_2";
} else if (sme->crypto.wpa_versions & NL80211_WPA_VERSION_1) {
if (sme->crypto.cipher_group == WLAN_CIPHER_SUITE_TKIP) {
u8security = ENCRYPT_ENABLED | WPA | TKIP;
pcgroup_encrypt_val = "WPA_TKIP";
pccipher_group = "TKIP";
} else {
u8security = ENCRYPT_ENABLED | WPA | AES;
pcgroup_encrypt_val = "WPA_AES";
pccipher_group = "AES";
}
pcwpa_version = "WPA_VERSION_1";
} else {
s32Error = -ENOTSUPP;
PRINT_ER("Not supported cipher: Error(%d)\n", s32Error);
goto done;
}
}
if ((sme->crypto.wpa_versions & NL80211_WPA_VERSION_1)
|| (sme->crypto.wpa_versions & NL80211_WPA_VERSION_2)) {
for (i = 0; i < sme->crypto.n_ciphers_pairwise; i++) {
if (sme->crypto.ciphers_pairwise[i] == WLAN_CIPHER_SUITE_TKIP) {
u8security = u8security | TKIP;
} else {
u8security = u8security | AES;
}
}
}
PRINT_D(CFG80211_DBG, "Adding key with cipher group = %x\n", sme->crypto.cipher_group);
PRINT_D(CFG80211_DBG, "Authentication Type = %d\n", sme->auth_type);
switch (sme->auth_type) {
case NL80211_AUTHTYPE_OPEN_SYSTEM:
PRINT_D(CFG80211_DBG, "In OPEN SYSTEM\n");
tenuAuth_type = OPEN_SYSTEM;
break;
case NL80211_AUTHTYPE_SHARED_KEY:
tenuAuth_type = SHARED_KEY;
PRINT_D(CFG80211_DBG, "In SHARED KEY\n");
break;
default:
PRINT_D(CFG80211_DBG, "Automatic Authentation type = %d\n", sme->auth_type);
}
if (sme->crypto.n_akm_suites) {
switch (sme->crypto.akm_suites[0]) {
case WLAN_AKM_SUITE_8021X:
tenuAuth_type = IEEE8021;
break;
default:
break;
}
}
PRINT_INFO(CFG80211_DBG, "Required Channel = %d\n", pstrNetworkInfo->u8channel);
PRINT_INFO(CFG80211_DBG, "Group encryption value = %s\n Cipher Group = %s\n WPA version = %s\n",
pcgroup_encrypt_val, pccipher_group, pcwpa_version);
curr_channel = pstrNetworkInfo->u8channel;
if (!pstrWFIDrv->p2p_connect)
wlan_channel = pstrNetworkInfo->u8channel;
wilc_wlan_set_bssid(dev, pstrNetworkInfo->au8bssid);
s32Error = wilc_set_join_req(vif, pstrNetworkInfo->au8bssid, sme->ssid,
sme->ssid_len, sme->ie, sme->ie_len,
CfgConnectResult, (void *)priv,
u8security, tenuAuth_type,
pstrNetworkInfo->u8channel,
pstrNetworkInfo->pJoinParams);
if (s32Error != 0) {
PRINT_ER("wilc_set_join_req(): Error(%d)\n", s32Error);
s32Error = -ENOENT;
goto done;
}
done:
return s32Error;
}
static int disconnect(struct wiphy *wiphy, struct net_device *dev, u16 reason_code)
{
s32 s32Error = 0;
struct wilc_priv *priv;
struct host_if_drv *pstrWFIDrv;
struct wilc_vif *vif;
u8 NullBssid[ETH_ALEN] = {0};
wilc_connecting = 0;
priv = wiphy_priv(wiphy);
vif = netdev_priv(priv->dev);
pstrWFIDrv = (struct host_if_drv *)priv->hWILCWFIDrv;
if (!pstrWFIDrv->p2p_connect)
wlan_channel = INVALID_CHANNEL;
wilc_wlan_set_bssid(priv->dev, NullBssid);
PRINT_D(CFG80211_DBG, "Disconnecting with reason code(%d)\n", reason_code);
p2p_local_random = 0x01;
p2p_recv_random = 0x00;
wilc_ie = false;
pstrWFIDrv->p2p_timeout = 0;
s32Error = wilc_disconnect(vif, reason_code);
if (s32Error != 0) {
PRINT_ER("Error in disconnecting: Error(%d)\n", s32Error);
s32Error = -EINVAL;
}
return s32Error;
}
static int add_key(struct wiphy *wiphy, struct net_device *netdev, u8 key_index,
bool pairwise,
const u8 *mac_addr, struct key_params *params)
{
s32 s32Error = 0, KeyLen = params->key_len;
u32 i;
struct wilc_priv *priv;
const u8 *pu8RxMic = NULL;
const u8 *pu8TxMic = NULL;
u8 u8mode = NO_ENCRYPT;
u8 u8gmode = NO_ENCRYPT;
u8 u8pmode = NO_ENCRYPT;
enum AUTHTYPE tenuAuth_type = ANY;
struct wilc *wl;
struct wilc_vif *vif;
priv = wiphy_priv(wiphy);
vif = netdev_priv(netdev);
wl = vif->wilc;
PRINT_D(CFG80211_DBG, "Adding key with cipher suite = %x\n", params->cipher);
PRINT_D(CFG80211_DBG, "%p %p %d\n", wiphy, netdev, key_index);
PRINT_D(CFG80211_DBG, "key %x %x %x\n", params->key[0],
params->key[1],
params->key[2]);
switch (params->cipher) {
case WLAN_CIPHER_SUITE_WEP40:
case WLAN_CIPHER_SUITE_WEP104:
if (priv->wdev->iftype == NL80211_IFTYPE_AP) {
priv->WILC_WFI_wep_default = key_index;
priv->WILC_WFI_wep_key_len[key_index] = params->key_len;
memcpy(priv->WILC_WFI_wep_key[key_index], params->key, params->key_len);
PRINT_D(CFG80211_DBG, "Adding AP WEP Default key Idx = %d\n", key_index);
PRINT_D(CFG80211_DBG, "Adding AP WEP Key len= %d\n", params->key_len);
for (i = 0; i < params->key_len; i++)
PRINT_D(CFG80211_DBG, "WEP AP key val[%d] = %x\n", i, params->key[i]);
tenuAuth_type = OPEN_SYSTEM;
if (params->cipher == WLAN_CIPHER_SUITE_WEP40)
u8mode = ENCRYPT_ENABLED | WEP;
else
u8mode = ENCRYPT_ENABLED | WEP | WEP_EXTENDED;
wilc_add_wep_key_bss_ap(vif, params->key,
params->key_len, key_index,
u8mode, tenuAuth_type);
break;
}
if (memcmp(params->key, priv->WILC_WFI_wep_key[key_index], params->key_len)) {
priv->WILC_WFI_wep_default = key_index;
priv->WILC_WFI_wep_key_len[key_index] = params->key_len;
memcpy(priv->WILC_WFI_wep_key[key_index], params->key, params->key_len);
PRINT_D(CFG80211_DBG, "Adding WEP Default key Idx = %d\n", key_index);
PRINT_D(CFG80211_DBG, "Adding WEP Key length = %d\n", params->key_len);
if (INFO) {
for (i = 0; i < params->key_len; i++)
PRINT_INFO(CFG80211_DBG, "WEP key value[%d] = %d\n", i, params->key[i]);
}
wilc_add_wep_key_bss_sta(vif, params->key,
params->key_len, key_index);
}
break;
case WLAN_CIPHER_SUITE_TKIP:
case WLAN_CIPHER_SUITE_CCMP:
if (priv->wdev->iftype == NL80211_IFTYPE_AP || priv->wdev->iftype == NL80211_IFTYPE_P2P_GO) {
if (!priv->wilc_gtk[key_index]) {
priv->wilc_gtk[key_index] = kmalloc(sizeof(struct wilc_wfi_key), GFP_KERNEL);
priv->wilc_gtk[key_index]->key = NULL;
priv->wilc_gtk[key_index]->seq = NULL;
}
if (!priv->wilc_ptk[key_index]) {
priv->wilc_ptk[key_index] = kmalloc(sizeof(struct wilc_wfi_key), GFP_KERNEL);
priv->wilc_ptk[key_index]->key = NULL;
priv->wilc_ptk[key_index]->seq = NULL;
}
if (!pairwise) {
if (params->cipher == WLAN_CIPHER_SUITE_TKIP)
u8gmode = ENCRYPT_ENABLED | WPA | TKIP;
else
u8gmode = ENCRYPT_ENABLED | WPA2 | AES;
priv->wilc_groupkey = u8gmode;
if (params->key_len > 16 && params->cipher == WLAN_CIPHER_SUITE_TKIP) {
pu8TxMic = params->key + 24;
pu8RxMic = params->key + 16;
KeyLen = params->key_len - 16;
}
kfree(priv->wilc_gtk[key_index]->key);
priv->wilc_gtk[key_index]->key = kmalloc(params->key_len, GFP_KERNEL);
memcpy(priv->wilc_gtk[key_index]->key, params->key, params->key_len);
kfree(priv->wilc_gtk[key_index]->seq);
if ((params->seq_len) > 0) {
priv->wilc_gtk[key_index]->seq = kmalloc(params->seq_len, GFP_KERNEL);
memcpy(priv->wilc_gtk[key_index]->seq, params->seq, params->seq_len);
}
priv->wilc_gtk[key_index]->cipher = params->cipher;
priv->wilc_gtk[key_index]->key_len = params->key_len;
priv->wilc_gtk[key_index]->seq_len = params->seq_len;
if (INFO) {
for (i = 0; i < params->key_len; i++)
PRINT_INFO(CFG80211_DBG, "Adding group key value[%d] = %x\n", i, params->key[i]);
for (i = 0; i < params->seq_len; i++)
PRINT_INFO(CFG80211_DBG, "Adding group seq value[%d] = %x\n", i, params->seq[i]);
}
wilc_add_rx_gtk(vif, params->key, KeyLen,
key_index, params->seq_len,
params->seq, pu8RxMic,
pu8TxMic, AP_MODE, u8gmode);
} else {
PRINT_INFO(CFG80211_DBG, "STA Address: %x%x%x%x%x\n", mac_addr[0], mac_addr[1], mac_addr[2], mac_addr[3], mac_addr[4]);
if (params->cipher == WLAN_CIPHER_SUITE_TKIP)
u8pmode = ENCRYPT_ENABLED | WPA | TKIP;
else
u8pmode = priv->wilc_groupkey | AES;
if (params->key_len > 16 && params->cipher == WLAN_CIPHER_SUITE_TKIP) {
pu8TxMic = params->key + 24;
pu8RxMic = params->key + 16;
KeyLen = params->key_len - 16;
}
kfree(priv->wilc_ptk[key_index]->key);
priv->wilc_ptk[key_index]->key = kmalloc(params->key_len, GFP_KERNEL);
kfree(priv->wilc_ptk[key_index]->seq);
if ((params->seq_len) > 0)
priv->wilc_ptk[key_index]->seq = kmalloc(params->seq_len, GFP_KERNEL);
if (INFO) {
for (i = 0; i < params->key_len; i++)
PRINT_INFO(CFG80211_DBG, "Adding pairwise key value[%d] = %x\n", i, params->key[i]);
for (i = 0; i < params->seq_len; i++)
PRINT_INFO(CFG80211_DBG, "Adding group seq value[%d] = %x\n", i, params->seq[i]);
}
memcpy(priv->wilc_ptk[key_index]->key, params->key, params->key_len);
if ((params->seq_len) > 0)
memcpy(priv->wilc_ptk[key_index]->seq, params->seq, params->seq_len);
priv->wilc_ptk[key_index]->cipher = params->cipher;
priv->wilc_ptk[key_index]->key_len = params->key_len;
priv->wilc_ptk[key_index]->seq_len = params->seq_len;
wilc_add_ptk(vif, params->key, KeyLen,
mac_addr, pu8RxMic, pu8TxMic,
AP_MODE, u8pmode, key_index);
}
break;
}
{
u8mode = 0;
if (!pairwise) {
if (params->key_len > 16 && params->cipher == WLAN_CIPHER_SUITE_TKIP) {
pu8RxMic = params->key + 24;
pu8TxMic = params->key + 16;
KeyLen = params->key_len - 16;
}
if (!g_gtk_keys_saved && netdev == wl->vif[0]->ndev) {
g_add_gtk_key_params.key_idx = key_index;
g_add_gtk_key_params.pairwise = pairwise;
if (!mac_addr) {
g_add_gtk_key_params.mac_addr = NULL;
} else {
g_add_gtk_key_params.mac_addr = kmalloc(ETH_ALEN, GFP_KERNEL);
memcpy(g_add_gtk_key_params.mac_addr, mac_addr, ETH_ALEN);
}
g_key_gtk_params.key_len = params->key_len;
g_key_gtk_params.seq_len = params->seq_len;
g_key_gtk_params.key = kmalloc(params->key_len, GFP_KERNEL);
memcpy(g_key_gtk_params.key, params->key, params->key_len);
if (params->seq_len > 0) {
g_key_gtk_params.seq = kmalloc(params->seq_len, GFP_KERNEL);
memcpy(g_key_gtk_params.seq, params->seq, params->seq_len);
}
g_key_gtk_params.cipher = params->cipher;
PRINT_D(CFG80211_DBG, "key %x %x %x\n", g_key_gtk_params.key[0],
g_key_gtk_params.key[1],
g_key_gtk_params.key[2]);
g_gtk_keys_saved = true;
}
wilc_add_rx_gtk(vif, params->key, KeyLen,
key_index, params->seq_len,
params->seq, pu8RxMic,
pu8TxMic, STATION_MODE,
u8mode);
} else {
if (params->key_len > 16 && params->cipher == WLAN_CIPHER_SUITE_TKIP) {
pu8RxMic = params->key + 24;
pu8TxMic = params->key + 16;
KeyLen = params->key_len - 16;
}
if (!g_ptk_keys_saved && netdev == wl->vif[0]->ndev) {
g_add_ptk_key_params.key_idx = key_index;
g_add_ptk_key_params.pairwise = pairwise;
if (!mac_addr) {
g_add_ptk_key_params.mac_addr = NULL;
} else {
g_add_ptk_key_params.mac_addr = kmalloc(ETH_ALEN, GFP_KERNEL);
memcpy(g_add_ptk_key_params.mac_addr, mac_addr, ETH_ALEN);
}
g_key_ptk_params.key_len = params->key_len;
g_key_ptk_params.seq_len = params->seq_len;
g_key_ptk_params.key = kmalloc(params->key_len, GFP_KERNEL);
memcpy(g_key_ptk_params.key, params->key, params->key_len);
if (params->seq_len > 0) {
g_key_ptk_params.seq = kmalloc(params->seq_len, GFP_KERNEL);
memcpy(g_key_ptk_params.seq, params->seq, params->seq_len);
}
g_key_ptk_params.cipher = params->cipher;
PRINT_D(CFG80211_DBG, "key %x %x %x\n", g_key_ptk_params.key[0],
g_key_ptk_params.key[1],
g_key_ptk_params.key[2]);
g_ptk_keys_saved = true;
}
wilc_add_ptk(vif, params->key, KeyLen,
mac_addr, pu8RxMic, pu8TxMic,
STATION_MODE, u8mode, key_index);
PRINT_D(CFG80211_DBG, "Adding pairwise key\n");
if (INFO) {
for (i = 0; i < params->key_len; i++)
PRINT_INFO(CFG80211_DBG, "Adding pairwise key value[%d] = %d\n", i, params->key[i]);
}
}
}
break;
default:
PRINT_ER("Not supported cipher: Error(%d)\n", s32Error);
s32Error = -ENOTSUPP;
}
return s32Error;
}
static int del_key(struct wiphy *wiphy, struct net_device *netdev,
u8 key_index,
bool pairwise,
const u8 *mac_addr)
{
struct wilc_priv *priv;
struct wilc *wl;
struct wilc_vif *vif;
priv = wiphy_priv(wiphy);
vif = netdev_priv(netdev);
wl = vif->wilc;
if (netdev == wl->vif[0]->ndev) {
g_ptk_keys_saved = false;
g_gtk_keys_saved = false;
g_wep_keys_saved = false;
kfree(g_key_wep_params.key);
g_key_wep_params.key = NULL;
if ((priv->wilc_gtk[key_index]) != NULL) {
kfree(priv->wilc_gtk[key_index]->key);
priv->wilc_gtk[key_index]->key = NULL;
kfree(priv->wilc_gtk[key_index]->seq);
priv->wilc_gtk[key_index]->seq = NULL;
kfree(priv->wilc_gtk[key_index]);
priv->wilc_gtk[key_index] = NULL;
}
if ((priv->wilc_ptk[key_index]) != NULL) {
kfree(priv->wilc_ptk[key_index]->key);
priv->wilc_ptk[key_index]->key = NULL;
kfree(priv->wilc_ptk[key_index]->seq);
priv->wilc_ptk[key_index]->seq = NULL;
kfree(priv->wilc_ptk[key_index]);
priv->wilc_ptk[key_index] = NULL;
}
kfree(g_key_ptk_params.key);
g_key_ptk_params.key = NULL;
kfree(g_key_ptk_params.seq);
g_key_ptk_params.seq = NULL;
kfree(g_key_gtk_params.key);
g_key_gtk_params.key = NULL;
kfree(g_key_gtk_params.seq);
g_key_gtk_params.seq = NULL;
wilc_set_machw_change_vir_if(netdev, false);
}
if (key_index >= 0 && key_index <= 3) {
memset(priv->WILC_WFI_wep_key[key_index], 0, priv->WILC_WFI_wep_key_len[key_index]);
priv->WILC_WFI_wep_key_len[key_index] = 0;
PRINT_D(CFG80211_DBG, "Removing WEP key with index = %d\n", key_index);
wilc_remove_wep_key(vif, key_index);
} else {
PRINT_D(CFG80211_DBG, "Removing all installed keys\n");
wilc_remove_key(priv->hWILCWFIDrv, mac_addr);
}
return 0;
}
static int get_key(struct wiphy *wiphy, struct net_device *netdev, u8 key_index,
bool pairwise,
const u8 *mac_addr, void *cookie, void (*callback)(void *cookie, struct key_params *))
{
struct wilc_priv *priv;
struct key_params key_params;
u32 i;
priv = wiphy_priv(wiphy);
if (!pairwise) {
PRINT_D(CFG80211_DBG, "Getting group key idx: %x\n", key_index);
key_params.key = priv->wilc_gtk[key_index]->key;
key_params.cipher = priv->wilc_gtk[key_index]->cipher;
key_params.key_len = priv->wilc_gtk[key_index]->key_len;
key_params.seq = priv->wilc_gtk[key_index]->seq;
key_params.seq_len = priv->wilc_gtk[key_index]->seq_len;
if (INFO) {
for (i = 0; i < key_params.key_len; i++)
PRINT_INFO(CFG80211_DBG, "Retrieved key value %x\n", key_params.key[i]);
}
} else {
PRINT_D(CFG80211_DBG, "Getting pairwise key\n");
key_params.key = priv->wilc_ptk[key_index]->key;
key_params.cipher = priv->wilc_ptk[key_index]->cipher;
key_params.key_len = priv->wilc_ptk[key_index]->key_len;
key_params.seq = priv->wilc_ptk[key_index]->seq;
key_params.seq_len = priv->wilc_ptk[key_index]->seq_len;
}
callback(cookie, &key_params);
return 0;
}
static int set_default_key(struct wiphy *wiphy, struct net_device *netdev, u8 key_index,
bool unicast, bool multicast)
{
struct wilc_priv *priv;
struct wilc_vif *vif;
priv = wiphy_priv(wiphy);
vif = netdev_priv(priv->dev);
PRINT_D(CFG80211_DBG, "Setting default key with idx = %d\n", key_index);
if (key_index != priv->WILC_WFI_wep_default) {
wilc_set_wep_default_keyid(vif, key_index);
}
return 0;
}
static int get_station(struct wiphy *wiphy, struct net_device *dev,
const u8 *mac, struct station_info *sinfo)
{
struct wilc_priv *priv;
struct wilc_vif *vif;
u32 i = 0;
u32 associatedsta = 0;
u32 inactive_time = 0;
priv = wiphy_priv(wiphy);
vif = netdev_priv(dev);
if (vif->iftype == AP_MODE || vif->iftype == GO_MODE) {
PRINT_D(HOSTAPD_DBG, "Getting station parameters\n");
PRINT_INFO(HOSTAPD_DBG, ": %x%x%x%x%x\n", mac[0], mac[1], mac[2], mac[3], mac[4]);
for (i = 0; i < NUM_STA_ASSOCIATED; i++) {
if (!(memcmp(mac, priv->assoc_stainfo.au8Sta_AssociatedBss[i], ETH_ALEN))) {
associatedsta = i;
break;
}
}
if (associatedsta == -1) {
PRINT_ER("Station required is not associated\n");
return -ENOENT;
}
sinfo->filled |= BIT(NL80211_STA_INFO_INACTIVE_TIME);
wilc_get_inactive_time(vif, mac, &inactive_time);
sinfo->inactive_time = 1000 * inactive_time;
PRINT_D(CFG80211_DBG, "Inactive time %d\n", sinfo->inactive_time);
}
if (vif->iftype == STATION_MODE) {
struct rf_info strStatistics;
wilc_get_statistics(vif, &strStatistics);
sinfo->filled |= BIT(NL80211_STA_INFO_SIGNAL) |
BIT(NL80211_STA_INFO_RX_PACKETS) |
BIT(NL80211_STA_INFO_TX_PACKETS) |
BIT(NL80211_STA_INFO_TX_FAILED) |
BIT(NL80211_STA_INFO_TX_BITRATE);
sinfo->signal = strStatistics.rssi;
sinfo->rx_packets = strStatistics.rx_cnt;
sinfo->tx_packets = strStatistics.tx_cnt + strStatistics.tx_fail_cnt;
sinfo->tx_failed = strStatistics.tx_fail_cnt;
sinfo->txrate.legacy = strStatistics.link_speed * 10;
if ((strStatistics.link_speed > TCP_ACK_FILTER_LINK_SPEED_THRESH) &&
(strStatistics.link_speed != DEFAULT_LINK_SPEED))
wilc_enable_tcp_ack_filter(true);
else if (strStatistics.link_speed != DEFAULT_LINK_SPEED)
wilc_enable_tcp_ack_filter(false);
PRINT_D(CORECONFIG_DBG, "*** stats[%d][%d][%d][%d][%d]\n", sinfo->signal, sinfo->rx_packets, sinfo->tx_packets,
sinfo->tx_failed, sinfo->txrate.legacy);
}
return 0;
}
static int change_bss(struct wiphy *wiphy, struct net_device *dev,
struct bss_parameters *params)
{
PRINT_D(CFG80211_DBG, "Changing Bss parametrs\n");
return 0;
}
static int set_wiphy_params(struct wiphy *wiphy, u32 changed)
{
s32 s32Error = 0;
struct cfg_param_val pstrCfgParamVal;
struct wilc_priv *priv;
struct wilc_vif *vif;
priv = wiphy_priv(wiphy);
vif = netdev_priv(priv->dev);
pstrCfgParamVal.flag = 0;
PRINT_D(CFG80211_DBG, "Setting Wiphy params\n");
if (changed & WIPHY_PARAM_RETRY_SHORT) {
PRINT_D(CFG80211_DBG, "Setting WIPHY_PARAM_RETRY_SHORT %d\n",
priv->dev->ieee80211_ptr->wiphy->retry_short);
pstrCfgParamVal.flag |= RETRY_SHORT;
pstrCfgParamVal.short_retry_limit = priv->dev->ieee80211_ptr->wiphy->retry_short;
}
if (changed & WIPHY_PARAM_RETRY_LONG) {
PRINT_D(CFG80211_DBG, "Setting WIPHY_PARAM_RETRY_LONG %d\n", priv->dev->ieee80211_ptr->wiphy->retry_long);
pstrCfgParamVal.flag |= RETRY_LONG;
pstrCfgParamVal.long_retry_limit = priv->dev->ieee80211_ptr->wiphy->retry_long;
}
if (changed & WIPHY_PARAM_FRAG_THRESHOLD) {
PRINT_D(CFG80211_DBG, "Setting WIPHY_PARAM_FRAG_THRESHOLD %d\n", priv->dev->ieee80211_ptr->wiphy->frag_threshold);
pstrCfgParamVal.flag |= FRAG_THRESHOLD;
pstrCfgParamVal.frag_threshold = priv->dev->ieee80211_ptr->wiphy->frag_threshold;
}
if (changed & WIPHY_PARAM_RTS_THRESHOLD) {
PRINT_D(CFG80211_DBG, "Setting WIPHY_PARAM_RTS_THRESHOLD %d\n", priv->dev->ieee80211_ptr->wiphy->rts_threshold);
pstrCfgParamVal.flag |= RTS_THRESHOLD;
pstrCfgParamVal.rts_threshold = priv->dev->ieee80211_ptr->wiphy->rts_threshold;
}
PRINT_D(CFG80211_DBG, "Setting CFG params in the host interface\n");
s32Error = wilc_hif_set_cfg(vif, &pstrCfgParamVal);
if (s32Error)
PRINT_ER("Error in setting WIPHY PARAMS\n");
return s32Error;
}
static int set_pmksa(struct wiphy *wiphy, struct net_device *netdev,
struct cfg80211_pmksa *pmksa)
{
u32 i;
s32 s32Error = 0;
u8 flag = 0;
struct wilc_vif *vif;
struct wilc_priv *priv = wiphy_priv(wiphy);
vif = netdev_priv(priv->dev);
PRINT_D(CFG80211_DBG, "Setting PMKSA\n");
for (i = 0; i < priv->pmkid_list.numpmkid; i++) {
if (!memcmp(pmksa->bssid, priv->pmkid_list.pmkidlist[i].bssid,
ETH_ALEN)) {
flag = PMKID_FOUND;
PRINT_D(CFG80211_DBG, "PMKID already exists\n");
break;
}
}
if (i < WILC_MAX_NUM_PMKIDS) {
PRINT_D(CFG80211_DBG, "Setting PMKID in private structure\n");
memcpy(priv->pmkid_list.pmkidlist[i].bssid, pmksa->bssid,
ETH_ALEN);
memcpy(priv->pmkid_list.pmkidlist[i].pmkid, pmksa->pmkid,
PMKID_LEN);
if (!(flag == PMKID_FOUND))
priv->pmkid_list.numpmkid++;
} else {
PRINT_ER("Invalid PMKID index\n");
s32Error = -EINVAL;
}
if (!s32Error) {
PRINT_D(CFG80211_DBG, "Setting pmkid in the host interface\n");
s32Error = wilc_set_pmkid_info(vif, &priv->pmkid_list);
}
return s32Error;
}
static int del_pmksa(struct wiphy *wiphy, struct net_device *netdev,
struct cfg80211_pmksa *pmksa)
{
u32 i;
s32 s32Error = 0;
struct wilc_priv *priv = wiphy_priv(wiphy);
PRINT_D(CFG80211_DBG, "Deleting PMKSA keys\n");
for (i = 0; i < priv->pmkid_list.numpmkid; i++) {
if (!memcmp(pmksa->bssid, priv->pmkid_list.pmkidlist[i].bssid,
ETH_ALEN)) {
PRINT_D(CFG80211_DBG, "Reseting PMKID values\n");
memset(&priv->pmkid_list.pmkidlist[i], 0, sizeof(struct host_if_pmkid));
break;
}
}
if (i < priv->pmkid_list.numpmkid && priv->pmkid_list.numpmkid > 0) {
for (; i < (priv->pmkid_list.numpmkid - 1); i++) {
memcpy(priv->pmkid_list.pmkidlist[i].bssid,
priv->pmkid_list.pmkidlist[i + 1].bssid,
ETH_ALEN);
memcpy(priv->pmkid_list.pmkidlist[i].pmkid,
priv->pmkid_list.pmkidlist[i].pmkid,
PMKID_LEN);
}
priv->pmkid_list.numpmkid--;
} else {
s32Error = -EINVAL;
}
return s32Error;
}
static int flush_pmksa(struct wiphy *wiphy, struct net_device *netdev)
{
struct wilc_priv *priv = wiphy_priv(wiphy);
PRINT_D(CFG80211_DBG, "Flushing PMKID key values\n");
memset(&priv->pmkid_list, 0, sizeof(struct host_if_pmkid_attr));
return 0;
}
static void WILC_WFI_CfgParseRxAction(u8 *buf, u32 len)
{
u32 index = 0;
u32 i = 0, j = 0;
u8 op_channel_attr_index = 0;
u8 channel_list_attr_index = 0;
while (index < len) {
if (buf[index] == GO_INTENT_ATTR_ID) {
buf[index + 3] = (buf[index + 3] & 0x01) | (0x00 << 1);
}
if (buf[index] == CHANLIST_ATTR_ID)
channel_list_attr_index = index;
else if (buf[index] == OPERCHAN_ATTR_ID)
op_channel_attr_index = index;
index += buf[index + 1] + 3;
}
if (wlan_channel != INVALID_CHANNEL) {
if (channel_list_attr_index) {
PRINT_D(GENERIC_DBG, "Modify channel list attribute\n");
for (i = channel_list_attr_index + 3; i < ((channel_list_attr_index + 3) + buf[channel_list_attr_index + 1]); i++) {
if (buf[i] == 0x51) {
for (j = i + 2; j < ((i + 2) + buf[i + 1]); j++) {
buf[j] = wlan_channel;
}
break;
}
}
}
if (op_channel_attr_index) {
PRINT_D(GENERIC_DBG, "Modify operating channel attribute\n");
buf[op_channel_attr_index + 6] = 0x51;
buf[op_channel_attr_index + 7] = wlan_channel;
}
}
}
static void WILC_WFI_CfgParseTxAction(u8 *buf, u32 len, bool bOperChan, u8 iftype)
{
u32 index = 0;
u32 i = 0, j = 0;
u8 op_channel_attr_index = 0;
u8 channel_list_attr_index = 0;
while (index < len) {
if (buf[index] == GO_INTENT_ATTR_ID) {
buf[index + 3] = (buf[index + 3] & 0x01) | (0x0f << 1);
break;
}
if (buf[index] == CHANLIST_ATTR_ID)
channel_list_attr_index = index;
else if (buf[index] == OPERCHAN_ATTR_ID)
op_channel_attr_index = index;
index += buf[index + 1] + 3;
}
if (wlan_channel != INVALID_CHANNEL && bOperChan) {
if (channel_list_attr_index) {
PRINT_D(GENERIC_DBG, "Modify channel list attribute\n");
for (i = channel_list_attr_index + 3; i < ((channel_list_attr_index + 3) + buf[channel_list_attr_index + 1]); i++) {
if (buf[i] == 0x51) {
for (j = i + 2; j < ((i + 2) + buf[i + 1]); j++) {
buf[j] = wlan_channel;
}
break;
}
}
}
if (op_channel_attr_index) {
PRINT_D(GENERIC_DBG, "Modify operating channel attribute\n");
buf[op_channel_attr_index + 6] = 0x51;
buf[op_channel_attr_index + 7] = wlan_channel;
}
}
}
void WILC_WFI_p2p_rx (struct net_device *dev, u8 *buff, u32 size)
{
struct wilc_priv *priv;
u32 header, pkt_offset;
struct host_if_drv *pstrWFIDrv;
u32 i = 0;
s32 s32Freq;
priv = wiphy_priv(dev->ieee80211_ptr->wiphy);
pstrWFIDrv = (struct host_if_drv *)priv->hWILCWFIDrv;
memcpy(&header, (buff - HOST_HDR_OFFSET), HOST_HDR_OFFSET);
pkt_offset = GET_PKT_OFFSET(header);
if (pkt_offset & IS_MANAGMEMENT_CALLBACK) {
if (buff[FRAME_TYPE_ID] == IEEE80211_STYPE_PROBE_RESP) {
PRINT_D(GENERIC_DBG, "Probe response ACK\n");
cfg80211_mgmt_tx_status(priv->wdev, priv->u64tx_cookie, buff, size, true, GFP_KERNEL);
return;
} else {
if (pkt_offset & IS_MGMT_STATUS_SUCCES) {
PRINT_D(GENERIC_DBG, "Success Ack - Action frame category: %x Action Subtype: %d Dialog T: %x OR %x\n", buff[ACTION_CAT_ID], buff[ACTION_SUBTYPE_ID],
buff[ACTION_SUBTYPE_ID + 1], buff[P2P_PUB_ACTION_SUBTYPE + 1]);
cfg80211_mgmt_tx_status(priv->wdev, priv->u64tx_cookie, buff, size, true, GFP_KERNEL);
} else {
PRINT_D(GENERIC_DBG, "Fail Ack - Action frame category: %x Action Subtype: %d Dialog T: %x OR %x\n", buff[ACTION_CAT_ID], buff[ACTION_SUBTYPE_ID],
buff[ACTION_SUBTYPE_ID + 1], buff[P2P_PUB_ACTION_SUBTYPE + 1]);
cfg80211_mgmt_tx_status(priv->wdev, priv->u64tx_cookie, buff, size, false, GFP_KERNEL);
}
return;
}
} else {
PRINT_D(GENERIC_DBG, "Rx Frame Type:%x\n", buff[FRAME_TYPE_ID]);
s32Freq = ieee80211_channel_to_frequency(curr_channel, IEEE80211_BAND_2GHZ);
if (ieee80211_is_action(buff[FRAME_TYPE_ID])) {
PRINT_D(GENERIC_DBG, "Rx Action Frame Type: %x %x\n", buff[ACTION_SUBTYPE_ID], buff[P2P_PUB_ACTION_SUBTYPE]);
if (priv->bCfgScanning && time_after_eq(jiffies, (unsigned long)pstrWFIDrv->p2p_timeout)) {
PRINT_D(GENERIC_DBG, "Receiving action frames from wrong channels\n");
return;
}
if (buff[ACTION_CAT_ID] == PUB_ACTION_ATTR_ID) {
switch (buff[ACTION_SUBTYPE_ID]) {
case GAS_INTIAL_REQ:
PRINT_D(GENERIC_DBG, "GAS INITIAL REQ %x\n", buff[ACTION_SUBTYPE_ID]);
break;
case GAS_INTIAL_RSP:
PRINT_D(GENERIC_DBG, "GAS INITIAL RSP %x\n", buff[ACTION_SUBTYPE_ID]);
break;
case PUBLIC_ACT_VENDORSPEC:
if (!memcmp(p2p_oui, &buff[ACTION_SUBTYPE_ID + 1], 4)) {
if ((buff[P2P_PUB_ACTION_SUBTYPE] == GO_NEG_REQ || buff[P2P_PUB_ACTION_SUBTYPE] == GO_NEG_RSP)) {
if (!wilc_ie) {
for (i = P2P_PUB_ACTION_SUBTYPE; i < size; i++) {
if (!memcmp(p2p_vendor_spec, &buff[i], 6)) {
p2p_recv_random = buff[i + 6];
wilc_ie = true;
PRINT_D(GENERIC_DBG, "WILC Vendor specific IE:%02x\n", p2p_recv_random);
break;
}
}
}
}
if (p2p_local_random > p2p_recv_random) {
if ((buff[P2P_PUB_ACTION_SUBTYPE] == GO_NEG_REQ || buff[P2P_PUB_ACTION_SUBTYPE] == GO_NEG_RSP
|| buff[P2P_PUB_ACTION_SUBTYPE] == P2P_INV_REQ || buff[P2P_PUB_ACTION_SUBTYPE] == P2P_INV_RSP)) {
for (i = P2P_PUB_ACTION_SUBTYPE + 2; i < size; i++) {
if (buff[i] == P2PELEM_ATTR_ID && !(memcmp(p2p_oui, &buff[i + 2], 4))) {
WILC_WFI_CfgParseRxAction(&buff[i + 6], size - (i + 6));
break;
}
}
}
} else {
PRINT_D(GENERIC_DBG, "PEER WILL BE GO LocaRand=%02x RecvRand %02x\n", p2p_local_random, p2p_recv_random);
}
}
if ((buff[P2P_PUB_ACTION_SUBTYPE] == GO_NEG_REQ || buff[P2P_PUB_ACTION_SUBTYPE] == GO_NEG_RSP) && (wilc_ie)) {
PRINT_D(GENERIC_DBG, "Sending P2P to host without extra elemnt\n");
cfg80211_rx_mgmt(priv->wdev, s32Freq, 0, buff, size - 7, 0);
return;
}
break;
default:
PRINT_D(GENERIC_DBG, "NOT HANDLED PUBLIC ACTION FRAME TYPE:%x\n", buff[ACTION_SUBTYPE_ID]);
break;
}
}
}
cfg80211_rx_mgmt(priv->wdev, s32Freq, 0, buff, size - 7, 0);
}
}
static void WILC_WFI_mgmt_tx_complete(void *priv, int status)
{
struct p2p_mgmt_data *pv_data = (struct p2p_mgmt_data *)priv;
kfree(pv_data->buff);
kfree(pv_data);
}
static void WILC_WFI_RemainOnChannelReady(void *pUserVoid)
{
struct wilc_priv *priv;
priv = (struct wilc_priv *)pUserVoid;
PRINT_D(HOSTINF_DBG, "Remain on channel ready\n");
priv->bInP2PlistenState = true;
cfg80211_ready_on_channel(priv->wdev,
priv->strRemainOnChanParams.u64ListenCookie,
priv->strRemainOnChanParams.pstrListenChan,
priv->strRemainOnChanParams.u32ListenDuration,
GFP_KERNEL);
}
static void WILC_WFI_RemainOnChannelExpired(void *pUserVoid, u32 u32SessionID)
{
struct wilc_priv *priv;
priv = (struct wilc_priv *)pUserVoid;
if (u32SessionID == priv->strRemainOnChanParams.u32ListenSessionID) {
PRINT_D(GENERIC_DBG, "Remain on channel expired\n");
priv->bInP2PlistenState = false;
cfg80211_remain_on_channel_expired(priv->wdev,
priv->strRemainOnChanParams.u64ListenCookie,
priv->strRemainOnChanParams.pstrListenChan,
GFP_KERNEL);
} else {
PRINT_D(GENERIC_DBG, "Received ID 0x%x Expected ID 0x%x (No match)\n", u32SessionID
, priv->strRemainOnChanParams.u32ListenSessionID);
}
}
static int remain_on_channel(struct wiphy *wiphy,
struct wireless_dev *wdev,
struct ieee80211_channel *chan,
unsigned int duration, u64 *cookie)
{
s32 s32Error = 0;
struct wilc_priv *priv;
struct wilc_vif *vif;
priv = wiphy_priv(wiphy);
vif = netdev_priv(priv->dev);
PRINT_D(GENERIC_DBG, "Remaining on channel %d\n", chan->hw_value);
if (wdev->iftype == NL80211_IFTYPE_AP) {
PRINT_D(GENERIC_DBG, "Required remain-on-channel while in AP mode");
return s32Error;
}
curr_channel = chan->hw_value;
priv->strRemainOnChanParams.pstrListenChan = chan;
priv->strRemainOnChanParams.u64ListenCookie = *cookie;
priv->strRemainOnChanParams.u32ListenDuration = duration;
priv->strRemainOnChanParams.u32ListenSessionID++;
s32Error = wilc_remain_on_channel(vif,
priv->strRemainOnChanParams.u32ListenSessionID,
duration, chan->hw_value,
WILC_WFI_RemainOnChannelExpired,
WILC_WFI_RemainOnChannelReady, (void *)priv);
return s32Error;
}
static int cancel_remain_on_channel(struct wiphy *wiphy,
struct wireless_dev *wdev,
u64 cookie)
{
s32 s32Error = 0;
struct wilc_priv *priv;
struct wilc_vif *vif;
priv = wiphy_priv(wiphy);
vif = netdev_priv(priv->dev);
PRINT_D(CFG80211_DBG, "Cancel remain on channel\n");
s32Error = wilc_listen_state_expired(vif, priv->strRemainOnChanParams.u32ListenSessionID);
return s32Error;
}
static int mgmt_tx(struct wiphy *wiphy,
struct wireless_dev *wdev,
struct cfg80211_mgmt_tx_params *params,
u64 *cookie)
{
struct ieee80211_channel *chan = params->chan;
unsigned int wait = params->wait;
const u8 *buf = params->buf;
size_t len = params->len;
const struct ieee80211_mgmt *mgmt;
struct p2p_mgmt_data *mgmt_tx;
struct wilc_priv *priv;
struct host_if_drv *pstrWFIDrv;
u32 i;
struct wilc_vif *vif;
u32 buf_len = len + sizeof(p2p_vendor_spec) + sizeof(p2p_local_random);
vif = netdev_priv(wdev->netdev);
priv = wiphy_priv(wiphy);
pstrWFIDrv = (struct host_if_drv *)priv->hWILCWFIDrv;
*cookie = (unsigned long)buf;
priv->u64tx_cookie = *cookie;
mgmt = (const struct ieee80211_mgmt *) buf;
if (ieee80211_is_mgmt(mgmt->frame_control)) {
mgmt_tx = kmalloc(sizeof(struct p2p_mgmt_data), GFP_KERNEL);
if (!mgmt_tx) {
PRINT_ER("Failed to allocate memory for mgmt_tx structure\n");
return -EFAULT;
}
mgmt_tx->buff = kmalloc(buf_len, GFP_KERNEL);
if (!mgmt_tx->buff) {
PRINT_ER("Failed to allocate memory for mgmt_tx buff\n");
kfree(mgmt_tx);
return -EFAULT;
}
memcpy(mgmt_tx->buff, buf, len);
mgmt_tx->size = len;
if (ieee80211_is_probe_resp(mgmt->frame_control)) {
PRINT_D(GENERIC_DBG, "TX: Probe Response\n");
PRINT_D(GENERIC_DBG, "Setting channel: %d\n", chan->hw_value);
wilc_set_mac_chnl_num(vif, chan->hw_value);
curr_channel = chan->hw_value;
} else if (ieee80211_is_action(mgmt->frame_control)) {
PRINT_D(GENERIC_DBG, "ACTION FRAME:%x\n", (u16)mgmt->frame_control);
if (buf[ACTION_CAT_ID] == PUB_ACTION_ATTR_ID) {
if (buf[ACTION_SUBTYPE_ID] != PUBLIC_ACT_VENDORSPEC ||
buf[P2P_PUB_ACTION_SUBTYPE] != GO_NEG_CONF) {
PRINT_D(GENERIC_DBG, "Setting channel: %d\n", chan->hw_value);
wilc_set_mac_chnl_num(vif,
chan->hw_value);
curr_channel = chan->hw_value;
}
switch (buf[ACTION_SUBTYPE_ID]) {
case GAS_INTIAL_REQ:
{
PRINT_D(GENERIC_DBG, "GAS INITIAL REQ %x\n", buf[ACTION_SUBTYPE_ID]);
break;
}
case GAS_INTIAL_RSP:
{
PRINT_D(GENERIC_DBG, "GAS INITIAL RSP %x\n", buf[ACTION_SUBTYPE_ID]);
break;
}
case PUBLIC_ACT_VENDORSPEC:
{
if (!memcmp(p2p_oui, &buf[ACTION_SUBTYPE_ID + 1], 4)) {
if ((buf[P2P_PUB_ACTION_SUBTYPE] == GO_NEG_REQ || buf[P2P_PUB_ACTION_SUBTYPE] == GO_NEG_RSP)) {
if (p2p_local_random == 1 && p2p_recv_random < p2p_local_random) {
get_random_bytes(&p2p_local_random, 1);
p2p_local_random++;
}
}
if ((buf[P2P_PUB_ACTION_SUBTYPE] == GO_NEG_REQ || buf[P2P_PUB_ACTION_SUBTYPE] == GO_NEG_RSP
|| buf[P2P_PUB_ACTION_SUBTYPE] == P2P_INV_REQ || buf[P2P_PUB_ACTION_SUBTYPE] == P2P_INV_RSP)) {
if (p2p_local_random > p2p_recv_random) {
PRINT_D(GENERIC_DBG, "LOCAL WILL BE GO LocaRand=%02x RecvRand %02x\n", p2p_local_random, p2p_recv_random);
for (i = P2P_PUB_ACTION_SUBTYPE + 2; i < len; i++) {
if (buf[i] == P2PELEM_ATTR_ID && !(memcmp(p2p_oui, &buf[i + 2], 4))) {
if (buf[P2P_PUB_ACTION_SUBTYPE] == P2P_INV_REQ || buf[P2P_PUB_ACTION_SUBTYPE] == P2P_INV_RSP)
WILC_WFI_CfgParseTxAction(&mgmt_tx->buff[i + 6], len - (i + 6), true, vif->iftype);
else
WILC_WFI_CfgParseTxAction(&mgmt_tx->buff[i + 6], len - (i + 6), false, vif->iftype);
break;
}
}
if (buf[P2P_PUB_ACTION_SUBTYPE] != P2P_INV_REQ && buf[P2P_PUB_ACTION_SUBTYPE] != P2P_INV_RSP) {
memcpy(&mgmt_tx->buff[len], p2p_vendor_spec, sizeof(p2p_vendor_spec));
mgmt_tx->buff[len + sizeof(p2p_vendor_spec)] = p2p_local_random;
mgmt_tx->size = buf_len;
}
} else {
PRINT_D(GENERIC_DBG, "PEER WILL BE GO LocaRand=%02x RecvRand %02x\n", p2p_local_random, p2p_recv_random);
}
}
} else {
PRINT_D(GENERIC_DBG, "Not a P2P public action frame\n");
}
break;
}
default:
{
PRINT_D(GENERIC_DBG, "NOT HANDLED PUBLIC ACTION FRAME TYPE:%x\n", buf[ACTION_SUBTYPE_ID]);
break;
}
}
}
PRINT_D(GENERIC_DBG, "TX: ACTION FRAME Type:%x : Chan:%d\n", buf[ACTION_SUBTYPE_ID], chan->hw_value);
pstrWFIDrv->p2p_timeout = (jiffies + msecs_to_jiffies(wait));
PRINT_D(GENERIC_DBG, "Current Jiffies: %lu Timeout:%llu\n",
jiffies, pstrWFIDrv->p2p_timeout);
}
wilc_wlan_txq_add_mgmt_pkt(wdev->netdev, mgmt_tx,
mgmt_tx->buff, mgmt_tx->size,
WILC_WFI_mgmt_tx_complete);
} else {
PRINT_D(GENERIC_DBG, "This function transmits only management frames\n");
}
return 0;
}
static int mgmt_tx_cancel_wait(struct wiphy *wiphy,
struct wireless_dev *wdev,
u64 cookie)
{
struct wilc_priv *priv;
struct host_if_drv *pstrWFIDrv;
priv = wiphy_priv(wiphy);
pstrWFIDrv = (struct host_if_drv *)priv->hWILCWFIDrv;
PRINT_D(GENERIC_DBG, "Tx Cancel wait :%lu\n", jiffies);
pstrWFIDrv->p2p_timeout = jiffies;
if (!priv->bInP2PlistenState) {
cfg80211_remain_on_channel_expired(priv->wdev,
priv->strRemainOnChanParams.u64ListenCookie,
priv->strRemainOnChanParams.pstrListenChan,
GFP_KERNEL);
}
return 0;
}
void wilc_mgmt_frame_register(struct wiphy *wiphy, struct wireless_dev *wdev,
u16 frame_type, bool reg)
{
struct wilc_priv *priv;
struct wilc_vif *vif;
struct wilc *wl;
priv = wiphy_priv(wiphy);
vif = netdev_priv(priv->wdev->netdev);
wl = vif->wilc;
if (!frame_type)
return;
PRINT_D(GENERIC_DBG, "Frame registering Frame Type: %x: Boolean: %d\n", frame_type, reg);
switch (frame_type) {
case PROBE_REQ:
{
vif->g_struct_frame_reg[0].frame_type = frame_type;
vif->g_struct_frame_reg[0].reg = reg;
}
break;
case ACTION:
{
vif->g_struct_frame_reg[1].frame_type = frame_type;
vif->g_struct_frame_reg[1].reg = reg;
}
break;
default:
{
break;
}
}
if (!wl->initialized) {
PRINT_D(GENERIC_DBG, "Return since mac is closed\n");
return;
}
wilc_frame_register(vif, frame_type, reg);
}
static int set_cqm_rssi_config(struct wiphy *wiphy, struct net_device *dev,
s32 rssi_thold, u32 rssi_hyst)
{
PRINT_D(CFG80211_DBG, "Setting CQM RSSi Function\n");
return 0;
}
static int dump_station(struct wiphy *wiphy, struct net_device *dev,
int idx, u8 *mac, struct station_info *sinfo)
{
struct wilc_priv *priv;
struct wilc_vif *vif;
PRINT_D(CFG80211_DBG, "Dumping station information\n");
if (idx != 0)
return -ENOENT;
priv = wiphy_priv(wiphy);
vif = netdev_priv(priv->dev);
sinfo->filled |= BIT(NL80211_STA_INFO_SIGNAL);
wilc_get_rssi(vif, &sinfo->signal);
return 0;
}
static int set_power_mgmt(struct wiphy *wiphy, struct net_device *dev,
bool enabled, int timeout)
{
struct wilc_priv *priv;
struct wilc_vif *vif;
PRINT_D(CFG80211_DBG, " Power save Enabled= %d , TimeOut = %d\n", enabled, timeout);
if (!wiphy)
return -ENOENT;
priv = wiphy_priv(wiphy);
vif = netdev_priv(priv->dev);
if (!priv->hWILCWFIDrv) {
PRINT_ER("Driver is NULL\n");
return -EIO;
}
if (wilc_enable_ps)
wilc_set_power_mgmt(vif, enabled, timeout);
return 0;
}
static int change_virtual_intf(struct wiphy *wiphy, struct net_device *dev,
enum nl80211_iftype type, u32 *flags, struct vif_params *params)
{
struct wilc_priv *priv;
struct wilc_vif *vif;
u8 interface_type;
u16 TID = 0;
u8 i;
struct wilc *wl;
vif = netdev_priv(dev);
priv = wiphy_priv(wiphy);
wl = vif->wilc;
PRINT_D(HOSTAPD_DBG, "In Change virtual interface function\n");
PRINT_D(HOSTAPD_DBG, "Wireless interface name =%s\n", dev->name);
p2p_local_random = 0x01;
p2p_recv_random = 0x00;
wilc_ie = false;
wilc_optaining_ip = false;
del_timer(&wilc_during_ip_timer);
PRINT_D(GENERIC_DBG, "Changing virtual interface, enable scan\n");
if (g_ptk_keys_saved && g_gtk_keys_saved) {
wilc_set_machw_change_vir_if(dev, true);
}
switch (type) {
case NL80211_IFTYPE_STATION:
wilc_connecting = 0;
PRINT_D(HOSTAPD_DBG, "Interface type = NL80211_IFTYPE_STATION\n");
dev->ieee80211_ptr->iftype = type;
priv->wdev->iftype = type;
vif->monitor_flag = 0;
vif->iftype = STATION_MODE;
memset(priv->assoc_stainfo.au8Sta_AssociatedBss, 0, MAX_NUM_STA * ETH_ALEN);
interface_type = vif->iftype;
vif->iftype = STATION_MODE;
if (wl->initialized) {
wilc_del_all_rx_ba_session(vif, wl->vif[0]->bssid,
TID);
wilc_wait_msg_queue_idle();
up(&wl->cfg_event);
wilc1000_wlan_deinit(dev);
wilc1000_wlan_init(dev, vif);
wilc_initialized = 1;
vif->iftype = interface_type;
wilc_set_wfi_drv_handler(vif,
wilc_get_vif_idx(wl->vif[0]));
wilc_set_mac_address(wl->vif[0], wl->vif[0]->src_addr);
wilc_set_operation_mode(vif, STATION_MODE);
if (g_wep_keys_saved) {
wilc_set_wep_default_keyid(wl->vif[0],
g_key_wep_params.key_idx);
wilc_add_wep_key_bss_sta(wl->vif[0],
g_key_wep_params.key,
g_key_wep_params.key_len,
g_key_wep_params.key_idx);
}
wilc_flush_join_req(vif);
if (g_ptk_keys_saved && g_gtk_keys_saved) {
PRINT_D(CFG80211_DBG, "ptk %x %x %x\n", g_key_ptk_params.key[0],
g_key_ptk_params.key[1],
g_key_ptk_params.key[2]);
PRINT_D(CFG80211_DBG, "gtk %x %x %x\n", g_key_gtk_params.key[0],
g_key_gtk_params.key[1],
g_key_gtk_params.key[2]);
add_key(wl->vif[0]->ndev->ieee80211_ptr->wiphy,
wl->vif[0]->ndev,
g_add_ptk_key_params.key_idx,
g_add_ptk_key_params.pairwise,
g_add_ptk_key_params.mac_addr,
(struct key_params *)(&g_key_ptk_params));
add_key(wl->vif[0]->ndev->ieee80211_ptr->wiphy,
wl->vif[0]->ndev,
g_add_gtk_key_params.key_idx,
g_add_gtk_key_params.pairwise,
g_add_gtk_key_params.mac_addr,
(struct key_params *)(&g_key_gtk_params));
}
if (wl->initialized) {
for (i = 0; i < num_reg_frame; i++) {
PRINT_D(INIT_DBG, "Frame registering Type: %x - Reg: %d\n", vif->g_struct_frame_reg[i].frame_type,
vif->g_struct_frame_reg[i].reg);
wilc_frame_register(vif,
vif->g_struct_frame_reg[i].frame_type,
vif->g_struct_frame_reg[i].reg);
}
}
wilc_enable_ps = true;
wilc_set_power_mgmt(vif, 1, 0);
}
break;
case NL80211_IFTYPE_P2P_CLIENT:
wilc_enable_ps = false;
wilc_set_power_mgmt(vif, 0, 0);
wilc_connecting = 0;
PRINT_D(HOSTAPD_DBG, "Interface type = NL80211_IFTYPE_P2P_CLIENT\n");
wilc_del_all_rx_ba_session(vif, wl->vif[0]->bssid, TID);
dev->ieee80211_ptr->iftype = type;
priv->wdev->iftype = type;
vif->monitor_flag = 0;
PRINT_D(HOSTAPD_DBG, "Downloading P2P_CONCURRENCY_FIRMWARE\n");
vif->iftype = CLIENT_MODE;
if (wl->initialized) {
wilc_wait_msg_queue_idle();
wilc1000_wlan_deinit(dev);
wilc1000_wlan_init(dev, vif);
wilc_initialized = 1;
wilc_set_wfi_drv_handler(vif,
wilc_get_vif_idx(wl->vif[0]));
wilc_set_mac_address(wl->vif[0], wl->vif[0]->src_addr);
wilc_set_operation_mode(vif, STATION_MODE);
if (g_wep_keys_saved) {
wilc_set_wep_default_keyid(wl->vif[0],
g_key_wep_params.key_idx);
wilc_add_wep_key_bss_sta(wl->vif[0],
g_key_wep_params.key,
g_key_wep_params.key_len,
g_key_wep_params.key_idx);
}
wilc_flush_join_req(vif);
if (g_ptk_keys_saved && g_gtk_keys_saved) {
PRINT_D(CFG80211_DBG, "ptk %x %x %x\n", g_key_ptk_params.key[0],
g_key_ptk_params.key[1],
g_key_ptk_params.key[2]);
PRINT_D(CFG80211_DBG, "gtk %x %x %x\n", g_key_gtk_params.key[0],
g_key_gtk_params.key[1],
g_key_gtk_params.key[2]);
add_key(wl->vif[0]->ndev->ieee80211_ptr->wiphy,
wl->vif[0]->ndev,
g_add_ptk_key_params.key_idx,
g_add_ptk_key_params.pairwise,
g_add_ptk_key_params.mac_addr,
(struct key_params *)(&g_key_ptk_params));
add_key(wl->vif[0]->ndev->ieee80211_ptr->wiphy,
wl->vif[0]->ndev,
g_add_gtk_key_params.key_idx,
g_add_gtk_key_params.pairwise,
g_add_gtk_key_params.mac_addr,
(struct key_params *)(&g_key_gtk_params));
}
refresh_scan(priv, 1, true);
wilc_set_machw_change_vir_if(dev, false);
if (wl->initialized) {
for (i = 0; i < num_reg_frame; i++) {
PRINT_D(INIT_DBG, "Frame registering Type: %x - Reg: %d\n", vif->g_struct_frame_reg[i].frame_type,
vif->g_struct_frame_reg[i].reg);
wilc_frame_register(vif,
vif->g_struct_frame_reg[i].frame_type,
vif->g_struct_frame_reg[i].reg);
}
}
}
break;
case NL80211_IFTYPE_AP:
wilc_enable_ps = false;
PRINT_D(HOSTAPD_DBG, "Interface type = NL80211_IFTYPE_AP %d\n", type);
dev->ieee80211_ptr->iftype = type;
priv->wdev->iftype = type;
vif->iftype = AP_MODE;
PRINT_D(CORECONFIG_DBG, "priv->hWILCWFIDrv[%p]\n", priv->hWILCWFIDrv);
PRINT_D(HOSTAPD_DBG, "Downloading AP firmware\n");
wilc_wlan_get_firmware(dev);
if (wl->initialized) {
vif->iftype = AP_MODE;
wilc_mac_close(dev);
wilc_mac_open(dev);
for (i = 0; i < num_reg_frame; i++) {
PRINT_D(INIT_DBG, "Frame registering Type: %x - Reg: %d\n", vif->g_struct_frame_reg[i].frame_type,
vif->g_struct_frame_reg[i].reg);
wilc_frame_register(vif,
vif->g_struct_frame_reg[i].frame_type,
vif->g_struct_frame_reg[i].reg);
}
}
break;
case NL80211_IFTYPE_P2P_GO:
PRINT_D(GENERIC_DBG, "start duringIP timer\n");
wilc_optaining_ip = true;
mod_timer(&wilc_during_ip_timer,
jiffies + msecs_to_jiffies(during_ip_time));
wilc_set_power_mgmt(vif, 0, 0);
wilc_del_all_rx_ba_session(vif, wl->vif[0]->bssid, TID);
wilc_enable_ps = false;
PRINT_D(HOSTAPD_DBG, "Interface type = NL80211_IFTYPE_GO\n");
dev->ieee80211_ptr->iftype = type;
priv->wdev->iftype = type;
PRINT_D(CORECONFIG_DBG, "priv->hWILCWFIDrv[%p]\n", priv->hWILCWFIDrv);
PRINT_D(HOSTAPD_DBG, "Downloading P2P_CONCURRENCY_FIRMWARE\n");
vif->iftype = GO_MODE;
wilc_wait_msg_queue_idle();
wilc1000_wlan_deinit(dev);
wilc1000_wlan_init(dev, vif);
wilc_initialized = 1;
wilc_set_wfi_drv_handler(vif, wilc_get_vif_idx(wl->vif[0]));
wilc_set_mac_address(wl->vif[0], wl->vif[0]->src_addr);
wilc_set_operation_mode(vif, AP_MODE);
if (g_wep_keys_saved) {
wilc_set_wep_default_keyid(wl->vif[0],
g_key_wep_params.key_idx);
wilc_add_wep_key_bss_sta(wl->vif[0],
g_key_wep_params.key,
g_key_wep_params.key_len,
g_key_wep_params.key_idx);
}
wilc_flush_join_req(vif);
if (g_ptk_keys_saved && g_gtk_keys_saved) {
PRINT_D(CFG80211_DBG, "ptk %x %x %x cipher %x\n", g_key_ptk_params.key[0],
g_key_ptk_params.key[1],
g_key_ptk_params.key[2],
g_key_ptk_params.cipher);
PRINT_D(CFG80211_DBG, "gtk %x %x %x cipher %x\n", g_key_gtk_params.key[0],
g_key_gtk_params.key[1],
g_key_gtk_params.key[2],
g_key_gtk_params.cipher);
add_key(wl->vif[0]->ndev->ieee80211_ptr->wiphy,
wl->vif[0]->ndev,
g_add_ptk_key_params.key_idx,
g_add_ptk_key_params.pairwise,
g_add_ptk_key_params.mac_addr,
(struct key_params *)(&g_key_ptk_params));
add_key(wl->vif[0]->ndev->ieee80211_ptr->wiphy,
wl->vif[0]->ndev,
g_add_gtk_key_params.key_idx,
g_add_gtk_key_params.pairwise,
g_add_gtk_key_params.mac_addr,
(struct key_params *)(&g_key_gtk_params));
}
if (wl->initialized) {
for (i = 0; i < num_reg_frame; i++) {
PRINT_D(INIT_DBG, "Frame registering Type: %x - Reg: %d\n", vif->g_struct_frame_reg[i].frame_type,
vif->g_struct_frame_reg[i].reg);
wilc_frame_register(vif,
vif->g_struct_frame_reg[i].frame_type,
vif->g_struct_frame_reg[i].reg);
}
}
break;
default:
PRINT_ER("Unknown interface type= %d\n", type);
return -EINVAL;
}
return 0;
}
static int start_ap(struct wiphy *wiphy, struct net_device *dev,
struct cfg80211_ap_settings *settings)
{
struct cfg80211_beacon_data *beacon = &(settings->beacon);
struct wilc_priv *priv;
s32 s32Error = 0;
struct wilc *wl;
struct wilc_vif *vif;
priv = wiphy_priv(wiphy);
vif = netdev_priv(dev);
wl = vif ->wilc;
PRINT_D(HOSTAPD_DBG, "Starting ap\n");
PRINT_D(HOSTAPD_DBG, "Interval = %d\n DTIM period = %d\n Head length = %zu Tail length = %zu\n",
settings->beacon_interval, settings->dtim_period, beacon->head_len, beacon->tail_len);
s32Error = set_channel(wiphy, &settings->chandef);
if (s32Error != 0)
PRINT_ER("Error in setting channel\n");
wilc_wlan_set_bssid(dev, wl->vif[0]->src_addr);
s32Error = wilc_add_beacon(vif, settings->beacon_interval,
settings->dtim_period, beacon->head_len,
(u8 *)beacon->head, beacon->tail_len,
(u8 *)beacon->tail);
return s32Error;
}
static int change_beacon(struct wiphy *wiphy, struct net_device *dev,
struct cfg80211_beacon_data *beacon)
{
struct wilc_priv *priv;
struct wilc_vif *vif;
s32 s32Error = 0;
priv = wiphy_priv(wiphy);
vif = netdev_priv(priv->dev);
PRINT_D(HOSTAPD_DBG, "Setting beacon\n");
s32Error = wilc_add_beacon(vif, 0, 0, beacon->head_len,
(u8 *)beacon->head, beacon->tail_len,
(u8 *)beacon->tail);
return s32Error;
}
static int stop_ap(struct wiphy *wiphy, struct net_device *dev)
{
s32 s32Error = 0;
struct wilc_priv *priv;
struct wilc_vif *vif;
u8 NullBssid[ETH_ALEN] = {0};
if (!wiphy)
return -EFAULT;
priv = wiphy_priv(wiphy);
vif = netdev_priv(priv->dev);
PRINT_D(HOSTAPD_DBG, "Deleting beacon\n");
wilc_wlan_set_bssid(dev, NullBssid);
s32Error = wilc_del_beacon(vif);
if (s32Error)
PRINT_ER("Host delete beacon fail\n");
return s32Error;
}
static int add_station(struct wiphy *wiphy, struct net_device *dev,
const u8 *mac, struct station_parameters *params)
{
s32 s32Error = 0;
struct wilc_priv *priv;
struct add_sta_param strStaParams = { {0} };
struct wilc_vif *vif;
if (!wiphy)
return -EFAULT;
priv = wiphy_priv(wiphy);
vif = netdev_priv(dev);
if (vif->iftype == AP_MODE || vif->iftype == GO_MODE) {
memcpy(strStaParams.bssid, mac, ETH_ALEN);
memcpy(priv->assoc_stainfo.au8Sta_AssociatedBss[params->aid], mac, ETH_ALEN);
strStaParams.aid = params->aid;
strStaParams.rates_len = params->supported_rates_len;
strStaParams.rates = params->supported_rates;
PRINT_D(CFG80211_DBG, "Adding station parameters %d\n", params->aid);
PRINT_D(CFG80211_DBG, "BSSID = %x%x%x%x%x%x\n", priv->assoc_stainfo.au8Sta_AssociatedBss[params->aid][0], priv->assoc_stainfo.au8Sta_AssociatedBss[params->aid][1], priv->assoc_stainfo.au8Sta_AssociatedBss[params->aid][2], priv->assoc_stainfo.au8Sta_AssociatedBss[params->aid][3], priv->assoc_stainfo.au8Sta_AssociatedBss[params->aid][4],
priv->assoc_stainfo.au8Sta_AssociatedBss[params->aid][5]);
PRINT_D(HOSTAPD_DBG, "ASSOC ID = %d\n", strStaParams.aid);
PRINT_D(HOSTAPD_DBG, "Number of supported rates = %d\n",
strStaParams.rates_len);
if (!params->ht_capa) {
strStaParams.ht_supported = false;
} else {
strStaParams.ht_supported = true;
strStaParams.ht_capa_info = params->ht_capa->cap_info;
strStaParams.ht_ampdu_params = params->ht_capa->ampdu_params_info;
memcpy(strStaParams.ht_supp_mcs_set,
&params->ht_capa->mcs,
WILC_SUPP_MCS_SET_SIZE);
strStaParams.ht_ext_params = params->ht_capa->extended_ht_cap_info;
strStaParams.ht_tx_bf_cap = params->ht_capa->tx_BF_cap_info;
strStaParams.ht_ante_sel = params->ht_capa->antenna_selection_info;
}
strStaParams.flags_mask = params->sta_flags_mask;
strStaParams.flags_set = params->sta_flags_set;
PRINT_D(HOSTAPD_DBG, "IS HT supported = %d\n",
strStaParams.ht_supported);
PRINT_D(HOSTAPD_DBG, "Capability Info = %d\n",
strStaParams.ht_capa_info);
PRINT_D(HOSTAPD_DBG, "AMPDU Params = %d\n",
strStaParams.ht_ampdu_params);
PRINT_D(HOSTAPD_DBG, "HT Extended params = %d\n",
strStaParams.ht_ext_params);
PRINT_D(HOSTAPD_DBG, "Tx Beamforming Cap = %d\n",
strStaParams.ht_tx_bf_cap);
PRINT_D(HOSTAPD_DBG, "Antenna selection info = %d\n",
strStaParams.ht_ante_sel);
PRINT_D(HOSTAPD_DBG, "Flag Mask = %d\n",
strStaParams.flags_mask);
PRINT_D(HOSTAPD_DBG, "Flag Set = %d\n",
strStaParams.flags_set);
s32Error = wilc_add_station(vif, &strStaParams);
if (s32Error)
PRINT_ER("Host add station fail\n");
}
return s32Error;
}
static int del_station(struct wiphy *wiphy, struct net_device *dev,
struct station_del_parameters *params)
{
const u8 *mac = params->mac;
s32 s32Error = 0;
struct wilc_priv *priv;
struct wilc_vif *vif;
if (!wiphy)
return -EFAULT;
priv = wiphy_priv(wiphy);
vif = netdev_priv(dev);
if (vif->iftype == AP_MODE || vif->iftype == GO_MODE) {
PRINT_D(HOSTAPD_DBG, "Deleting station\n");
if (!mac) {
PRINT_D(HOSTAPD_DBG, "All associated stations\n");
s32Error = wilc_del_allstation(vif,
priv->assoc_stainfo.au8Sta_AssociatedBss);
} else {
PRINT_D(HOSTAPD_DBG, "With mac address: %x%x%x%x%x%x\n", mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
}
s32Error = wilc_del_station(vif, mac);
if (s32Error)
PRINT_ER("Host delete station fail\n");
}
return s32Error;
}
static int change_station(struct wiphy *wiphy, struct net_device *dev,
const u8 *mac, struct station_parameters *params)
{
s32 s32Error = 0;
struct wilc_priv *priv;
struct add_sta_param strStaParams = { {0} };
struct wilc_vif *vif;
PRINT_D(HOSTAPD_DBG, "Change station paramters\n");
if (!wiphy)
return -EFAULT;
priv = wiphy_priv(wiphy);
vif = netdev_priv(dev);
if (vif->iftype == AP_MODE || vif->iftype == GO_MODE) {
memcpy(strStaParams.bssid, mac, ETH_ALEN);
strStaParams.aid = params->aid;
strStaParams.rates_len = params->supported_rates_len;
strStaParams.rates = params->supported_rates;
PRINT_D(HOSTAPD_DBG, "BSSID = %x%x%x%x%x%x\n",
strStaParams.bssid[0], strStaParams.bssid[1],
strStaParams.bssid[2], strStaParams.bssid[3],
strStaParams.bssid[4], strStaParams.bssid[5]);
PRINT_D(HOSTAPD_DBG, "ASSOC ID = %d\n", strStaParams.aid);
PRINT_D(HOSTAPD_DBG, "Number of supported rates = %d\n",
strStaParams.rates_len);
if (!params->ht_capa) {
strStaParams.ht_supported = false;
} else {
strStaParams.ht_supported = true;
strStaParams.ht_capa_info = params->ht_capa->cap_info;
strStaParams.ht_ampdu_params = params->ht_capa->ampdu_params_info;
memcpy(strStaParams.ht_supp_mcs_set,
&params->ht_capa->mcs,
WILC_SUPP_MCS_SET_SIZE);
strStaParams.ht_ext_params = params->ht_capa->extended_ht_cap_info;
strStaParams.ht_tx_bf_cap = params->ht_capa->tx_BF_cap_info;
strStaParams.ht_ante_sel = params->ht_capa->antenna_selection_info;
}
strStaParams.flags_mask = params->sta_flags_mask;
strStaParams.flags_set = params->sta_flags_set;
PRINT_D(HOSTAPD_DBG, "IS HT supported = %d\n",
strStaParams.ht_supported);
PRINT_D(HOSTAPD_DBG, "Capability Info = %d\n",
strStaParams.ht_capa_info);
PRINT_D(HOSTAPD_DBG, "AMPDU Params = %d\n",
strStaParams.ht_ampdu_params);
PRINT_D(HOSTAPD_DBG, "HT Extended params = %d\n",
strStaParams.ht_ext_params);
PRINT_D(HOSTAPD_DBG, "Tx Beamforming Cap = %d\n",
strStaParams.ht_tx_bf_cap);
PRINT_D(HOSTAPD_DBG, "Antenna selection info = %d\n",
strStaParams.ht_ante_sel);
PRINT_D(HOSTAPD_DBG, "Flag Mask = %d\n",
strStaParams.flags_mask);
PRINT_D(HOSTAPD_DBG, "Flag Set = %d\n",
strStaParams.flags_set);
s32Error = wilc_edit_station(vif, &strStaParams);
if (s32Error)
PRINT_ER("Host edit station fail\n");
}
return s32Error;
}
static struct wireless_dev *add_virtual_intf(struct wiphy *wiphy,
const char *name,
unsigned char name_assign_type,
enum nl80211_iftype type,
u32 *flags,
struct vif_params *params)
{
struct wilc_vif *vif;
struct wilc_priv *priv;
struct net_device *new_ifc = NULL;
priv = wiphy_priv(wiphy);
PRINT_D(HOSTAPD_DBG, "Adding monitor interface[%p]\n", priv->wdev->netdev);
vif = netdev_priv(priv->wdev->netdev);
if (type == NL80211_IFTYPE_MONITOR) {
PRINT_D(HOSTAPD_DBG, "Monitor interface mode: Initializing mon interface virtual device driver\n");
PRINT_D(HOSTAPD_DBG, "Adding monitor interface[%p]\n", vif->ndev);
new_ifc = WILC_WFI_init_mon_interface(name, vif->ndev);
if (new_ifc) {
PRINT_D(HOSTAPD_DBG, "Setting monitor flag in private structure\n");
vif = netdev_priv(priv->wdev->netdev);
vif->monitor_flag = 1;
} else
PRINT_ER("Error in initializing monitor interface\n ");
}
return priv->wdev;
}
static int del_virtual_intf(struct wiphy *wiphy, struct wireless_dev *wdev)
{
PRINT_D(HOSTAPD_DBG, "Deleting virtual interface\n");
return 0;
}
static struct cfg80211_ops wilc_cfg80211_ops = {
.set_monitor_channel = set_channel,
.scan = scan,
.connect = connect,
.disconnect = disconnect,
.add_key = add_key,
.del_key = del_key,
.get_key = get_key,
.set_default_key = set_default_key,
.add_virtual_intf = add_virtual_intf,
.del_virtual_intf = del_virtual_intf,
.change_virtual_intf = change_virtual_intf,
.start_ap = start_ap,
.change_beacon = change_beacon,
.stop_ap = stop_ap,
.add_station = add_station,
.del_station = del_station,
.change_station = change_station,
.get_station = get_station,
.dump_station = dump_station,
.change_bss = change_bss,
.set_wiphy_params = set_wiphy_params,
.set_pmksa = set_pmksa,
.del_pmksa = del_pmksa,
.flush_pmksa = flush_pmksa,
.remain_on_channel = remain_on_channel,
.cancel_remain_on_channel = cancel_remain_on_channel,
.mgmt_tx_cancel_wait = mgmt_tx_cancel_wait,
.mgmt_tx = mgmt_tx,
.mgmt_frame_register = wilc_mgmt_frame_register,
.set_power_mgmt = set_power_mgmt,
.set_cqm_rssi_config = set_cqm_rssi_config,
};
int WILC_WFI_update_stats(struct wiphy *wiphy, u32 pktlen, u8 changed)
{
struct wilc_priv *priv;
priv = wiphy_priv(wiphy);
switch (changed) {
case WILC_WFI_RX_PKT:
{
priv->netstats.rx_packets++;
priv->netstats.rx_bytes += pktlen;
priv->netstats.rx_time = get_jiffies_64();
}
break;
case WILC_WFI_TX_PKT:
{
priv->netstats.tx_packets++;
priv->netstats.tx_bytes += pktlen;
priv->netstats.tx_time = get_jiffies_64();
}
break;
default:
break;
}
return 0;
}
static struct wireless_dev *WILC_WFI_CfgAlloc(void)
{
struct wireless_dev *wdev;
PRINT_D(CFG80211_DBG, "Allocating wireless device\n");
wdev = kzalloc(sizeof(struct wireless_dev), GFP_KERNEL);
if (!wdev) {
PRINT_ER("Cannot allocate wireless device\n");
goto _fail_;
}
wdev->wiphy = wiphy_new(&wilc_cfg80211_ops, sizeof(struct wilc_priv));
if (!wdev->wiphy) {
PRINT_ER("Cannot allocate wiphy\n");
goto _fail_mem_;
}
WILC_WFI_band_2ghz.ht_cap.ht_supported = 1;
WILC_WFI_band_2ghz.ht_cap.cap |= (1 << IEEE80211_HT_CAP_RX_STBC_SHIFT);
WILC_WFI_band_2ghz.ht_cap.mcs.rx_mask[0] = 0xff;
WILC_WFI_band_2ghz.ht_cap.ampdu_factor = IEEE80211_HT_MAX_AMPDU_8K;
WILC_WFI_band_2ghz.ht_cap.ampdu_density = IEEE80211_HT_MPDU_DENSITY_NONE;
wdev->wiphy->bands[IEEE80211_BAND_2GHZ] = &WILC_WFI_band_2ghz;
return wdev;
_fail_mem_:
kfree(wdev);
_fail_:
return NULL;
}
struct wireless_dev *wilc_create_wiphy(struct net_device *net, struct device *dev)
{
struct wilc_priv *priv;
struct wireless_dev *wdev;
s32 s32Error = 0;
PRINT_D(CFG80211_DBG, "Registering wifi device\n");
wdev = WILC_WFI_CfgAlloc();
if (!wdev) {
PRINT_ER("CfgAlloc Failed\n");
return NULL;
}
priv = wdev_priv(wdev);
sema_init(&(priv->SemHandleUpdateStats), 1);
priv->wdev = wdev;
wdev->wiphy->max_scan_ssids = MAX_NUM_PROBED_SSID;
wdev->wiphy->max_num_pmkids = WILC_MAX_NUM_PMKIDS;
PRINT_INFO(CFG80211_DBG, "Max number of PMKIDs = %d\n", wdev->wiphy->max_num_pmkids);
wdev->wiphy->max_scan_ie_len = 1000;
wdev->wiphy->signal_type = CFG80211_SIGNAL_TYPE_MBM;
wdev->wiphy->cipher_suites = cipher_suites;
wdev->wiphy->n_cipher_suites = ARRAY_SIZE(cipher_suites);
wdev->wiphy->mgmt_stypes = wilc_wfi_cfg80211_mgmt_types;
wdev->wiphy->max_remain_on_channel_duration = 500;
wdev->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) | BIT(NL80211_IFTYPE_AP) | BIT(NL80211_IFTYPE_MONITOR) | BIT(NL80211_IFTYPE_P2P_GO) |
BIT(NL80211_IFTYPE_P2P_CLIENT);
wdev->wiphy->flags |= WIPHY_FLAG_HAS_REMAIN_ON_CHANNEL;
wdev->iftype = NL80211_IFTYPE_STATION;
PRINT_INFO(CFG80211_DBG, "Max scan ids = %d,Max scan IE len = %d,Signal Type = %d,Interface Modes = %d,Interface Type = %d\n",
wdev->wiphy->max_scan_ssids, wdev->wiphy->max_scan_ie_len, wdev->wiphy->signal_type,
wdev->wiphy->interface_modes, wdev->iftype);
set_wiphy_dev(wdev->wiphy, dev);
s32Error = wiphy_register(wdev->wiphy);
if (s32Error) {
PRINT_ER("Cannot register wiphy device\n");
} else {
PRINT_D(CFG80211_DBG, "Successful Registering\n");
}
priv->dev = net;
return wdev;
}
int wilc_init_host_int(struct net_device *net)
{
int s32Error = 0;
struct wilc_priv *priv;
PRINT_D(INIT_DBG, "Host[%p][%p]\n", net, net->ieee80211_ptr);
priv = wdev_priv(net->ieee80211_ptr);
if (op_ifcs == 0) {
setup_timer(&hAgingTimer, remove_network_from_shadow, 0);
setup_timer(&wilc_during_ip_timer, clear_duringIP, 0);
}
op_ifcs++;
if (s32Error < 0) {
PRINT_ER("Failed to creat refresh Timer\n");
return s32Error;
}
priv->gbAutoRateAdjusted = false;
priv->bInP2PlistenState = false;
sema_init(&(priv->hSemScanReq), 1);
s32Error = wilc_init(net, &priv->hWILCWFIDrv);
if (s32Error)
PRINT_ER("Error while initializing hostinterface\n");
return s32Error;
}
int wilc_deinit_host_int(struct net_device *net)
{
int s32Error = 0;
struct wilc_vif *vif;
struct wilc_priv *priv;
priv = wdev_priv(net->ieee80211_ptr);
vif = netdev_priv(priv->dev);
priv->gbAutoRateAdjusted = false;
priv->bInP2PlistenState = false;
op_ifcs--;
s32Error = wilc_deinit(vif);
clear_shadow_scan();
if (op_ifcs == 0) {
PRINT_D(CORECONFIG_DBG, "destroy during ip\n");
del_timer_sync(&wilc_during_ip_timer);
}
if (s32Error)
PRINT_ER("Error while deintializing host interface\n");
return s32Error;
}
void wilc_free_wiphy(struct net_device *net)
{
PRINT_D(CFG80211_DBG, "Unregistering wiphy\n");
if (!net) {
PRINT_D(INIT_DBG, "net_device is NULL\n");
return;
}
if (!net->ieee80211_ptr) {
PRINT_D(INIT_DBG, "ieee80211_ptr is NULL\n");
return;
}
if (!net->ieee80211_ptr->wiphy) {
PRINT_D(INIT_DBG, "wiphy is NULL\n");
return;
}
wiphy_unregister(net->ieee80211_ptr->wiphy);
PRINT_D(INIT_DBG, "Freeing wiphy\n");
wiphy_free(net->ieee80211_ptr->wiphy);
kfree(net->ieee80211_ptr);
}