Jesper Nilsson | 035e111 | 2007-11-29 17:11:23 +0100 | [diff] [blame] | 1 | /* |
| 2 | * Memory arbiter functions. Allocates bandwidth through the |
| 3 | * arbiter and sets up arbiter breakpoints. |
| 4 | * |
| 5 | * The algorithm first assigns slots to the clients that has specified |
Jesper Nilsson | eb09047 | 2008-02-08 10:44:05 +0100 | [diff] [blame] | 6 | * bandwidth (e.g. ethernet) and then the remaining slots are divided |
Jesper Nilsson | 035e111 | 2007-11-29 17:11:23 +0100 | [diff] [blame] | 7 | * on all the active clients. |
| 8 | * |
| 9 | * Copyright (c) 2004-2007 Axis Communications AB. |
| 10 | * |
| 11 | * The artpec-3 has two arbiters. The memory hierarchy looks like this: |
| 12 | * |
| 13 | * |
| 14 | * CPU DMAs |
| 15 | * | | |
| 16 | * | | |
| 17 | * -------------- ------------------ |
| 18 | * | foo arbiter|----| Internal memory| |
| 19 | * -------------- ------------------ |
| 20 | * | |
| 21 | * -------------- |
| 22 | * | L2 cache | |
| 23 | * -------------- |
| 24 | * | |
| 25 | * h264 etc | |
| 26 | * | | |
| 27 | * | | |
| 28 | * -------------- |
| 29 | * | bar arbiter| |
| 30 | * -------------- |
| 31 | * | |
| 32 | * --------- |
| 33 | * | SDRAM | |
| 34 | * --------- |
| 35 | * |
| 36 | */ |
| 37 | |
| 38 | #include <hwregs/reg_map.h> |
| 39 | #include <hwregs/reg_rdwr.h> |
| 40 | #include <hwregs/marb_foo_defs.h> |
| 41 | #include <hwregs/marb_bar_defs.h> |
| 42 | #include <arbiter.h> |
| 43 | #include <hwregs/intr_vect.h> |
| 44 | #include <linux/interrupt.h> |
| 45 | #include <linux/irq.h> |
| 46 | #include <linux/signal.h> |
| 47 | #include <linux/errno.h> |
| 48 | #include <linux/spinlock.h> |
| 49 | #include <asm/io.h> |
| 50 | #include <asm/irq_regs.h> |
| 51 | |
| 52 | #define D(x) |
| 53 | |
| 54 | struct crisv32_watch_entry { |
| 55 | unsigned long instance; |
| 56 | watch_callback *cb; |
| 57 | unsigned long start; |
| 58 | unsigned long end; |
| 59 | int used; |
| 60 | }; |
| 61 | |
| 62 | #define NUMBER_OF_BP 4 |
| 63 | #define SDRAM_BANDWIDTH 400000000 |
| 64 | #define INTMEM_BANDWIDTH 400000000 |
| 65 | #define NBR_OF_SLOTS 64 |
| 66 | #define NBR_OF_REGIONS 2 |
| 67 | #define NBR_OF_CLIENTS 15 |
| 68 | #define ARBITERS 2 |
| 69 | #define UNASSIGNED 100 |
| 70 | |
| 71 | struct arbiter { |
| 72 | unsigned long instance; |
| 73 | int nbr_regions; |
| 74 | int nbr_clients; |
| 75 | int requested_slots[NBR_OF_REGIONS][NBR_OF_CLIENTS]; |
| 76 | int active_clients[NBR_OF_REGIONS][NBR_OF_CLIENTS]; |
| 77 | }; |
| 78 | |
| 79 | static struct crisv32_watch_entry watches[ARBITERS][NUMBER_OF_BP] = |
| 80 | { |
| 81 | { |
| 82 | {regi_marb_foo_bp0}, |
| 83 | {regi_marb_foo_bp1}, |
| 84 | {regi_marb_foo_bp2}, |
| 85 | {regi_marb_foo_bp3} |
| 86 | }, |
| 87 | { |
| 88 | {regi_marb_bar_bp0}, |
| 89 | {regi_marb_bar_bp1}, |
| 90 | {regi_marb_bar_bp2}, |
| 91 | {regi_marb_bar_bp3} |
| 92 | } |
| 93 | }; |
| 94 | |
| 95 | struct arbiter arbiters[ARBITERS] = |
| 96 | { |
| 97 | { /* L2 cache arbiter */ |
| 98 | .instance = regi_marb_foo, |
| 99 | .nbr_regions = 2, |
| 100 | .nbr_clients = 15 |
| 101 | }, |
| 102 | { /* DDR2 arbiter */ |
| 103 | .instance = regi_marb_bar, |
| 104 | .nbr_regions = 1, |
| 105 | .nbr_clients = 9 |
| 106 | } |
| 107 | }; |
| 108 | |
| 109 | static int max_bandwidth[NBR_OF_REGIONS] = {SDRAM_BANDWIDTH, INTMEM_BANDWIDTH}; |
| 110 | |
| 111 | DEFINE_SPINLOCK(arbiter_lock); |
| 112 | |
| 113 | static irqreturn_t |
| 114 | crisv32_foo_arbiter_irq(int irq, void *dev_id); |
| 115 | static irqreturn_t |
| 116 | crisv32_bar_arbiter_irq(int irq, void *dev_id); |
| 117 | |
| 118 | /* |
| 119 | * "I'm the arbiter, I know the score. |
| 120 | * From square one I'll be watching all 64." |
| 121 | * (memory arbiter slots, that is) |
| 122 | * |
| 123 | * Or in other words: |
| 124 | * Program the memory arbiter slots for "region" according to what's |
| 125 | * in requested_slots[] and active_clients[], while minimizing |
| 126 | * latency. A caller may pass a non-zero positive amount for |
| 127 | * "unused_slots", which must then be the unallocated, remaining |
| 128 | * number of slots, free to hand out to any client. |
| 129 | */ |
| 130 | |
| 131 | static void crisv32_arbiter_config(int arbiter, int region, int unused_slots) |
| 132 | { |
| 133 | int slot; |
| 134 | int client; |
| 135 | int interval = 0; |
| 136 | |
| 137 | /* |
| 138 | * This vector corresponds to the hardware arbiter slots (see |
| 139 | * the hardware documentation for semantics). We initialize |
| 140 | * each slot with a suitable sentinel value outside the valid |
| 141 | * range {0 .. NBR_OF_CLIENTS - 1} and replace them with |
| 142 | * client indexes. Then it's fed to the hardware. |
| 143 | */ |
| 144 | s8 val[NBR_OF_SLOTS]; |
| 145 | |
| 146 | for (slot = 0; slot < NBR_OF_SLOTS; slot++) |
| 147 | val[slot] = -1; |
| 148 | |
| 149 | for (client = 0; client < arbiters[arbiter].nbr_clients; client++) { |
| 150 | int pos; |
| 151 | /* Allocate the requested non-zero number of slots, but |
| 152 | * also give clients with zero-requests one slot each |
| 153 | * while stocks last. We do the latter here, in client |
| 154 | * order. This makes sure zero-request clients are the |
| 155 | * first to get to any spare slots, else those slots |
| 156 | * could, when bandwidth is allocated close to the limit, |
| 157 | * all be allocated to low-index non-zero-request clients |
| 158 | * in the default-fill loop below. Another positive but |
| 159 | * secondary effect is a somewhat better spread of the |
| 160 | * zero-bandwidth clients in the vector, avoiding some of |
| 161 | * the latency that could otherwise be caused by the |
| 162 | * partitioning of non-zero-bandwidth clients at low |
| 163 | * indexes and zero-bandwidth clients at high |
| 164 | * indexes. (Note that this spreading can only affect the |
| 165 | * unallocated bandwidth.) All the above only matters for |
| 166 | * memory-intensive situations, of course. |
| 167 | */ |
| 168 | if (!arbiters[arbiter].requested_slots[region][client]) { |
| 169 | /* |
| 170 | * Skip inactive clients. Also skip zero-slot |
| 171 | * allocations in this pass when there are no known |
| 172 | * free slots. |
| 173 | */ |
| 174 | if (!arbiters[arbiter].active_clients[region][client] || |
| 175 | unused_slots <= 0) |
| 176 | continue; |
| 177 | |
| 178 | unused_slots--; |
| 179 | |
| 180 | /* Only allocate one slot for this client. */ |
| 181 | interval = NBR_OF_SLOTS; |
| 182 | } else |
| 183 | interval = NBR_OF_SLOTS / |
| 184 | arbiters[arbiter].requested_slots[region][client]; |
| 185 | |
| 186 | pos = 0; |
| 187 | while (pos < NBR_OF_SLOTS) { |
| 188 | if (val[pos] >= 0) |
| 189 | pos++; |
| 190 | else { |
| 191 | val[pos] = client; |
| 192 | pos += interval; |
| 193 | } |
| 194 | } |
| 195 | } |
| 196 | |
| 197 | client = 0; |
| 198 | for (slot = 0; slot < NBR_OF_SLOTS; slot++) { |
| 199 | /* |
| 200 | * Allocate remaining slots in round-robin |
| 201 | * client-number order for active clients. For this |
| 202 | * pass, we ignore requested bandwidth and previous |
| 203 | * allocations. |
| 204 | */ |
| 205 | if (val[slot] < 0) { |
| 206 | int first = client; |
| 207 | while (!arbiters[arbiter].active_clients[region][client]) { |
| 208 | client = (client + 1) % |
| 209 | arbiters[arbiter].nbr_clients; |
| 210 | if (client == first) |
| 211 | break; |
| 212 | } |
| 213 | val[slot] = client; |
| 214 | client = (client + 1) % arbiters[arbiter].nbr_clients; |
| 215 | } |
| 216 | if (arbiter == 0) { |
| 217 | if (region == EXT_REGION) |
| 218 | REG_WR_INT_VECT(marb_foo, regi_marb_foo, |
| 219 | rw_l2_slots, slot, val[slot]); |
| 220 | else if (region == INT_REGION) |
| 221 | REG_WR_INT_VECT(marb_foo, regi_marb_foo, |
| 222 | rw_intm_slots, slot, val[slot]); |
| 223 | } else { |
| 224 | REG_WR_INT_VECT(marb_bar, regi_marb_bar, |
| 225 | rw_ddr2_slots, slot, val[slot]); |
| 226 | } |
| 227 | } |
| 228 | } |
| 229 | |
| 230 | extern char _stext, _etext; |
| 231 | |
| 232 | static void crisv32_arbiter_init(void) |
| 233 | { |
| 234 | static int initialized; |
| 235 | |
| 236 | if (initialized) |
| 237 | return; |
| 238 | |
| 239 | initialized = 1; |
| 240 | |
| 241 | /* |
| 242 | * CPU caches are always set to active, but with zero |
| 243 | * bandwidth allocated. It should be ok to allocate zero |
| 244 | * bandwidth for the caches, because DMA for other channels |
| 245 | * will supposedly finish, once their programmed amount is |
| 246 | * done, and then the caches will get access according to the |
| 247 | * "fixed scheme" for unclaimed slots. Though, if for some |
| 248 | * use-case somewhere, there's a maximum CPU latency for |
| 249 | * e.g. some interrupt, we have to start allocating specific |
| 250 | * bandwidth for the CPU caches too. |
| 251 | */ |
| 252 | arbiters[0].active_clients[EXT_REGION][11] = 1; |
| 253 | arbiters[0].active_clients[EXT_REGION][12] = 1; |
| 254 | crisv32_arbiter_config(0, EXT_REGION, 0); |
| 255 | crisv32_arbiter_config(0, INT_REGION, 0); |
| 256 | crisv32_arbiter_config(1, EXT_REGION, 0); |
| 257 | |
| 258 | if (request_irq(MEMARB_FOO_INTR_VECT, crisv32_foo_arbiter_irq, |
Michael Opdenacker | 64d8ad9 | 2013-09-04 07:17:40 +0200 | [diff] [blame] | 259 | 0, "arbiter", NULL)) |
Jesper Nilsson | 035e111 | 2007-11-29 17:11:23 +0100 | [diff] [blame] | 260 | printk(KERN_ERR "Couldn't allocate arbiter IRQ\n"); |
| 261 | |
| 262 | if (request_irq(MEMARB_BAR_INTR_VECT, crisv32_bar_arbiter_irq, |
Michael Opdenacker | 64d8ad9 | 2013-09-04 07:17:40 +0200 | [diff] [blame] | 263 | 0, "arbiter", NULL)) |
Jesper Nilsson | 035e111 | 2007-11-29 17:11:23 +0100 | [diff] [blame] | 264 | printk(KERN_ERR "Couldn't allocate arbiter IRQ\n"); |
| 265 | |
| 266 | #ifndef CONFIG_ETRAX_KGDB |
| 267 | /* Global watch for writes to kernel text segment. */ |
| 268 | crisv32_arbiter_watch(virt_to_phys(&_stext), &_etext - &_stext, |
| 269 | MARB_CLIENTS(arbiter_all_clients, arbiter_bar_all_clients), |
| 270 | arbiter_all_write, NULL); |
| 271 | #endif |
| 272 | |
| 273 | /* Set up max burst sizes by default */ |
| 274 | REG_WR_INT(marb_bar, regi_marb_bar, rw_h264_rd_burst, 3); |
| 275 | REG_WR_INT(marb_bar, regi_marb_bar, rw_h264_wr_burst, 3); |
| 276 | REG_WR_INT(marb_bar, regi_marb_bar, rw_ccd_burst, 3); |
| 277 | REG_WR_INT(marb_bar, regi_marb_bar, rw_vin_wr_burst, 3); |
| 278 | REG_WR_INT(marb_bar, regi_marb_bar, rw_vin_rd_burst, 3); |
| 279 | REG_WR_INT(marb_bar, regi_marb_bar, rw_sclr_rd_burst, 3); |
| 280 | REG_WR_INT(marb_bar, regi_marb_bar, rw_vout_burst, 3); |
| 281 | REG_WR_INT(marb_bar, regi_marb_bar, rw_sclr_fifo_burst, 3); |
| 282 | REG_WR_INT(marb_bar, regi_marb_bar, rw_l2cache_burst, 3); |
| 283 | } |
| 284 | |
Jesper Nilsson | eb09047 | 2008-02-08 10:44:05 +0100 | [diff] [blame] | 285 | int crisv32_arbiter_allocate_bandwidth(int client, int region, |
Jesper Nilsson | 035e111 | 2007-11-29 17:11:23 +0100 | [diff] [blame] | 286 | unsigned long bandwidth) |
| 287 | { |
| 288 | int i; |
| 289 | int total_assigned = 0; |
| 290 | int total_clients = 0; |
| 291 | int req; |
| 292 | int arbiter = 0; |
| 293 | |
| 294 | crisv32_arbiter_init(); |
| 295 | |
| 296 | if (client & 0xffff0000) { |
| 297 | arbiter = 1; |
| 298 | client >>= 16; |
| 299 | } |
| 300 | |
| 301 | for (i = 0; i < arbiters[arbiter].nbr_clients; i++) { |
| 302 | total_assigned += arbiters[arbiter].requested_slots[region][i]; |
| 303 | total_clients += arbiters[arbiter].active_clients[region][i]; |
| 304 | } |
| 305 | |
| 306 | /* Avoid division by 0 for 0-bandwidth requests. */ |
| 307 | req = bandwidth == 0 |
| 308 | ? 0 : NBR_OF_SLOTS / (max_bandwidth[region] / bandwidth); |
| 309 | |
| 310 | /* |
| 311 | * We make sure that there are enough slots only for non-zero |
| 312 | * requests. Requesting 0 bandwidth *may* allocate slots, |
| 313 | * though if all bandwidth is allocated, such a client won't |
| 314 | * get any and will have to rely on getting memory access |
| 315 | * according to the fixed scheme that's the default when one |
| 316 | * of the slot-allocated clients doesn't claim their slot. |
| 317 | */ |
| 318 | if (total_assigned + req > NBR_OF_SLOTS) |
| 319 | return -ENOMEM; |
| 320 | |
| 321 | arbiters[arbiter].active_clients[region][client] = 1; |
| 322 | arbiters[arbiter].requested_slots[region][client] = req; |
| 323 | crisv32_arbiter_config(arbiter, region, NBR_OF_SLOTS - total_assigned); |
| 324 | |
| 325 | /* Propagate allocation from foo to bar */ |
| 326 | if (arbiter == 0) |
Jesper Nilsson | eb09047 | 2008-02-08 10:44:05 +0100 | [diff] [blame] | 327 | crisv32_arbiter_allocate_bandwidth(8 << 16, |
Jesper Nilsson | 035e111 | 2007-11-29 17:11:23 +0100 | [diff] [blame] | 328 | EXT_REGION, bandwidth); |
| 329 | return 0; |
| 330 | } |
| 331 | |
| 332 | /* |
| 333 | * Main entry for bandwidth deallocation. |
| 334 | * |
| 335 | * Strictly speaking, for a somewhat constant set of clients where |
| 336 | * each client gets a constant bandwidth and is just enabled or |
| 337 | * disabled (somewhat dynamically), no action is necessary here to |
| 338 | * avoid starvation for non-zero-allocation clients, as the allocated |
| 339 | * slots will just be unused. However, handing out those unused slots |
| 340 | * to active clients avoids needless latency if the "fixed scheme" |
| 341 | * would give unclaimed slots to an eager low-index client. |
| 342 | */ |
| 343 | |
| 344 | void crisv32_arbiter_deallocate_bandwidth(int client, int region) |
| 345 | { |
| 346 | int i; |
| 347 | int total_assigned = 0; |
| 348 | int arbiter = 0; |
| 349 | |
| 350 | if (client & 0xffff0000) |
| 351 | arbiter = 1; |
| 352 | |
| 353 | arbiters[arbiter].requested_slots[region][client] = 0; |
| 354 | arbiters[arbiter].active_clients[region][client] = 0; |
| 355 | |
| 356 | for (i = 0; i < arbiters[arbiter].nbr_clients; i++) |
| 357 | total_assigned += arbiters[arbiter].requested_slots[region][i]; |
| 358 | |
| 359 | crisv32_arbiter_config(arbiter, region, NBR_OF_SLOTS - total_assigned); |
| 360 | } |
| 361 | |
| 362 | int crisv32_arbiter_watch(unsigned long start, unsigned long size, |
| 363 | unsigned long clients, unsigned long accesses, |
| 364 | watch_callback *cb) |
| 365 | { |
| 366 | int i; |
| 367 | int arbiter; |
| 368 | int used[2]; |
| 369 | int ret = 0; |
| 370 | |
| 371 | crisv32_arbiter_init(); |
| 372 | |
| 373 | if (start > 0x80000000) { |
| 374 | printk(KERN_ERR "Arbiter: %lX doesn't look like a " |
| 375 | "physical address", start); |
| 376 | return -EFAULT; |
| 377 | } |
| 378 | |
| 379 | spin_lock(&arbiter_lock); |
| 380 | |
| 381 | if (clients & 0xffff) |
| 382 | used[0] = 1; |
| 383 | if (clients & 0xffff0000) |
| 384 | used[1] = 1; |
| 385 | |
| 386 | for (arbiter = 0; arbiter < ARBITERS; arbiter++) { |
| 387 | if (!used[arbiter]) |
| 388 | continue; |
| 389 | |
| 390 | for (i = 0; i < NUMBER_OF_BP; i++) { |
| 391 | if (!watches[arbiter][i].used) { |
| 392 | unsigned intr_mask; |
| 393 | if (arbiter) |
| 394 | intr_mask = REG_RD_INT(marb_bar, |
| 395 | regi_marb_bar, rw_intr_mask); |
| 396 | else |
| 397 | intr_mask = REG_RD_INT(marb_foo, |
| 398 | regi_marb_foo, rw_intr_mask); |
| 399 | |
| 400 | watches[arbiter][i].used = 1; |
| 401 | watches[arbiter][i].start = start; |
| 402 | watches[arbiter][i].end = start + size; |
| 403 | watches[arbiter][i].cb = cb; |
| 404 | |
| 405 | ret |= (i + 1) << (arbiter + 8); |
| 406 | if (arbiter) { |
| 407 | REG_WR_INT(marb_bar_bp, |
| 408 | watches[arbiter][i].instance, |
| 409 | rw_first_addr, |
| 410 | watches[arbiter][i].start); |
| 411 | REG_WR_INT(marb_bar_bp, |
| 412 | watches[arbiter][i].instance, |
| 413 | rw_last_addr, |
| 414 | watches[arbiter][i].end); |
| 415 | REG_WR_INT(marb_bar_bp, |
| 416 | watches[arbiter][i].instance, |
| 417 | rw_op, accesses); |
| 418 | REG_WR_INT(marb_bar_bp, |
| 419 | watches[arbiter][i].instance, |
| 420 | rw_clients, |
| 421 | clients & 0xffff); |
| 422 | } else { |
| 423 | REG_WR_INT(marb_foo_bp, |
| 424 | watches[arbiter][i].instance, |
| 425 | rw_first_addr, |
| 426 | watches[arbiter][i].start); |
| 427 | REG_WR_INT(marb_foo_bp, |
| 428 | watches[arbiter][i].instance, |
| 429 | rw_last_addr, |
| 430 | watches[arbiter][i].end); |
| 431 | REG_WR_INT(marb_foo_bp, |
| 432 | watches[arbiter][i].instance, |
| 433 | rw_op, accesses); |
| 434 | REG_WR_INT(marb_foo_bp, |
| 435 | watches[arbiter][i].instance, |
| 436 | rw_clients, clients >> 16); |
| 437 | } |
| 438 | |
| 439 | if (i == 0) |
| 440 | intr_mask |= 1; |
| 441 | else if (i == 1) |
| 442 | intr_mask |= 2; |
| 443 | else if (i == 2) |
| 444 | intr_mask |= 4; |
| 445 | else if (i == 3) |
| 446 | intr_mask |= 8; |
| 447 | |
| 448 | if (arbiter) |
| 449 | REG_WR_INT(marb_bar, regi_marb_bar, |
| 450 | rw_intr_mask, intr_mask); |
| 451 | else |
| 452 | REG_WR_INT(marb_foo, regi_marb_foo, |
| 453 | rw_intr_mask, intr_mask); |
| 454 | |
| 455 | spin_unlock(&arbiter_lock); |
| 456 | |
| 457 | break; |
| 458 | } |
| 459 | } |
| 460 | } |
| 461 | spin_unlock(&arbiter_lock); |
| 462 | if (ret) |
| 463 | return ret; |
| 464 | else |
| 465 | return -ENOMEM; |
| 466 | } |
| 467 | |
| 468 | int crisv32_arbiter_unwatch(int id) |
| 469 | { |
| 470 | int arbiter; |
| 471 | int intr_mask; |
| 472 | |
| 473 | crisv32_arbiter_init(); |
| 474 | |
| 475 | spin_lock(&arbiter_lock); |
| 476 | |
| 477 | for (arbiter = 0; arbiter < ARBITERS; arbiter++) { |
| 478 | int id2; |
| 479 | |
| 480 | if (arbiter) |
| 481 | intr_mask = REG_RD_INT(marb_bar, regi_marb_bar, |
| 482 | rw_intr_mask); |
| 483 | else |
| 484 | intr_mask = REG_RD_INT(marb_foo, regi_marb_foo, |
| 485 | rw_intr_mask); |
| 486 | |
| 487 | id2 = (id & (0xff << (arbiter + 8))) >> (arbiter + 8); |
| 488 | if (id2 == 0) |
| 489 | continue; |
| 490 | id2--; |
| 491 | if ((id2 >= NUMBER_OF_BP) || (!watches[arbiter][id2].used)) { |
| 492 | spin_unlock(&arbiter_lock); |
| 493 | return -EINVAL; |
| 494 | } |
| 495 | |
| 496 | memset(&watches[arbiter][id2], 0, |
| 497 | sizeof(struct crisv32_watch_entry)); |
| 498 | |
| 499 | if (id2 == 0) |
| 500 | intr_mask &= ~1; |
| 501 | else if (id2 == 1) |
| 502 | intr_mask &= ~2; |
| 503 | else if (id2 == 2) |
| 504 | intr_mask &= ~4; |
| 505 | else if (id2 == 3) |
| 506 | intr_mask &= ~8; |
| 507 | |
| 508 | if (arbiter) |
| 509 | REG_WR_INT(marb_bar, regi_marb_bar, rw_intr_mask, |
| 510 | intr_mask); |
| 511 | else |
| 512 | REG_WR_INT(marb_foo, regi_marb_foo, rw_intr_mask, |
| 513 | intr_mask); |
| 514 | } |
| 515 | |
| 516 | spin_unlock(&arbiter_lock); |
| 517 | return 0; |
| 518 | } |
| 519 | |
| 520 | extern void show_registers(struct pt_regs *regs); |
| 521 | |
| 522 | |
| 523 | static irqreturn_t |
| 524 | crisv32_foo_arbiter_irq(int irq, void *dev_id) |
| 525 | { |
| 526 | reg_marb_foo_r_masked_intr masked_intr = |
| 527 | REG_RD(marb_foo, regi_marb_foo, r_masked_intr); |
| 528 | reg_marb_foo_bp_r_brk_clients r_clients; |
| 529 | reg_marb_foo_bp_r_brk_addr r_addr; |
| 530 | reg_marb_foo_bp_r_brk_op r_op; |
| 531 | reg_marb_foo_bp_r_brk_first_client r_first; |
| 532 | reg_marb_foo_bp_r_brk_size r_size; |
| 533 | reg_marb_foo_bp_rw_ack ack = {0}; |
| 534 | reg_marb_foo_rw_ack_intr ack_intr = { |
| 535 | .bp0 = 1, .bp1 = 1, .bp2 = 1, .bp3 = 1 |
| 536 | }; |
| 537 | struct crisv32_watch_entry *watch; |
| 538 | unsigned arbiter = (unsigned)dev_id; |
| 539 | |
| 540 | masked_intr = REG_RD(marb_foo, regi_marb_foo, r_masked_intr); |
| 541 | |
| 542 | if (masked_intr.bp0) |
| 543 | watch = &watches[arbiter][0]; |
| 544 | else if (masked_intr.bp1) |
| 545 | watch = &watches[arbiter][1]; |
| 546 | else if (masked_intr.bp2) |
| 547 | watch = &watches[arbiter][2]; |
| 548 | else if (masked_intr.bp3) |
| 549 | watch = &watches[arbiter][3]; |
| 550 | else |
| 551 | return IRQ_NONE; |
| 552 | |
| 553 | /* Retrieve all useful information and print it. */ |
| 554 | r_clients = REG_RD(marb_foo_bp, watch->instance, r_brk_clients); |
| 555 | r_addr = REG_RD(marb_foo_bp, watch->instance, r_brk_addr); |
| 556 | r_op = REG_RD(marb_foo_bp, watch->instance, r_brk_op); |
| 557 | r_first = REG_RD(marb_foo_bp, watch->instance, r_brk_first_client); |
| 558 | r_size = REG_RD(marb_foo_bp, watch->instance, r_brk_size); |
| 559 | |
| 560 | printk(KERN_DEBUG "Arbiter IRQ\n"); |
| 561 | printk(KERN_DEBUG "Clients %X addr %X op %X first %X size %X\n", |
| 562 | REG_TYPE_CONV(int, reg_marb_foo_bp_r_brk_clients, r_clients), |
| 563 | REG_TYPE_CONV(int, reg_marb_foo_bp_r_brk_addr, r_addr), |
| 564 | REG_TYPE_CONV(int, reg_marb_foo_bp_r_brk_op, r_op), |
| 565 | REG_TYPE_CONV(int, reg_marb_foo_bp_r_brk_first_client, r_first), |
| 566 | REG_TYPE_CONV(int, reg_marb_foo_bp_r_brk_size, r_size)); |
| 567 | |
| 568 | REG_WR(marb_foo_bp, watch->instance, rw_ack, ack); |
| 569 | REG_WR(marb_foo, regi_marb_foo, rw_ack_intr, ack_intr); |
| 570 | |
Lucas De Marchi | 25985ed | 2011-03-30 22:57:33 -0300 | [diff] [blame] | 571 | printk(KERN_DEBUG "IRQ occurred at %X\n", (unsigned)get_irq_regs()); |
Jesper Nilsson | 035e111 | 2007-11-29 17:11:23 +0100 | [diff] [blame] | 572 | |
| 573 | if (watch->cb) |
| 574 | watch->cb(); |
| 575 | |
| 576 | return IRQ_HANDLED; |
| 577 | } |
| 578 | |
| 579 | static irqreturn_t |
| 580 | crisv32_bar_arbiter_irq(int irq, void *dev_id) |
| 581 | { |
| 582 | reg_marb_bar_r_masked_intr masked_intr = |
| 583 | REG_RD(marb_bar, regi_marb_bar, r_masked_intr); |
| 584 | reg_marb_bar_bp_r_brk_clients r_clients; |
| 585 | reg_marb_bar_bp_r_brk_addr r_addr; |
| 586 | reg_marb_bar_bp_r_brk_op r_op; |
| 587 | reg_marb_bar_bp_r_brk_first_client r_first; |
| 588 | reg_marb_bar_bp_r_brk_size r_size; |
| 589 | reg_marb_bar_bp_rw_ack ack = {0}; |
| 590 | reg_marb_bar_rw_ack_intr ack_intr = { |
| 591 | .bp0 = 1, .bp1 = 1, .bp2 = 1, .bp3 = 1 |
| 592 | }; |
| 593 | struct crisv32_watch_entry *watch; |
| 594 | unsigned arbiter = (unsigned)dev_id; |
| 595 | |
| 596 | masked_intr = REG_RD(marb_bar, regi_marb_bar, r_masked_intr); |
| 597 | |
| 598 | if (masked_intr.bp0) |
| 599 | watch = &watches[arbiter][0]; |
| 600 | else if (masked_intr.bp1) |
| 601 | watch = &watches[arbiter][1]; |
| 602 | else if (masked_intr.bp2) |
| 603 | watch = &watches[arbiter][2]; |
| 604 | else if (masked_intr.bp3) |
| 605 | watch = &watches[arbiter][3]; |
| 606 | else |
| 607 | return IRQ_NONE; |
| 608 | |
| 609 | /* Retrieve all useful information and print it. */ |
| 610 | r_clients = REG_RD(marb_bar_bp, watch->instance, r_brk_clients); |
| 611 | r_addr = REG_RD(marb_bar_bp, watch->instance, r_brk_addr); |
| 612 | r_op = REG_RD(marb_bar_bp, watch->instance, r_brk_op); |
| 613 | r_first = REG_RD(marb_bar_bp, watch->instance, r_brk_first_client); |
| 614 | r_size = REG_RD(marb_bar_bp, watch->instance, r_brk_size); |
| 615 | |
| 616 | printk(KERN_DEBUG "Arbiter IRQ\n"); |
| 617 | printk(KERN_DEBUG "Clients %X addr %X op %X first %X size %X\n", |
| 618 | REG_TYPE_CONV(int, reg_marb_bar_bp_r_brk_clients, r_clients), |
| 619 | REG_TYPE_CONV(int, reg_marb_bar_bp_r_brk_addr, r_addr), |
| 620 | REG_TYPE_CONV(int, reg_marb_bar_bp_r_brk_op, r_op), |
| 621 | REG_TYPE_CONV(int, reg_marb_bar_bp_r_brk_first_client, r_first), |
| 622 | REG_TYPE_CONV(int, reg_marb_bar_bp_r_brk_size, r_size)); |
| 623 | |
| 624 | REG_WR(marb_bar_bp, watch->instance, rw_ack, ack); |
| 625 | REG_WR(marb_bar, regi_marb_bar, rw_ack_intr, ack_intr); |
| 626 | |
Lucas De Marchi | 25985ed | 2011-03-30 22:57:33 -0300 | [diff] [blame] | 627 | printk(KERN_DEBUG "IRQ occurred at %X\n", (unsigned)get_irq_regs()->erp); |
Jesper Nilsson | 035e111 | 2007-11-29 17:11:23 +0100 | [diff] [blame] | 628 | |
| 629 | if (watch->cb) |
| 630 | watch->cb(); |
| 631 | |
| 632 | return IRQ_HANDLED; |
| 633 | } |
| 634 | |