Chuanhong Guo | 764f1b7 | 2022-04-24 11:25:24 +0800 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | // |
| 3 | // Driver for the SPI-NAND mode of Mediatek NAND Flash Interface |
| 4 | // |
| 5 | // Copyright (c) 2022 Chuanhong Guo <gch981213@gmail.com> |
| 6 | // |
| 7 | // This driver is based on the SPI-NAND mtd driver from Mediatek SDK: |
| 8 | // |
| 9 | // Copyright (C) 2020 MediaTek Inc. |
| 10 | // Author: Weijie Gao <weijie.gao@mediatek.com> |
| 11 | // |
| 12 | // This controller organize the page data as several interleaved sectors |
| 13 | // like the following: (sizeof(FDM + ECC) = snf->nfi_cfg.spare_size) |
| 14 | // +---------+------+------+---------+------+------+-----+ |
| 15 | // | Sector1 | FDM1 | ECC1 | Sector2 | FDM2 | ECC2 | ... | |
| 16 | // +---------+------+------+---------+------+------+-----+ |
| 17 | // With auto-format turned on, DMA only returns this part: |
| 18 | // +---------+---------+-----+ |
| 19 | // | Sector1 | Sector2 | ... | |
| 20 | // +---------+---------+-----+ |
| 21 | // The FDM data will be filled to the registers, and ECC parity data isn't |
| 22 | // accessible. |
| 23 | // With auto-format off, all ((Sector+FDM+ECC)*nsectors) will be read over DMA |
| 24 | // in it's original order shown in the first table. ECC can't be turned on when |
| 25 | // auto-format is off. |
| 26 | // |
| 27 | // However, Linux SPI-NAND driver expects the data returned as: |
| 28 | // +------+-----+ |
| 29 | // | Page | OOB | |
| 30 | // +------+-----+ |
| 31 | // where the page data is continuously stored instead of interleaved. |
| 32 | // So we assume all instructions matching the page_op template between ECC |
| 33 | // prepare_io_req and finish_io_req are for page cache r/w. |
| 34 | // Here's how this spi-mem driver operates when reading: |
| 35 | // 1. Always set snf->autofmt = true in prepare_io_req (even when ECC is off). |
| 36 | // 2. Perform page ops and let the controller fill the DMA bounce buffer with |
| 37 | // de-interleaved sector data and set FDM registers. |
| 38 | // 3. Return the data as: |
| 39 | // +---------+---------+-----+------+------+-----+ |
| 40 | // | Sector1 | Sector2 | ... | FDM1 | FDM2 | ... | |
| 41 | // +---------+---------+-----+------+------+-----+ |
| 42 | // 4. For other matching spi_mem ops outside a prepare/finish_io_req pair, |
| 43 | // read the data with auto-format off into the bounce buffer and copy |
| 44 | // needed data to the buffer specified in the request. |
| 45 | // |
| 46 | // Write requests operates in a similar manner. |
| 47 | // As a limitation of this strategy, we won't be able to access any ECC parity |
| 48 | // data at all in Linux. |
| 49 | // |
| 50 | // Here's the bad block mark situation on MTK chips: |
| 51 | // In older chips like mt7622, MTK uses the first FDM byte in the first sector |
| 52 | // as the bad block mark. After de-interleaving, this byte appears at [pagesize] |
| 53 | // in the returned data, which is the BBM position expected by kernel. However, |
| 54 | // the conventional bad block mark is the first byte of the OOB, which is part |
| 55 | // of the last sector data in the interleaved layout. Instead of fixing their |
| 56 | // hardware, MTK decided to address this inconsistency in software. On these |
| 57 | // later chips, the BootROM expects the following: |
| 58 | // 1. The [pagesize] byte on a nand page is used as BBM, which will appear at |
| 59 | // (page_size - (nsectors - 1) * spare_size) in the DMA buffer. |
| 60 | // 2. The original byte stored at that position in the DMA buffer will be stored |
| 61 | // as the first byte of the FDM section in the last sector. |
| 62 | // We can't disagree with the BootROM, so after de-interleaving, we need to |
| 63 | // perform the following swaps in read: |
| 64 | // 1. Store the BBM at [page_size - (nsectors - 1) * spare_size] to [page_size], |
| 65 | // which is the expected BBM position by kernel. |
| 66 | // 2. Store the page data byte at [pagesize + (nsectors-1) * fdm] back to |
| 67 | // [page_size - (nsectors - 1) * spare_size] |
| 68 | // Similarly, when writing, we need to perform swaps in the other direction. |
| 69 | |
| 70 | #include <linux/kernel.h> |
| 71 | #include <linux/module.h> |
| 72 | #include <linux/init.h> |
| 73 | #include <linux/device.h> |
| 74 | #include <linux/mutex.h> |
| 75 | #include <linux/clk.h> |
| 76 | #include <linux/interrupt.h> |
| 77 | #include <linux/dma-mapping.h> |
| 78 | #include <linux/iopoll.h> |
| 79 | #include <linux/of_platform.h> |
| 80 | #include <linux/mtd/nand-ecc-mtk.h> |
| 81 | #include <linux/spi/spi.h> |
| 82 | #include <linux/spi/spi-mem.h> |
| 83 | #include <linux/mtd/nand.h> |
| 84 | |
| 85 | // NFI registers |
| 86 | #define NFI_CNFG 0x000 |
| 87 | #define CNFG_OP_MODE_S 12 |
| 88 | #define CNFG_OP_MODE_CUST 6 |
| 89 | #define CNFG_OP_MODE_PROGRAM 3 |
| 90 | #define CNFG_AUTO_FMT_EN BIT(9) |
| 91 | #define CNFG_HW_ECC_EN BIT(8) |
| 92 | #define CNFG_DMA_BURST_EN BIT(2) |
| 93 | #define CNFG_READ_MODE BIT(1) |
| 94 | #define CNFG_DMA_MODE BIT(0) |
| 95 | |
| 96 | #define NFI_PAGEFMT 0x0004 |
| 97 | #define NFI_SPARE_SIZE_LS_S 16 |
| 98 | #define NFI_FDM_ECC_NUM_S 12 |
| 99 | #define NFI_FDM_NUM_S 8 |
| 100 | #define NFI_SPARE_SIZE_S 4 |
| 101 | #define NFI_SEC_SEL_512 BIT(2) |
| 102 | #define NFI_PAGE_SIZE_S 0 |
| 103 | #define NFI_PAGE_SIZE_512_2K 0 |
| 104 | #define NFI_PAGE_SIZE_2K_4K 1 |
| 105 | #define NFI_PAGE_SIZE_4K_8K 2 |
| 106 | #define NFI_PAGE_SIZE_8K_16K 3 |
| 107 | |
| 108 | #define NFI_CON 0x008 |
| 109 | #define CON_SEC_NUM_S 12 |
| 110 | #define CON_BWR BIT(9) |
| 111 | #define CON_BRD BIT(8) |
| 112 | #define CON_NFI_RST BIT(1) |
| 113 | #define CON_FIFO_FLUSH BIT(0) |
| 114 | |
| 115 | #define NFI_INTR_EN 0x010 |
| 116 | #define NFI_INTR_STA 0x014 |
| 117 | #define NFI_IRQ_INTR_EN BIT(31) |
| 118 | #define NFI_IRQ_CUS_READ BIT(8) |
| 119 | #define NFI_IRQ_CUS_PG BIT(7) |
| 120 | |
| 121 | #define NFI_CMD 0x020 |
| 122 | #define NFI_CMD_DUMMY_READ 0x00 |
| 123 | #define NFI_CMD_DUMMY_WRITE 0x80 |
| 124 | |
| 125 | #define NFI_STRDATA 0x040 |
| 126 | #define STR_DATA BIT(0) |
| 127 | |
| 128 | #define NFI_STA 0x060 |
Xiangsheng Hou | 7073888 | 2022-12-05 14:57:48 +0800 | [diff] [blame] | 129 | #define NFI_NAND_FSM_7622 GENMASK(28, 24) |
| 130 | #define NFI_NAND_FSM_7986 GENMASK(29, 23) |
Chuanhong Guo | 764f1b7 | 2022-04-24 11:25:24 +0800 | [diff] [blame] | 131 | #define NFI_FSM GENMASK(19, 16) |
| 132 | #define READ_EMPTY BIT(12) |
| 133 | |
| 134 | #define NFI_FIFOSTA 0x064 |
| 135 | #define FIFO_WR_REMAIN_S 8 |
| 136 | #define FIFO_RD_REMAIN_S 0 |
| 137 | |
| 138 | #define NFI_ADDRCNTR 0x070 |
| 139 | #define SEC_CNTR GENMASK(16, 12) |
| 140 | #define SEC_CNTR_S 12 |
| 141 | #define NFI_SEC_CNTR(val) (((val)&SEC_CNTR) >> SEC_CNTR_S) |
| 142 | |
| 143 | #define NFI_STRADDR 0x080 |
| 144 | |
| 145 | #define NFI_BYTELEN 0x084 |
| 146 | #define BUS_SEC_CNTR(val) (((val)&SEC_CNTR) >> SEC_CNTR_S) |
| 147 | |
| 148 | #define NFI_FDM0L 0x0a0 |
| 149 | #define NFI_FDM0M 0x0a4 |
| 150 | #define NFI_FDML(n) (NFI_FDM0L + (n)*8) |
| 151 | #define NFI_FDMM(n) (NFI_FDM0M + (n)*8) |
| 152 | |
| 153 | #define NFI_DEBUG_CON1 0x220 |
| 154 | #define WBUF_EN BIT(2) |
| 155 | |
| 156 | #define NFI_MASTERSTA 0x224 |
| 157 | #define MAS_ADDR GENMASK(11, 9) |
| 158 | #define MAS_RD GENMASK(8, 6) |
| 159 | #define MAS_WR GENMASK(5, 3) |
| 160 | #define MAS_RDDLY GENMASK(2, 0) |
| 161 | #define NFI_MASTERSTA_MASK_7622 (MAS_ADDR | MAS_RD | MAS_WR | MAS_RDDLY) |
Xiangsheng Hou | 7073888 | 2022-12-05 14:57:48 +0800 | [diff] [blame] | 162 | #define NFI_MASTERSTA_MASK_7986 3 |
Chuanhong Guo | 764f1b7 | 2022-04-24 11:25:24 +0800 | [diff] [blame] | 163 | |
| 164 | // SNFI registers |
| 165 | #define SNF_MAC_CTL 0x500 |
| 166 | #define MAC_XIO_SEL BIT(4) |
| 167 | #define SF_MAC_EN BIT(3) |
| 168 | #define SF_TRIG BIT(2) |
| 169 | #define WIP_READY BIT(1) |
| 170 | #define WIP BIT(0) |
| 171 | |
| 172 | #define SNF_MAC_OUTL 0x504 |
| 173 | #define SNF_MAC_INL 0x508 |
| 174 | |
| 175 | #define SNF_RD_CTL2 0x510 |
| 176 | #define DATA_READ_DUMMY_S 8 |
| 177 | #define DATA_READ_MAX_DUMMY 0xf |
| 178 | #define DATA_READ_CMD_S 0 |
| 179 | |
| 180 | #define SNF_RD_CTL3 0x514 |
| 181 | |
| 182 | #define SNF_PG_CTL1 0x524 |
| 183 | #define PG_LOAD_CMD_S 8 |
| 184 | |
| 185 | #define SNF_PG_CTL2 0x528 |
| 186 | |
| 187 | #define SNF_MISC_CTL 0x538 |
| 188 | #define SW_RST BIT(28) |
| 189 | #define FIFO_RD_LTC_S 25 |
| 190 | #define PG_LOAD_X4_EN BIT(20) |
| 191 | #define DATA_READ_MODE_S 16 |
| 192 | #define DATA_READ_MODE GENMASK(18, 16) |
| 193 | #define DATA_READ_MODE_X1 0 |
| 194 | #define DATA_READ_MODE_X2 1 |
| 195 | #define DATA_READ_MODE_X4 2 |
| 196 | #define DATA_READ_MODE_DUAL 5 |
| 197 | #define DATA_READ_MODE_QUAD 6 |
Xiangsheng Hou | 1d36c99 | 2023-02-01 10:09:20 +0800 | [diff] [blame] | 198 | #define DATA_READ_LATCH_LAT GENMASK(9, 8) |
| 199 | #define DATA_READ_LATCH_LAT_S 8 |
Chuanhong Guo | 764f1b7 | 2022-04-24 11:25:24 +0800 | [diff] [blame] | 200 | #define PG_LOAD_CUSTOM_EN BIT(7) |
| 201 | #define DATARD_CUSTOM_EN BIT(6) |
| 202 | #define CS_DESELECT_CYC_S 0 |
| 203 | |
| 204 | #define SNF_MISC_CTL2 0x53c |
| 205 | #define PROGRAM_LOAD_BYTE_NUM_S 16 |
| 206 | #define READ_DATA_BYTE_NUM_S 11 |
| 207 | |
| 208 | #define SNF_DLY_CTL3 0x548 |
| 209 | #define SFCK_SAM_DLY_S 0 |
Xiangsheng Hou | 1d36c99 | 2023-02-01 10:09:20 +0800 | [diff] [blame] | 210 | #define SFCK_SAM_DLY GENMASK(5, 0) |
| 211 | #define SFCK_SAM_DLY_TOTAL 9 |
| 212 | #define SFCK_SAM_DLY_RANGE 47 |
Chuanhong Guo | 764f1b7 | 2022-04-24 11:25:24 +0800 | [diff] [blame] | 213 | |
| 214 | #define SNF_STA_CTL1 0x550 |
| 215 | #define CUS_PG_DONE BIT(28) |
| 216 | #define CUS_READ_DONE BIT(27) |
| 217 | #define SPI_STATE_S 0 |
| 218 | #define SPI_STATE GENMASK(3, 0) |
| 219 | |
| 220 | #define SNF_CFG 0x55c |
| 221 | #define SPI_MODE BIT(0) |
| 222 | |
| 223 | #define SNF_GPRAM 0x800 |
| 224 | #define SNF_GPRAM_SIZE 0xa0 |
| 225 | |
| 226 | #define SNFI_POLL_INTERVAL 1000000 |
| 227 | |
| 228 | static const u8 mt7622_spare_sizes[] = { 16, 26, 27, 28 }; |
| 229 | |
Xiangsheng Hou | 7073888 | 2022-12-05 14:57:48 +0800 | [diff] [blame] | 230 | static const u8 mt7986_spare_sizes[] = { |
| 231 | 16, 26, 27, 28, 32, 36, 40, 44, 48, 49, 50, 51, 52, 62, 61, 63, 64, 67, |
| 232 | 74 |
| 233 | }; |
| 234 | |
Chuanhong Guo | 764f1b7 | 2022-04-24 11:25:24 +0800 | [diff] [blame] | 235 | struct mtk_snand_caps { |
| 236 | u16 sector_size; |
| 237 | u16 max_sectors; |
| 238 | u16 fdm_size; |
| 239 | u16 fdm_ecc_size; |
| 240 | u16 fifo_size; |
| 241 | |
| 242 | bool bbm_swap; |
| 243 | bool empty_page_check; |
| 244 | u32 mastersta_mask; |
Xiangsheng Hou | 7073888 | 2022-12-05 14:57:48 +0800 | [diff] [blame] | 245 | u32 nandfsm_mask; |
Chuanhong Guo | 764f1b7 | 2022-04-24 11:25:24 +0800 | [diff] [blame] | 246 | |
| 247 | const u8 *spare_sizes; |
| 248 | u32 num_spare_size; |
| 249 | }; |
| 250 | |
| 251 | static const struct mtk_snand_caps mt7622_snand_caps = { |
| 252 | .sector_size = 512, |
| 253 | .max_sectors = 8, |
| 254 | .fdm_size = 8, |
| 255 | .fdm_ecc_size = 1, |
| 256 | .fifo_size = 32, |
| 257 | .bbm_swap = false, |
| 258 | .empty_page_check = false, |
| 259 | .mastersta_mask = NFI_MASTERSTA_MASK_7622, |
Xiangsheng Hou | 7073888 | 2022-12-05 14:57:48 +0800 | [diff] [blame] | 260 | .nandfsm_mask = NFI_NAND_FSM_7622, |
Chuanhong Guo | 764f1b7 | 2022-04-24 11:25:24 +0800 | [diff] [blame] | 261 | .spare_sizes = mt7622_spare_sizes, |
| 262 | .num_spare_size = ARRAY_SIZE(mt7622_spare_sizes) |
| 263 | }; |
| 264 | |
| 265 | static const struct mtk_snand_caps mt7629_snand_caps = { |
| 266 | .sector_size = 512, |
| 267 | .max_sectors = 8, |
| 268 | .fdm_size = 8, |
| 269 | .fdm_ecc_size = 1, |
| 270 | .fifo_size = 32, |
| 271 | .bbm_swap = true, |
| 272 | .empty_page_check = false, |
| 273 | .mastersta_mask = NFI_MASTERSTA_MASK_7622, |
Xiangsheng Hou | 7073888 | 2022-12-05 14:57:48 +0800 | [diff] [blame] | 274 | .nandfsm_mask = NFI_NAND_FSM_7622, |
Chuanhong Guo | 764f1b7 | 2022-04-24 11:25:24 +0800 | [diff] [blame] | 275 | .spare_sizes = mt7622_spare_sizes, |
| 276 | .num_spare_size = ARRAY_SIZE(mt7622_spare_sizes) |
| 277 | }; |
| 278 | |
Xiangsheng Hou | 7073888 | 2022-12-05 14:57:48 +0800 | [diff] [blame] | 279 | static const struct mtk_snand_caps mt7986_snand_caps = { |
| 280 | .sector_size = 1024, |
| 281 | .max_sectors = 8, |
| 282 | .fdm_size = 8, |
| 283 | .fdm_ecc_size = 1, |
| 284 | .fifo_size = 64, |
| 285 | .bbm_swap = true, |
| 286 | .empty_page_check = true, |
| 287 | .mastersta_mask = NFI_MASTERSTA_MASK_7986, |
| 288 | .nandfsm_mask = NFI_NAND_FSM_7986, |
| 289 | .spare_sizes = mt7986_spare_sizes, |
| 290 | .num_spare_size = ARRAY_SIZE(mt7986_spare_sizes) |
| 291 | }; |
| 292 | |
Chuanhong Guo | 764f1b7 | 2022-04-24 11:25:24 +0800 | [diff] [blame] | 293 | struct mtk_snand_conf { |
| 294 | size_t page_size; |
| 295 | size_t oob_size; |
| 296 | u8 nsectors; |
| 297 | u8 spare_size; |
| 298 | }; |
| 299 | |
| 300 | struct mtk_snand { |
| 301 | struct spi_controller *ctlr; |
| 302 | struct device *dev; |
| 303 | struct clk *nfi_clk; |
| 304 | struct clk *pad_clk; |
Xiangsheng Hou | e40fa32 | 2023-02-01 10:09:18 +0800 | [diff] [blame] | 305 | struct clk *nfi_hclk; |
Chuanhong Guo | 764f1b7 | 2022-04-24 11:25:24 +0800 | [diff] [blame] | 306 | void __iomem *nfi_base; |
| 307 | int irq; |
| 308 | struct completion op_done; |
| 309 | const struct mtk_snand_caps *caps; |
| 310 | struct mtk_ecc_config *ecc_cfg; |
| 311 | struct mtk_ecc *ecc; |
| 312 | struct mtk_snand_conf nfi_cfg; |
| 313 | struct mtk_ecc_stats ecc_stats; |
| 314 | struct nand_ecc_engine ecc_eng; |
| 315 | bool autofmt; |
| 316 | u8 *buf; |
| 317 | size_t buf_len; |
| 318 | }; |
| 319 | |
| 320 | static struct mtk_snand *nand_to_mtk_snand(struct nand_device *nand) |
| 321 | { |
| 322 | struct nand_ecc_engine *eng = nand->ecc.engine; |
| 323 | |
| 324 | return container_of(eng, struct mtk_snand, ecc_eng); |
| 325 | } |
| 326 | |
| 327 | static inline int snand_prepare_bouncebuf(struct mtk_snand *snf, size_t size) |
| 328 | { |
| 329 | if (snf->buf_len >= size) |
| 330 | return 0; |
| 331 | kfree(snf->buf); |
| 332 | snf->buf = kmalloc(size, GFP_KERNEL); |
| 333 | if (!snf->buf) |
| 334 | return -ENOMEM; |
| 335 | snf->buf_len = size; |
| 336 | memset(snf->buf, 0xff, snf->buf_len); |
| 337 | return 0; |
| 338 | } |
| 339 | |
| 340 | static inline u32 nfi_read32(struct mtk_snand *snf, u32 reg) |
| 341 | { |
| 342 | return readl(snf->nfi_base + reg); |
| 343 | } |
| 344 | |
| 345 | static inline void nfi_write32(struct mtk_snand *snf, u32 reg, u32 val) |
| 346 | { |
| 347 | writel(val, snf->nfi_base + reg); |
| 348 | } |
| 349 | |
| 350 | static inline void nfi_write16(struct mtk_snand *snf, u32 reg, u16 val) |
| 351 | { |
| 352 | writew(val, snf->nfi_base + reg); |
| 353 | } |
| 354 | |
| 355 | static inline void nfi_rmw32(struct mtk_snand *snf, u32 reg, u32 clr, u32 set) |
| 356 | { |
| 357 | u32 val; |
| 358 | |
| 359 | val = readl(snf->nfi_base + reg); |
| 360 | val &= ~clr; |
| 361 | val |= set; |
| 362 | writel(val, snf->nfi_base + reg); |
| 363 | } |
| 364 | |
| 365 | static void nfi_read_data(struct mtk_snand *snf, u32 reg, u8 *data, u32 len) |
| 366 | { |
| 367 | u32 i, val = 0, es = sizeof(u32); |
| 368 | |
| 369 | for (i = reg; i < reg + len; i++) { |
| 370 | if (i == reg || i % es == 0) |
| 371 | val = nfi_read32(snf, i & ~(es - 1)); |
| 372 | |
| 373 | *data++ = (u8)(val >> (8 * (i % es))); |
| 374 | } |
| 375 | } |
| 376 | |
| 377 | static int mtk_nfi_reset(struct mtk_snand *snf) |
| 378 | { |
| 379 | u32 val, fifo_mask; |
| 380 | int ret; |
| 381 | |
| 382 | nfi_write32(snf, NFI_CON, CON_FIFO_FLUSH | CON_NFI_RST); |
| 383 | |
| 384 | ret = readw_poll_timeout(snf->nfi_base + NFI_MASTERSTA, val, |
| 385 | !(val & snf->caps->mastersta_mask), 0, |
| 386 | SNFI_POLL_INTERVAL); |
| 387 | if (ret) { |
| 388 | dev_err(snf->dev, "NFI master is still busy after reset\n"); |
| 389 | return ret; |
| 390 | } |
| 391 | |
| 392 | ret = readl_poll_timeout(snf->nfi_base + NFI_STA, val, |
Xiangsheng Hou | 7073888 | 2022-12-05 14:57:48 +0800 | [diff] [blame] | 393 | !(val & (NFI_FSM | snf->caps->nandfsm_mask)), 0, |
Chuanhong Guo | 764f1b7 | 2022-04-24 11:25:24 +0800 | [diff] [blame] | 394 | SNFI_POLL_INTERVAL); |
| 395 | if (ret) { |
| 396 | dev_err(snf->dev, "Failed to reset NFI\n"); |
| 397 | return ret; |
| 398 | } |
| 399 | |
| 400 | fifo_mask = ((snf->caps->fifo_size - 1) << FIFO_RD_REMAIN_S) | |
| 401 | ((snf->caps->fifo_size - 1) << FIFO_WR_REMAIN_S); |
| 402 | ret = readw_poll_timeout(snf->nfi_base + NFI_FIFOSTA, val, |
| 403 | !(val & fifo_mask), 0, SNFI_POLL_INTERVAL); |
| 404 | if (ret) { |
| 405 | dev_err(snf->dev, "NFI FIFOs are not empty\n"); |
| 406 | return ret; |
| 407 | } |
| 408 | |
| 409 | return 0; |
| 410 | } |
| 411 | |
| 412 | static int mtk_snand_mac_reset(struct mtk_snand *snf) |
| 413 | { |
| 414 | int ret; |
| 415 | u32 val; |
| 416 | |
| 417 | nfi_rmw32(snf, SNF_MISC_CTL, 0, SW_RST); |
| 418 | |
| 419 | ret = readl_poll_timeout(snf->nfi_base + SNF_STA_CTL1, val, |
| 420 | !(val & SPI_STATE), 0, SNFI_POLL_INTERVAL); |
| 421 | if (ret) |
| 422 | dev_err(snf->dev, "Failed to reset SNFI MAC\n"); |
| 423 | |
| 424 | nfi_write32(snf, SNF_MISC_CTL, |
| 425 | (2 << FIFO_RD_LTC_S) | (10 << CS_DESELECT_CYC_S)); |
| 426 | |
| 427 | return ret; |
| 428 | } |
| 429 | |
| 430 | static int mtk_snand_mac_trigger(struct mtk_snand *snf, u32 outlen, u32 inlen) |
| 431 | { |
| 432 | int ret; |
| 433 | u32 val; |
| 434 | |
| 435 | nfi_write32(snf, SNF_MAC_CTL, SF_MAC_EN); |
| 436 | nfi_write32(snf, SNF_MAC_OUTL, outlen); |
| 437 | nfi_write32(snf, SNF_MAC_INL, inlen); |
| 438 | |
| 439 | nfi_write32(snf, SNF_MAC_CTL, SF_MAC_EN | SF_TRIG); |
| 440 | |
| 441 | ret = readl_poll_timeout(snf->nfi_base + SNF_MAC_CTL, val, |
| 442 | val & WIP_READY, 0, SNFI_POLL_INTERVAL); |
| 443 | if (ret) { |
| 444 | dev_err(snf->dev, "Timed out waiting for WIP_READY\n"); |
| 445 | goto cleanup; |
| 446 | } |
| 447 | |
| 448 | ret = readl_poll_timeout(snf->nfi_base + SNF_MAC_CTL, val, !(val & WIP), |
| 449 | 0, SNFI_POLL_INTERVAL); |
| 450 | if (ret) |
| 451 | dev_err(snf->dev, "Timed out waiting for WIP cleared\n"); |
| 452 | |
| 453 | cleanup: |
| 454 | nfi_write32(snf, SNF_MAC_CTL, 0); |
| 455 | |
| 456 | return ret; |
| 457 | } |
| 458 | |
| 459 | static int mtk_snand_mac_io(struct mtk_snand *snf, const struct spi_mem_op *op) |
| 460 | { |
| 461 | u32 rx_len = 0; |
| 462 | u32 reg_offs = 0; |
| 463 | u32 val = 0; |
| 464 | const u8 *tx_buf = NULL; |
| 465 | u8 *rx_buf = NULL; |
| 466 | int i, ret; |
| 467 | u8 b; |
| 468 | |
| 469 | if (op->data.dir == SPI_MEM_DATA_IN) { |
| 470 | rx_len = op->data.nbytes; |
| 471 | rx_buf = op->data.buf.in; |
| 472 | } else { |
| 473 | tx_buf = op->data.buf.out; |
| 474 | } |
| 475 | |
| 476 | mtk_snand_mac_reset(snf); |
| 477 | |
| 478 | for (i = 0; i < op->cmd.nbytes; i++, reg_offs++) { |
| 479 | b = (op->cmd.opcode >> ((op->cmd.nbytes - i - 1) * 8)) & 0xff; |
| 480 | val |= b << (8 * (reg_offs % 4)); |
| 481 | if (reg_offs % 4 == 3) { |
| 482 | nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val); |
| 483 | val = 0; |
| 484 | } |
| 485 | } |
| 486 | |
| 487 | for (i = 0; i < op->addr.nbytes; i++, reg_offs++) { |
| 488 | b = (op->addr.val >> ((op->addr.nbytes - i - 1) * 8)) & 0xff; |
| 489 | val |= b << (8 * (reg_offs % 4)); |
| 490 | if (reg_offs % 4 == 3) { |
| 491 | nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val); |
| 492 | val = 0; |
| 493 | } |
| 494 | } |
| 495 | |
| 496 | for (i = 0; i < op->dummy.nbytes; i++, reg_offs++) { |
| 497 | if (reg_offs % 4 == 3) { |
| 498 | nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val); |
| 499 | val = 0; |
| 500 | } |
| 501 | } |
| 502 | |
| 503 | if (op->data.dir == SPI_MEM_DATA_OUT) { |
| 504 | for (i = 0; i < op->data.nbytes; i++, reg_offs++) { |
| 505 | val |= tx_buf[i] << (8 * (reg_offs % 4)); |
| 506 | if (reg_offs % 4 == 3) { |
| 507 | nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val); |
| 508 | val = 0; |
| 509 | } |
| 510 | } |
| 511 | } |
| 512 | |
| 513 | if (reg_offs % 4) |
| 514 | nfi_write32(snf, SNF_GPRAM + (reg_offs & ~3), val); |
| 515 | |
| 516 | for (i = 0; i < reg_offs; i += 4) |
| 517 | dev_dbg(snf->dev, "%d: %08X", i, |
| 518 | nfi_read32(snf, SNF_GPRAM + i)); |
| 519 | |
| 520 | dev_dbg(snf->dev, "SNF TX: %u RX: %u", reg_offs, rx_len); |
| 521 | |
| 522 | ret = mtk_snand_mac_trigger(snf, reg_offs, rx_len); |
| 523 | if (ret) |
| 524 | return ret; |
| 525 | |
| 526 | if (!rx_len) |
| 527 | return 0; |
| 528 | |
| 529 | nfi_read_data(snf, SNF_GPRAM + reg_offs, rx_buf, rx_len); |
| 530 | return 0; |
| 531 | } |
| 532 | |
| 533 | static int mtk_snand_setup_pagefmt(struct mtk_snand *snf, u32 page_size, |
| 534 | u32 oob_size) |
| 535 | { |
| 536 | int spare_idx = -1; |
| 537 | u32 spare_size, spare_size_shift, pagesize_idx; |
| 538 | u32 sector_size_512; |
| 539 | u8 nsectors; |
| 540 | int i; |
| 541 | |
| 542 | // skip if it's already configured as required. |
| 543 | if (snf->nfi_cfg.page_size == page_size && |
| 544 | snf->nfi_cfg.oob_size == oob_size) |
| 545 | return 0; |
| 546 | |
| 547 | nsectors = page_size / snf->caps->sector_size; |
| 548 | if (nsectors > snf->caps->max_sectors) { |
| 549 | dev_err(snf->dev, "too many sectors required.\n"); |
| 550 | goto err; |
| 551 | } |
| 552 | |
| 553 | if (snf->caps->sector_size == 512) { |
| 554 | sector_size_512 = NFI_SEC_SEL_512; |
| 555 | spare_size_shift = NFI_SPARE_SIZE_S; |
| 556 | } else { |
| 557 | sector_size_512 = 0; |
| 558 | spare_size_shift = NFI_SPARE_SIZE_LS_S; |
| 559 | } |
| 560 | |
| 561 | switch (page_size) { |
| 562 | case SZ_512: |
| 563 | pagesize_idx = NFI_PAGE_SIZE_512_2K; |
| 564 | break; |
| 565 | case SZ_2K: |
| 566 | if (snf->caps->sector_size == 512) |
| 567 | pagesize_idx = NFI_PAGE_SIZE_2K_4K; |
| 568 | else |
| 569 | pagesize_idx = NFI_PAGE_SIZE_512_2K; |
| 570 | break; |
| 571 | case SZ_4K: |
| 572 | if (snf->caps->sector_size == 512) |
| 573 | pagesize_idx = NFI_PAGE_SIZE_4K_8K; |
| 574 | else |
| 575 | pagesize_idx = NFI_PAGE_SIZE_2K_4K; |
| 576 | break; |
| 577 | case SZ_8K: |
| 578 | if (snf->caps->sector_size == 512) |
| 579 | pagesize_idx = NFI_PAGE_SIZE_8K_16K; |
| 580 | else |
| 581 | pagesize_idx = NFI_PAGE_SIZE_4K_8K; |
| 582 | break; |
| 583 | case SZ_16K: |
| 584 | pagesize_idx = NFI_PAGE_SIZE_8K_16K; |
| 585 | break; |
| 586 | default: |
| 587 | dev_err(snf->dev, "unsupported page size.\n"); |
| 588 | goto err; |
| 589 | } |
| 590 | |
| 591 | spare_size = oob_size / nsectors; |
| 592 | // If we're using the 1KB sector size, HW will automatically double the |
| 593 | // spare size. We should only use half of the value in this case. |
| 594 | if (snf->caps->sector_size == 1024) |
| 595 | spare_size /= 2; |
| 596 | |
| 597 | for (i = snf->caps->num_spare_size - 1; i >= 0; i--) { |
| 598 | if (snf->caps->spare_sizes[i] <= spare_size) { |
| 599 | spare_size = snf->caps->spare_sizes[i]; |
| 600 | if (snf->caps->sector_size == 1024) |
| 601 | spare_size *= 2; |
| 602 | spare_idx = i; |
| 603 | break; |
| 604 | } |
| 605 | } |
| 606 | |
| 607 | if (spare_idx < 0) { |
| 608 | dev_err(snf->dev, "unsupported spare size: %u\n", spare_size); |
| 609 | goto err; |
| 610 | } |
| 611 | |
| 612 | nfi_write32(snf, NFI_PAGEFMT, |
| 613 | (snf->caps->fdm_ecc_size << NFI_FDM_ECC_NUM_S) | |
| 614 | (snf->caps->fdm_size << NFI_FDM_NUM_S) | |
| 615 | (spare_idx << spare_size_shift) | |
| 616 | (pagesize_idx << NFI_PAGE_SIZE_S) | |
| 617 | sector_size_512); |
| 618 | |
| 619 | snf->nfi_cfg.page_size = page_size; |
| 620 | snf->nfi_cfg.oob_size = oob_size; |
| 621 | snf->nfi_cfg.nsectors = nsectors; |
| 622 | snf->nfi_cfg.spare_size = spare_size; |
| 623 | |
| 624 | dev_dbg(snf->dev, "page format: (%u + %u) * %u\n", |
| 625 | snf->caps->sector_size, spare_size, nsectors); |
| 626 | return snand_prepare_bouncebuf(snf, page_size + oob_size); |
| 627 | err: |
| 628 | dev_err(snf->dev, "page size %u + %u is not supported\n", page_size, |
| 629 | oob_size); |
| 630 | return -EOPNOTSUPP; |
| 631 | } |
| 632 | |
| 633 | static int mtk_snand_ooblayout_ecc(struct mtd_info *mtd, int section, |
| 634 | struct mtd_oob_region *oobecc) |
| 635 | { |
| 636 | // ECC area is not accessible |
| 637 | return -ERANGE; |
| 638 | } |
| 639 | |
| 640 | static int mtk_snand_ooblayout_free(struct mtd_info *mtd, int section, |
| 641 | struct mtd_oob_region *oobfree) |
| 642 | { |
| 643 | struct nand_device *nand = mtd_to_nanddev(mtd); |
| 644 | struct mtk_snand *ms = nand_to_mtk_snand(nand); |
| 645 | |
| 646 | if (section >= ms->nfi_cfg.nsectors) |
| 647 | return -ERANGE; |
| 648 | |
| 649 | oobfree->length = ms->caps->fdm_size - 1; |
| 650 | oobfree->offset = section * ms->caps->fdm_size + 1; |
| 651 | return 0; |
| 652 | } |
| 653 | |
| 654 | static const struct mtd_ooblayout_ops mtk_snand_ooblayout = { |
| 655 | .ecc = mtk_snand_ooblayout_ecc, |
| 656 | .free = mtk_snand_ooblayout_free, |
| 657 | }; |
| 658 | |
| 659 | static int mtk_snand_ecc_init_ctx(struct nand_device *nand) |
| 660 | { |
| 661 | struct mtk_snand *snf = nand_to_mtk_snand(nand); |
| 662 | struct nand_ecc_props *conf = &nand->ecc.ctx.conf; |
| 663 | struct nand_ecc_props *reqs = &nand->ecc.requirements; |
| 664 | struct nand_ecc_props *user = &nand->ecc.user_conf; |
| 665 | struct mtd_info *mtd = nanddev_to_mtd(nand); |
| 666 | int step_size = 0, strength = 0, desired_correction = 0, steps; |
| 667 | bool ecc_user = false; |
| 668 | int ret; |
| 669 | u32 parity_bits, max_ecc_bytes; |
| 670 | struct mtk_ecc_config *ecc_cfg; |
| 671 | |
| 672 | ret = mtk_snand_setup_pagefmt(snf, nand->memorg.pagesize, |
| 673 | nand->memorg.oobsize); |
| 674 | if (ret) |
| 675 | return ret; |
| 676 | |
| 677 | ecc_cfg = kzalloc(sizeof(*ecc_cfg), GFP_KERNEL); |
| 678 | if (!ecc_cfg) |
| 679 | return -ENOMEM; |
| 680 | |
| 681 | nand->ecc.ctx.priv = ecc_cfg; |
| 682 | |
| 683 | if (user->step_size && user->strength) { |
| 684 | step_size = user->step_size; |
| 685 | strength = user->strength; |
| 686 | ecc_user = true; |
| 687 | } else if (reqs->step_size && reqs->strength) { |
| 688 | step_size = reqs->step_size; |
| 689 | strength = reqs->strength; |
| 690 | } |
| 691 | |
| 692 | if (step_size && strength) { |
| 693 | steps = mtd->writesize / step_size; |
| 694 | desired_correction = steps * strength; |
| 695 | strength = desired_correction / snf->nfi_cfg.nsectors; |
| 696 | } |
| 697 | |
| 698 | ecc_cfg->mode = ECC_NFI_MODE; |
| 699 | ecc_cfg->sectors = snf->nfi_cfg.nsectors; |
| 700 | ecc_cfg->len = snf->caps->sector_size + snf->caps->fdm_ecc_size; |
| 701 | |
| 702 | // calculate the max possible strength under current page format |
| 703 | parity_bits = mtk_ecc_get_parity_bits(snf->ecc); |
| 704 | max_ecc_bytes = snf->nfi_cfg.spare_size - snf->caps->fdm_size; |
| 705 | ecc_cfg->strength = max_ecc_bytes * 8 / parity_bits; |
| 706 | mtk_ecc_adjust_strength(snf->ecc, &ecc_cfg->strength); |
| 707 | |
| 708 | // if there's a user requested strength, find the minimum strength that |
| 709 | // meets the requirement. Otherwise use the maximum strength which is |
| 710 | // expected by BootROM. |
| 711 | if (ecc_user && strength) { |
| 712 | u32 s_next = ecc_cfg->strength - 1; |
| 713 | |
| 714 | while (1) { |
| 715 | mtk_ecc_adjust_strength(snf->ecc, &s_next); |
| 716 | if (s_next >= ecc_cfg->strength) |
| 717 | break; |
| 718 | if (s_next < strength) |
| 719 | break; |
| 720 | s_next = ecc_cfg->strength - 1; |
| 721 | } |
| 722 | } |
| 723 | |
| 724 | mtd_set_ooblayout(mtd, &mtk_snand_ooblayout); |
| 725 | |
| 726 | conf->step_size = snf->caps->sector_size; |
| 727 | conf->strength = ecc_cfg->strength; |
| 728 | |
| 729 | if (ecc_cfg->strength < strength) |
| 730 | dev_warn(snf->dev, "unable to fulfill ECC of %u bits.\n", |
| 731 | strength); |
| 732 | dev_info(snf->dev, "ECC strength: %u bits per %u bytes\n", |
| 733 | ecc_cfg->strength, snf->caps->sector_size); |
| 734 | |
| 735 | return 0; |
| 736 | } |
| 737 | |
| 738 | static void mtk_snand_ecc_cleanup_ctx(struct nand_device *nand) |
| 739 | { |
| 740 | struct mtk_ecc_config *ecc_cfg = nand_to_ecc_ctx(nand); |
| 741 | |
| 742 | kfree(ecc_cfg); |
| 743 | } |
| 744 | |
| 745 | static int mtk_snand_ecc_prepare_io_req(struct nand_device *nand, |
| 746 | struct nand_page_io_req *req) |
| 747 | { |
| 748 | struct mtk_snand *snf = nand_to_mtk_snand(nand); |
| 749 | struct mtk_ecc_config *ecc_cfg = nand_to_ecc_ctx(nand); |
| 750 | int ret; |
| 751 | |
| 752 | ret = mtk_snand_setup_pagefmt(snf, nand->memorg.pagesize, |
| 753 | nand->memorg.oobsize); |
| 754 | if (ret) |
| 755 | return ret; |
| 756 | snf->autofmt = true; |
| 757 | snf->ecc_cfg = ecc_cfg; |
| 758 | return 0; |
| 759 | } |
| 760 | |
| 761 | static int mtk_snand_ecc_finish_io_req(struct nand_device *nand, |
| 762 | struct nand_page_io_req *req) |
| 763 | { |
| 764 | struct mtk_snand *snf = nand_to_mtk_snand(nand); |
| 765 | struct mtd_info *mtd = nanddev_to_mtd(nand); |
| 766 | |
| 767 | snf->ecc_cfg = NULL; |
| 768 | snf->autofmt = false; |
| 769 | if ((req->mode == MTD_OPS_RAW) || (req->type != NAND_PAGE_READ)) |
| 770 | return 0; |
| 771 | |
| 772 | if (snf->ecc_stats.failed) |
| 773 | mtd->ecc_stats.failed += snf->ecc_stats.failed; |
| 774 | mtd->ecc_stats.corrected += snf->ecc_stats.corrected; |
| 775 | return snf->ecc_stats.failed ? -EBADMSG : snf->ecc_stats.bitflips; |
| 776 | } |
| 777 | |
| 778 | static struct nand_ecc_engine_ops mtk_snfi_ecc_engine_ops = { |
| 779 | .init_ctx = mtk_snand_ecc_init_ctx, |
| 780 | .cleanup_ctx = mtk_snand_ecc_cleanup_ctx, |
| 781 | .prepare_io_req = mtk_snand_ecc_prepare_io_req, |
| 782 | .finish_io_req = mtk_snand_ecc_finish_io_req, |
| 783 | }; |
| 784 | |
| 785 | static void mtk_snand_read_fdm(struct mtk_snand *snf, u8 *buf) |
| 786 | { |
| 787 | u32 vall, valm; |
| 788 | u8 *oobptr = buf; |
| 789 | int i, j; |
| 790 | |
| 791 | for (i = 0; i < snf->nfi_cfg.nsectors; i++) { |
| 792 | vall = nfi_read32(snf, NFI_FDML(i)); |
| 793 | valm = nfi_read32(snf, NFI_FDMM(i)); |
| 794 | |
| 795 | for (j = 0; j < snf->caps->fdm_size; j++) |
| 796 | oobptr[j] = (j >= 4 ? valm : vall) >> ((j % 4) * 8); |
| 797 | |
| 798 | oobptr += snf->caps->fdm_size; |
| 799 | } |
| 800 | } |
| 801 | |
| 802 | static void mtk_snand_write_fdm(struct mtk_snand *snf, const u8 *buf) |
| 803 | { |
| 804 | u32 fdm_size = snf->caps->fdm_size; |
| 805 | const u8 *oobptr = buf; |
| 806 | u32 vall, valm; |
| 807 | int i, j; |
| 808 | |
| 809 | for (i = 0; i < snf->nfi_cfg.nsectors; i++) { |
| 810 | vall = 0; |
| 811 | valm = 0; |
| 812 | |
| 813 | for (j = 0; j < 8; j++) { |
| 814 | if (j < 4) |
| 815 | vall |= (j < fdm_size ? oobptr[j] : 0xff) |
| 816 | << (j * 8); |
| 817 | else |
| 818 | valm |= (j < fdm_size ? oobptr[j] : 0xff) |
| 819 | << ((j - 4) * 8); |
| 820 | } |
| 821 | |
| 822 | nfi_write32(snf, NFI_FDML(i), vall); |
| 823 | nfi_write32(snf, NFI_FDMM(i), valm); |
| 824 | |
| 825 | oobptr += fdm_size; |
| 826 | } |
| 827 | } |
| 828 | |
| 829 | static void mtk_snand_bm_swap(struct mtk_snand *snf, u8 *buf) |
| 830 | { |
| 831 | u32 buf_bbm_pos, fdm_bbm_pos; |
| 832 | |
| 833 | if (!snf->caps->bbm_swap || snf->nfi_cfg.nsectors == 1) |
| 834 | return; |
| 835 | |
| 836 | // swap [pagesize] byte on nand with the first fdm byte |
| 837 | // in the last sector. |
| 838 | buf_bbm_pos = snf->nfi_cfg.page_size - |
| 839 | (snf->nfi_cfg.nsectors - 1) * snf->nfi_cfg.spare_size; |
| 840 | fdm_bbm_pos = snf->nfi_cfg.page_size + |
| 841 | (snf->nfi_cfg.nsectors - 1) * snf->caps->fdm_size; |
| 842 | |
| 843 | swap(snf->buf[fdm_bbm_pos], buf[buf_bbm_pos]); |
| 844 | } |
| 845 | |
| 846 | static void mtk_snand_fdm_bm_swap(struct mtk_snand *snf) |
| 847 | { |
| 848 | u32 fdm_bbm_pos1, fdm_bbm_pos2; |
| 849 | |
| 850 | if (!snf->caps->bbm_swap || snf->nfi_cfg.nsectors == 1) |
| 851 | return; |
| 852 | |
| 853 | // swap the first fdm byte in the first and the last sector. |
| 854 | fdm_bbm_pos1 = snf->nfi_cfg.page_size; |
| 855 | fdm_bbm_pos2 = snf->nfi_cfg.page_size + |
| 856 | (snf->nfi_cfg.nsectors - 1) * snf->caps->fdm_size; |
| 857 | swap(snf->buf[fdm_bbm_pos1], snf->buf[fdm_bbm_pos2]); |
| 858 | } |
| 859 | |
| 860 | static int mtk_snand_read_page_cache(struct mtk_snand *snf, |
| 861 | const struct spi_mem_op *op) |
| 862 | { |
| 863 | u8 *buf = snf->buf; |
| 864 | u8 *buf_fdm = buf + snf->nfi_cfg.page_size; |
| 865 | // the address part to be sent by the controller |
| 866 | u32 op_addr = op->addr.val; |
| 867 | // where to start copying data from bounce buffer |
| 868 | u32 rd_offset = 0; |
| 869 | u32 dummy_clk = (op->dummy.nbytes * BITS_PER_BYTE / op->dummy.buswidth); |
| 870 | u32 op_mode = 0; |
| 871 | u32 dma_len = snf->buf_len; |
| 872 | int ret = 0; |
| 873 | u32 rd_mode, rd_bytes, val; |
| 874 | dma_addr_t buf_dma; |
| 875 | |
| 876 | if (snf->autofmt) { |
| 877 | u32 last_bit; |
| 878 | u32 mask; |
| 879 | |
| 880 | dma_len = snf->nfi_cfg.page_size; |
| 881 | op_mode = CNFG_AUTO_FMT_EN; |
| 882 | if (op->data.ecc) |
| 883 | op_mode |= CNFG_HW_ECC_EN; |
| 884 | // extract the plane bit: |
| 885 | // Find the highest bit set in (pagesize+oobsize). |
| 886 | // Bits higher than that in op->addr are kept and sent over SPI |
| 887 | // Lower bits are used as an offset for copying data from DMA |
| 888 | // bounce buffer. |
| 889 | last_bit = fls(snf->nfi_cfg.page_size + snf->nfi_cfg.oob_size); |
| 890 | mask = (1 << last_bit) - 1; |
| 891 | rd_offset = op_addr & mask; |
| 892 | op_addr &= ~mask; |
| 893 | |
| 894 | // check if we can dma to the caller memory |
| 895 | if (rd_offset == 0 && op->data.nbytes >= snf->nfi_cfg.page_size) |
| 896 | buf = op->data.buf.in; |
| 897 | } |
| 898 | mtk_snand_mac_reset(snf); |
| 899 | mtk_nfi_reset(snf); |
| 900 | |
| 901 | // command and dummy cycles |
| 902 | nfi_write32(snf, SNF_RD_CTL2, |
| 903 | (dummy_clk << DATA_READ_DUMMY_S) | |
| 904 | (op->cmd.opcode << DATA_READ_CMD_S)); |
| 905 | |
| 906 | // read address |
| 907 | nfi_write32(snf, SNF_RD_CTL3, op_addr); |
| 908 | |
| 909 | // Set read op_mode |
| 910 | if (op->data.buswidth == 4) |
| 911 | rd_mode = op->addr.buswidth == 4 ? DATA_READ_MODE_QUAD : |
| 912 | DATA_READ_MODE_X4; |
| 913 | else if (op->data.buswidth == 2) |
| 914 | rd_mode = op->addr.buswidth == 2 ? DATA_READ_MODE_DUAL : |
| 915 | DATA_READ_MODE_X2; |
| 916 | else |
| 917 | rd_mode = DATA_READ_MODE_X1; |
| 918 | rd_mode <<= DATA_READ_MODE_S; |
| 919 | nfi_rmw32(snf, SNF_MISC_CTL, DATA_READ_MODE, |
| 920 | rd_mode | DATARD_CUSTOM_EN); |
| 921 | |
| 922 | // Set bytes to read |
| 923 | rd_bytes = (snf->nfi_cfg.spare_size + snf->caps->sector_size) * |
| 924 | snf->nfi_cfg.nsectors; |
| 925 | nfi_write32(snf, SNF_MISC_CTL2, |
| 926 | (rd_bytes << PROGRAM_LOAD_BYTE_NUM_S) | rd_bytes); |
| 927 | |
| 928 | // NFI read prepare |
| 929 | nfi_write16(snf, NFI_CNFG, |
| 930 | (CNFG_OP_MODE_CUST << CNFG_OP_MODE_S) | CNFG_DMA_BURST_EN | |
| 931 | CNFG_READ_MODE | CNFG_DMA_MODE | op_mode); |
| 932 | |
| 933 | nfi_write32(snf, NFI_CON, (snf->nfi_cfg.nsectors << CON_SEC_NUM_S)); |
| 934 | |
| 935 | buf_dma = dma_map_single(snf->dev, buf, dma_len, DMA_FROM_DEVICE); |
Dan Carpenter | 73c1a51 | 2022-04-29 20:41:37 +0300 | [diff] [blame] | 936 | ret = dma_mapping_error(snf->dev, buf_dma); |
| 937 | if (ret) { |
Chuanhong Guo | 764f1b7 | 2022-04-24 11:25:24 +0800 | [diff] [blame] | 938 | dev_err(snf->dev, "DMA mapping failed.\n"); |
| 939 | goto cleanup; |
| 940 | } |
| 941 | nfi_write32(snf, NFI_STRADDR, buf_dma); |
| 942 | if (op->data.ecc) { |
| 943 | snf->ecc_cfg->op = ECC_DECODE; |
| 944 | ret = mtk_ecc_enable(snf->ecc, snf->ecc_cfg); |
| 945 | if (ret) |
| 946 | goto cleanup_dma; |
| 947 | } |
| 948 | // Prepare for custom read interrupt |
| 949 | nfi_write32(snf, NFI_INTR_EN, NFI_IRQ_INTR_EN | NFI_IRQ_CUS_READ); |
| 950 | reinit_completion(&snf->op_done); |
| 951 | |
| 952 | // Trigger NFI into custom mode |
| 953 | nfi_write16(snf, NFI_CMD, NFI_CMD_DUMMY_READ); |
| 954 | |
| 955 | // Start DMA read |
| 956 | nfi_rmw32(snf, NFI_CON, 0, CON_BRD); |
| 957 | nfi_write16(snf, NFI_STRDATA, STR_DATA); |
| 958 | |
| 959 | if (!wait_for_completion_timeout( |
| 960 | &snf->op_done, usecs_to_jiffies(SNFI_POLL_INTERVAL))) { |
| 961 | dev_err(snf->dev, "DMA timed out for reading from cache.\n"); |
| 962 | ret = -ETIMEDOUT; |
| 963 | goto cleanup; |
| 964 | } |
| 965 | |
| 966 | // Wait for BUS_SEC_CNTR returning expected value |
| 967 | ret = readl_poll_timeout(snf->nfi_base + NFI_BYTELEN, val, |
| 968 | BUS_SEC_CNTR(val) >= snf->nfi_cfg.nsectors, 0, |
| 969 | SNFI_POLL_INTERVAL); |
| 970 | if (ret) { |
| 971 | dev_err(snf->dev, "Timed out waiting for BUS_SEC_CNTR\n"); |
| 972 | goto cleanup2; |
| 973 | } |
| 974 | |
| 975 | // Wait for bus becoming idle |
| 976 | ret = readl_poll_timeout(snf->nfi_base + NFI_MASTERSTA, val, |
| 977 | !(val & snf->caps->mastersta_mask), 0, |
| 978 | SNFI_POLL_INTERVAL); |
| 979 | if (ret) { |
| 980 | dev_err(snf->dev, "Timed out waiting for bus becoming idle\n"); |
| 981 | goto cleanup2; |
| 982 | } |
| 983 | |
| 984 | if (op->data.ecc) { |
| 985 | ret = mtk_ecc_wait_done(snf->ecc, ECC_DECODE); |
| 986 | if (ret) { |
| 987 | dev_err(snf->dev, "wait ecc done timeout\n"); |
| 988 | goto cleanup2; |
| 989 | } |
| 990 | // save status before disabling ecc |
| 991 | mtk_ecc_get_stats(snf->ecc, &snf->ecc_stats, |
| 992 | snf->nfi_cfg.nsectors); |
| 993 | } |
| 994 | |
| 995 | dma_unmap_single(snf->dev, buf_dma, dma_len, DMA_FROM_DEVICE); |
| 996 | |
| 997 | if (snf->autofmt) { |
| 998 | mtk_snand_read_fdm(snf, buf_fdm); |
| 999 | if (snf->caps->bbm_swap) { |
| 1000 | mtk_snand_bm_swap(snf, buf); |
| 1001 | mtk_snand_fdm_bm_swap(snf); |
| 1002 | } |
| 1003 | } |
| 1004 | |
| 1005 | // copy data back |
| 1006 | if (nfi_read32(snf, NFI_STA) & READ_EMPTY) { |
| 1007 | memset(op->data.buf.in, 0xff, op->data.nbytes); |
| 1008 | snf->ecc_stats.bitflips = 0; |
| 1009 | snf->ecc_stats.failed = 0; |
| 1010 | snf->ecc_stats.corrected = 0; |
| 1011 | } else { |
| 1012 | if (buf == op->data.buf.in) { |
| 1013 | u32 cap_len = snf->buf_len - snf->nfi_cfg.page_size; |
| 1014 | u32 req_left = op->data.nbytes - snf->nfi_cfg.page_size; |
| 1015 | |
| 1016 | if (req_left) |
| 1017 | memcpy(op->data.buf.in + snf->nfi_cfg.page_size, |
| 1018 | buf_fdm, |
| 1019 | cap_len < req_left ? cap_len : req_left); |
| 1020 | } else if (rd_offset < snf->buf_len) { |
| 1021 | u32 cap_len = snf->buf_len - rd_offset; |
| 1022 | |
| 1023 | if (op->data.nbytes < cap_len) |
| 1024 | cap_len = op->data.nbytes; |
| 1025 | memcpy(op->data.buf.in, snf->buf + rd_offset, cap_len); |
| 1026 | } |
| 1027 | } |
| 1028 | cleanup2: |
| 1029 | if (op->data.ecc) |
| 1030 | mtk_ecc_disable(snf->ecc); |
| 1031 | cleanup_dma: |
| 1032 | // unmap dma only if any error happens. (otherwise it's done before |
| 1033 | // data copying) |
| 1034 | if (ret) |
| 1035 | dma_unmap_single(snf->dev, buf_dma, dma_len, DMA_FROM_DEVICE); |
| 1036 | cleanup: |
| 1037 | // Stop read |
| 1038 | nfi_write32(snf, NFI_CON, 0); |
| 1039 | nfi_write16(snf, NFI_CNFG, 0); |
| 1040 | |
| 1041 | // Clear SNF done flag |
| 1042 | nfi_rmw32(snf, SNF_STA_CTL1, 0, CUS_READ_DONE); |
| 1043 | nfi_write32(snf, SNF_STA_CTL1, 0); |
| 1044 | |
| 1045 | // Disable interrupt |
| 1046 | nfi_read32(snf, NFI_INTR_STA); |
| 1047 | nfi_write32(snf, NFI_INTR_EN, 0); |
| 1048 | |
| 1049 | nfi_rmw32(snf, SNF_MISC_CTL, DATARD_CUSTOM_EN, 0); |
| 1050 | return ret; |
| 1051 | } |
| 1052 | |
| 1053 | static int mtk_snand_write_page_cache(struct mtk_snand *snf, |
| 1054 | const struct spi_mem_op *op) |
| 1055 | { |
| 1056 | // the address part to be sent by the controller |
| 1057 | u32 op_addr = op->addr.val; |
| 1058 | // where to start copying data from bounce buffer |
| 1059 | u32 wr_offset = 0; |
| 1060 | u32 op_mode = 0; |
| 1061 | int ret = 0; |
| 1062 | u32 wr_mode = 0; |
| 1063 | u32 dma_len = snf->buf_len; |
| 1064 | u32 wr_bytes, val; |
| 1065 | size_t cap_len; |
| 1066 | dma_addr_t buf_dma; |
| 1067 | |
| 1068 | if (snf->autofmt) { |
| 1069 | u32 last_bit; |
| 1070 | u32 mask; |
| 1071 | |
| 1072 | dma_len = snf->nfi_cfg.page_size; |
| 1073 | op_mode = CNFG_AUTO_FMT_EN; |
| 1074 | if (op->data.ecc) |
| 1075 | op_mode |= CNFG_HW_ECC_EN; |
| 1076 | |
| 1077 | last_bit = fls(snf->nfi_cfg.page_size + snf->nfi_cfg.oob_size); |
| 1078 | mask = (1 << last_bit) - 1; |
| 1079 | wr_offset = op_addr & mask; |
| 1080 | op_addr &= ~mask; |
| 1081 | } |
| 1082 | mtk_snand_mac_reset(snf); |
| 1083 | mtk_nfi_reset(snf); |
| 1084 | |
| 1085 | if (wr_offset) |
| 1086 | memset(snf->buf, 0xff, wr_offset); |
| 1087 | |
| 1088 | cap_len = snf->buf_len - wr_offset; |
| 1089 | if (op->data.nbytes < cap_len) |
| 1090 | cap_len = op->data.nbytes; |
| 1091 | memcpy(snf->buf + wr_offset, op->data.buf.out, cap_len); |
| 1092 | if (snf->autofmt) { |
| 1093 | if (snf->caps->bbm_swap) { |
| 1094 | mtk_snand_fdm_bm_swap(snf); |
| 1095 | mtk_snand_bm_swap(snf, snf->buf); |
| 1096 | } |
| 1097 | mtk_snand_write_fdm(snf, snf->buf + snf->nfi_cfg.page_size); |
| 1098 | } |
| 1099 | |
| 1100 | // Command |
| 1101 | nfi_write32(snf, SNF_PG_CTL1, (op->cmd.opcode << PG_LOAD_CMD_S)); |
| 1102 | |
| 1103 | // write address |
| 1104 | nfi_write32(snf, SNF_PG_CTL2, op_addr); |
| 1105 | |
| 1106 | // Set read op_mode |
| 1107 | if (op->data.buswidth == 4) |
| 1108 | wr_mode = PG_LOAD_X4_EN; |
| 1109 | |
| 1110 | nfi_rmw32(snf, SNF_MISC_CTL, PG_LOAD_X4_EN, |
| 1111 | wr_mode | PG_LOAD_CUSTOM_EN); |
| 1112 | |
| 1113 | // Set bytes to write |
| 1114 | wr_bytes = (snf->nfi_cfg.spare_size + snf->caps->sector_size) * |
| 1115 | snf->nfi_cfg.nsectors; |
| 1116 | nfi_write32(snf, SNF_MISC_CTL2, |
| 1117 | (wr_bytes << PROGRAM_LOAD_BYTE_NUM_S) | wr_bytes); |
| 1118 | |
| 1119 | // NFI write prepare |
| 1120 | nfi_write16(snf, NFI_CNFG, |
| 1121 | (CNFG_OP_MODE_PROGRAM << CNFG_OP_MODE_S) | |
| 1122 | CNFG_DMA_BURST_EN | CNFG_DMA_MODE | op_mode); |
| 1123 | |
| 1124 | nfi_write32(snf, NFI_CON, (snf->nfi_cfg.nsectors << CON_SEC_NUM_S)); |
| 1125 | buf_dma = dma_map_single(snf->dev, snf->buf, dma_len, DMA_TO_DEVICE); |
Dan Carpenter | 73c1a51 | 2022-04-29 20:41:37 +0300 | [diff] [blame] | 1126 | ret = dma_mapping_error(snf->dev, buf_dma); |
| 1127 | if (ret) { |
Chuanhong Guo | 764f1b7 | 2022-04-24 11:25:24 +0800 | [diff] [blame] | 1128 | dev_err(snf->dev, "DMA mapping failed.\n"); |
| 1129 | goto cleanup; |
| 1130 | } |
| 1131 | nfi_write32(snf, NFI_STRADDR, buf_dma); |
| 1132 | if (op->data.ecc) { |
| 1133 | snf->ecc_cfg->op = ECC_ENCODE; |
| 1134 | ret = mtk_ecc_enable(snf->ecc, snf->ecc_cfg); |
| 1135 | if (ret) |
| 1136 | goto cleanup_dma; |
| 1137 | } |
| 1138 | // Prepare for custom write interrupt |
| 1139 | nfi_write32(snf, NFI_INTR_EN, NFI_IRQ_INTR_EN | NFI_IRQ_CUS_PG); |
| 1140 | reinit_completion(&snf->op_done); |
| 1141 | ; |
| 1142 | |
| 1143 | // Trigger NFI into custom mode |
| 1144 | nfi_write16(snf, NFI_CMD, NFI_CMD_DUMMY_WRITE); |
| 1145 | |
| 1146 | // Start DMA write |
| 1147 | nfi_rmw32(snf, NFI_CON, 0, CON_BWR); |
| 1148 | nfi_write16(snf, NFI_STRDATA, STR_DATA); |
| 1149 | |
| 1150 | if (!wait_for_completion_timeout( |
| 1151 | &snf->op_done, usecs_to_jiffies(SNFI_POLL_INTERVAL))) { |
| 1152 | dev_err(snf->dev, "DMA timed out for program load.\n"); |
| 1153 | ret = -ETIMEDOUT; |
| 1154 | goto cleanup_ecc; |
| 1155 | } |
| 1156 | |
| 1157 | // Wait for NFI_SEC_CNTR returning expected value |
| 1158 | ret = readl_poll_timeout(snf->nfi_base + NFI_ADDRCNTR, val, |
| 1159 | NFI_SEC_CNTR(val) >= snf->nfi_cfg.nsectors, 0, |
| 1160 | SNFI_POLL_INTERVAL); |
| 1161 | if (ret) |
| 1162 | dev_err(snf->dev, "Timed out waiting for NFI_SEC_CNTR\n"); |
| 1163 | |
| 1164 | cleanup_ecc: |
| 1165 | if (op->data.ecc) |
| 1166 | mtk_ecc_disable(snf->ecc); |
| 1167 | cleanup_dma: |
| 1168 | dma_unmap_single(snf->dev, buf_dma, dma_len, DMA_TO_DEVICE); |
| 1169 | cleanup: |
| 1170 | // Stop write |
| 1171 | nfi_write32(snf, NFI_CON, 0); |
| 1172 | nfi_write16(snf, NFI_CNFG, 0); |
| 1173 | |
| 1174 | // Clear SNF done flag |
| 1175 | nfi_rmw32(snf, SNF_STA_CTL1, 0, CUS_PG_DONE); |
| 1176 | nfi_write32(snf, SNF_STA_CTL1, 0); |
| 1177 | |
| 1178 | // Disable interrupt |
| 1179 | nfi_read32(snf, NFI_INTR_STA); |
| 1180 | nfi_write32(snf, NFI_INTR_EN, 0); |
| 1181 | |
| 1182 | nfi_rmw32(snf, SNF_MISC_CTL, PG_LOAD_CUSTOM_EN, 0); |
| 1183 | |
| 1184 | return ret; |
| 1185 | } |
| 1186 | |
| 1187 | /** |
| 1188 | * mtk_snand_is_page_ops() - check if the op is a controller supported page op. |
| 1189 | * @op spi-mem op to check |
| 1190 | * |
| 1191 | * Check whether op can be executed with read_from_cache or program_load |
| 1192 | * mode in the controller. |
| 1193 | * This controller can execute typical Read From Cache and Program Load |
| 1194 | * instructions found on SPI-NAND with 2-byte address. |
| 1195 | * DTR and cmd buswidth & nbytes should be checked before calling this. |
| 1196 | * |
| 1197 | * Return: true if the op matches the instruction template |
| 1198 | */ |
| 1199 | static bool mtk_snand_is_page_ops(const struct spi_mem_op *op) |
| 1200 | { |
| 1201 | if (op->addr.nbytes != 2) |
| 1202 | return false; |
| 1203 | |
| 1204 | if (op->addr.buswidth != 1 && op->addr.buswidth != 2 && |
| 1205 | op->addr.buswidth != 4) |
| 1206 | return false; |
| 1207 | |
| 1208 | // match read from page instructions |
| 1209 | if (op->data.dir == SPI_MEM_DATA_IN) { |
| 1210 | // check dummy cycle first |
| 1211 | if (op->dummy.nbytes * BITS_PER_BYTE / op->dummy.buswidth > |
| 1212 | DATA_READ_MAX_DUMMY) |
| 1213 | return false; |
| 1214 | // quad io / quad out |
| 1215 | if ((op->addr.buswidth == 4 || op->addr.buswidth == 1) && |
| 1216 | op->data.buswidth == 4) |
| 1217 | return true; |
| 1218 | |
| 1219 | // dual io / dual out |
| 1220 | if ((op->addr.buswidth == 2 || op->addr.buswidth == 1) && |
| 1221 | op->data.buswidth == 2) |
| 1222 | return true; |
| 1223 | |
| 1224 | // standard spi |
| 1225 | if (op->addr.buswidth == 1 && op->data.buswidth == 1) |
| 1226 | return true; |
| 1227 | } else if (op->data.dir == SPI_MEM_DATA_OUT) { |
| 1228 | // check dummy cycle first |
| 1229 | if (op->dummy.nbytes) |
| 1230 | return false; |
| 1231 | // program load quad out |
| 1232 | if (op->addr.buswidth == 1 && op->data.buswidth == 4) |
| 1233 | return true; |
| 1234 | // standard spi |
| 1235 | if (op->addr.buswidth == 1 && op->data.buswidth == 1) |
| 1236 | return true; |
| 1237 | } |
| 1238 | return false; |
| 1239 | } |
| 1240 | |
| 1241 | static bool mtk_snand_supports_op(struct spi_mem *mem, |
| 1242 | const struct spi_mem_op *op) |
| 1243 | { |
| 1244 | if (!spi_mem_default_supports_op(mem, op)) |
| 1245 | return false; |
| 1246 | if (op->cmd.nbytes != 1 || op->cmd.buswidth != 1) |
| 1247 | return false; |
| 1248 | if (mtk_snand_is_page_ops(op)) |
| 1249 | return true; |
| 1250 | return ((op->addr.nbytes == 0 || op->addr.buswidth == 1) && |
| 1251 | (op->dummy.nbytes == 0 || op->dummy.buswidth == 1) && |
| 1252 | (op->data.nbytes == 0 || op->data.buswidth == 1)); |
| 1253 | } |
| 1254 | |
| 1255 | static int mtk_snand_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op) |
| 1256 | { |
| 1257 | struct mtk_snand *ms = spi_controller_get_devdata(mem->spi->master); |
| 1258 | // page ops transfer size must be exactly ((sector_size + spare_size) * |
| 1259 | // nsectors). Limit the op size if the caller requests more than that. |
| 1260 | // exec_op will read more than needed and discard the leftover if the |
| 1261 | // caller requests less data. |
| 1262 | if (mtk_snand_is_page_ops(op)) { |
| 1263 | size_t l; |
| 1264 | // skip adjust_op_size for page ops |
| 1265 | if (ms->autofmt) |
| 1266 | return 0; |
| 1267 | l = ms->caps->sector_size + ms->nfi_cfg.spare_size; |
| 1268 | l *= ms->nfi_cfg.nsectors; |
| 1269 | if (op->data.nbytes > l) |
| 1270 | op->data.nbytes = l; |
| 1271 | } else { |
| 1272 | size_t hl = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes; |
| 1273 | |
| 1274 | if (hl >= SNF_GPRAM_SIZE) |
| 1275 | return -EOPNOTSUPP; |
| 1276 | if (op->data.nbytes > SNF_GPRAM_SIZE - hl) |
| 1277 | op->data.nbytes = SNF_GPRAM_SIZE - hl; |
| 1278 | } |
| 1279 | return 0; |
| 1280 | } |
| 1281 | |
| 1282 | static int mtk_snand_exec_op(struct spi_mem *mem, const struct spi_mem_op *op) |
| 1283 | { |
| 1284 | struct mtk_snand *ms = spi_controller_get_devdata(mem->spi->master); |
| 1285 | |
| 1286 | dev_dbg(ms->dev, "OP %02x ADDR %08llX@%d:%u DATA %d:%u", op->cmd.opcode, |
| 1287 | op->addr.val, op->addr.buswidth, op->addr.nbytes, |
| 1288 | op->data.buswidth, op->data.nbytes); |
| 1289 | if (mtk_snand_is_page_ops(op)) { |
| 1290 | if (op->data.dir == SPI_MEM_DATA_IN) |
| 1291 | return mtk_snand_read_page_cache(ms, op); |
| 1292 | else |
| 1293 | return mtk_snand_write_page_cache(ms, op); |
| 1294 | } else { |
| 1295 | return mtk_snand_mac_io(ms, op); |
| 1296 | } |
| 1297 | } |
| 1298 | |
| 1299 | static const struct spi_controller_mem_ops mtk_snand_mem_ops = { |
| 1300 | .adjust_op_size = mtk_snand_adjust_op_size, |
| 1301 | .supports_op = mtk_snand_supports_op, |
| 1302 | .exec_op = mtk_snand_exec_op, |
| 1303 | }; |
| 1304 | |
| 1305 | static const struct spi_controller_mem_caps mtk_snand_mem_caps = { |
| 1306 | .ecc = true, |
| 1307 | }; |
| 1308 | |
| 1309 | static irqreturn_t mtk_snand_irq(int irq, void *id) |
| 1310 | { |
| 1311 | struct mtk_snand *snf = id; |
| 1312 | u32 sta, ien; |
| 1313 | |
| 1314 | sta = nfi_read32(snf, NFI_INTR_STA); |
| 1315 | ien = nfi_read32(snf, NFI_INTR_EN); |
| 1316 | |
| 1317 | if (!(sta & ien)) |
| 1318 | return IRQ_NONE; |
| 1319 | |
| 1320 | nfi_write32(snf, NFI_INTR_EN, 0); |
| 1321 | complete(&snf->op_done); |
| 1322 | return IRQ_HANDLED; |
| 1323 | } |
| 1324 | |
| 1325 | static const struct of_device_id mtk_snand_ids[] = { |
| 1326 | { .compatible = "mediatek,mt7622-snand", .data = &mt7622_snand_caps }, |
| 1327 | { .compatible = "mediatek,mt7629-snand", .data = &mt7629_snand_caps }, |
Xiangsheng Hou | 7073888 | 2022-12-05 14:57:48 +0800 | [diff] [blame] | 1328 | { .compatible = "mediatek,mt7986-snand", .data = &mt7986_snand_caps }, |
Chuanhong Guo | 764f1b7 | 2022-04-24 11:25:24 +0800 | [diff] [blame] | 1329 | {}, |
| 1330 | }; |
| 1331 | |
| 1332 | MODULE_DEVICE_TABLE(of, mtk_snand_ids); |
| 1333 | |
| 1334 | static int mtk_snand_enable_clk(struct mtk_snand *ms) |
| 1335 | { |
| 1336 | int ret; |
| 1337 | |
| 1338 | ret = clk_prepare_enable(ms->nfi_clk); |
| 1339 | if (ret) { |
| 1340 | dev_err(ms->dev, "unable to enable nfi clk\n"); |
| 1341 | return ret; |
| 1342 | } |
| 1343 | ret = clk_prepare_enable(ms->pad_clk); |
| 1344 | if (ret) { |
| 1345 | dev_err(ms->dev, "unable to enable pad clk\n"); |
| 1346 | goto err1; |
| 1347 | } |
Xiangsheng Hou | e40fa32 | 2023-02-01 10:09:18 +0800 | [diff] [blame] | 1348 | ret = clk_prepare_enable(ms->nfi_hclk); |
| 1349 | if (ret) { |
| 1350 | dev_err(ms->dev, "unable to enable nfi hclk\n"); |
| 1351 | goto err2; |
| 1352 | } |
| 1353 | |
Chuanhong Guo | 764f1b7 | 2022-04-24 11:25:24 +0800 | [diff] [blame] | 1354 | return 0; |
Xiangsheng Hou | e40fa32 | 2023-02-01 10:09:18 +0800 | [diff] [blame] | 1355 | |
| 1356 | err2: |
| 1357 | clk_disable_unprepare(ms->pad_clk); |
Chuanhong Guo | 764f1b7 | 2022-04-24 11:25:24 +0800 | [diff] [blame] | 1358 | err1: |
| 1359 | clk_disable_unprepare(ms->nfi_clk); |
| 1360 | return ret; |
| 1361 | } |
| 1362 | |
| 1363 | static void mtk_snand_disable_clk(struct mtk_snand *ms) |
| 1364 | { |
Xiangsheng Hou | e40fa32 | 2023-02-01 10:09:18 +0800 | [diff] [blame] | 1365 | clk_disable_unprepare(ms->nfi_hclk); |
Chuanhong Guo | 764f1b7 | 2022-04-24 11:25:24 +0800 | [diff] [blame] | 1366 | clk_disable_unprepare(ms->pad_clk); |
| 1367 | clk_disable_unprepare(ms->nfi_clk); |
| 1368 | } |
| 1369 | |
| 1370 | static int mtk_snand_probe(struct platform_device *pdev) |
| 1371 | { |
| 1372 | struct device_node *np = pdev->dev.of_node; |
| 1373 | const struct of_device_id *dev_id; |
| 1374 | struct spi_controller *ctlr; |
| 1375 | struct mtk_snand *ms; |
Xiangsheng Hou | 1d36c99 | 2023-02-01 10:09:20 +0800 | [diff] [blame] | 1376 | unsigned long spi_freq; |
| 1377 | u32 val = 0; |
Chuanhong Guo | 764f1b7 | 2022-04-24 11:25:24 +0800 | [diff] [blame] | 1378 | int ret; |
| 1379 | |
| 1380 | dev_id = of_match_node(mtk_snand_ids, np); |
| 1381 | if (!dev_id) |
| 1382 | return -EINVAL; |
| 1383 | |
| 1384 | ctlr = devm_spi_alloc_master(&pdev->dev, sizeof(*ms)); |
| 1385 | if (!ctlr) |
| 1386 | return -ENOMEM; |
| 1387 | platform_set_drvdata(pdev, ctlr); |
| 1388 | |
| 1389 | ms = spi_controller_get_devdata(ctlr); |
| 1390 | |
| 1391 | ms->ctlr = ctlr; |
| 1392 | ms->caps = dev_id->data; |
| 1393 | |
| 1394 | ms->ecc = of_mtk_ecc_get(np); |
| 1395 | if (IS_ERR(ms->ecc)) |
| 1396 | return PTR_ERR(ms->ecc); |
| 1397 | else if (!ms->ecc) |
| 1398 | return -ENODEV; |
| 1399 | |
| 1400 | ms->nfi_base = devm_platform_ioremap_resource(pdev, 0); |
| 1401 | if (IS_ERR(ms->nfi_base)) { |
| 1402 | ret = PTR_ERR(ms->nfi_base); |
| 1403 | goto release_ecc; |
| 1404 | } |
| 1405 | |
| 1406 | ms->dev = &pdev->dev; |
| 1407 | |
| 1408 | ms->nfi_clk = devm_clk_get(&pdev->dev, "nfi_clk"); |
| 1409 | if (IS_ERR(ms->nfi_clk)) { |
| 1410 | ret = PTR_ERR(ms->nfi_clk); |
| 1411 | dev_err(&pdev->dev, "unable to get nfi_clk, err = %d\n", ret); |
| 1412 | goto release_ecc; |
| 1413 | } |
| 1414 | |
| 1415 | ms->pad_clk = devm_clk_get(&pdev->dev, "pad_clk"); |
| 1416 | if (IS_ERR(ms->pad_clk)) { |
| 1417 | ret = PTR_ERR(ms->pad_clk); |
| 1418 | dev_err(&pdev->dev, "unable to get pad_clk, err = %d\n", ret); |
| 1419 | goto release_ecc; |
| 1420 | } |
| 1421 | |
Xiangsheng Hou | e40fa32 | 2023-02-01 10:09:18 +0800 | [diff] [blame] | 1422 | ms->nfi_hclk = devm_clk_get_optional(&pdev->dev, "nfi_hclk"); |
| 1423 | if (IS_ERR(ms->nfi_hclk)) { |
| 1424 | ret = PTR_ERR(ms->nfi_hclk); |
| 1425 | dev_err(&pdev->dev, "unable to get nfi_hclk, err = %d\n", ret); |
| 1426 | goto release_ecc; |
| 1427 | } |
| 1428 | |
Chuanhong Guo | 764f1b7 | 2022-04-24 11:25:24 +0800 | [diff] [blame] | 1429 | ret = mtk_snand_enable_clk(ms); |
| 1430 | if (ret) |
| 1431 | goto release_ecc; |
| 1432 | |
| 1433 | init_completion(&ms->op_done); |
| 1434 | |
| 1435 | ms->irq = platform_get_irq(pdev, 0); |
| 1436 | if (ms->irq < 0) { |
| 1437 | ret = ms->irq; |
| 1438 | goto disable_clk; |
| 1439 | } |
| 1440 | ret = devm_request_irq(ms->dev, ms->irq, mtk_snand_irq, 0x0, |
| 1441 | "mtk-snand", ms); |
| 1442 | if (ret) { |
| 1443 | dev_err(ms->dev, "failed to request snfi irq\n"); |
| 1444 | goto disable_clk; |
| 1445 | } |
| 1446 | |
| 1447 | ret = dma_set_mask(ms->dev, DMA_BIT_MASK(32)); |
| 1448 | if (ret) { |
| 1449 | dev_err(ms->dev, "failed to set dma mask\n"); |
| 1450 | goto disable_clk; |
| 1451 | } |
| 1452 | |
| 1453 | // switch to SNFI mode |
| 1454 | nfi_write32(ms, SNF_CFG, SPI_MODE); |
| 1455 | |
Xiangsheng Hou | 1d36c99 | 2023-02-01 10:09:20 +0800 | [diff] [blame] | 1456 | ret = of_property_read_u32(np, "rx-sample-delay-ns", &val); |
| 1457 | if (!ret) |
| 1458 | nfi_rmw32(ms, SNF_DLY_CTL3, SFCK_SAM_DLY, |
| 1459 | val * SFCK_SAM_DLY_RANGE / SFCK_SAM_DLY_TOTAL); |
| 1460 | |
| 1461 | ret = of_property_read_u32(np, "mediatek,rx-latch-latency-ns", &val); |
| 1462 | if (!ret) { |
| 1463 | spi_freq = clk_get_rate(ms->pad_clk); |
| 1464 | val = DIV_ROUND_CLOSEST(val, NSEC_PER_SEC / spi_freq); |
| 1465 | nfi_rmw32(ms, SNF_MISC_CTL, DATA_READ_LATCH_LAT, |
| 1466 | val << DATA_READ_LATCH_LAT_S); |
| 1467 | } |
| 1468 | |
Chuanhong Guo | 764f1b7 | 2022-04-24 11:25:24 +0800 | [diff] [blame] | 1469 | // setup an initial page format for ops matching page_cache_op template |
| 1470 | // before ECC is called. |
Xiangsheng Hou | 2b1e1981 | 2023-02-01 10:09:17 +0800 | [diff] [blame] | 1471 | ret = mtk_snand_setup_pagefmt(ms, SZ_2K, SZ_64); |
Chuanhong Guo | 764f1b7 | 2022-04-24 11:25:24 +0800 | [diff] [blame] | 1472 | if (ret) { |
| 1473 | dev_err(ms->dev, "failed to set initial page format\n"); |
| 1474 | goto disable_clk; |
| 1475 | } |
| 1476 | |
| 1477 | // setup ECC engine |
| 1478 | ms->ecc_eng.dev = &pdev->dev; |
| 1479 | ms->ecc_eng.integration = NAND_ECC_ENGINE_INTEGRATION_PIPELINED; |
| 1480 | ms->ecc_eng.ops = &mtk_snfi_ecc_engine_ops; |
| 1481 | ms->ecc_eng.priv = ms; |
| 1482 | |
| 1483 | ret = nand_ecc_register_on_host_hw_engine(&ms->ecc_eng); |
| 1484 | if (ret) { |
| 1485 | dev_err(&pdev->dev, "failed to register ecc engine.\n"); |
| 1486 | goto disable_clk; |
| 1487 | } |
| 1488 | |
| 1489 | ctlr->num_chipselect = 1; |
| 1490 | ctlr->mem_ops = &mtk_snand_mem_ops; |
| 1491 | ctlr->mem_caps = &mtk_snand_mem_caps; |
| 1492 | ctlr->bits_per_word_mask = SPI_BPW_MASK(8); |
| 1493 | ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | SPI_TX_DUAL | SPI_TX_QUAD; |
| 1494 | ctlr->dev.of_node = pdev->dev.of_node; |
| 1495 | ret = spi_register_controller(ctlr); |
| 1496 | if (ret) { |
| 1497 | dev_err(&pdev->dev, "spi_register_controller failed.\n"); |
| 1498 | goto disable_clk; |
| 1499 | } |
| 1500 | |
| 1501 | return 0; |
| 1502 | disable_clk: |
| 1503 | mtk_snand_disable_clk(ms); |
| 1504 | release_ecc: |
| 1505 | mtk_ecc_release(ms->ecc); |
| 1506 | return ret; |
| 1507 | } |
| 1508 | |
| 1509 | static int mtk_snand_remove(struct platform_device *pdev) |
| 1510 | { |
| 1511 | struct spi_controller *ctlr = platform_get_drvdata(pdev); |
| 1512 | struct mtk_snand *ms = spi_controller_get_devdata(ctlr); |
| 1513 | |
| 1514 | spi_unregister_controller(ctlr); |
| 1515 | mtk_snand_disable_clk(ms); |
| 1516 | mtk_ecc_release(ms->ecc); |
| 1517 | kfree(ms->buf); |
| 1518 | return 0; |
| 1519 | } |
| 1520 | |
| 1521 | static struct platform_driver mtk_snand_driver = { |
| 1522 | .probe = mtk_snand_probe, |
| 1523 | .remove = mtk_snand_remove, |
| 1524 | .driver = { |
| 1525 | .name = "mtk-snand", |
| 1526 | .of_match_table = mtk_snand_ids, |
| 1527 | }, |
| 1528 | }; |
| 1529 | |
| 1530 | module_platform_driver(mtk_snand_driver); |
| 1531 | |
| 1532 | MODULE_LICENSE("GPL"); |
| 1533 | MODULE_AUTHOR("Chuanhong Guo <gch981213@gmail.com>"); |
| 1534 | MODULE_DESCRIPTION("MeidaTek SPI-NAND Flash Controller Driver"); |