blob: 2a641ba7be3b717aa2f9343fe94e05f5e6700e79 [file] [log] [blame]
Mauro Carvalho Chehabb693d0b2019-06-12 14:52:38 -03001==============================
2Memory Layout on AArch64 Linux
3==============================
4
5Author: Catalin Marinas <catalin.marinas@arm.com>
6
7This document describes the virtual memory layout used by the AArch64
8Linux kernel. The architecture allows up to 4 levels of translation
9tables with a 4KB page size and up to 3 levels with a 64KB page size.
10
11AArch64 Linux uses either 3 levels or 4 levels of translation tables
12with the 4KB page configuration, allowing 39-bit (512GB) or 48-bit
13(256TB) virtual addresses, respectively, for both user and kernel. With
1464KB pages, only 2 levels of translation tables, allowing 42-bit (4TB)
15virtual address, are used but the memory layout is the same.
16
Steve Capperd2c68de2019-08-07 16:55:24 +010017ARMv8.2 adds optional support for Large Virtual Address space. This is
18only available when running with a 64KB page size and expands the
19number of descriptors in the first level of translation.
20
Mauro Carvalho Chehabb693d0b2019-06-12 14:52:38 -030021User addresses have bits 63:48 set to 0 while the kernel addresses have
22the same bits set to 1. TTBRx selection is given by bit 63 of the
23virtual address. The swapper_pg_dir contains only kernel (global)
24mappings while the user pgd contains only user (non-global) mappings.
25The swapper_pg_dir address is written to TTBR1 and never written to
26TTBR0.
27
28
Steve Capperd2c68de2019-08-07 16:55:24 +010029AArch64 Linux memory layout with 4KB pages + 4 levels (48-bit)::
Mauro Carvalho Chehabb693d0b2019-06-12 14:52:38 -030030
31 Start End Size Use
32 -----------------------------------------------------------------------
33 0000000000000000 0000ffffffffffff 256TB user
Steve Capperd2c68de2019-08-07 16:55:24 +010034 ffff000000000000 ffff7fffffffffff 128TB kernel logical memory map
Ard Biesheuvel68af6d22020-11-10 14:08:51 +010035 [ffff600000000000 ffff7fffffffffff] 32TB [kasan shadow region]
Andre Mueller5bed6a92022-06-21 10:16:51 +020036 ffff800000000000 ffff800007ffffff 128MB modules
37 ffff800008000000 fffffbffefffffff 124TB vmalloc
Ard Biesheuvel9ad7c6d2020-10-08 17:36:02 +020038 fffffbfff0000000 fffffbfffdffffff 224MB fixed mappings (top down)
39 fffffbfffe000000 fffffbfffe7fffff 8MB [guard region]
40 fffffbfffe800000 fffffbffff7fffff 16MB PCI I/O space
41 fffffbffff800000 fffffbffffffffff 8MB [guard region]
Ard Biesheuvel8c964002020-10-08 17:36:01 +020042 fffffc0000000000 fffffdffffffffff 2TB vmemmap
43 fffffe0000000000 ffffffffffffffff 2TB [guard region]
Mauro Carvalho Chehabb693d0b2019-06-12 14:52:38 -030044
45
Steve Capperd2c68de2019-08-07 16:55:24 +010046AArch64 Linux memory layout with 64KB pages + 3 levels (52-bit with HW support)::
Mauro Carvalho Chehabb693d0b2019-06-12 14:52:38 -030047
48 Start End Size Use
49 -----------------------------------------------------------------------
Steve Capperd2c68de2019-08-07 16:55:24 +010050 0000000000000000 000fffffffffffff 4PB user
Ard Biesheuvelf4693c22020-10-08 17:36:00 +020051 fff0000000000000 ffff7fffffffffff ~4PB kernel logical memory map
Ard Biesheuvel68af6d22020-11-10 14:08:51 +010052 [fffd800000000000 ffff7fffffffffff] 512TB [kasan shadow region]
Andre Mueller5bed6a92022-06-21 10:16:51 +020053 ffff800000000000 ffff800007ffffff 128MB modules
54 ffff800008000000 fffffbffefffffff 124TB vmalloc
Ard Biesheuvel9ad7c6d2020-10-08 17:36:02 +020055 fffffbfff0000000 fffffbfffdffffff 224MB fixed mappings (top down)
56 fffffbfffe000000 fffffbfffe7fffff 8MB [guard region]
57 fffffbfffe800000 fffffbffff7fffff 16MB PCI I/O space
58 fffffbffff800000 fffffbffffffffff 8MB [guard region]
Ard Biesheuvel8c964002020-10-08 17:36:01 +020059 fffffc0000000000 ffffffdfffffffff ~4TB vmemmap
60 ffffffe000000000 ffffffffffffffff 128GB [guard region]
Mauro Carvalho Chehabb693d0b2019-06-12 14:52:38 -030061
62
63Translation table lookup with 4KB pages::
64
65 +--------+--------+--------+--------+--------+--------+--------+--------+
66 |63 56|55 48|47 40|39 32|31 24|23 16|15 8|7 0|
67 +--------+--------+--------+--------+--------+--------+--------+--------+
68 | | | | | |
69 | | | | | v
70 | | | | | [11:0] in-page offset
71 | | | | +-> [20:12] L3 index
72 | | | +-----------> [29:21] L2 index
73 | | +---------------------> [38:30] L1 index
74 | +-------------------------------> [47:39] L0 index
75 +-------------------------------------------------> [63] TTBR0/1
76
77
78Translation table lookup with 64KB pages::
79
80 +--------+--------+--------+--------+--------+--------+--------+--------+
81 |63 56|55 48|47 40|39 32|31 24|23 16|15 8|7 0|
82 +--------+--------+--------+--------+--------+--------+--------+--------+
83 | | | | |
84 | | | | v
85 | | | | [15:0] in-page offset
86 | | | +----------> [28:16] L3 index
87 | | +--------------------------> [41:29] L2 index
Steve Capperd2c68de2019-08-07 16:55:24 +010088 | +-------------------------------> [47:42] L1 index (48-bit)
89 | [51:42] L1 index (52-bit)
Mauro Carvalho Chehabb693d0b2019-06-12 14:52:38 -030090 +-------------------------------------------------> [63] TTBR0/1
91
92
93When using KVM without the Virtualization Host Extensions, the
94hypervisor maps kernel pages in EL2 at a fixed (and potentially
95random) offset from the linear mapping. See the kern_hyp_va macro and
96kvm_update_va_mask function for more details. MMIO devices such as
97GICv2 gets mapped next to the HYP idmap page, as do vectors when
Will Deaconc4792b62020-11-13 11:38:45 +000098ARM64_SPECTRE_V3A is enabled for particular CPUs.
Mauro Carvalho Chehabb693d0b2019-06-12 14:52:38 -030099
100When using KVM with the Virtualization Host Extensions, no additional
101mappings are created, since the host kernel runs directly in EL2.
Steve Capperd2c68de2019-08-07 16:55:24 +0100102
10352-bit VA support in the kernel
104-------------------------------
105If the ARMv8.2-LVA optional feature is present, and we are running
106with a 64KB page size; then it is possible to use 52-bits of address
107space for both userspace and kernel addresses. However, any kernel
108binary that supports 52-bit must also be able to fall back to 48-bit
109at early boot time if the hardware feature is not present.
110
111This fallback mechanism necessitates the kernel .text to be in the
112higher addresses such that they are invariant to 48/52-bit VAs. Due
113to the kasan shadow being a fraction of the entire kernel VA space,
114the end of the kasan shadow must also be in the higher half of the
115kernel VA space for both 48/52-bit. (Switching from 48-bit to 52-bit,
116the end of the kasan shadow is invariant and dependent on ~0UL,
117whilst the start address will "grow" towards the lower addresses).
118
119In order to optimise phys_to_virt and virt_to_phys, the PAGE_OFFSET
120is kept constant at 0xFFF0000000000000 (corresponding to 52-bit),
121this obviates the need for an extra variable read. The physvirt
122offset and vmemmap offsets are computed at early boot to enable
123this logic.
124
125As a single binary will need to support both 48-bit and 52-bit VA
126spaces, the VMEMMAP must be sized large enough for 52-bit VAs and
Scott Brandence4a64e2020-02-19 14:14:03 -0800127also must be sized large enough to accommodate a fixed PAGE_OFFSET.
Steve Capperd2c68de2019-08-07 16:55:24 +0100128
129Most code in the kernel should not need to consider the VA_BITS, for
130code that does need to know the VA size the variables are
131defined as follows:
132
133VA_BITS constant the *maximum* VA space size
134
135VA_BITS_MIN constant the *minimum* VA space size
136
137vabits_actual variable the *actual* VA space size
138
139
140Maximum and minimum sizes can be useful to ensure that buffers are
141sized large enough or that addresses are positioned close enough for
142the "worst" case.
143
14452-bit userspace VAs
145--------------------
146To maintain compatibility with software that relies on the ARMv8.0
147VA space maximum size of 48-bits, the kernel will, by default,
148return virtual addresses to userspace from a 48-bit range.
149
150Software can "opt-in" to receiving VAs from a 52-bit space by
151specifying an mmap hint parameter that is larger than 48-bit.
Adam Zerellaa2b99dc2019-09-28 22:58:19 +1000152
Steve Capperd2c68de2019-08-07 16:55:24 +0100153For example:
Adam Zerellaa2b99dc2019-09-28 22:58:19 +1000154
155.. code-block:: c
156
157 maybe_high_address = mmap(~0UL, size, prot, flags,...);
Steve Capperd2c68de2019-08-07 16:55:24 +0100158
159It is also possible to build a debug kernel that returns addresses
160from a 52-bit space by enabling the following kernel config options:
Adam Zerellaa2b99dc2019-09-28 22:58:19 +1000161
162.. code-block:: sh
163
Steve Capperd2c68de2019-08-07 16:55:24 +0100164 CONFIG_EXPERT=y && CONFIG_ARM64_FORCE_52BIT=y
165
166Note that this option is only intended for debugging applications
167and should not be used in production.