| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* | 
|  | 2 | * Oct 15, 2000 Matt Domsch <Matt_Domsch@dell.com> | 
|  | 3 | * Nicer crc32 functions/docs submitted by linux@horizon.com.  Thanks! | 
|  | 4 | * Code was from the public domain, copyright abandoned.  Code was | 
|  | 5 | * subsequently included in the kernel, thus was re-licensed under the | 
|  | 6 | * GNU GPL v2. | 
|  | 7 | * | 
|  | 8 | * Oct 12, 2000 Matt Domsch <Matt_Domsch@dell.com> | 
|  | 9 | * Same crc32 function was used in 5 other places in the kernel. | 
|  | 10 | * I made one version, and deleted the others. | 
|  | 11 | * There are various incantations of crc32().  Some use a seed of 0 or ~0. | 
|  | 12 | * Some xor at the end with ~0.  The generic crc32() function takes | 
|  | 13 | * seed as an argument, and doesn't xor at the end.  Then individual | 
|  | 14 | * users can do whatever they need. | 
|  | 15 | *   drivers/net/smc9194.c uses seed ~0, doesn't xor with ~0. | 
|  | 16 | *   fs/jffs2 uses seed 0, doesn't xor with ~0. | 
|  | 17 | *   fs/partitions/efi.c uses seed ~0, xor's with ~0. | 
|  | 18 | * | 
|  | 19 | * This source code is licensed under the GNU General Public License, | 
|  | 20 | * Version 2.  See the file COPYING for more details. | 
|  | 21 | */ | 
|  | 22 |  | 
|  | 23 | #include <linux/crc32.h> | 
|  | 24 | #include <linux/kernel.h> | 
|  | 25 | #include <linux/module.h> | 
|  | 26 | #include <linux/compiler.h> | 
|  | 27 | #include <linux/types.h> | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 28 | #include <linux/init.h> | 
|  | 29 | #include <asm/atomic.h> | 
|  | 30 | #include "crc32defs.h" | 
|  | 31 | #if CRC_LE_BITS == 8 | 
| Joakim Tjernlund | 4f2a9463 | 2010-03-05 13:43:55 -0800 | [diff] [blame] | 32 | # define tole(x) __constant_cpu_to_le32(x) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 33 | #else | 
| Joakim Tjernlund | 4f2a9463 | 2010-03-05 13:43:55 -0800 | [diff] [blame] | 34 | # define tole(x) (x) | 
|  | 35 | #endif | 
|  | 36 |  | 
|  | 37 | #if CRC_BE_BITS == 8 | 
|  | 38 | # define tobe(x) __constant_cpu_to_be32(x) | 
|  | 39 | #else | 
|  | 40 | # define tobe(x) (x) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 41 | #endif | 
|  | 42 | #include "crc32table.h" | 
|  | 43 |  | 
|  | 44 | MODULE_AUTHOR("Matt Domsch <Matt_Domsch@dell.com>"); | 
|  | 45 | MODULE_DESCRIPTION("Ethernet CRC32 calculations"); | 
|  | 46 | MODULE_LICENSE("GPL"); | 
|  | 47 |  | 
| Joakim Tjernlund | ddcaccb | 2009-12-14 18:01:33 -0800 | [diff] [blame] | 48 | #if CRC_LE_BITS == 8 || CRC_BE_BITS == 8 | 
|  | 49 |  | 
|  | 50 | static inline u32 | 
| Joakim Tjernlund | 836e2af | 2010-05-24 14:33:31 -0700 | [diff] [blame] | 51 | crc32_body(u32 crc, unsigned char const *buf, size_t len, const u32 (*tab)[256]) | 
| Joakim Tjernlund | ddcaccb | 2009-12-14 18:01:33 -0800 | [diff] [blame] | 52 | { | 
| Andrew Morton | 0d2daf5 | 2010-05-25 23:43:03 -0700 | [diff] [blame] | 53 | # ifdef __LITTLE_ENDIAN | 
| Joakim Tjernlund | 836e2af | 2010-05-24 14:33:31 -0700 | [diff] [blame] | 54 | #  define DO_CRC(x) crc = tab[0][(crc ^ (x)) & 255] ^ (crc >> 8) | 
|  | 55 | #  define DO_CRC4 crc = tab[3][(crc) & 255] ^ \ | 
|  | 56 | tab[2][(crc >> 8) & 255] ^ \ | 
|  | 57 | tab[1][(crc >> 16) & 255] ^ \ | 
|  | 58 | tab[0][(crc >> 24) & 255] | 
| Joakim Tjernlund | ddcaccb | 2009-12-14 18:01:33 -0800 | [diff] [blame] | 59 | # else | 
| Joakim Tjernlund | 836e2af | 2010-05-24 14:33:31 -0700 | [diff] [blame] | 60 | #  define DO_CRC(x) crc = tab[0][((crc >> 24) ^ (x)) & 255] ^ (crc << 8) | 
|  | 61 | #  define DO_CRC4 crc = tab[0][(crc) & 255] ^ \ | 
|  | 62 | tab[1][(crc >> 8) & 255] ^ \ | 
|  | 63 | tab[2][(crc >> 16) & 255] ^ \ | 
|  | 64 | tab[3][(crc >> 24) & 255] | 
| Joakim Tjernlund | ddcaccb | 2009-12-14 18:01:33 -0800 | [diff] [blame] | 65 | # endif | 
| Joakim Tjernlund | 4f2a9463 | 2010-03-05 13:43:55 -0800 | [diff] [blame] | 66 | const u32 *b; | 
| Joakim Tjernlund | ddcaccb | 2009-12-14 18:01:33 -0800 | [diff] [blame] | 67 | size_t    rem_len; | 
|  | 68 |  | 
|  | 69 | /* Align it */ | 
| Joakim Tjernlund | 4f2a9463 | 2010-03-05 13:43:55 -0800 | [diff] [blame] | 70 | if (unlikely((long)buf & 3 && len)) { | 
| Joakim Tjernlund | ddcaccb | 2009-12-14 18:01:33 -0800 | [diff] [blame] | 71 | do { | 
| Joakim Tjernlund | 4f2a9463 | 2010-03-05 13:43:55 -0800 | [diff] [blame] | 72 | DO_CRC(*buf++); | 
|  | 73 | } while ((--len) && ((long)buf)&3); | 
| Joakim Tjernlund | ddcaccb | 2009-12-14 18:01:33 -0800 | [diff] [blame] | 74 | } | 
|  | 75 | rem_len = len & 3; | 
|  | 76 | /* load data 32 bits wide, xor data 32 bits wide. */ | 
|  | 77 | len = len >> 2; | 
| Joakim Tjernlund | 4f2a9463 | 2010-03-05 13:43:55 -0800 | [diff] [blame] | 78 | b = (const u32 *)buf; | 
| Joakim Tjernlund | ddcaccb | 2009-12-14 18:01:33 -0800 | [diff] [blame] | 79 | for (--b; len; --len) { | 
|  | 80 | crc ^= *++b; /* use pre increment for speed */ | 
| Joakim Tjernlund | 836e2af | 2010-05-24 14:33:31 -0700 | [diff] [blame] | 81 | DO_CRC4; | 
| Joakim Tjernlund | ddcaccb | 2009-12-14 18:01:33 -0800 | [diff] [blame] | 82 | } | 
|  | 83 | len = rem_len; | 
|  | 84 | /* And the last few bytes */ | 
|  | 85 | if (len) { | 
|  | 86 | u8 *p = (u8 *)(b + 1) - 1; | 
|  | 87 | do { | 
|  | 88 | DO_CRC(*++p); /* use pre increment for speed */ | 
|  | 89 | } while (--len); | 
|  | 90 | } | 
|  | 91 | return crc; | 
| Joakim Tjernlund | 4f2a9463 | 2010-03-05 13:43:55 -0800 | [diff] [blame] | 92 | #undef DO_CRC | 
| Joakim Tjernlund | 836e2af | 2010-05-24 14:33:31 -0700 | [diff] [blame] | 93 | #undef DO_CRC4 | 
| Joakim Tjernlund | ddcaccb | 2009-12-14 18:01:33 -0800 | [diff] [blame] | 94 | } | 
|  | 95 | #endif | 
| Randy Dunlap | 2f72100 | 2006-06-25 05:48:59 -0700 | [diff] [blame] | 96 | /** | 
|  | 97 | * crc32_le() - Calculate bitwise little-endian Ethernet AUTODIN II CRC32 | 
|  | 98 | * @crc: seed value for computation.  ~0 for Ethernet, sometimes 0 for | 
|  | 99 | *	other uses, or the previous crc32 value if computing incrementally. | 
|  | 100 | * @p: pointer to buffer over which CRC is run | 
|  | 101 | * @len: length of buffer @p | 
|  | 102 | */ | 
| Ralf Baechle | e8c4431 | 2007-10-18 03:07:07 -0700 | [diff] [blame] | 103 | u32 __pure crc32_le(u32 crc, unsigned char const *p, size_t len); | 
| Randy Dunlap | 2f72100 | 2006-06-25 05:48:59 -0700 | [diff] [blame] | 104 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 105 | #if CRC_LE_BITS == 1 | 
|  | 106 | /* | 
|  | 107 | * In fact, the table-based code will work in this case, but it can be | 
|  | 108 | * simplified by inlining the table in ?: form. | 
|  | 109 | */ | 
|  | 110 |  | 
| Ralf Baechle | e8c4431 | 2007-10-18 03:07:07 -0700 | [diff] [blame] | 111 | u32 __pure crc32_le(u32 crc, unsigned char const *p, size_t len) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 112 | { | 
|  | 113 | int i; | 
|  | 114 | while (len--) { | 
|  | 115 | crc ^= *p++; | 
|  | 116 | for (i = 0; i < 8; i++) | 
|  | 117 | crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0); | 
|  | 118 | } | 
|  | 119 | return crc; | 
|  | 120 | } | 
|  | 121 | #else				/* Table-based approach */ | 
|  | 122 |  | 
| Ralf Baechle | e8c4431 | 2007-10-18 03:07:07 -0700 | [diff] [blame] | 123 | u32 __pure crc32_le(u32 crc, unsigned char const *p, size_t len) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 124 | { | 
|  | 125 | # if CRC_LE_BITS == 8 | 
| Joakim Tjernlund | 836e2af | 2010-05-24 14:33:31 -0700 | [diff] [blame] | 126 | const u32      (*tab)[] = crc32table_le; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 127 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 128 | crc = __cpu_to_le32(crc); | 
| Joakim Tjernlund | ddcaccb | 2009-12-14 18:01:33 -0800 | [diff] [blame] | 129 | crc = crc32_body(crc, p, len, tab); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 130 | return __le32_to_cpu(crc); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 131 | # elif CRC_LE_BITS == 4 | 
|  | 132 | while (len--) { | 
|  | 133 | crc ^= *p++; | 
|  | 134 | crc = (crc >> 4) ^ crc32table_le[crc & 15]; | 
|  | 135 | crc = (crc >> 4) ^ crc32table_le[crc & 15]; | 
|  | 136 | } | 
|  | 137 | return crc; | 
|  | 138 | # elif CRC_LE_BITS == 2 | 
|  | 139 | while (len--) { | 
|  | 140 | crc ^= *p++; | 
|  | 141 | crc = (crc >> 2) ^ crc32table_le[crc & 3]; | 
|  | 142 | crc = (crc >> 2) ^ crc32table_le[crc & 3]; | 
|  | 143 | crc = (crc >> 2) ^ crc32table_le[crc & 3]; | 
|  | 144 | crc = (crc >> 2) ^ crc32table_le[crc & 3]; | 
|  | 145 | } | 
|  | 146 | return crc; | 
|  | 147 | # endif | 
|  | 148 | } | 
|  | 149 | #endif | 
|  | 150 |  | 
| Randy Dunlap | 2f72100 | 2006-06-25 05:48:59 -0700 | [diff] [blame] | 151 | /** | 
|  | 152 | * crc32_be() - Calculate bitwise big-endian Ethernet AUTODIN II CRC32 | 
|  | 153 | * @crc: seed value for computation.  ~0 for Ethernet, sometimes 0 for | 
|  | 154 | *	other uses, or the previous crc32 value if computing incrementally. | 
|  | 155 | * @p: pointer to buffer over which CRC is run | 
|  | 156 | * @len: length of buffer @p | 
|  | 157 | */ | 
| Ralf Baechle | e8c4431 | 2007-10-18 03:07:07 -0700 | [diff] [blame] | 158 | u32 __pure crc32_be(u32 crc, unsigned char const *p, size_t len); | 
| Randy Dunlap | 2f72100 | 2006-06-25 05:48:59 -0700 | [diff] [blame] | 159 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 160 | #if CRC_BE_BITS == 1 | 
|  | 161 | /* | 
|  | 162 | * In fact, the table-based code will work in this case, but it can be | 
|  | 163 | * simplified by inlining the table in ?: form. | 
|  | 164 | */ | 
|  | 165 |  | 
| Ralf Baechle | e8c4431 | 2007-10-18 03:07:07 -0700 | [diff] [blame] | 166 | u32 __pure crc32_be(u32 crc, unsigned char const *p, size_t len) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 167 | { | 
|  | 168 | int i; | 
|  | 169 | while (len--) { | 
|  | 170 | crc ^= *p++ << 24; | 
|  | 171 | for (i = 0; i < 8; i++) | 
|  | 172 | crc = | 
|  | 173 | (crc << 1) ^ ((crc & 0x80000000) ? CRCPOLY_BE : | 
|  | 174 | 0); | 
|  | 175 | } | 
|  | 176 | return crc; | 
|  | 177 | } | 
|  | 178 |  | 
|  | 179 | #else				/* Table-based approach */ | 
| Ralf Baechle | e8c4431 | 2007-10-18 03:07:07 -0700 | [diff] [blame] | 180 | u32 __pure crc32_be(u32 crc, unsigned char const *p, size_t len) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 181 | { | 
|  | 182 | # if CRC_BE_BITS == 8 | 
| Joakim Tjernlund | 836e2af | 2010-05-24 14:33:31 -0700 | [diff] [blame] | 183 | const u32      (*tab)[] = crc32table_be; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 184 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 185 | crc = __cpu_to_be32(crc); | 
| Joakim Tjernlund | ddcaccb | 2009-12-14 18:01:33 -0800 | [diff] [blame] | 186 | crc = crc32_body(crc, p, len, tab); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 187 | return __be32_to_cpu(crc); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 188 | # elif CRC_BE_BITS == 4 | 
|  | 189 | while (len--) { | 
|  | 190 | crc ^= *p++ << 24; | 
|  | 191 | crc = (crc << 4) ^ crc32table_be[crc >> 28]; | 
|  | 192 | crc = (crc << 4) ^ crc32table_be[crc >> 28]; | 
|  | 193 | } | 
|  | 194 | return crc; | 
|  | 195 | # elif CRC_BE_BITS == 2 | 
|  | 196 | while (len--) { | 
|  | 197 | crc ^= *p++ << 24; | 
|  | 198 | crc = (crc << 2) ^ crc32table_be[crc >> 30]; | 
|  | 199 | crc = (crc << 2) ^ crc32table_be[crc >> 30]; | 
|  | 200 | crc = (crc << 2) ^ crc32table_be[crc >> 30]; | 
|  | 201 | crc = (crc << 2) ^ crc32table_be[crc >> 30]; | 
|  | 202 | } | 
|  | 203 | return crc; | 
|  | 204 | # endif | 
|  | 205 | } | 
|  | 206 | #endif | 
|  | 207 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 208 | EXPORT_SYMBOL(crc32_le); | 
|  | 209 | EXPORT_SYMBOL(crc32_be); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 210 |  | 
|  | 211 | /* | 
|  | 212 | * A brief CRC tutorial. | 
|  | 213 | * | 
|  | 214 | * A CRC is a long-division remainder.  You add the CRC to the message, | 
|  | 215 | * and the whole thing (message+CRC) is a multiple of the given | 
|  | 216 | * CRC polynomial.  To check the CRC, you can either check that the | 
|  | 217 | * CRC matches the recomputed value, *or* you can check that the | 
|  | 218 | * remainder computed on the message+CRC is 0.  This latter approach | 
|  | 219 | * is used by a lot of hardware implementations, and is why so many | 
|  | 220 | * protocols put the end-of-frame flag after the CRC. | 
|  | 221 | * | 
|  | 222 | * It's actually the same long division you learned in school, except that | 
|  | 223 | * - We're working in binary, so the digits are only 0 and 1, and | 
|  | 224 | * - When dividing polynomials, there are no carries.  Rather than add and | 
|  | 225 | *   subtract, we just xor.  Thus, we tend to get a bit sloppy about | 
|  | 226 | *   the difference between adding and subtracting. | 
|  | 227 | * | 
|  | 228 | * A 32-bit CRC polynomial is actually 33 bits long.  But since it's | 
|  | 229 | * 33 bits long, bit 32 is always going to be set, so usually the CRC | 
|  | 230 | * is written in hex with the most significant bit omitted.  (If you're | 
|  | 231 | * familiar with the IEEE 754 floating-point format, it's the same idea.) | 
|  | 232 | * | 
|  | 233 | * Note that a CRC is computed over a string of *bits*, so you have | 
|  | 234 | * to decide on the endianness of the bits within each byte.  To get | 
|  | 235 | * the best error-detecting properties, this should correspond to the | 
|  | 236 | * order they're actually sent.  For example, standard RS-232 serial is | 
|  | 237 | * little-endian; the most significant bit (sometimes used for parity) | 
|  | 238 | * is sent last.  And when appending a CRC word to a message, you should | 
|  | 239 | * do it in the right order, matching the endianness. | 
|  | 240 | * | 
|  | 241 | * Just like with ordinary division, the remainder is always smaller than | 
|  | 242 | * the divisor (the CRC polynomial) you're dividing by.  Each step of the | 
|  | 243 | * division, you take one more digit (bit) of the dividend and append it | 
|  | 244 | * to the current remainder.  Then you figure out the appropriate multiple | 
|  | 245 | * of the divisor to subtract to being the remainder back into range. | 
|  | 246 | * In binary, it's easy - it has to be either 0 or 1, and to make the | 
|  | 247 | * XOR cancel, it's just a copy of bit 32 of the remainder. | 
|  | 248 | * | 
|  | 249 | * When computing a CRC, we don't care about the quotient, so we can | 
|  | 250 | * throw the quotient bit away, but subtract the appropriate multiple of | 
|  | 251 | * the polynomial from the remainder and we're back to where we started, | 
|  | 252 | * ready to process the next bit. | 
|  | 253 | * | 
|  | 254 | * A big-endian CRC written this way would be coded like: | 
|  | 255 | * for (i = 0; i < input_bits; i++) { | 
|  | 256 | * 	multiple = remainder & 0x80000000 ? CRCPOLY : 0; | 
|  | 257 | * 	remainder = (remainder << 1 | next_input_bit()) ^ multiple; | 
|  | 258 | * } | 
|  | 259 | * Notice how, to get at bit 32 of the shifted remainder, we look | 
|  | 260 | * at bit 31 of the remainder *before* shifting it. | 
|  | 261 | * | 
|  | 262 | * But also notice how the next_input_bit() bits we're shifting into | 
|  | 263 | * the remainder don't actually affect any decision-making until | 
|  | 264 | * 32 bits later.  Thus, the first 32 cycles of this are pretty boring. | 
|  | 265 | * Also, to add the CRC to a message, we need a 32-bit-long hole for it at | 
|  | 266 | * the end, so we have to add 32 extra cycles shifting in zeros at the | 
|  | 267 | * end of every message, | 
|  | 268 | * | 
|  | 269 | * So the standard trick is to rearrage merging in the next_input_bit() | 
|  | 270 | * until the moment it's needed.  Then the first 32 cycles can be precomputed, | 
|  | 271 | * and merging in the final 32 zero bits to make room for the CRC can be | 
|  | 272 | * skipped entirely. | 
|  | 273 | * This changes the code to: | 
|  | 274 | * for (i = 0; i < input_bits; i++) { | 
|  | 275 | *      remainder ^= next_input_bit() << 31; | 
|  | 276 | * 	multiple = (remainder & 0x80000000) ? CRCPOLY : 0; | 
|  | 277 | * 	remainder = (remainder << 1) ^ multiple; | 
|  | 278 | * } | 
|  | 279 | * With this optimization, the little-endian code is simpler: | 
|  | 280 | * for (i = 0; i < input_bits; i++) { | 
|  | 281 | *      remainder ^= next_input_bit(); | 
|  | 282 | * 	multiple = (remainder & 1) ? CRCPOLY : 0; | 
|  | 283 | * 	remainder = (remainder >> 1) ^ multiple; | 
|  | 284 | * } | 
|  | 285 | * | 
|  | 286 | * Note that the other details of endianness have been hidden in CRCPOLY | 
|  | 287 | * (which must be bit-reversed) and next_input_bit(). | 
|  | 288 | * | 
|  | 289 | * However, as long as next_input_bit is returning the bits in a sensible | 
|  | 290 | * order, we can actually do the merging 8 or more bits at a time rather | 
|  | 291 | * than one bit at a time: | 
|  | 292 | * for (i = 0; i < input_bytes; i++) { | 
|  | 293 | * 	remainder ^= next_input_byte() << 24; | 
|  | 294 | * 	for (j = 0; j < 8; j++) { | 
|  | 295 | * 		multiple = (remainder & 0x80000000) ? CRCPOLY : 0; | 
|  | 296 | * 		remainder = (remainder << 1) ^ multiple; | 
|  | 297 | * 	} | 
|  | 298 | * } | 
|  | 299 | * Or in little-endian: | 
|  | 300 | * for (i = 0; i < input_bytes; i++) { | 
|  | 301 | * 	remainder ^= next_input_byte(); | 
|  | 302 | * 	for (j = 0; j < 8; j++) { | 
|  | 303 | * 		multiple = (remainder & 1) ? CRCPOLY : 0; | 
|  | 304 | * 		remainder = (remainder << 1) ^ multiple; | 
|  | 305 | * 	} | 
|  | 306 | * } | 
|  | 307 | * If the input is a multiple of 32 bits, you can even XOR in a 32-bit | 
|  | 308 | * word at a time and increase the inner loop count to 32. | 
|  | 309 | * | 
|  | 310 | * You can also mix and match the two loop styles, for example doing the | 
|  | 311 | * bulk of a message byte-at-a-time and adding bit-at-a-time processing | 
|  | 312 | * for any fractional bytes at the end. | 
|  | 313 | * | 
|  | 314 | * The only remaining optimization is to the byte-at-a-time table method. | 
|  | 315 | * Here, rather than just shifting one bit of the remainder to decide | 
|  | 316 | * in the correct multiple to subtract, we can shift a byte at a time. | 
|  | 317 | * This produces a 40-bit (rather than a 33-bit) intermediate remainder, | 
|  | 318 | * but again the multiple of the polynomial to subtract depends only on | 
|  | 319 | * the high bits, the high 8 bits in this case. | 
|  | 320 | * | 
| Joe Perches | 643d1f7 | 2008-02-03 17:48:52 +0200 | [diff] [blame] | 321 | * The multiple we need in that case is the low 32 bits of a 40-bit | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 322 | * value whose high 8 bits are given, and which is a multiple of the | 
|  | 323 | * generator polynomial.  This is simply the CRC-32 of the given | 
|  | 324 | * one-byte message. | 
|  | 325 | * | 
|  | 326 | * Two more details: normally, appending zero bits to a message which | 
|  | 327 | * is already a multiple of a polynomial produces a larger multiple of that | 
|  | 328 | * polynomial.  To enable a CRC to detect this condition, it's common to | 
|  | 329 | * invert the CRC before appending it.  This makes the remainder of the | 
|  | 330 | * message+crc come out not as zero, but some fixed non-zero value. | 
|  | 331 | * | 
|  | 332 | * The same problem applies to zero bits prepended to the message, and | 
|  | 333 | * a similar solution is used.  Instead of starting with a remainder of | 
|  | 334 | * 0, an initial remainder of all ones is used.  As long as you start | 
|  | 335 | * the same way on decoding, it doesn't make a difference. | 
|  | 336 | */ | 
|  | 337 |  | 
|  | 338 | #ifdef UNITTEST | 
|  | 339 |  | 
|  | 340 | #include <stdlib.h> | 
|  | 341 | #include <stdio.h> | 
|  | 342 |  | 
|  | 343 | #if 0				/*Not used at present */ | 
|  | 344 | static void | 
|  | 345 | buf_dump(char const *prefix, unsigned char const *buf, size_t len) | 
|  | 346 | { | 
|  | 347 | fputs(prefix, stdout); | 
|  | 348 | while (len--) | 
|  | 349 | printf(" %02x", *buf++); | 
|  | 350 | putchar('\n'); | 
|  | 351 |  | 
|  | 352 | } | 
|  | 353 | #endif | 
|  | 354 |  | 
|  | 355 | static void bytereverse(unsigned char *buf, size_t len) | 
|  | 356 | { | 
|  | 357 | while (len--) { | 
| Akinobu Mita | 906d66d | 2006-12-08 02:36:25 -0800 | [diff] [blame] | 358 | unsigned char x = bitrev8(*buf); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 359 | *buf++ = x; | 
|  | 360 | } | 
|  | 361 | } | 
|  | 362 |  | 
|  | 363 | static void random_garbage(unsigned char *buf, size_t len) | 
|  | 364 | { | 
|  | 365 | while (len--) | 
|  | 366 | *buf++ = (unsigned char) random(); | 
|  | 367 | } | 
|  | 368 |  | 
|  | 369 | #if 0				/* Not used at present */ | 
|  | 370 | static void store_le(u32 x, unsigned char *buf) | 
|  | 371 | { | 
|  | 372 | buf[0] = (unsigned char) x; | 
|  | 373 | buf[1] = (unsigned char) (x >> 8); | 
|  | 374 | buf[2] = (unsigned char) (x >> 16); | 
|  | 375 | buf[3] = (unsigned char) (x >> 24); | 
|  | 376 | } | 
|  | 377 | #endif | 
|  | 378 |  | 
|  | 379 | static void store_be(u32 x, unsigned char *buf) | 
|  | 380 | { | 
|  | 381 | buf[0] = (unsigned char) (x >> 24); | 
|  | 382 | buf[1] = (unsigned char) (x >> 16); | 
|  | 383 | buf[2] = (unsigned char) (x >> 8); | 
|  | 384 | buf[3] = (unsigned char) x; | 
|  | 385 | } | 
|  | 386 |  | 
|  | 387 | /* | 
|  | 388 | * This checks that CRC(buf + CRC(buf)) = 0, and that | 
|  | 389 | * CRC commutes with bit-reversal.  This has the side effect | 
|  | 390 | * of bytewise bit-reversing the input buffer, and returns | 
|  | 391 | * the CRC of the reversed buffer. | 
|  | 392 | */ | 
|  | 393 | static u32 test_step(u32 init, unsigned char *buf, size_t len) | 
|  | 394 | { | 
|  | 395 | u32 crc1, crc2; | 
|  | 396 | size_t i; | 
|  | 397 |  | 
|  | 398 | crc1 = crc32_be(init, buf, len); | 
|  | 399 | store_be(crc1, buf + len); | 
|  | 400 | crc2 = crc32_be(init, buf, len + 4); | 
|  | 401 | if (crc2) | 
|  | 402 | printf("\nCRC cancellation fail: 0x%08x should be 0\n", | 
|  | 403 | crc2); | 
|  | 404 |  | 
|  | 405 | for (i = 0; i <= len + 4; i++) { | 
|  | 406 | crc2 = crc32_be(init, buf, i); | 
|  | 407 | crc2 = crc32_be(crc2, buf + i, len + 4 - i); | 
|  | 408 | if (crc2) | 
|  | 409 | printf("\nCRC split fail: 0x%08x\n", crc2); | 
|  | 410 | } | 
|  | 411 |  | 
|  | 412 | /* Now swap it around for the other test */ | 
|  | 413 |  | 
|  | 414 | bytereverse(buf, len + 4); | 
| Akinobu Mita | 906d66d | 2006-12-08 02:36:25 -0800 | [diff] [blame] | 415 | init = bitrev32(init); | 
|  | 416 | crc2 = bitrev32(crc1); | 
|  | 417 | if (crc1 != bitrev32(crc2)) | 
| Dominik Hackl | cfc646f | 2005-08-07 09:42:53 -0700 | [diff] [blame] | 418 | printf("\nBit reversal fail: 0x%08x -> 0x%08x -> 0x%08x\n", | 
| Akinobu Mita | 906d66d | 2006-12-08 02:36:25 -0800 | [diff] [blame] | 419 | crc1, crc2, bitrev32(crc2)); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 420 | crc1 = crc32_le(init, buf, len); | 
|  | 421 | if (crc1 != crc2) | 
|  | 422 | printf("\nCRC endianness fail: 0x%08x != 0x%08x\n", crc1, | 
|  | 423 | crc2); | 
|  | 424 | crc2 = crc32_le(init, buf, len + 4); | 
|  | 425 | if (crc2) | 
|  | 426 | printf("\nCRC cancellation fail: 0x%08x should be 0\n", | 
|  | 427 | crc2); | 
|  | 428 |  | 
|  | 429 | for (i = 0; i <= len + 4; i++) { | 
|  | 430 | crc2 = crc32_le(init, buf, i); | 
|  | 431 | crc2 = crc32_le(crc2, buf + i, len + 4 - i); | 
|  | 432 | if (crc2) | 
|  | 433 | printf("\nCRC split fail: 0x%08x\n", crc2); | 
|  | 434 | } | 
|  | 435 |  | 
|  | 436 | return crc1; | 
|  | 437 | } | 
|  | 438 |  | 
|  | 439 | #define SIZE 64 | 
|  | 440 | #define INIT1 0 | 
|  | 441 | #define INIT2 0 | 
|  | 442 |  | 
|  | 443 | int main(void) | 
|  | 444 | { | 
|  | 445 | unsigned char buf1[SIZE + 4]; | 
|  | 446 | unsigned char buf2[SIZE + 4]; | 
|  | 447 | unsigned char buf3[SIZE + 4]; | 
|  | 448 | int i, j; | 
|  | 449 | u32 crc1, crc2, crc3; | 
|  | 450 |  | 
|  | 451 | for (i = 0; i <= SIZE; i++) { | 
|  | 452 | printf("\rTesting length %d...", i); | 
|  | 453 | fflush(stdout); | 
|  | 454 | random_garbage(buf1, i); | 
|  | 455 | random_garbage(buf2, i); | 
|  | 456 | for (j = 0; j < i; j++) | 
|  | 457 | buf3[j] = buf1[j] ^ buf2[j]; | 
|  | 458 |  | 
|  | 459 | crc1 = test_step(INIT1, buf1, i); | 
|  | 460 | crc2 = test_step(INIT2, buf2, i); | 
|  | 461 | /* Now check that CRC(buf1 ^ buf2) = CRC(buf1) ^ CRC(buf2) */ | 
|  | 462 | crc3 = test_step(INIT1 ^ INIT2, buf3, i); | 
|  | 463 | if (crc3 != (crc1 ^ crc2)) | 
|  | 464 | printf("CRC XOR fail: 0x%08x != 0x%08x ^ 0x%08x\n", | 
|  | 465 | crc3, crc1, crc2); | 
|  | 466 | } | 
|  | 467 | printf("\nAll test complete.  No failures expected.\n"); | 
|  | 468 | return 0; | 
|  | 469 | } | 
|  | 470 |  | 
|  | 471 | #endif				/* UNITTEST */ |