blob: f8ee84f7d1d1fccb8b526cd50d075574d7bee2bb [file] [log] [blame]
/*
* This is based on the x86 code accompanying "Using the KVM API"
* (https://lwn.net/Articles/658511/).
*
* Original x86 code in the file kvmtest.c and https://lwn.net/Articles/658512/.
*
* Copyright (C) 2022 Google LLC
* Author: Fuad Tabba <tabba@google.com>
*/
/* Sample code for /dev/kvm API
*
* Copyright (c) 2015 Intel Corporation
* Author: Josh Triplett <josh@joshtriplett.org>
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#define _GNU_SOURCE
#include <err.h>
#include <fcntl.h>
#include <linux/kvm.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <sys/types.h>
#define MFD_INACCESSIBLE 0x0008U
#define F_SEAL_AUTO_ALLOCATE 0x0020 /* prevent allocation for writes */
#define F_SET_INACCESSIBLE (F_SET_FILE_RW_HINT + 1)
#define F_SET_UNMOVABLE (F_SET_FILE_RW_HINT + 2)
#define F_SET_UNRECLAIMABLE (F_SET_FILE_RW_HINT + 3)
#define KVM_EXIT_MEMORY_FAULT 36
struct kvm_userspace_memory_region_ext {
struct kvm_userspace_memory_region region;
__u64 private_offset;
__u32 private_fd;
__u32 pad1;
__u64 pad2[14];
};
#define KVM_MEM_PRIVATE (1UL << 2)
int main(void)
{
int kvm, vmfd, vcpufd, code_fd, ret, i;
/* Add x0 to x1 and outputs the result to MMIO at address in x2. */
const uint8_t code[] = {
0x20, 0x00, 0x00, 0x8b, /* add x0, x1, x0 */
0x40, 0x00, 0x00, 0xf9, /* str x0, [x2]*/
0x00, 0x00, 0x20, 0xd4, /* brk */
};
const uint64_t code_address = 0x1000;
const uint64_t mmio_address = 0x2000;
uint8_t *mem_code = NULL;
const size_t code_size = 0x1000;
size_t mmap_size;
struct kvm_run *run = NULL;
struct kvm_enc_region range;
printf("kvmtest-fd\n");
kvm = open("/dev/kvm", O_RDWR | O_CLOEXEC);
if (kvm < 0)
err(1, "/dev/kvm");
/* Ensure this is the stable version of the KVM API (defined as 12) */
ret = ioctl(kvm, KVM_GET_API_VERSION, NULL);
if (ret < 0)
err(1, "KVM_GET_API_VERSION");
if (ret != 12)
errx(1, "KVM_GET_API_VERSION %d, expected 12", ret);
vmfd = ioctl(kvm, KVM_CREATE_VM, (unsigned long)0);
if (vmfd < 0)
err(1, "KVM_CREATE_VM");
code_fd = memfd_create("memfd.txt", 0 /* MFD_INACCESSABLE IN THE FUTURE */);
if (!code_fd)
err(1, "memfd_create");
/* Ensure that guest memory won't be migrated or paged out. */
ret = fcntl(code_fd, F_SET_UNMOVABLE);
if (ret)
err(ret, "F_SET_UNMOVABLE");
ret = fcntl(code_fd, F_SET_UNRECLAIMABLE);
if (ret)
err(ret, "F_SET_UNRECLAIMABLE");
/* Allocate one aligned page of guest memory to hold the code. */
ret = fallocate(code_fd, 0, 0, code_size);
if (ret)
err(1, "fallocate");
/* Map the page temporarily to initialize it. */
mem_code = mmap(NULL, code_size, PROT_READ | PROT_WRITE, MAP_SHARED, code_fd, 0);
if (!mem_code)
err(1, "mmap");
memcpy(mem_code, code, sizeof(code));
/* Unmap the page and then ensure that it is no longer mapable. */
ret = munmap(mem_code, code_size);
if (ret)
err(ret, "munmap");
mem_code = 0;
ret = fcntl(code_fd, F_SET_INACCESSIBLE);
if (ret)
err(ret, "F_SET_INACCESSIBLE");
/* Map code memory to the second page frame. */
struct kvm_userspace_memory_region_ext region = {
.region = {
.slot = 0,
.guest_phys_addr = code_address,
.memory_size = code_size,
.userspace_addr = (uint64_t)mem_code,
.flags = KVM_MEM_PRIVATE,
},
.private_fd = code_fd,
.private_offset = 0,
};
ret = ioctl(vmfd, KVM_SET_USER_MEMORY_REGION, &region);
if (ret < 0)
err(1, "KVM_SET_USER_MEMORY_REGION code");
/* Inform KVM that the region is protected. */
range.addr = (__u64) code_address;
range.size = code_size;
ret = ioctl(vmfd, KVM_MEMORY_ENCRYPT_REG_REGION, &range);
if (ret)
err(ret, "KVM_MEMORY_ENCRYPT_REG_REGION");
/* Use third page frame of guest memory to simulate MMIO. */
region.region.flags = KVM_MEM_READONLY; /* triggers KVM_EXIT_MEMIO on write */
region.region.slot = 1;
region.region.guest_phys_addr = mmio_address;
region.region.userspace_addr = 0ULL;
region.private_fd = 0;
ret = ioctl(vmfd, KVM_SET_USER_MEMORY_REGION, &region);
if (ret < 0)
err(1, "KVM_SET_USER_MEMORY_REGION mmio");
/* Create one CPU to run in the VM. */
vcpufd = ioctl(vmfd, KVM_CREATE_VCPU, (unsigned long)0);
if (vcpufd < 0)
err(1, "KVM_CREATE_VCPU");
/* Map the shared kvm_run structure and following data. */
ret = ioctl(kvm, KVM_GET_VCPU_MMAP_SIZE, NULL);
if (ret < 0)
err(1, "KVM_GET_VCPU_MMAP_SIZE");
mmap_size = ret;
if (mmap_size < sizeof(*run))
errx(1, "KVM_GET_VCPU_MMAP_SIZE unexpectedly small");
run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, vcpufd, 0);
if (!run)
err(1, "mmap vcpu");
/* Query KVM for preferred CPU target type that can be emulated. */
struct kvm_vcpu_init vcpu_init;
ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, &vcpu_init);
if (ret < 0)
err(1, "KVM_PREFERRED_TARGET");
/* Initialize VCPU with the preferred type obtained above. */
ret = ioctl(vcpufd, KVM_ARM_VCPU_INIT, &vcpu_init);
if (ret < 0)
err(1, "KVM_ARM_VCPU_INIT");
/* Prepare the kvm_one_reg structure to use for populating registers. */
uint64_t reg_data;
struct kvm_one_reg reg;
reg.addr = (__u64)&reg_data;
// Initialize input registers (x0 and x1) to 2.
reg_data = 2;
reg.id = 0x6030000000100000; // x0 id
ret = ioctl(vcpufd, KVM_SET_ONE_REG, &reg);
if (ret != 0)
err(1, "KVM_SET_ONE_REG");
reg.id = 0x6030000000100002; // x1 id
ret = ioctl(vcpufd, KVM_SET_ONE_REG, &reg);
if (ret != 0)
err(1, "KVM_SET_ONE_REG");
// Initialize x3 to point to the simulated MMIO region.
reg.id = 0x6030000000100004; // x3 id
reg_data = mmio_address;
ret = ioctl(vcpufd, KVM_SET_ONE_REG, &reg);
if (ret != 0)
err(1, "KVM_SET_ONE_REG");
// Initialize the PC to point to the start of the code.
reg.id = 0x6030000000100040; // pc id
reg_data = code_address;
ret = ioctl(vcpufd, KVM_SET_ONE_REG, &reg);
if (ret != 0)
err(1, "KVM_SET_ONE_REG");
// Enable debug so that brk instruction would exit KVM_RUN (KVM_EXIT_DEBUG).
struct kvm_guest_debug debug = {
.control = KVM_GUESTDBG_ENABLE,
};
ret = ioctl(vcpufd, KVM_SET_GUEST_DEBUG, &debug);
if (ret < 0)
err(1, "KVM_SET_GUEST_DEBUG");
/* Repeatedly run code and handle VM exits. */
for (i = 0;; i++)
{
printf("KVM_RUN %d\n", i);
ret = ioctl(vcpufd, KVM_RUN, NULL);
if (ret < 0)
err(1, "KVM_RUN");
switch (run->exit_reason)
{
case KVM_EXIT_DEBUG:
puts("KVM_EXIT_DEBUG");
return 0;
case KVM_EXIT_MMIO:
{
uint64_t payload = *(uint64_t *)(run->mmio.data); /* sorry */
printf("KVM_EXIT_MMIO: addr = 0x%llx, len = %u, is_write = %u, data = 0x%08llx\n",
run->mmio.phys_addr, run->mmio.len, run->mmio.is_write,
payload);
break;
}
case KVM_EXIT_FAIL_ENTRY:
errx(1, "KVM_EXIT_FAIL_ENTRY: hardware_entry_failure_reason = 0x%llx",
(unsigned long long)run->fail_entry.hardware_entry_failure_reason);
case KVM_EXIT_INTERNAL_ERROR:
errx(1, "KVM_EXIT_INTERNAL_ERROR: suberror = 0x%x",
run->internal.suberror);
case KVM_EXIT_MEMORY_FAULT:
err(1, "KVM_EXIT_MEMORY_FAULT");
default:
errx(1, "exit_reason = 0x%x", run->exit_reason);
}
}
}