Stefan Berger | 4e66029 | 2021-03-16 17:07:32 -0400 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0+ |
| 2 | /* |
| 3 | * Copyright (c) 2021 IBM Corporation |
| 4 | */ |
| 5 | |
| 6 | #include <linux/module.h> |
| 7 | #include <crypto/internal/akcipher.h> |
Daniele Alessandrelli | a745d3a | 2021-10-20 11:35:35 +0100 | [diff] [blame] | 8 | #include <crypto/internal/ecc.h> |
Stefan Berger | 4e66029 | 2021-03-16 17:07:32 -0400 | [diff] [blame] | 9 | #include <crypto/akcipher.h> |
| 10 | #include <crypto/ecdh.h> |
| 11 | #include <linux/asn1_decoder.h> |
| 12 | #include <linux/scatterlist.h> |
| 13 | |
Stefan Berger | 4e66029 | 2021-03-16 17:07:32 -0400 | [diff] [blame] | 14 | #include "ecdsasignature.asn1.h" |
| 15 | |
| 16 | struct ecc_ctx { |
| 17 | unsigned int curve_id; |
| 18 | const struct ecc_curve *curve; |
| 19 | |
| 20 | bool pub_key_set; |
| 21 | u64 x[ECC_MAX_DIGITS]; /* pub key x and y coordinates */ |
| 22 | u64 y[ECC_MAX_DIGITS]; |
| 23 | struct ecc_point pub_key; |
| 24 | }; |
| 25 | |
| 26 | struct ecdsa_signature_ctx { |
| 27 | const struct ecc_curve *curve; |
| 28 | u64 r[ECC_MAX_DIGITS]; |
| 29 | u64 s[ECC_MAX_DIGITS]; |
| 30 | }; |
| 31 | |
| 32 | /* |
| 33 | * Get the r and s components of a signature from the X509 certificate. |
| 34 | */ |
| 35 | static int ecdsa_get_signature_rs(u64 *dest, size_t hdrlen, unsigned char tag, |
| 36 | const void *value, size_t vlen, unsigned int ndigits) |
| 37 | { |
| 38 | size_t keylen = ndigits * sizeof(u64); |
| 39 | ssize_t diff = vlen - keylen; |
| 40 | const char *d = value; |
| 41 | u8 rs[ECC_MAX_BYTES]; |
| 42 | |
| 43 | if (!value || !vlen) |
| 44 | return -EINVAL; |
| 45 | |
| 46 | /* diff = 0: 'value' has exacly the right size |
| 47 | * diff > 0: 'value' has too many bytes; one leading zero is allowed that |
| 48 | * makes the value a positive integer; error on more |
| 49 | * diff < 0: 'value' is missing leading zeros, which we add |
| 50 | */ |
| 51 | if (diff > 0) { |
| 52 | /* skip over leading zeros that make 'value' a positive int */ |
| 53 | if (*d == 0) { |
| 54 | vlen -= 1; |
| 55 | diff--; |
| 56 | d++; |
| 57 | } |
| 58 | if (diff) |
| 59 | return -EINVAL; |
| 60 | } |
| 61 | if (-diff >= keylen) |
| 62 | return -EINVAL; |
| 63 | |
| 64 | if (diff) { |
| 65 | /* leading zeros not given in 'value' */ |
| 66 | memset(rs, 0, -diff); |
| 67 | } |
| 68 | |
| 69 | memcpy(&rs[-diff], d, vlen); |
| 70 | |
| 71 | ecc_swap_digits((u64 *)rs, dest, ndigits); |
| 72 | |
| 73 | return 0; |
| 74 | } |
| 75 | |
| 76 | int ecdsa_get_signature_r(void *context, size_t hdrlen, unsigned char tag, |
| 77 | const void *value, size_t vlen) |
| 78 | { |
| 79 | struct ecdsa_signature_ctx *sig = context; |
| 80 | |
| 81 | return ecdsa_get_signature_rs(sig->r, hdrlen, tag, value, vlen, |
| 82 | sig->curve->g.ndigits); |
| 83 | } |
| 84 | |
| 85 | int ecdsa_get_signature_s(void *context, size_t hdrlen, unsigned char tag, |
| 86 | const void *value, size_t vlen) |
| 87 | { |
| 88 | struct ecdsa_signature_ctx *sig = context; |
| 89 | |
| 90 | return ecdsa_get_signature_rs(sig->s, hdrlen, tag, value, vlen, |
| 91 | sig->curve->g.ndigits); |
| 92 | } |
| 93 | |
| 94 | static int _ecdsa_verify(struct ecc_ctx *ctx, const u64 *hash, const u64 *r, const u64 *s) |
| 95 | { |
| 96 | const struct ecc_curve *curve = ctx->curve; |
| 97 | unsigned int ndigits = curve->g.ndigits; |
| 98 | u64 s1[ECC_MAX_DIGITS]; |
| 99 | u64 u1[ECC_MAX_DIGITS]; |
| 100 | u64 u2[ECC_MAX_DIGITS]; |
| 101 | u64 x1[ECC_MAX_DIGITS]; |
| 102 | u64 y1[ECC_MAX_DIGITS]; |
| 103 | struct ecc_point res = ECC_POINT_INIT(x1, y1, ndigits); |
| 104 | |
| 105 | /* 0 < r < n and 0 < s < n */ |
| 106 | if (vli_is_zero(r, ndigits) || vli_cmp(r, curve->n, ndigits) >= 0 || |
| 107 | vli_is_zero(s, ndigits) || vli_cmp(s, curve->n, ndigits) >= 0) |
| 108 | return -EBADMSG; |
| 109 | |
| 110 | /* hash is given */ |
| 111 | pr_devel("hash : %016llx %016llx ... %016llx\n", |
| 112 | hash[ndigits - 1], hash[ndigits - 2], hash[0]); |
| 113 | |
| 114 | /* s1 = (s^-1) mod n */ |
| 115 | vli_mod_inv(s1, s, curve->n, ndigits); |
| 116 | /* u1 = (hash * s1) mod n */ |
| 117 | vli_mod_mult_slow(u1, hash, s1, curve->n, ndigits); |
| 118 | /* u2 = (r * s1) mod n */ |
| 119 | vli_mod_mult_slow(u2, r, s1, curve->n, ndigits); |
| 120 | /* res = u1*G + u2 * pub_key */ |
| 121 | ecc_point_mult_shamir(&res, u1, &curve->g, u2, &ctx->pub_key, curve); |
| 122 | |
| 123 | /* res.x = res.x mod n (if res.x > order) */ |
| 124 | if (unlikely(vli_cmp(res.x, curve->n, ndigits) == 1)) |
Saulo Alessandre | c12d448 | 2021-03-16 17:07:35 -0400 | [diff] [blame] | 125 | /* faster alternative for NIST p384, p256 & p192 */ |
Stefan Berger | 4e66029 | 2021-03-16 17:07:32 -0400 | [diff] [blame] | 126 | vli_sub(res.x, res.x, curve->n, ndigits); |
| 127 | |
| 128 | if (!vli_cmp(res.x, r, ndigits)) |
| 129 | return 0; |
| 130 | |
| 131 | return -EKEYREJECTED; |
| 132 | } |
| 133 | |
| 134 | /* |
| 135 | * Verify an ECDSA signature. |
| 136 | */ |
| 137 | static int ecdsa_verify(struct akcipher_request *req) |
| 138 | { |
| 139 | struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); |
| 140 | struct ecc_ctx *ctx = akcipher_tfm_ctx(tfm); |
| 141 | size_t keylen = ctx->curve->g.ndigits * sizeof(u64); |
| 142 | struct ecdsa_signature_ctx sig_ctx = { |
| 143 | .curve = ctx->curve, |
| 144 | }; |
| 145 | u8 rawhash[ECC_MAX_BYTES]; |
| 146 | u64 hash[ECC_MAX_DIGITS]; |
| 147 | unsigned char *buffer; |
| 148 | ssize_t diff; |
| 149 | int ret; |
| 150 | |
| 151 | if (unlikely(!ctx->pub_key_set)) |
| 152 | return -EINVAL; |
| 153 | |
| 154 | buffer = kmalloc(req->src_len + req->dst_len, GFP_KERNEL); |
| 155 | if (!buffer) |
| 156 | return -ENOMEM; |
| 157 | |
| 158 | sg_pcopy_to_buffer(req->src, |
| 159 | sg_nents_for_len(req->src, req->src_len + req->dst_len), |
| 160 | buffer, req->src_len + req->dst_len, 0); |
| 161 | |
| 162 | ret = asn1_ber_decoder(&ecdsasignature_decoder, &sig_ctx, |
| 163 | buffer, req->src_len); |
| 164 | if (ret < 0) |
| 165 | goto error; |
| 166 | |
| 167 | /* if the hash is shorter then we will add leading zeros to fit to ndigits */ |
| 168 | diff = keylen - req->dst_len; |
| 169 | if (diff >= 0) { |
| 170 | if (diff) |
| 171 | memset(rawhash, 0, diff); |
| 172 | memcpy(&rawhash[diff], buffer + req->src_len, req->dst_len); |
| 173 | } else if (diff < 0) { |
| 174 | /* given hash is longer, we take the left-most bytes */ |
| 175 | memcpy(&rawhash, buffer + req->src_len, keylen); |
| 176 | } |
| 177 | |
| 178 | ecc_swap_digits((u64 *)rawhash, hash, ctx->curve->g.ndigits); |
| 179 | |
| 180 | ret = _ecdsa_verify(ctx, hash, sig_ctx.r, sig_ctx.s); |
| 181 | |
| 182 | error: |
| 183 | kfree(buffer); |
| 184 | |
| 185 | return ret; |
| 186 | } |
| 187 | |
| 188 | static int ecdsa_ecc_ctx_init(struct ecc_ctx *ctx, unsigned int curve_id) |
| 189 | { |
| 190 | ctx->curve_id = curve_id; |
| 191 | ctx->curve = ecc_get_curve(curve_id); |
| 192 | if (!ctx->curve) |
| 193 | return -EINVAL; |
| 194 | |
| 195 | return 0; |
| 196 | } |
| 197 | |
| 198 | |
| 199 | static void ecdsa_ecc_ctx_deinit(struct ecc_ctx *ctx) |
| 200 | { |
| 201 | ctx->pub_key_set = false; |
| 202 | } |
| 203 | |
| 204 | static int ecdsa_ecc_ctx_reset(struct ecc_ctx *ctx) |
| 205 | { |
| 206 | unsigned int curve_id = ctx->curve_id; |
| 207 | int ret; |
| 208 | |
| 209 | ecdsa_ecc_ctx_deinit(ctx); |
| 210 | ret = ecdsa_ecc_ctx_init(ctx, curve_id); |
| 211 | if (ret == 0) |
| 212 | ctx->pub_key = ECC_POINT_INIT(ctx->x, ctx->y, |
| 213 | ctx->curve->g.ndigits); |
| 214 | return ret; |
| 215 | } |
| 216 | |
| 217 | /* |
| 218 | * Set the public key given the raw uncompressed key data from an X509 |
| 219 | * certificate. The key data contain the concatenated X and Y coordinates of |
| 220 | * the public key. |
| 221 | */ |
| 222 | static int ecdsa_set_pub_key(struct crypto_akcipher *tfm, const void *key, unsigned int keylen) |
| 223 | { |
| 224 | struct ecc_ctx *ctx = akcipher_tfm_ctx(tfm); |
| 225 | const unsigned char *d = key; |
| 226 | const u64 *digits = (const u64 *)&d[1]; |
| 227 | unsigned int ndigits; |
| 228 | int ret; |
| 229 | |
| 230 | ret = ecdsa_ecc_ctx_reset(ctx); |
| 231 | if (ret < 0) |
| 232 | return ret; |
| 233 | |
| 234 | if (keylen < 1 || (((keylen - 1) >> 1) % sizeof(u64)) != 0) |
| 235 | return -EINVAL; |
| 236 | /* we only accept uncompressed format indicated by '4' */ |
| 237 | if (d[0] != 4) |
| 238 | return -EINVAL; |
| 239 | |
| 240 | keylen--; |
| 241 | ndigits = (keylen >> 1) / sizeof(u64); |
| 242 | if (ndigits != ctx->curve->g.ndigits) |
| 243 | return -EINVAL; |
| 244 | |
| 245 | ecc_swap_digits(digits, ctx->pub_key.x, ndigits); |
| 246 | ecc_swap_digits(&digits[ndigits], ctx->pub_key.y, ndigits); |
| 247 | ret = ecc_is_pubkey_valid_full(ctx->curve, &ctx->pub_key); |
| 248 | |
| 249 | ctx->pub_key_set = ret == 0; |
| 250 | |
| 251 | return ret; |
| 252 | } |
| 253 | |
| 254 | static void ecdsa_exit_tfm(struct crypto_akcipher *tfm) |
| 255 | { |
| 256 | struct ecc_ctx *ctx = akcipher_tfm_ctx(tfm); |
| 257 | |
| 258 | ecdsa_ecc_ctx_deinit(ctx); |
| 259 | } |
| 260 | |
| 261 | static unsigned int ecdsa_max_size(struct crypto_akcipher *tfm) |
| 262 | { |
| 263 | struct ecc_ctx *ctx = akcipher_tfm_ctx(tfm); |
| 264 | |
| 265 | return ctx->pub_key.ndigits << ECC_DIGITS_TO_BYTES_SHIFT; |
| 266 | } |
| 267 | |
Saulo Alessandre | c12d448 | 2021-03-16 17:07:35 -0400 | [diff] [blame] | 268 | static int ecdsa_nist_p384_init_tfm(struct crypto_akcipher *tfm) |
| 269 | { |
| 270 | struct ecc_ctx *ctx = akcipher_tfm_ctx(tfm); |
| 271 | |
| 272 | return ecdsa_ecc_ctx_init(ctx, ECC_CURVE_NIST_P384); |
| 273 | } |
| 274 | |
| 275 | static struct akcipher_alg ecdsa_nist_p384 = { |
| 276 | .verify = ecdsa_verify, |
| 277 | .set_pub_key = ecdsa_set_pub_key, |
| 278 | .max_size = ecdsa_max_size, |
| 279 | .init = ecdsa_nist_p384_init_tfm, |
| 280 | .exit = ecdsa_exit_tfm, |
| 281 | .base = { |
| 282 | .cra_name = "ecdsa-nist-p384", |
| 283 | .cra_driver_name = "ecdsa-nist-p384-generic", |
| 284 | .cra_priority = 100, |
| 285 | .cra_module = THIS_MODULE, |
| 286 | .cra_ctxsize = sizeof(struct ecc_ctx), |
| 287 | }, |
| 288 | }; |
| 289 | |
Stefan Berger | 4e66029 | 2021-03-16 17:07:32 -0400 | [diff] [blame] | 290 | static int ecdsa_nist_p256_init_tfm(struct crypto_akcipher *tfm) |
| 291 | { |
| 292 | struct ecc_ctx *ctx = akcipher_tfm_ctx(tfm); |
| 293 | |
| 294 | return ecdsa_ecc_ctx_init(ctx, ECC_CURVE_NIST_P256); |
| 295 | } |
| 296 | |
| 297 | static struct akcipher_alg ecdsa_nist_p256 = { |
| 298 | .verify = ecdsa_verify, |
| 299 | .set_pub_key = ecdsa_set_pub_key, |
| 300 | .max_size = ecdsa_max_size, |
| 301 | .init = ecdsa_nist_p256_init_tfm, |
| 302 | .exit = ecdsa_exit_tfm, |
| 303 | .base = { |
| 304 | .cra_name = "ecdsa-nist-p256", |
| 305 | .cra_driver_name = "ecdsa-nist-p256-generic", |
| 306 | .cra_priority = 100, |
| 307 | .cra_module = THIS_MODULE, |
| 308 | .cra_ctxsize = sizeof(struct ecc_ctx), |
| 309 | }, |
| 310 | }; |
| 311 | |
| 312 | static int ecdsa_nist_p192_init_tfm(struct crypto_akcipher *tfm) |
| 313 | { |
| 314 | struct ecc_ctx *ctx = akcipher_tfm_ctx(tfm); |
| 315 | |
| 316 | return ecdsa_ecc_ctx_init(ctx, ECC_CURVE_NIST_P192); |
| 317 | } |
| 318 | |
| 319 | static struct akcipher_alg ecdsa_nist_p192 = { |
| 320 | .verify = ecdsa_verify, |
| 321 | .set_pub_key = ecdsa_set_pub_key, |
| 322 | .max_size = ecdsa_max_size, |
| 323 | .init = ecdsa_nist_p192_init_tfm, |
| 324 | .exit = ecdsa_exit_tfm, |
| 325 | .base = { |
| 326 | .cra_name = "ecdsa-nist-p192", |
| 327 | .cra_driver_name = "ecdsa-nist-p192-generic", |
| 328 | .cra_priority = 100, |
| 329 | .cra_module = THIS_MODULE, |
| 330 | .cra_ctxsize = sizeof(struct ecc_ctx), |
| 331 | }, |
| 332 | }; |
| 333 | static bool ecdsa_nist_p192_registered; |
| 334 | |
Xiu Jianfeng | 33837be | 2022-09-15 11:36:15 +0800 | [diff] [blame] | 335 | static int __init ecdsa_init(void) |
Stefan Berger | 4e66029 | 2021-03-16 17:07:32 -0400 | [diff] [blame] | 336 | { |
| 337 | int ret; |
| 338 | |
| 339 | /* NIST p192 may not be available in FIPS mode */ |
| 340 | ret = crypto_register_akcipher(&ecdsa_nist_p192); |
| 341 | ecdsa_nist_p192_registered = ret == 0; |
| 342 | |
| 343 | ret = crypto_register_akcipher(&ecdsa_nist_p256); |
| 344 | if (ret) |
| 345 | goto nist_p256_error; |
Saulo Alessandre | c12d448 | 2021-03-16 17:07:35 -0400 | [diff] [blame] | 346 | |
| 347 | ret = crypto_register_akcipher(&ecdsa_nist_p384); |
| 348 | if (ret) |
| 349 | goto nist_p384_error; |
| 350 | |
Stefan Berger | 4e66029 | 2021-03-16 17:07:32 -0400 | [diff] [blame] | 351 | return 0; |
| 352 | |
Saulo Alessandre | c12d448 | 2021-03-16 17:07:35 -0400 | [diff] [blame] | 353 | nist_p384_error: |
| 354 | crypto_unregister_akcipher(&ecdsa_nist_p256); |
| 355 | |
Stefan Berger | 4e66029 | 2021-03-16 17:07:32 -0400 | [diff] [blame] | 356 | nist_p256_error: |
| 357 | if (ecdsa_nist_p192_registered) |
| 358 | crypto_unregister_akcipher(&ecdsa_nist_p192); |
| 359 | return ret; |
| 360 | } |
| 361 | |
Xiu Jianfeng | 33837be | 2022-09-15 11:36:15 +0800 | [diff] [blame] | 362 | static void __exit ecdsa_exit(void) |
Stefan Berger | 4e66029 | 2021-03-16 17:07:32 -0400 | [diff] [blame] | 363 | { |
| 364 | if (ecdsa_nist_p192_registered) |
| 365 | crypto_unregister_akcipher(&ecdsa_nist_p192); |
| 366 | crypto_unregister_akcipher(&ecdsa_nist_p256); |
Saulo Alessandre | c12d448 | 2021-03-16 17:07:35 -0400 | [diff] [blame] | 367 | crypto_unregister_akcipher(&ecdsa_nist_p384); |
Stefan Berger | 4e66029 | 2021-03-16 17:07:32 -0400 | [diff] [blame] | 368 | } |
| 369 | |
| 370 | subsys_initcall(ecdsa_init); |
| 371 | module_exit(ecdsa_exit); |
| 372 | |
| 373 | MODULE_LICENSE("GPL"); |
| 374 | MODULE_AUTHOR("Stefan Berger <stefanb@linux.ibm.com>"); |
| 375 | MODULE_DESCRIPTION("ECDSA generic algorithm"); |
| 376 | MODULE_ALIAS_CRYPTO("ecdsa-generic"); |