blob: f3f95eb373650192b3d112899c67c9ca5ee497fe [file] [log] [blame]
Chuanhong Guo764f1b72022-04-24 11:25:24 +08001// SPDX-License-Identifier: GPL-2.0
2//
3// Driver for the SPI-NAND mode of Mediatek NAND Flash Interface
4//
5// Copyright (c) 2022 Chuanhong Guo <gch981213@gmail.com>
6//
7// This driver is based on the SPI-NAND mtd driver from Mediatek SDK:
8//
9// Copyright (C) 2020 MediaTek Inc.
10// Author: Weijie Gao <weijie.gao@mediatek.com>
11//
12// This controller organize the page data as several interleaved sectors
13// like the following: (sizeof(FDM + ECC) = snf->nfi_cfg.spare_size)
14// +---------+------+------+---------+------+------+-----+
15// | Sector1 | FDM1 | ECC1 | Sector2 | FDM2 | ECC2 | ... |
16// +---------+------+------+---------+------+------+-----+
17// With auto-format turned on, DMA only returns this part:
18// +---------+---------+-----+
19// | Sector1 | Sector2 | ... |
20// +---------+---------+-----+
21// The FDM data will be filled to the registers, and ECC parity data isn't
22// accessible.
23// With auto-format off, all ((Sector+FDM+ECC)*nsectors) will be read over DMA
24// in it's original order shown in the first table. ECC can't be turned on when
25// auto-format is off.
26//
27// However, Linux SPI-NAND driver expects the data returned as:
28// +------+-----+
29// | Page | OOB |
30// +------+-----+
31// where the page data is continuously stored instead of interleaved.
32// So we assume all instructions matching the page_op template between ECC
33// prepare_io_req and finish_io_req are for page cache r/w.
34// Here's how this spi-mem driver operates when reading:
35// 1. Always set snf->autofmt = true in prepare_io_req (even when ECC is off).
36// 2. Perform page ops and let the controller fill the DMA bounce buffer with
37// de-interleaved sector data and set FDM registers.
38// 3. Return the data as:
39// +---------+---------+-----+------+------+-----+
40// | Sector1 | Sector2 | ... | FDM1 | FDM2 | ... |
41// +---------+---------+-----+------+------+-----+
42// 4. For other matching spi_mem ops outside a prepare/finish_io_req pair,
43// read the data with auto-format off into the bounce buffer and copy
44// needed data to the buffer specified in the request.
45//
46// Write requests operates in a similar manner.
47// As a limitation of this strategy, we won't be able to access any ECC parity
48// data at all in Linux.
49//
50// Here's the bad block mark situation on MTK chips:
51// In older chips like mt7622, MTK uses the first FDM byte in the first sector
52// as the bad block mark. After de-interleaving, this byte appears at [pagesize]
53// in the returned data, which is the BBM position expected by kernel. However,
54// the conventional bad block mark is the first byte of the OOB, which is part
55// of the last sector data in the interleaved layout. Instead of fixing their
56// hardware, MTK decided to address this inconsistency in software. On these
57// later chips, the BootROM expects the following:
58// 1. The [pagesize] byte on a nand page is used as BBM, which will appear at
59// (page_size - (nsectors - 1) * spare_size) in the DMA buffer.
60// 2. The original byte stored at that position in the DMA buffer will be stored
61// as the first byte of the FDM section in the last sector.
62// We can't disagree with the BootROM, so after de-interleaving, we need to
63// perform the following swaps in read:
64// 1. Store the BBM at [page_size - (nsectors - 1) * spare_size] to [page_size],
65// which is the expected BBM position by kernel.
66// 2. Store the page data byte at [pagesize + (nsectors-1) * fdm] back to
67// [page_size - (nsectors - 1) * spare_size]
68// Similarly, when writing, we need to perform swaps in the other direction.
69
70#include <linux/kernel.h>
71#include <linux/module.h>
72#include <linux/init.h>
73#include <linux/device.h>
74#include <linux/mutex.h>
75#include <linux/clk.h>
76#include <linux/interrupt.h>
77#include <linux/dma-mapping.h>
78#include <linux/iopoll.h>
79#include <linux/of_platform.h>
80#include <linux/mtd/nand-ecc-mtk.h>
81#include <linux/spi/spi.h>
82#include <linux/spi/spi-mem.h>
83#include <linux/mtd/nand.h>
84
85// NFI registers
86#define NFI_CNFG 0x000
87#define CNFG_OP_MODE_S 12
88#define CNFG_OP_MODE_CUST 6
89#define CNFG_OP_MODE_PROGRAM 3
90#define CNFG_AUTO_FMT_EN BIT(9)
91#define CNFG_HW_ECC_EN BIT(8)
92#define CNFG_DMA_BURST_EN BIT(2)
93#define CNFG_READ_MODE BIT(1)
94#define CNFG_DMA_MODE BIT(0)
95
96#define NFI_PAGEFMT 0x0004
97#define NFI_SPARE_SIZE_LS_S 16
98#define NFI_FDM_ECC_NUM_S 12
99#define NFI_FDM_NUM_S 8
100#define NFI_SPARE_SIZE_S 4
101#define NFI_SEC_SEL_512 BIT(2)
102#define NFI_PAGE_SIZE_S 0
103#define NFI_PAGE_SIZE_512_2K 0
104#define NFI_PAGE_SIZE_2K_4K 1
105#define NFI_PAGE_SIZE_4K_8K 2
106#define NFI_PAGE_SIZE_8K_16K 3
107
108#define NFI_CON 0x008
109#define CON_SEC_NUM_S 12
110#define CON_BWR BIT(9)
111#define CON_BRD BIT(8)
112#define CON_NFI_RST BIT(1)
113#define CON_FIFO_FLUSH BIT(0)
114
115#define NFI_INTR_EN 0x010
116#define NFI_INTR_STA 0x014
117#define NFI_IRQ_INTR_EN BIT(31)
118#define NFI_IRQ_CUS_READ BIT(8)
119#define NFI_IRQ_CUS_PG BIT(7)
120
121#define NFI_CMD 0x020
122#define NFI_CMD_DUMMY_READ 0x00
123#define NFI_CMD_DUMMY_WRITE 0x80
124
125#define NFI_STRDATA 0x040
126#define STR_DATA BIT(0)
127
128#define NFI_STA 0x060
Xiangsheng Hou70738882022-12-05 14:57:48 +0800129#define NFI_NAND_FSM_7622 GENMASK(28, 24)
130#define NFI_NAND_FSM_7986 GENMASK(29, 23)
Chuanhong Guo764f1b72022-04-24 11:25:24 +0800131#define NFI_FSM GENMASK(19, 16)
132#define READ_EMPTY BIT(12)
133
134#define NFI_FIFOSTA 0x064
135#define FIFO_WR_REMAIN_S 8
136#define FIFO_RD_REMAIN_S 0
137
138#define NFI_ADDRCNTR 0x070
139#define SEC_CNTR GENMASK(16, 12)
140#define SEC_CNTR_S 12
141#define NFI_SEC_CNTR(val) (((val)&SEC_CNTR) >> SEC_CNTR_S)
142
143#define NFI_STRADDR 0x080
144
145#define NFI_BYTELEN 0x084
146#define BUS_SEC_CNTR(val) (((val)&SEC_CNTR) >> SEC_CNTR_S)
147
148#define NFI_FDM0L 0x0a0
149#define NFI_FDM0M 0x0a4
150#define NFI_FDML(n) (NFI_FDM0L + (n)*8)
151#define NFI_FDMM(n) (NFI_FDM0M + (n)*8)
152
153#define NFI_DEBUG_CON1 0x220
154#define WBUF_EN BIT(2)
155
156#define NFI_MASTERSTA 0x224
157#define MAS_ADDR GENMASK(11, 9)
158#define MAS_RD GENMASK(8, 6)
159#define MAS_WR GENMASK(5, 3)
160#define MAS_RDDLY GENMASK(2, 0)
161#define NFI_MASTERSTA_MASK_7622 (MAS_ADDR | MAS_RD | MAS_WR | MAS_RDDLY)
Xiangsheng Hou70738882022-12-05 14:57:48 +0800162#define NFI_MASTERSTA_MASK_7986 3
Chuanhong Guo764f1b72022-04-24 11:25:24 +0800163
164// SNFI registers
165#define SNF_MAC_CTL 0x500
166#define MAC_XIO_SEL BIT(4)
167#define SF_MAC_EN BIT(3)
168#define SF_TRIG BIT(2)
169#define WIP_READY BIT(1)
170#define WIP BIT(0)
171
172#define SNF_MAC_OUTL 0x504
173#define SNF_MAC_INL 0x508
174
175#define SNF_RD_CTL2 0x510
176#define DATA_READ_DUMMY_S 8
177#define DATA_READ_MAX_DUMMY 0xf
178#define DATA_READ_CMD_S 0
179
180#define SNF_RD_CTL3 0x514
181
182#define SNF_PG_CTL1 0x524
183#define PG_LOAD_CMD_S 8
184
185#define SNF_PG_CTL2 0x528
186
187#define SNF_MISC_CTL 0x538
188#define SW_RST BIT(28)
189#define FIFO_RD_LTC_S 25
190#define PG_LOAD_X4_EN BIT(20)
191#define DATA_READ_MODE_S 16
192#define DATA_READ_MODE GENMASK(18, 16)
193#define DATA_READ_MODE_X1 0
194#define DATA_READ_MODE_X2 1
195#define DATA_READ_MODE_X4 2
196#define DATA_READ_MODE_DUAL 5
197#define DATA_READ_MODE_QUAD 6
Xiangsheng Hou1d36c992023-02-01 10:09:20 +0800198#define DATA_READ_LATCH_LAT GENMASK(9, 8)
199#define DATA_READ_LATCH_LAT_S 8
Chuanhong Guo764f1b72022-04-24 11:25:24 +0800200#define PG_LOAD_CUSTOM_EN BIT(7)
201#define DATARD_CUSTOM_EN BIT(6)
202#define CS_DESELECT_CYC_S 0
203
204#define SNF_MISC_CTL2 0x53c
205#define PROGRAM_LOAD_BYTE_NUM_S 16
206#define READ_DATA_BYTE_NUM_S 11
207
208#define SNF_DLY_CTL3 0x548
209#define SFCK_SAM_DLY_S 0
Xiangsheng Hou1d36c992023-02-01 10:09:20 +0800210#define SFCK_SAM_DLY GENMASK(5, 0)
211#define SFCK_SAM_DLY_TOTAL 9
212#define SFCK_SAM_DLY_RANGE 47
Chuanhong Guo764f1b72022-04-24 11:25:24 +0800213
214#define SNF_STA_CTL1 0x550
215#define CUS_PG_DONE BIT(28)
216#define CUS_READ_DONE BIT(27)
217#define SPI_STATE_S 0
218#define SPI_STATE GENMASK(3, 0)
219
220#define SNF_CFG 0x55c
221#define SPI_MODE BIT(0)
222
223#define SNF_GPRAM 0x800
224#define SNF_GPRAM_SIZE 0xa0
225
226#define SNFI_POLL_INTERVAL 1000000
227
228static const u8 mt7622_spare_sizes[] = { 16, 26, 27, 28 };
229
Xiangsheng Hou70738882022-12-05 14:57:48 +0800230static const u8 mt7986_spare_sizes[] = {
231 16, 26, 27, 28, 32, 36, 40, 44, 48, 49, 50, 51, 52, 62, 61, 63, 64, 67,
232 74
233};
234
Chuanhong Guo764f1b72022-04-24 11:25:24 +0800235struct mtk_snand_caps {
236 u16 sector_size;
237 u16 max_sectors;
238 u16 fdm_size;
239 u16 fdm_ecc_size;
240 u16 fifo_size;
241
242 bool bbm_swap;
243 bool empty_page_check;
244 u32 mastersta_mask;
Xiangsheng Hou70738882022-12-05 14:57:48 +0800245 u32 nandfsm_mask;
Chuanhong Guo764f1b72022-04-24 11:25:24 +0800246
247 const u8 *spare_sizes;
248 u32 num_spare_size;
249};
250
251static const struct mtk_snand_caps mt7622_snand_caps = {
252 .sector_size = 512,
253 .max_sectors = 8,
254 .fdm_size = 8,
255 .fdm_ecc_size = 1,
256 .fifo_size = 32,
257 .bbm_swap = false,
258 .empty_page_check = false,
259 .mastersta_mask = NFI_MASTERSTA_MASK_7622,
Xiangsheng Hou70738882022-12-05 14:57:48 +0800260 .nandfsm_mask = NFI_NAND_FSM_7622,
Chuanhong Guo764f1b72022-04-24 11:25:24 +0800261 .spare_sizes = mt7622_spare_sizes,
262 .num_spare_size = ARRAY_SIZE(mt7622_spare_sizes)
263};
264
265static const struct mtk_snand_caps mt7629_snand_caps = {
266 .sector_size = 512,
267 .max_sectors = 8,
268 .fdm_size = 8,
269 .fdm_ecc_size = 1,
270 .fifo_size = 32,
271 .bbm_swap = true,
272 .empty_page_check = false,
273 .mastersta_mask = NFI_MASTERSTA_MASK_7622,
Xiangsheng Hou70738882022-12-05 14:57:48 +0800274 .nandfsm_mask = NFI_NAND_FSM_7622,
Chuanhong Guo764f1b72022-04-24 11:25:24 +0800275 .spare_sizes = mt7622_spare_sizes,
276 .num_spare_size = ARRAY_SIZE(mt7622_spare_sizes)
277};
278
Xiangsheng Hou70738882022-12-05 14:57:48 +0800279static const struct mtk_snand_caps mt7986_snand_caps = {
280 .sector_size = 1024,
281 .max_sectors = 8,
282 .fdm_size = 8,
283 .fdm_ecc_size = 1,
284 .fifo_size = 64,
285 .bbm_swap = true,
286 .empty_page_check = true,
287 .mastersta_mask = NFI_MASTERSTA_MASK_7986,
288 .nandfsm_mask = NFI_NAND_FSM_7986,
289 .spare_sizes = mt7986_spare_sizes,
290 .num_spare_size = ARRAY_SIZE(mt7986_spare_sizes)
291};
292
Chuanhong Guo764f1b72022-04-24 11:25:24 +0800293struct mtk_snand_conf {
294 size_t page_size;
295 size_t oob_size;
296 u8 nsectors;
297 u8 spare_size;
298};
299
300struct mtk_snand {
301 struct spi_controller *ctlr;
302 struct device *dev;
303 struct clk *nfi_clk;
304 struct clk *pad_clk;
Xiangsheng Houe40fa322023-02-01 10:09:18 +0800305 struct clk *nfi_hclk;
Chuanhong Guo764f1b72022-04-24 11:25:24 +0800306 void __iomem *nfi_base;
307 int irq;
308 struct completion op_done;
309 const struct mtk_snand_caps *caps;
310 struct mtk_ecc_config *ecc_cfg;
311 struct mtk_ecc *ecc;
312 struct mtk_snand_conf nfi_cfg;
313 struct mtk_ecc_stats ecc_stats;
314 struct nand_ecc_engine ecc_eng;
315 bool autofmt;
316 u8 *buf;
317 size_t buf_len;
318};
319
320static struct mtk_snand *nand_to_mtk_snand(struct nand_device *nand)
321{
322 struct nand_ecc_engine *eng = nand->ecc.engine;
323
324 return container_of(eng, struct mtk_snand, ecc_eng);
325}
326
327static inline int snand_prepare_bouncebuf(struct mtk_snand *snf, size_t size)
328{
329 if (snf->buf_len >= size)
330 return 0;
331 kfree(snf->buf);
332 snf->buf = kmalloc(size, GFP_KERNEL);
333 if (!snf->buf)
334 return -ENOMEM;
335 snf->buf_len = size;
336 memset(snf->buf, 0xff, snf->buf_len);
337 return 0;
338}
339
340static inline u32 nfi_read32(struct mtk_snand *snf, u32 reg)
341{
342 return readl(snf->nfi_base + reg);
343}
344
345static inline void nfi_write32(struct mtk_snand *snf, u32 reg, u32 val)
346{
347 writel(val, snf->nfi_base + reg);
348}
349
350static inline void nfi_write16(struct mtk_snand *snf, u32 reg, u16 val)
351{
352 writew(val, snf->nfi_base + reg);
353}
354
355static inline void nfi_rmw32(struct mtk_snand *snf, u32 reg, u32 clr, u32 set)
356{
357 u32 val;
358
359 val = readl(snf->nfi_base + reg);
360 val &= ~clr;
361 val |= set;
362 writel(val, snf->nfi_base + reg);
363}
364
365static void nfi_read_data(struct mtk_snand *snf, u32 reg, u8 *data, u32 len)
366{
367 u32 i, val = 0, es = sizeof(u32);
368
369 for (i = reg; i < reg + len; i++) {
370 if (i == reg || i % es == 0)
371 val = nfi_read32(snf, i & ~(es - 1));
372
373 *data++ = (u8)(val >> (8 * (i % es)));
374 }
375}
376
377static int mtk_nfi_reset(struct mtk_snand *snf)
378{
379 u32 val, fifo_mask;
380 int ret;
381
382 nfi_write32(snf, NFI_CON, CON_FIFO_FLUSH | CON_NFI_RST);
383
384 ret = readw_poll_timeout(snf->nfi_base + NFI_MASTERSTA, val,
385 !(val & snf->caps->mastersta_mask), 0,
386 SNFI_POLL_INTERVAL);
387 if (ret) {
388 dev_err(snf->dev, "NFI master is still busy after reset\n");
389 return ret;
390 }
391
392 ret = readl_poll_timeout(snf->nfi_base + NFI_STA, val,
Xiangsheng Hou70738882022-12-05 14:57:48 +0800393 !(val & (NFI_FSM | snf->caps->nandfsm_mask)), 0,
Chuanhong Guo764f1b72022-04-24 11:25:24 +0800394 SNFI_POLL_INTERVAL);
395 if (ret) {
396 dev_err(snf->dev, "Failed to reset NFI\n");
397 return ret;
398 }
399
400 fifo_mask = ((snf->caps->fifo_size - 1) << FIFO_RD_REMAIN_S) |
401 ((snf->caps->fifo_size - 1) << FIFO_WR_REMAIN_S);
402 ret = readw_poll_timeout(snf->nfi_base + NFI_FIFOSTA, val,
403 !(val & fifo_mask), 0, SNFI_POLL_INTERVAL);
404 if (ret) {
405 dev_err(snf->dev, "NFI FIFOs are not empty\n");
406 return ret;
407 }
408
409 return 0;
410}
411
412static int mtk_snand_mac_reset(struct mtk_snand *snf)
413{
414 int ret;
415 u32 val;
416
417 nfi_rmw32(snf, SNF_MISC_CTL, 0, SW_RST);
418
419 ret = readl_poll_timeout(snf->nfi_base + SNF_STA_CTL1, val,
420 !(val & SPI_STATE), 0, SNFI_POLL_INTERVAL);
421 if (ret)
422 dev_err(snf->dev, "Failed to reset SNFI MAC\n");
423
424 nfi_write32(snf, SNF_MISC_CTL,
425 (2 << FIFO_RD_LTC_S) | (10 << CS_DESELECT_CYC_S));
426
427 return ret;
428}
429
430static int mtk_snand_mac_trigger(struct mtk_snand *snf, u32 outlen, u32 inlen)
431{
432 int ret;
433 u32 val;
434
435 nfi_write32(snf, SNF_MAC_CTL, SF_MAC_EN);
436 nfi_write32(snf, SNF_MAC_OUTL, outlen);
437 nfi_write32(snf, SNF_MAC_INL, inlen);
438
439 nfi_write32(snf, SNF_MAC_CTL, SF_MAC_EN | SF_TRIG);
440
441 ret = readl_poll_timeout(snf->nfi_base + SNF_MAC_CTL, val,
442 val & WIP_READY, 0, SNFI_POLL_INTERVAL);
443 if (ret) {
444 dev_err(snf->dev, "Timed out waiting for WIP_READY\n");
445 goto cleanup;
446 }
447
448 ret = readl_poll_timeout(snf->nfi_base + SNF_MAC_CTL, val, !(val & WIP),
449 0, SNFI_POLL_INTERVAL);
450 if (ret)
451 dev_err(snf->dev, "Timed out waiting for WIP cleared\n");
452
453cleanup:
454 nfi_write32(snf, SNF_MAC_CTL, 0);
455
456 return ret;
457}
458
459static int mtk_snand_mac_io(struct mtk_snand *snf, const struct spi_mem_op *op)
460{
461 u32 rx_len = 0;
462 u32 reg_offs = 0;
463 u32 val = 0;
464 const u8 *tx_buf = NULL;
465 u8 *rx_buf = NULL;
466 int i, ret;
467 u8 b;
468
469 if (op->data.dir == SPI_MEM_DATA_IN) {
470 rx_len = op->data.nbytes;
471 rx_buf = op->data.buf.in;
472 } else {
473 tx_buf = op->data.buf.out;
474 }
475
476 mtk_snand_mac_reset(snf);
477
478 for (i = 0; i < op->cmd.nbytes; i++, reg_offs++) {
479 b = (op->cmd.opcode >> ((op->cmd.nbytes - i - 1) * 8)) & 0xff;
480 val |= b << (8 * (reg_offs % 4));
481 if (reg_offs % 4 == 3) {
482 nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val);
483 val = 0;
484 }
485 }
486
487 for (i = 0; i < op->addr.nbytes; i++, reg_offs++) {
488 b = (op->addr.val >> ((op->addr.nbytes - i - 1) * 8)) & 0xff;
489 val |= b << (8 * (reg_offs % 4));
490 if (reg_offs % 4 == 3) {
491 nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val);
492 val = 0;
493 }
494 }
495
496 for (i = 0; i < op->dummy.nbytes; i++, reg_offs++) {
497 if (reg_offs % 4 == 3) {
498 nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val);
499 val = 0;
500 }
501 }
502
503 if (op->data.dir == SPI_MEM_DATA_OUT) {
504 for (i = 0; i < op->data.nbytes; i++, reg_offs++) {
505 val |= tx_buf[i] << (8 * (reg_offs % 4));
506 if (reg_offs % 4 == 3) {
507 nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val);
508 val = 0;
509 }
510 }
511 }
512
513 if (reg_offs % 4)
514 nfi_write32(snf, SNF_GPRAM + (reg_offs & ~3), val);
515
516 for (i = 0; i < reg_offs; i += 4)
517 dev_dbg(snf->dev, "%d: %08X", i,
518 nfi_read32(snf, SNF_GPRAM + i));
519
520 dev_dbg(snf->dev, "SNF TX: %u RX: %u", reg_offs, rx_len);
521
522 ret = mtk_snand_mac_trigger(snf, reg_offs, rx_len);
523 if (ret)
524 return ret;
525
526 if (!rx_len)
527 return 0;
528
529 nfi_read_data(snf, SNF_GPRAM + reg_offs, rx_buf, rx_len);
530 return 0;
531}
532
533static int mtk_snand_setup_pagefmt(struct mtk_snand *snf, u32 page_size,
534 u32 oob_size)
535{
536 int spare_idx = -1;
537 u32 spare_size, spare_size_shift, pagesize_idx;
538 u32 sector_size_512;
539 u8 nsectors;
540 int i;
541
542 // skip if it's already configured as required.
543 if (snf->nfi_cfg.page_size == page_size &&
544 snf->nfi_cfg.oob_size == oob_size)
545 return 0;
546
547 nsectors = page_size / snf->caps->sector_size;
548 if (nsectors > snf->caps->max_sectors) {
549 dev_err(snf->dev, "too many sectors required.\n");
550 goto err;
551 }
552
553 if (snf->caps->sector_size == 512) {
554 sector_size_512 = NFI_SEC_SEL_512;
555 spare_size_shift = NFI_SPARE_SIZE_S;
556 } else {
557 sector_size_512 = 0;
558 spare_size_shift = NFI_SPARE_SIZE_LS_S;
559 }
560
561 switch (page_size) {
562 case SZ_512:
563 pagesize_idx = NFI_PAGE_SIZE_512_2K;
564 break;
565 case SZ_2K:
566 if (snf->caps->sector_size == 512)
567 pagesize_idx = NFI_PAGE_SIZE_2K_4K;
568 else
569 pagesize_idx = NFI_PAGE_SIZE_512_2K;
570 break;
571 case SZ_4K:
572 if (snf->caps->sector_size == 512)
573 pagesize_idx = NFI_PAGE_SIZE_4K_8K;
574 else
575 pagesize_idx = NFI_PAGE_SIZE_2K_4K;
576 break;
577 case SZ_8K:
578 if (snf->caps->sector_size == 512)
579 pagesize_idx = NFI_PAGE_SIZE_8K_16K;
580 else
581 pagesize_idx = NFI_PAGE_SIZE_4K_8K;
582 break;
583 case SZ_16K:
584 pagesize_idx = NFI_PAGE_SIZE_8K_16K;
585 break;
586 default:
587 dev_err(snf->dev, "unsupported page size.\n");
588 goto err;
589 }
590
591 spare_size = oob_size / nsectors;
592 // If we're using the 1KB sector size, HW will automatically double the
593 // spare size. We should only use half of the value in this case.
594 if (snf->caps->sector_size == 1024)
595 spare_size /= 2;
596
597 for (i = snf->caps->num_spare_size - 1; i >= 0; i--) {
598 if (snf->caps->spare_sizes[i] <= spare_size) {
599 spare_size = snf->caps->spare_sizes[i];
600 if (snf->caps->sector_size == 1024)
601 spare_size *= 2;
602 spare_idx = i;
603 break;
604 }
605 }
606
607 if (spare_idx < 0) {
608 dev_err(snf->dev, "unsupported spare size: %u\n", spare_size);
609 goto err;
610 }
611
612 nfi_write32(snf, NFI_PAGEFMT,
613 (snf->caps->fdm_ecc_size << NFI_FDM_ECC_NUM_S) |
614 (snf->caps->fdm_size << NFI_FDM_NUM_S) |
615 (spare_idx << spare_size_shift) |
616 (pagesize_idx << NFI_PAGE_SIZE_S) |
617 sector_size_512);
618
619 snf->nfi_cfg.page_size = page_size;
620 snf->nfi_cfg.oob_size = oob_size;
621 snf->nfi_cfg.nsectors = nsectors;
622 snf->nfi_cfg.spare_size = spare_size;
623
624 dev_dbg(snf->dev, "page format: (%u + %u) * %u\n",
625 snf->caps->sector_size, spare_size, nsectors);
626 return snand_prepare_bouncebuf(snf, page_size + oob_size);
627err:
628 dev_err(snf->dev, "page size %u + %u is not supported\n", page_size,
629 oob_size);
630 return -EOPNOTSUPP;
631}
632
633static int mtk_snand_ooblayout_ecc(struct mtd_info *mtd, int section,
634 struct mtd_oob_region *oobecc)
635{
636 // ECC area is not accessible
637 return -ERANGE;
638}
639
640static int mtk_snand_ooblayout_free(struct mtd_info *mtd, int section,
641 struct mtd_oob_region *oobfree)
642{
643 struct nand_device *nand = mtd_to_nanddev(mtd);
644 struct mtk_snand *ms = nand_to_mtk_snand(nand);
645
646 if (section >= ms->nfi_cfg.nsectors)
647 return -ERANGE;
648
649 oobfree->length = ms->caps->fdm_size - 1;
650 oobfree->offset = section * ms->caps->fdm_size + 1;
651 return 0;
652}
653
654static const struct mtd_ooblayout_ops mtk_snand_ooblayout = {
655 .ecc = mtk_snand_ooblayout_ecc,
656 .free = mtk_snand_ooblayout_free,
657};
658
659static int mtk_snand_ecc_init_ctx(struct nand_device *nand)
660{
661 struct mtk_snand *snf = nand_to_mtk_snand(nand);
662 struct nand_ecc_props *conf = &nand->ecc.ctx.conf;
663 struct nand_ecc_props *reqs = &nand->ecc.requirements;
664 struct nand_ecc_props *user = &nand->ecc.user_conf;
665 struct mtd_info *mtd = nanddev_to_mtd(nand);
666 int step_size = 0, strength = 0, desired_correction = 0, steps;
667 bool ecc_user = false;
668 int ret;
669 u32 parity_bits, max_ecc_bytes;
670 struct mtk_ecc_config *ecc_cfg;
671
672 ret = mtk_snand_setup_pagefmt(snf, nand->memorg.pagesize,
673 nand->memorg.oobsize);
674 if (ret)
675 return ret;
676
677 ecc_cfg = kzalloc(sizeof(*ecc_cfg), GFP_KERNEL);
678 if (!ecc_cfg)
679 return -ENOMEM;
680
681 nand->ecc.ctx.priv = ecc_cfg;
682
683 if (user->step_size && user->strength) {
684 step_size = user->step_size;
685 strength = user->strength;
686 ecc_user = true;
687 } else if (reqs->step_size && reqs->strength) {
688 step_size = reqs->step_size;
689 strength = reqs->strength;
690 }
691
692 if (step_size && strength) {
693 steps = mtd->writesize / step_size;
694 desired_correction = steps * strength;
695 strength = desired_correction / snf->nfi_cfg.nsectors;
696 }
697
698 ecc_cfg->mode = ECC_NFI_MODE;
699 ecc_cfg->sectors = snf->nfi_cfg.nsectors;
700 ecc_cfg->len = snf->caps->sector_size + snf->caps->fdm_ecc_size;
701
702 // calculate the max possible strength under current page format
703 parity_bits = mtk_ecc_get_parity_bits(snf->ecc);
704 max_ecc_bytes = snf->nfi_cfg.spare_size - snf->caps->fdm_size;
705 ecc_cfg->strength = max_ecc_bytes * 8 / parity_bits;
706 mtk_ecc_adjust_strength(snf->ecc, &ecc_cfg->strength);
707
708 // if there's a user requested strength, find the minimum strength that
709 // meets the requirement. Otherwise use the maximum strength which is
710 // expected by BootROM.
711 if (ecc_user && strength) {
712 u32 s_next = ecc_cfg->strength - 1;
713
714 while (1) {
715 mtk_ecc_adjust_strength(snf->ecc, &s_next);
716 if (s_next >= ecc_cfg->strength)
717 break;
718 if (s_next < strength)
719 break;
720 s_next = ecc_cfg->strength - 1;
721 }
722 }
723
724 mtd_set_ooblayout(mtd, &mtk_snand_ooblayout);
725
726 conf->step_size = snf->caps->sector_size;
727 conf->strength = ecc_cfg->strength;
728
729 if (ecc_cfg->strength < strength)
730 dev_warn(snf->dev, "unable to fulfill ECC of %u bits.\n",
731 strength);
732 dev_info(snf->dev, "ECC strength: %u bits per %u bytes\n",
733 ecc_cfg->strength, snf->caps->sector_size);
734
735 return 0;
736}
737
738static void mtk_snand_ecc_cleanup_ctx(struct nand_device *nand)
739{
740 struct mtk_ecc_config *ecc_cfg = nand_to_ecc_ctx(nand);
741
742 kfree(ecc_cfg);
743}
744
745static int mtk_snand_ecc_prepare_io_req(struct nand_device *nand,
746 struct nand_page_io_req *req)
747{
748 struct mtk_snand *snf = nand_to_mtk_snand(nand);
749 struct mtk_ecc_config *ecc_cfg = nand_to_ecc_ctx(nand);
750 int ret;
751
752 ret = mtk_snand_setup_pagefmt(snf, nand->memorg.pagesize,
753 nand->memorg.oobsize);
754 if (ret)
755 return ret;
756 snf->autofmt = true;
757 snf->ecc_cfg = ecc_cfg;
758 return 0;
759}
760
761static int mtk_snand_ecc_finish_io_req(struct nand_device *nand,
762 struct nand_page_io_req *req)
763{
764 struct mtk_snand *snf = nand_to_mtk_snand(nand);
765 struct mtd_info *mtd = nanddev_to_mtd(nand);
766
767 snf->ecc_cfg = NULL;
768 snf->autofmt = false;
769 if ((req->mode == MTD_OPS_RAW) || (req->type != NAND_PAGE_READ))
770 return 0;
771
772 if (snf->ecc_stats.failed)
773 mtd->ecc_stats.failed += snf->ecc_stats.failed;
774 mtd->ecc_stats.corrected += snf->ecc_stats.corrected;
775 return snf->ecc_stats.failed ? -EBADMSG : snf->ecc_stats.bitflips;
776}
777
778static struct nand_ecc_engine_ops mtk_snfi_ecc_engine_ops = {
779 .init_ctx = mtk_snand_ecc_init_ctx,
780 .cleanup_ctx = mtk_snand_ecc_cleanup_ctx,
781 .prepare_io_req = mtk_snand_ecc_prepare_io_req,
782 .finish_io_req = mtk_snand_ecc_finish_io_req,
783};
784
785static void mtk_snand_read_fdm(struct mtk_snand *snf, u8 *buf)
786{
787 u32 vall, valm;
788 u8 *oobptr = buf;
789 int i, j;
790
791 for (i = 0; i < snf->nfi_cfg.nsectors; i++) {
792 vall = nfi_read32(snf, NFI_FDML(i));
793 valm = nfi_read32(snf, NFI_FDMM(i));
794
795 for (j = 0; j < snf->caps->fdm_size; j++)
796 oobptr[j] = (j >= 4 ? valm : vall) >> ((j % 4) * 8);
797
798 oobptr += snf->caps->fdm_size;
799 }
800}
801
802static void mtk_snand_write_fdm(struct mtk_snand *snf, const u8 *buf)
803{
804 u32 fdm_size = snf->caps->fdm_size;
805 const u8 *oobptr = buf;
806 u32 vall, valm;
807 int i, j;
808
809 for (i = 0; i < snf->nfi_cfg.nsectors; i++) {
810 vall = 0;
811 valm = 0;
812
813 for (j = 0; j < 8; j++) {
814 if (j < 4)
815 vall |= (j < fdm_size ? oobptr[j] : 0xff)
816 << (j * 8);
817 else
818 valm |= (j < fdm_size ? oobptr[j] : 0xff)
819 << ((j - 4) * 8);
820 }
821
822 nfi_write32(snf, NFI_FDML(i), vall);
823 nfi_write32(snf, NFI_FDMM(i), valm);
824
825 oobptr += fdm_size;
826 }
827}
828
829static void mtk_snand_bm_swap(struct mtk_snand *snf, u8 *buf)
830{
831 u32 buf_bbm_pos, fdm_bbm_pos;
832
833 if (!snf->caps->bbm_swap || snf->nfi_cfg.nsectors == 1)
834 return;
835
836 // swap [pagesize] byte on nand with the first fdm byte
837 // in the last sector.
838 buf_bbm_pos = snf->nfi_cfg.page_size -
839 (snf->nfi_cfg.nsectors - 1) * snf->nfi_cfg.spare_size;
840 fdm_bbm_pos = snf->nfi_cfg.page_size +
841 (snf->nfi_cfg.nsectors - 1) * snf->caps->fdm_size;
842
843 swap(snf->buf[fdm_bbm_pos], buf[buf_bbm_pos]);
844}
845
846static void mtk_snand_fdm_bm_swap(struct mtk_snand *snf)
847{
848 u32 fdm_bbm_pos1, fdm_bbm_pos2;
849
850 if (!snf->caps->bbm_swap || snf->nfi_cfg.nsectors == 1)
851 return;
852
853 // swap the first fdm byte in the first and the last sector.
854 fdm_bbm_pos1 = snf->nfi_cfg.page_size;
855 fdm_bbm_pos2 = snf->nfi_cfg.page_size +
856 (snf->nfi_cfg.nsectors - 1) * snf->caps->fdm_size;
857 swap(snf->buf[fdm_bbm_pos1], snf->buf[fdm_bbm_pos2]);
858}
859
860static int mtk_snand_read_page_cache(struct mtk_snand *snf,
861 const struct spi_mem_op *op)
862{
863 u8 *buf = snf->buf;
864 u8 *buf_fdm = buf + snf->nfi_cfg.page_size;
865 // the address part to be sent by the controller
866 u32 op_addr = op->addr.val;
867 // where to start copying data from bounce buffer
868 u32 rd_offset = 0;
869 u32 dummy_clk = (op->dummy.nbytes * BITS_PER_BYTE / op->dummy.buswidth);
870 u32 op_mode = 0;
871 u32 dma_len = snf->buf_len;
872 int ret = 0;
873 u32 rd_mode, rd_bytes, val;
874 dma_addr_t buf_dma;
875
876 if (snf->autofmt) {
877 u32 last_bit;
878 u32 mask;
879
880 dma_len = snf->nfi_cfg.page_size;
881 op_mode = CNFG_AUTO_FMT_EN;
882 if (op->data.ecc)
883 op_mode |= CNFG_HW_ECC_EN;
884 // extract the plane bit:
885 // Find the highest bit set in (pagesize+oobsize).
886 // Bits higher than that in op->addr are kept and sent over SPI
887 // Lower bits are used as an offset for copying data from DMA
888 // bounce buffer.
889 last_bit = fls(snf->nfi_cfg.page_size + snf->nfi_cfg.oob_size);
890 mask = (1 << last_bit) - 1;
891 rd_offset = op_addr & mask;
892 op_addr &= ~mask;
893
894 // check if we can dma to the caller memory
895 if (rd_offset == 0 && op->data.nbytes >= snf->nfi_cfg.page_size)
896 buf = op->data.buf.in;
897 }
898 mtk_snand_mac_reset(snf);
899 mtk_nfi_reset(snf);
900
901 // command and dummy cycles
902 nfi_write32(snf, SNF_RD_CTL2,
903 (dummy_clk << DATA_READ_DUMMY_S) |
904 (op->cmd.opcode << DATA_READ_CMD_S));
905
906 // read address
907 nfi_write32(snf, SNF_RD_CTL3, op_addr);
908
909 // Set read op_mode
910 if (op->data.buswidth == 4)
911 rd_mode = op->addr.buswidth == 4 ? DATA_READ_MODE_QUAD :
912 DATA_READ_MODE_X4;
913 else if (op->data.buswidth == 2)
914 rd_mode = op->addr.buswidth == 2 ? DATA_READ_MODE_DUAL :
915 DATA_READ_MODE_X2;
916 else
917 rd_mode = DATA_READ_MODE_X1;
918 rd_mode <<= DATA_READ_MODE_S;
919 nfi_rmw32(snf, SNF_MISC_CTL, DATA_READ_MODE,
920 rd_mode | DATARD_CUSTOM_EN);
921
922 // Set bytes to read
923 rd_bytes = (snf->nfi_cfg.spare_size + snf->caps->sector_size) *
924 snf->nfi_cfg.nsectors;
925 nfi_write32(snf, SNF_MISC_CTL2,
926 (rd_bytes << PROGRAM_LOAD_BYTE_NUM_S) | rd_bytes);
927
928 // NFI read prepare
929 nfi_write16(snf, NFI_CNFG,
930 (CNFG_OP_MODE_CUST << CNFG_OP_MODE_S) | CNFG_DMA_BURST_EN |
931 CNFG_READ_MODE | CNFG_DMA_MODE | op_mode);
932
933 nfi_write32(snf, NFI_CON, (snf->nfi_cfg.nsectors << CON_SEC_NUM_S));
934
935 buf_dma = dma_map_single(snf->dev, buf, dma_len, DMA_FROM_DEVICE);
Dan Carpenter73c1a512022-04-29 20:41:37 +0300936 ret = dma_mapping_error(snf->dev, buf_dma);
937 if (ret) {
Chuanhong Guo764f1b72022-04-24 11:25:24 +0800938 dev_err(snf->dev, "DMA mapping failed.\n");
939 goto cleanup;
940 }
941 nfi_write32(snf, NFI_STRADDR, buf_dma);
942 if (op->data.ecc) {
943 snf->ecc_cfg->op = ECC_DECODE;
944 ret = mtk_ecc_enable(snf->ecc, snf->ecc_cfg);
945 if (ret)
946 goto cleanup_dma;
947 }
948 // Prepare for custom read interrupt
949 nfi_write32(snf, NFI_INTR_EN, NFI_IRQ_INTR_EN | NFI_IRQ_CUS_READ);
950 reinit_completion(&snf->op_done);
951
952 // Trigger NFI into custom mode
953 nfi_write16(snf, NFI_CMD, NFI_CMD_DUMMY_READ);
954
955 // Start DMA read
956 nfi_rmw32(snf, NFI_CON, 0, CON_BRD);
957 nfi_write16(snf, NFI_STRDATA, STR_DATA);
958
959 if (!wait_for_completion_timeout(
960 &snf->op_done, usecs_to_jiffies(SNFI_POLL_INTERVAL))) {
961 dev_err(snf->dev, "DMA timed out for reading from cache.\n");
962 ret = -ETIMEDOUT;
963 goto cleanup;
964 }
965
966 // Wait for BUS_SEC_CNTR returning expected value
967 ret = readl_poll_timeout(snf->nfi_base + NFI_BYTELEN, val,
968 BUS_SEC_CNTR(val) >= snf->nfi_cfg.nsectors, 0,
969 SNFI_POLL_INTERVAL);
970 if (ret) {
971 dev_err(snf->dev, "Timed out waiting for BUS_SEC_CNTR\n");
972 goto cleanup2;
973 }
974
975 // Wait for bus becoming idle
976 ret = readl_poll_timeout(snf->nfi_base + NFI_MASTERSTA, val,
977 !(val & snf->caps->mastersta_mask), 0,
978 SNFI_POLL_INTERVAL);
979 if (ret) {
980 dev_err(snf->dev, "Timed out waiting for bus becoming idle\n");
981 goto cleanup2;
982 }
983
984 if (op->data.ecc) {
985 ret = mtk_ecc_wait_done(snf->ecc, ECC_DECODE);
986 if (ret) {
987 dev_err(snf->dev, "wait ecc done timeout\n");
988 goto cleanup2;
989 }
990 // save status before disabling ecc
991 mtk_ecc_get_stats(snf->ecc, &snf->ecc_stats,
992 snf->nfi_cfg.nsectors);
993 }
994
995 dma_unmap_single(snf->dev, buf_dma, dma_len, DMA_FROM_DEVICE);
996
997 if (snf->autofmt) {
998 mtk_snand_read_fdm(snf, buf_fdm);
999 if (snf->caps->bbm_swap) {
1000 mtk_snand_bm_swap(snf, buf);
1001 mtk_snand_fdm_bm_swap(snf);
1002 }
1003 }
1004
1005 // copy data back
1006 if (nfi_read32(snf, NFI_STA) & READ_EMPTY) {
1007 memset(op->data.buf.in, 0xff, op->data.nbytes);
1008 snf->ecc_stats.bitflips = 0;
1009 snf->ecc_stats.failed = 0;
1010 snf->ecc_stats.corrected = 0;
1011 } else {
1012 if (buf == op->data.buf.in) {
1013 u32 cap_len = snf->buf_len - snf->nfi_cfg.page_size;
1014 u32 req_left = op->data.nbytes - snf->nfi_cfg.page_size;
1015
1016 if (req_left)
1017 memcpy(op->data.buf.in + snf->nfi_cfg.page_size,
1018 buf_fdm,
1019 cap_len < req_left ? cap_len : req_left);
1020 } else if (rd_offset < snf->buf_len) {
1021 u32 cap_len = snf->buf_len - rd_offset;
1022
1023 if (op->data.nbytes < cap_len)
1024 cap_len = op->data.nbytes;
1025 memcpy(op->data.buf.in, snf->buf + rd_offset, cap_len);
1026 }
1027 }
1028cleanup2:
1029 if (op->data.ecc)
1030 mtk_ecc_disable(snf->ecc);
1031cleanup_dma:
1032 // unmap dma only if any error happens. (otherwise it's done before
1033 // data copying)
1034 if (ret)
1035 dma_unmap_single(snf->dev, buf_dma, dma_len, DMA_FROM_DEVICE);
1036cleanup:
1037 // Stop read
1038 nfi_write32(snf, NFI_CON, 0);
1039 nfi_write16(snf, NFI_CNFG, 0);
1040
1041 // Clear SNF done flag
1042 nfi_rmw32(snf, SNF_STA_CTL1, 0, CUS_READ_DONE);
1043 nfi_write32(snf, SNF_STA_CTL1, 0);
1044
1045 // Disable interrupt
1046 nfi_read32(snf, NFI_INTR_STA);
1047 nfi_write32(snf, NFI_INTR_EN, 0);
1048
1049 nfi_rmw32(snf, SNF_MISC_CTL, DATARD_CUSTOM_EN, 0);
1050 return ret;
1051}
1052
1053static int mtk_snand_write_page_cache(struct mtk_snand *snf,
1054 const struct spi_mem_op *op)
1055{
1056 // the address part to be sent by the controller
1057 u32 op_addr = op->addr.val;
1058 // where to start copying data from bounce buffer
1059 u32 wr_offset = 0;
1060 u32 op_mode = 0;
1061 int ret = 0;
1062 u32 wr_mode = 0;
1063 u32 dma_len = snf->buf_len;
1064 u32 wr_bytes, val;
1065 size_t cap_len;
1066 dma_addr_t buf_dma;
1067
1068 if (snf->autofmt) {
1069 u32 last_bit;
1070 u32 mask;
1071
1072 dma_len = snf->nfi_cfg.page_size;
1073 op_mode = CNFG_AUTO_FMT_EN;
1074 if (op->data.ecc)
1075 op_mode |= CNFG_HW_ECC_EN;
1076
1077 last_bit = fls(snf->nfi_cfg.page_size + snf->nfi_cfg.oob_size);
1078 mask = (1 << last_bit) - 1;
1079 wr_offset = op_addr & mask;
1080 op_addr &= ~mask;
1081 }
1082 mtk_snand_mac_reset(snf);
1083 mtk_nfi_reset(snf);
1084
1085 if (wr_offset)
1086 memset(snf->buf, 0xff, wr_offset);
1087
1088 cap_len = snf->buf_len - wr_offset;
1089 if (op->data.nbytes < cap_len)
1090 cap_len = op->data.nbytes;
1091 memcpy(snf->buf + wr_offset, op->data.buf.out, cap_len);
1092 if (snf->autofmt) {
1093 if (snf->caps->bbm_swap) {
1094 mtk_snand_fdm_bm_swap(snf);
1095 mtk_snand_bm_swap(snf, snf->buf);
1096 }
1097 mtk_snand_write_fdm(snf, snf->buf + snf->nfi_cfg.page_size);
1098 }
1099
1100 // Command
1101 nfi_write32(snf, SNF_PG_CTL1, (op->cmd.opcode << PG_LOAD_CMD_S));
1102
1103 // write address
1104 nfi_write32(snf, SNF_PG_CTL2, op_addr);
1105
1106 // Set read op_mode
1107 if (op->data.buswidth == 4)
1108 wr_mode = PG_LOAD_X4_EN;
1109
1110 nfi_rmw32(snf, SNF_MISC_CTL, PG_LOAD_X4_EN,
1111 wr_mode | PG_LOAD_CUSTOM_EN);
1112
1113 // Set bytes to write
1114 wr_bytes = (snf->nfi_cfg.spare_size + snf->caps->sector_size) *
1115 snf->nfi_cfg.nsectors;
1116 nfi_write32(snf, SNF_MISC_CTL2,
1117 (wr_bytes << PROGRAM_LOAD_BYTE_NUM_S) | wr_bytes);
1118
1119 // NFI write prepare
1120 nfi_write16(snf, NFI_CNFG,
1121 (CNFG_OP_MODE_PROGRAM << CNFG_OP_MODE_S) |
1122 CNFG_DMA_BURST_EN | CNFG_DMA_MODE | op_mode);
1123
1124 nfi_write32(snf, NFI_CON, (snf->nfi_cfg.nsectors << CON_SEC_NUM_S));
1125 buf_dma = dma_map_single(snf->dev, snf->buf, dma_len, DMA_TO_DEVICE);
Dan Carpenter73c1a512022-04-29 20:41:37 +03001126 ret = dma_mapping_error(snf->dev, buf_dma);
1127 if (ret) {
Chuanhong Guo764f1b72022-04-24 11:25:24 +08001128 dev_err(snf->dev, "DMA mapping failed.\n");
1129 goto cleanup;
1130 }
1131 nfi_write32(snf, NFI_STRADDR, buf_dma);
1132 if (op->data.ecc) {
1133 snf->ecc_cfg->op = ECC_ENCODE;
1134 ret = mtk_ecc_enable(snf->ecc, snf->ecc_cfg);
1135 if (ret)
1136 goto cleanup_dma;
1137 }
1138 // Prepare for custom write interrupt
1139 nfi_write32(snf, NFI_INTR_EN, NFI_IRQ_INTR_EN | NFI_IRQ_CUS_PG);
1140 reinit_completion(&snf->op_done);
1141 ;
1142
1143 // Trigger NFI into custom mode
1144 nfi_write16(snf, NFI_CMD, NFI_CMD_DUMMY_WRITE);
1145
1146 // Start DMA write
1147 nfi_rmw32(snf, NFI_CON, 0, CON_BWR);
1148 nfi_write16(snf, NFI_STRDATA, STR_DATA);
1149
1150 if (!wait_for_completion_timeout(
1151 &snf->op_done, usecs_to_jiffies(SNFI_POLL_INTERVAL))) {
1152 dev_err(snf->dev, "DMA timed out for program load.\n");
1153 ret = -ETIMEDOUT;
1154 goto cleanup_ecc;
1155 }
1156
1157 // Wait for NFI_SEC_CNTR returning expected value
1158 ret = readl_poll_timeout(snf->nfi_base + NFI_ADDRCNTR, val,
1159 NFI_SEC_CNTR(val) >= snf->nfi_cfg.nsectors, 0,
1160 SNFI_POLL_INTERVAL);
1161 if (ret)
1162 dev_err(snf->dev, "Timed out waiting for NFI_SEC_CNTR\n");
1163
1164cleanup_ecc:
1165 if (op->data.ecc)
1166 mtk_ecc_disable(snf->ecc);
1167cleanup_dma:
1168 dma_unmap_single(snf->dev, buf_dma, dma_len, DMA_TO_DEVICE);
1169cleanup:
1170 // Stop write
1171 nfi_write32(snf, NFI_CON, 0);
1172 nfi_write16(snf, NFI_CNFG, 0);
1173
1174 // Clear SNF done flag
1175 nfi_rmw32(snf, SNF_STA_CTL1, 0, CUS_PG_DONE);
1176 nfi_write32(snf, SNF_STA_CTL1, 0);
1177
1178 // Disable interrupt
1179 nfi_read32(snf, NFI_INTR_STA);
1180 nfi_write32(snf, NFI_INTR_EN, 0);
1181
1182 nfi_rmw32(snf, SNF_MISC_CTL, PG_LOAD_CUSTOM_EN, 0);
1183
1184 return ret;
1185}
1186
1187/**
1188 * mtk_snand_is_page_ops() - check if the op is a controller supported page op.
1189 * @op spi-mem op to check
1190 *
1191 * Check whether op can be executed with read_from_cache or program_load
1192 * mode in the controller.
1193 * This controller can execute typical Read From Cache and Program Load
1194 * instructions found on SPI-NAND with 2-byte address.
1195 * DTR and cmd buswidth & nbytes should be checked before calling this.
1196 *
1197 * Return: true if the op matches the instruction template
1198 */
1199static bool mtk_snand_is_page_ops(const struct spi_mem_op *op)
1200{
1201 if (op->addr.nbytes != 2)
1202 return false;
1203
1204 if (op->addr.buswidth != 1 && op->addr.buswidth != 2 &&
1205 op->addr.buswidth != 4)
1206 return false;
1207
1208 // match read from page instructions
1209 if (op->data.dir == SPI_MEM_DATA_IN) {
1210 // check dummy cycle first
1211 if (op->dummy.nbytes * BITS_PER_BYTE / op->dummy.buswidth >
1212 DATA_READ_MAX_DUMMY)
1213 return false;
1214 // quad io / quad out
1215 if ((op->addr.buswidth == 4 || op->addr.buswidth == 1) &&
1216 op->data.buswidth == 4)
1217 return true;
1218
1219 // dual io / dual out
1220 if ((op->addr.buswidth == 2 || op->addr.buswidth == 1) &&
1221 op->data.buswidth == 2)
1222 return true;
1223
1224 // standard spi
1225 if (op->addr.buswidth == 1 && op->data.buswidth == 1)
1226 return true;
1227 } else if (op->data.dir == SPI_MEM_DATA_OUT) {
1228 // check dummy cycle first
1229 if (op->dummy.nbytes)
1230 return false;
1231 // program load quad out
1232 if (op->addr.buswidth == 1 && op->data.buswidth == 4)
1233 return true;
1234 // standard spi
1235 if (op->addr.buswidth == 1 && op->data.buswidth == 1)
1236 return true;
1237 }
1238 return false;
1239}
1240
1241static bool mtk_snand_supports_op(struct spi_mem *mem,
1242 const struct spi_mem_op *op)
1243{
1244 if (!spi_mem_default_supports_op(mem, op))
1245 return false;
1246 if (op->cmd.nbytes != 1 || op->cmd.buswidth != 1)
1247 return false;
1248 if (mtk_snand_is_page_ops(op))
1249 return true;
1250 return ((op->addr.nbytes == 0 || op->addr.buswidth == 1) &&
1251 (op->dummy.nbytes == 0 || op->dummy.buswidth == 1) &&
1252 (op->data.nbytes == 0 || op->data.buswidth == 1));
1253}
1254
1255static int mtk_snand_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
1256{
1257 struct mtk_snand *ms = spi_controller_get_devdata(mem->spi->master);
1258 // page ops transfer size must be exactly ((sector_size + spare_size) *
1259 // nsectors). Limit the op size if the caller requests more than that.
1260 // exec_op will read more than needed and discard the leftover if the
1261 // caller requests less data.
1262 if (mtk_snand_is_page_ops(op)) {
1263 size_t l;
1264 // skip adjust_op_size for page ops
1265 if (ms->autofmt)
1266 return 0;
1267 l = ms->caps->sector_size + ms->nfi_cfg.spare_size;
1268 l *= ms->nfi_cfg.nsectors;
1269 if (op->data.nbytes > l)
1270 op->data.nbytes = l;
1271 } else {
1272 size_t hl = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;
1273
1274 if (hl >= SNF_GPRAM_SIZE)
1275 return -EOPNOTSUPP;
1276 if (op->data.nbytes > SNF_GPRAM_SIZE - hl)
1277 op->data.nbytes = SNF_GPRAM_SIZE - hl;
1278 }
1279 return 0;
1280}
1281
1282static int mtk_snand_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
1283{
1284 struct mtk_snand *ms = spi_controller_get_devdata(mem->spi->master);
1285
1286 dev_dbg(ms->dev, "OP %02x ADDR %08llX@%d:%u DATA %d:%u", op->cmd.opcode,
1287 op->addr.val, op->addr.buswidth, op->addr.nbytes,
1288 op->data.buswidth, op->data.nbytes);
1289 if (mtk_snand_is_page_ops(op)) {
1290 if (op->data.dir == SPI_MEM_DATA_IN)
1291 return mtk_snand_read_page_cache(ms, op);
1292 else
1293 return mtk_snand_write_page_cache(ms, op);
1294 } else {
1295 return mtk_snand_mac_io(ms, op);
1296 }
1297}
1298
1299static const struct spi_controller_mem_ops mtk_snand_mem_ops = {
1300 .adjust_op_size = mtk_snand_adjust_op_size,
1301 .supports_op = mtk_snand_supports_op,
1302 .exec_op = mtk_snand_exec_op,
1303};
1304
1305static const struct spi_controller_mem_caps mtk_snand_mem_caps = {
1306 .ecc = true,
1307};
1308
1309static irqreturn_t mtk_snand_irq(int irq, void *id)
1310{
1311 struct mtk_snand *snf = id;
1312 u32 sta, ien;
1313
1314 sta = nfi_read32(snf, NFI_INTR_STA);
1315 ien = nfi_read32(snf, NFI_INTR_EN);
1316
1317 if (!(sta & ien))
1318 return IRQ_NONE;
1319
1320 nfi_write32(snf, NFI_INTR_EN, 0);
1321 complete(&snf->op_done);
1322 return IRQ_HANDLED;
1323}
1324
1325static const struct of_device_id mtk_snand_ids[] = {
1326 { .compatible = "mediatek,mt7622-snand", .data = &mt7622_snand_caps },
1327 { .compatible = "mediatek,mt7629-snand", .data = &mt7629_snand_caps },
Xiangsheng Hou70738882022-12-05 14:57:48 +08001328 { .compatible = "mediatek,mt7986-snand", .data = &mt7986_snand_caps },
Chuanhong Guo764f1b72022-04-24 11:25:24 +08001329 {},
1330};
1331
1332MODULE_DEVICE_TABLE(of, mtk_snand_ids);
1333
1334static int mtk_snand_enable_clk(struct mtk_snand *ms)
1335{
1336 int ret;
1337
1338 ret = clk_prepare_enable(ms->nfi_clk);
1339 if (ret) {
1340 dev_err(ms->dev, "unable to enable nfi clk\n");
1341 return ret;
1342 }
1343 ret = clk_prepare_enable(ms->pad_clk);
1344 if (ret) {
1345 dev_err(ms->dev, "unable to enable pad clk\n");
1346 goto err1;
1347 }
Xiangsheng Houe40fa322023-02-01 10:09:18 +08001348 ret = clk_prepare_enable(ms->nfi_hclk);
1349 if (ret) {
1350 dev_err(ms->dev, "unable to enable nfi hclk\n");
1351 goto err2;
1352 }
1353
Chuanhong Guo764f1b72022-04-24 11:25:24 +08001354 return 0;
Xiangsheng Houe40fa322023-02-01 10:09:18 +08001355
1356err2:
1357 clk_disable_unprepare(ms->pad_clk);
Chuanhong Guo764f1b72022-04-24 11:25:24 +08001358err1:
1359 clk_disable_unprepare(ms->nfi_clk);
1360 return ret;
1361}
1362
1363static void mtk_snand_disable_clk(struct mtk_snand *ms)
1364{
Xiangsheng Houe40fa322023-02-01 10:09:18 +08001365 clk_disable_unprepare(ms->nfi_hclk);
Chuanhong Guo764f1b72022-04-24 11:25:24 +08001366 clk_disable_unprepare(ms->pad_clk);
1367 clk_disable_unprepare(ms->nfi_clk);
1368}
1369
1370static int mtk_snand_probe(struct platform_device *pdev)
1371{
1372 struct device_node *np = pdev->dev.of_node;
1373 const struct of_device_id *dev_id;
1374 struct spi_controller *ctlr;
1375 struct mtk_snand *ms;
Xiangsheng Hou1d36c992023-02-01 10:09:20 +08001376 unsigned long spi_freq;
1377 u32 val = 0;
Chuanhong Guo764f1b72022-04-24 11:25:24 +08001378 int ret;
1379
1380 dev_id = of_match_node(mtk_snand_ids, np);
1381 if (!dev_id)
1382 return -EINVAL;
1383
1384 ctlr = devm_spi_alloc_master(&pdev->dev, sizeof(*ms));
1385 if (!ctlr)
1386 return -ENOMEM;
1387 platform_set_drvdata(pdev, ctlr);
1388
1389 ms = spi_controller_get_devdata(ctlr);
1390
1391 ms->ctlr = ctlr;
1392 ms->caps = dev_id->data;
1393
1394 ms->ecc = of_mtk_ecc_get(np);
1395 if (IS_ERR(ms->ecc))
1396 return PTR_ERR(ms->ecc);
1397 else if (!ms->ecc)
1398 return -ENODEV;
1399
1400 ms->nfi_base = devm_platform_ioremap_resource(pdev, 0);
1401 if (IS_ERR(ms->nfi_base)) {
1402 ret = PTR_ERR(ms->nfi_base);
1403 goto release_ecc;
1404 }
1405
1406 ms->dev = &pdev->dev;
1407
1408 ms->nfi_clk = devm_clk_get(&pdev->dev, "nfi_clk");
1409 if (IS_ERR(ms->nfi_clk)) {
1410 ret = PTR_ERR(ms->nfi_clk);
1411 dev_err(&pdev->dev, "unable to get nfi_clk, err = %d\n", ret);
1412 goto release_ecc;
1413 }
1414
1415 ms->pad_clk = devm_clk_get(&pdev->dev, "pad_clk");
1416 if (IS_ERR(ms->pad_clk)) {
1417 ret = PTR_ERR(ms->pad_clk);
1418 dev_err(&pdev->dev, "unable to get pad_clk, err = %d\n", ret);
1419 goto release_ecc;
1420 }
1421
Xiangsheng Houe40fa322023-02-01 10:09:18 +08001422 ms->nfi_hclk = devm_clk_get_optional(&pdev->dev, "nfi_hclk");
1423 if (IS_ERR(ms->nfi_hclk)) {
1424 ret = PTR_ERR(ms->nfi_hclk);
1425 dev_err(&pdev->dev, "unable to get nfi_hclk, err = %d\n", ret);
1426 goto release_ecc;
1427 }
1428
Chuanhong Guo764f1b72022-04-24 11:25:24 +08001429 ret = mtk_snand_enable_clk(ms);
1430 if (ret)
1431 goto release_ecc;
1432
1433 init_completion(&ms->op_done);
1434
1435 ms->irq = platform_get_irq(pdev, 0);
1436 if (ms->irq < 0) {
1437 ret = ms->irq;
1438 goto disable_clk;
1439 }
1440 ret = devm_request_irq(ms->dev, ms->irq, mtk_snand_irq, 0x0,
1441 "mtk-snand", ms);
1442 if (ret) {
1443 dev_err(ms->dev, "failed to request snfi irq\n");
1444 goto disable_clk;
1445 }
1446
1447 ret = dma_set_mask(ms->dev, DMA_BIT_MASK(32));
1448 if (ret) {
1449 dev_err(ms->dev, "failed to set dma mask\n");
1450 goto disable_clk;
1451 }
1452
1453 // switch to SNFI mode
1454 nfi_write32(ms, SNF_CFG, SPI_MODE);
1455
Xiangsheng Hou1d36c992023-02-01 10:09:20 +08001456 ret = of_property_read_u32(np, "rx-sample-delay-ns", &val);
1457 if (!ret)
1458 nfi_rmw32(ms, SNF_DLY_CTL3, SFCK_SAM_DLY,
1459 val * SFCK_SAM_DLY_RANGE / SFCK_SAM_DLY_TOTAL);
1460
1461 ret = of_property_read_u32(np, "mediatek,rx-latch-latency-ns", &val);
1462 if (!ret) {
1463 spi_freq = clk_get_rate(ms->pad_clk);
1464 val = DIV_ROUND_CLOSEST(val, NSEC_PER_SEC / spi_freq);
1465 nfi_rmw32(ms, SNF_MISC_CTL, DATA_READ_LATCH_LAT,
1466 val << DATA_READ_LATCH_LAT_S);
1467 }
1468
Chuanhong Guo764f1b72022-04-24 11:25:24 +08001469 // setup an initial page format for ops matching page_cache_op template
1470 // before ECC is called.
Xiangsheng Hou2b1e19812023-02-01 10:09:17 +08001471 ret = mtk_snand_setup_pagefmt(ms, SZ_2K, SZ_64);
Chuanhong Guo764f1b72022-04-24 11:25:24 +08001472 if (ret) {
1473 dev_err(ms->dev, "failed to set initial page format\n");
1474 goto disable_clk;
1475 }
1476
1477 // setup ECC engine
1478 ms->ecc_eng.dev = &pdev->dev;
1479 ms->ecc_eng.integration = NAND_ECC_ENGINE_INTEGRATION_PIPELINED;
1480 ms->ecc_eng.ops = &mtk_snfi_ecc_engine_ops;
1481 ms->ecc_eng.priv = ms;
1482
1483 ret = nand_ecc_register_on_host_hw_engine(&ms->ecc_eng);
1484 if (ret) {
1485 dev_err(&pdev->dev, "failed to register ecc engine.\n");
1486 goto disable_clk;
1487 }
1488
1489 ctlr->num_chipselect = 1;
1490 ctlr->mem_ops = &mtk_snand_mem_ops;
1491 ctlr->mem_caps = &mtk_snand_mem_caps;
1492 ctlr->bits_per_word_mask = SPI_BPW_MASK(8);
1493 ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | SPI_TX_DUAL | SPI_TX_QUAD;
1494 ctlr->dev.of_node = pdev->dev.of_node;
1495 ret = spi_register_controller(ctlr);
1496 if (ret) {
1497 dev_err(&pdev->dev, "spi_register_controller failed.\n");
1498 goto disable_clk;
1499 }
1500
1501 return 0;
1502disable_clk:
1503 mtk_snand_disable_clk(ms);
1504release_ecc:
1505 mtk_ecc_release(ms->ecc);
1506 return ret;
1507}
1508
1509static int mtk_snand_remove(struct platform_device *pdev)
1510{
1511 struct spi_controller *ctlr = platform_get_drvdata(pdev);
1512 struct mtk_snand *ms = spi_controller_get_devdata(ctlr);
1513
1514 spi_unregister_controller(ctlr);
1515 mtk_snand_disable_clk(ms);
1516 mtk_ecc_release(ms->ecc);
1517 kfree(ms->buf);
1518 return 0;
1519}
1520
1521static struct platform_driver mtk_snand_driver = {
1522 .probe = mtk_snand_probe,
1523 .remove = mtk_snand_remove,
1524 .driver = {
1525 .name = "mtk-snand",
1526 .of_match_table = mtk_snand_ids,
1527 },
1528};
1529
1530module_platform_driver(mtk_snand_driver);
1531
1532MODULE_LICENSE("GPL");
1533MODULE_AUTHOR("Chuanhong Guo <gch981213@gmail.com>");
1534MODULE_DESCRIPTION("MeidaTek SPI-NAND Flash Controller Driver");