blob: 744e4f910120c4794f5f6fe8fd8287bb8a67d238 [file] [log] [blame]
/*
* Copyright (c) 2013-2023, Arm Limited and Contributors. All rights reserved.
* Copyright (c) 2022, NVIDIA Corporation. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <assert.h>
#include <stdbool.h>
#include <string.h>
#include <platform_def.h>
#include <arch.h>
#include <arch_helpers.h>
#include <arch_features.h>
#include <bl31/interrupt_mgmt.h>
#include <common/bl_common.h>
#include <common/debug.h>
#include <context.h>
#include <drivers/arm/gicv3.h>
#include <lib/el3_runtime/context_mgmt.h>
#include <lib/el3_runtime/pubsub_events.h>
#include <lib/extensions/amu.h>
#include <lib/extensions/brbe.h>
#include <lib/extensions/mpam.h>
#include <lib/extensions/sme.h>
#include <lib/extensions/spe.h>
#include <lib/extensions/sve.h>
#include <lib/extensions/sys_reg_trace.h>
#include <lib/extensions/trbe.h>
#include <lib/extensions/trf.h>
#include <lib/utils.h>
#if ENABLE_FEAT_TWED
/* Make sure delay value fits within the range(0-15) */
CASSERT(((TWED_DELAY & ~SCR_TWEDEL_MASK) == 0U), assert_twed_delay_value_check);
#endif /* ENABLE_FEAT_TWED */
static void manage_extensions_secure(cpu_context_t *ctx);
static void setup_el1_context(cpu_context_t *ctx, const struct entry_point_info *ep)
{
u_register_t sctlr_elx, actlr_elx;
/*
* Initialise SCTLR_EL1 to the reset value corresponding to the target
* execution state setting all fields rather than relying on the hw.
* Some fields have architecturally UNKNOWN reset values and these are
* set to zero.
*
* SCTLR.EE: Endianness is taken from the entrypoint attributes.
*
* SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
* required by PSCI specification)
*/
sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL;
if (GET_RW(ep->spsr) == MODE_RW_64) {
sctlr_elx |= SCTLR_EL1_RES1;
} else {
/*
* If the target execution state is AArch32 then the following
* fields need to be set.
*
* SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
* instructions are not trapped to EL1.
*
* SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
* instructions are not trapped to EL1.
*
* SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
* CP15DMB, CP15DSB, and CP15ISB instructions.
*/
sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
}
#if ERRATA_A75_764081
/*
* If workaround of errata 764081 for Cortex-A75 is used then set
* SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier.
*/
sctlr_elx |= SCTLR_IESB_BIT;
#endif
/* Store the initialised SCTLR_EL1 value in the cpu_context */
write_ctx_reg(get_el1_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);
/*
* Base the context ACTLR_EL1 on the current value, as it is
* implementation defined. The context restore process will write
* the value from the context to the actual register and can cause
* problems for processor cores that don't expect certain bits to
* be zero.
*/
actlr_elx = read_actlr_el1();
write_ctx_reg((get_el1_sysregs_ctx(ctx)), (CTX_ACTLR_EL1), (actlr_elx));
}
/******************************************************************************
* This function performs initializations that are specific to SECURE state
* and updates the cpu context specified by 'ctx'.
*****************************************************************************/
static void setup_secure_context(cpu_context_t *ctx, const struct entry_point_info *ep)
{
u_register_t scr_el3;
el3_state_t *state;
state = get_el3state_ctx(ctx);
scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
#if defined(IMAGE_BL31) && !defined(SPD_spmd)
/*
* SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
* indicated by the interrupt routing model for BL31.
*/
scr_el3 |= get_scr_el3_from_routing_model(SECURE);
#endif
#if !CTX_INCLUDE_MTE_REGS || ENABLE_ASSERTIONS
/* Get Memory Tagging Extension support level */
unsigned int mte = get_armv8_5_mte_support();
#endif
/*
* Allow access to Allocation Tags when CTX_INCLUDE_MTE_REGS
* is set, or when MTE is only implemented at EL0.
*/
#if CTX_INCLUDE_MTE_REGS
assert((mte == MTE_IMPLEMENTED_ELX) || (mte == MTE_IMPLEMENTED_ASY));
scr_el3 |= SCR_ATA_BIT;
#else
if (mte == MTE_IMPLEMENTED_EL0) {
scr_el3 |= SCR_ATA_BIT;
}
#endif /* CTX_INCLUDE_MTE_REGS */
/* Enable S-EL2 if the next EL is EL2 and S-EL2 is present */
if ((GET_EL(ep->spsr) == MODE_EL2) && is_feat_sel2_supported()) {
if (GET_RW(ep->spsr) != MODE_RW_64) {
ERROR("S-EL2 can not be used in AArch32\n.");
panic();
}
scr_el3 |= SCR_EEL2_BIT;
}
write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
/*
* Initialize EL1 context registers unless SPMC is running
* at S-EL2.
*/
#if !SPMD_SPM_AT_SEL2
setup_el1_context(ctx, ep);
#endif
manage_extensions_secure(ctx);
}
#if ENABLE_RME
/******************************************************************************
* This function performs initializations that are specific to REALM state
* and updates the cpu context specified by 'ctx'.
*****************************************************************************/
static void setup_realm_context(cpu_context_t *ctx, const struct entry_point_info *ep)
{
u_register_t scr_el3;
el3_state_t *state;
state = get_el3state_ctx(ctx);
scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
scr_el3 |= SCR_NS_BIT | SCR_NSE_BIT;
if (is_feat_csv2_2_supported()) {
/* Enable access to the SCXTNUM_ELx registers. */
scr_el3 |= SCR_EnSCXT_BIT;
}
write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
}
#endif /* ENABLE_RME */
/******************************************************************************
* This function performs initializations that are specific to NON-SECURE state
* and updates the cpu context specified by 'ctx'.
*****************************************************************************/
static void setup_ns_context(cpu_context_t *ctx, const struct entry_point_info *ep)
{
u_register_t scr_el3;
el3_state_t *state;
state = get_el3state_ctx(ctx);
scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
/* SCR_NS: Set the NS bit */
scr_el3 |= SCR_NS_BIT;
#if !CTX_INCLUDE_PAUTH_REGS
/*
* If the pointer authentication registers aren't saved during world
* switches the value of the registers can be leaked from the Secure to
* the Non-secure world. To prevent this, rather than enabling pointer
* authentication everywhere, we only enable it in the Non-secure world.
*
* If the Secure world wants to use pointer authentication,
* CTX_INCLUDE_PAUTH_REGS must be set to 1.
*/
scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
#endif /* !CTX_INCLUDE_PAUTH_REGS */
/* Allow access to Allocation Tags when MTE is implemented. */
scr_el3 |= SCR_ATA_BIT;
#if HANDLE_EA_EL3_FIRST_NS
/* SCR_EL3.EA: Route External Abort and SError Interrupt to EL3. */
scr_el3 |= SCR_EA_BIT;
#endif
#if RAS_TRAP_NS_ERR_REC_ACCESS
/*
* SCR_EL3.TERR: Trap Error record accesses. Accesses to the RAS ERR
* and RAS ERX registers from EL1 and EL2(from any security state)
* are trapped to EL3.
* Set here to trap only for NS EL1/EL2
*
*/
scr_el3 |= SCR_TERR_BIT;
#endif
if (is_feat_csv2_2_supported()) {
/* Enable access to the SCXTNUM_ELx registers. */
scr_el3 |= SCR_EnSCXT_BIT;
}
#ifdef IMAGE_BL31
/*
* SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
* indicated by the interrupt routing model for BL31.
*/
scr_el3 |= get_scr_el3_from_routing_model(NON_SECURE);
#endif
write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
/* Initialize EL1 context registers */
setup_el1_context(ctx, ep);
/* Initialize EL2 context registers */
#if CTX_INCLUDE_EL2_REGS
/*
* Initialize SCTLR_EL2 context register using Endianness value
* taken from the entrypoint attribute.
*/
u_register_t sctlr_el2 = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL;
sctlr_el2 |= SCTLR_EL2_RES1;
write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_SCTLR_EL2,
sctlr_el2);
/*
* Program the ICC_SRE_EL2 to make sure the correct bits are set
* when restoring NS context.
*/
u_register_t icc_sre_el2 = ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT |
ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT;
write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_ICC_SRE_EL2,
icc_sre_el2);
/*
* Initialize MDCR_EL2.HPMN to its hardware reset value so we don't
* throw anyone off who expects this to be sensible.
* TODO: A similar thing happens in cm_prepare_el3_exit. They should be
* unified with the proper PMU implementation
*/
u_register_t mdcr_el2 = ((read_pmcr_el0() >> PMCR_EL0_N_SHIFT) &
PMCR_EL0_N_MASK);
write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_MDCR_EL2, mdcr_el2);
if (is_feat_hcx_supported()) {
/*
* Initialize register HCRX_EL2 with its init value.
* As the value of HCRX_EL2 is UNKNOWN on reset, there is a
* chance that this can lead to unexpected behavior in lower
* ELs that have not been updated since the introduction of
* this feature if not properly initialized, especially when
* it comes to those bits that enable/disable traps.
*/
write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_HCRX_EL2,
HCRX_EL2_INIT_VAL);
}
#endif /* CTX_INCLUDE_EL2_REGS */
}
/*******************************************************************************
* The following function performs initialization of the cpu_context 'ctx'
* for first use that is common to all security states, and sets the
* initial entrypoint state as specified by the entry_point_info structure.
*
* The EE and ST attributes are used to configure the endianness and secure
* timer availability for the new execution context.
******************************************************************************/
static void setup_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
{
u_register_t scr_el3;
el3_state_t *state;
gp_regs_t *gp_regs;
/* Clear any residual register values from the context */
zeromem(ctx, sizeof(*ctx));
/*
* SCR_EL3 was initialised during reset sequence in macro
* el3_arch_init_common. This code modifies the SCR_EL3 fields that
* affect the next EL.
*
* The following fields are initially set to zero and then updated to
* the required value depending on the state of the SPSR_EL3 and the
* Security state and entrypoint attributes of the next EL.
*/
scr_el3 = read_scr();
scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_EA_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT |
SCR_ST_BIT | SCR_HCE_BIT | SCR_NSE_BIT);
/*
* SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
* Exception level as specified by SPSR.
*/
if (GET_RW(ep->spsr) == MODE_RW_64) {
scr_el3 |= SCR_RW_BIT;
}
/*
* SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
* Secure timer registers to EL3, from AArch64 state only, if specified
* by the entrypoint attributes. If SEL2 is present and enabled, the ST
* bit always behaves as 1 (i.e. secure physical timer register access
* is not trapped)
*/
if (EP_GET_ST(ep->h.attr) != 0U) {
scr_el3 |= SCR_ST_BIT;
}
/*
* If FEAT_HCX is enabled, enable access to HCRX_EL2 by setting
* SCR_EL3.HXEn.
*/
if (is_feat_hcx_supported()) {
scr_el3 |= SCR_HXEn_BIT;
}
/*
* If FEAT_RNG_TRAP is enabled, all reads of the RNDR and RNDRRS
* registers are trapped to EL3.
*/
#if ENABLE_FEAT_RNG_TRAP
scr_el3 |= SCR_TRNDR_BIT;
#endif
#if FAULT_INJECTION_SUPPORT
/* Enable fault injection from lower ELs */
scr_el3 |= SCR_FIEN_BIT;
#endif
/*
* SCR_EL3.TCR2EN: Enable access to TCR2_ELx for AArch64 if present.
*/
if (is_feat_tcr2_supported() && (GET_RW(ep->spsr) == MODE_RW_64)) {
scr_el3 |= SCR_TCR2EN_BIT;
}
/*
* SCR_EL3.PIEN: Enable permission indirection and overlay
* registers for AArch64 if present.
*/
if (is_feat_sxpie_supported() || is_feat_sxpoe_supported()) {
scr_el3 |= SCR_PIEN_BIT;
}
/*
* SCR_EL3.GCSEn: Enable GCS registers for AArch64 if present.
*/
if ((is_feat_gcs_supported()) && (GET_RW(ep->spsr) == MODE_RW_64)) {
scr_el3 |= SCR_GCSEn_BIT;
}
/*
* CPTR_EL3 was initialized out of reset, copy that value to the
* context register.
*/
write_ctx_reg(get_el3state_ctx(ctx), CTX_CPTR_EL3, read_cptr_el3());
/*
* SCR_EL3.HCE: Enable HVC instructions if next execution state is
* AArch64 and next EL is EL2, or if next execution state is AArch32 and
* next mode is Hyp.
* SCR_EL3.FGTEn: Enable Fine Grained Virtualization Traps under the
* same conditions as HVC instructions and when the processor supports
* ARMv8.6-FGT.
* SCR_EL3.ECVEn: Enable Enhanced Counter Virtualization (ECV)
* CNTPOFF_EL2 register under the same conditions as HVC instructions
* and when the processor supports ECV.
*/
if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2))
|| ((GET_RW(ep->spsr) != MODE_RW_64)
&& (GET_M32(ep->spsr) == MODE32_hyp))) {
scr_el3 |= SCR_HCE_BIT;
if (is_feat_fgt_supported()) {
scr_el3 |= SCR_FGTEN_BIT;
}
if (is_feat_ecv_supported()) {
scr_el3 |= SCR_ECVEN_BIT;
}
}
/* Enable WFE trap delay in SCR_EL3 if supported and configured */
if (is_feat_twed_supported()) {
/* Set delay in SCR_EL3 */
scr_el3 &= ~(SCR_TWEDEL_MASK << SCR_TWEDEL_SHIFT);
scr_el3 |= ((TWED_DELAY & SCR_TWEDEL_MASK)
<< SCR_TWEDEL_SHIFT);
/* Enable WFE delay */
scr_el3 |= SCR_TWEDEn_BIT;
}
/*
* Populate EL3 state so that we've the right context
* before doing ERET
*/
state = get_el3state_ctx(ctx);
write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
/*
* Store the X0-X7 value from the entrypoint into the context
* Use memcpy as we are in control of the layout of the structures
*/
gp_regs = get_gpregs_ctx(ctx);
memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
}
/*******************************************************************************
* Context management library initialization routine. This library is used by
* runtime services to share pointers to 'cpu_context' structures for secure
* non-secure and realm states. Management of the structures and their associated
* memory is not done by the context management library e.g. the PSCI service
* manages the cpu context used for entry from and exit to the non-secure state.
* The Secure payload dispatcher service manages the context(s) corresponding to
* the secure state. It also uses this library to get access to the non-secure
* state cpu context pointers.
* Lastly, this library provides the API to make SP_EL3 point to the cpu context
* which will be used for programming an entry into a lower EL. The same context
* will be used to save state upon exception entry from that EL.
******************************************************************************/
void __init cm_init(void)
{
/*
* The context management library has only global data to intialize, but
* that will be done when the BSS is zeroed out.
*/
}
/*******************************************************************************
* This is the high-level function used to initialize the cpu_context 'ctx' for
* first use. It performs initializations that are common to all security states
* and initializations specific to the security state specified in 'ep'
******************************************************************************/
void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
{
unsigned int security_state;
assert(ctx != NULL);
/*
* Perform initializations that are common
* to all security states
*/
setup_context_common(ctx, ep);
security_state = GET_SECURITY_STATE(ep->h.attr);
/* Perform security state specific initializations */
switch (security_state) {
case SECURE:
setup_secure_context(ctx, ep);
break;
#if ENABLE_RME
case REALM:
setup_realm_context(ctx, ep);
break;
#endif
case NON_SECURE:
setup_ns_context(ctx, ep);
break;
default:
ERROR("Invalid security state\n");
panic();
break;
}
}
/*******************************************************************************
* Enable architecture extensions on first entry to Non-secure world.
* When EL2 is implemented but unused `el2_unused` is non-zero, otherwise
* it is zero.
******************************************************************************/
static void manage_extensions_nonsecure(bool el2_unused, cpu_context_t *ctx)
{
#if IMAGE_BL31
if (is_feat_spe_supported()) {
spe_enable(el2_unused);
}
if (is_feat_amu_supported()) {
amu_enable(el2_unused, ctx);
}
/* Enable SVE and FPU/SIMD */
if (is_feat_sve_supported()) {
sve_enable(ctx);
}
if (is_feat_sme_supported()) {
sme_enable(ctx);
}
if (is_feat_mpam_supported()) {
mpam_enable(el2_unused);
}
if (is_feat_trbe_supported()) {
trbe_enable();
}
if (is_feat_brbe_supported()) {
brbe_enable();
}
if (is_feat_sys_reg_trace_supported()) {
sys_reg_trace_enable(ctx);
}
if (is_feat_trf_supported()) {
trf_enable();
}
#endif
}
/*******************************************************************************
* Enable architecture extensions on first entry to Secure world.
******************************************************************************/
static void manage_extensions_secure(cpu_context_t *ctx)
{
#if IMAGE_BL31
if (is_feat_sve_supported()) {
if (ENABLE_SVE_FOR_SWD) {
/*
* Enable SVE and FPU in secure context, secure manager must
* ensure that the SVE and FPU register contexts are properly
* managed.
*/
sve_enable(ctx);
} else {
/*
* Disable SVE and FPU in secure context so non-secure world
* can safely use them.
*/
sve_disable(ctx);
}
}
if (is_feat_sme_supported()) {
if (ENABLE_SME_FOR_SWD) {
/*
* Enable SME, SVE, FPU/SIMD in secure context, secure manager
* must ensure SME, SVE, and FPU/SIMD context properly managed.
*/
sme_enable(ctx);
} else {
/*
* Disable SME, SVE, FPU/SIMD in secure context so non-secure
* world can safely use the associated registers.
*/
sme_disable(ctx);
}
}
#endif /* IMAGE_BL31 */
}
/*******************************************************************************
* The following function initializes the cpu_context for a CPU specified by
* its `cpu_idx` for first use, and sets the initial entrypoint state as
* specified by the entry_point_info structure.
******************************************************************************/
void cm_init_context_by_index(unsigned int cpu_idx,
const entry_point_info_t *ep)
{
cpu_context_t *ctx;
ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
cm_setup_context(ctx, ep);
}
/*******************************************************************************
* The following function initializes the cpu_context for the current CPU
* for first use, and sets the initial entrypoint state as specified by the
* entry_point_info structure.
******************************************************************************/
void cm_init_my_context(const entry_point_info_t *ep)
{
cpu_context_t *ctx;
ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
cm_setup_context(ctx, ep);
}
/*******************************************************************************
* Prepare the CPU system registers for first entry into realm, secure, or
* normal world.
*
* If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
* If execution is requested to non-secure EL1 or svc mode, and the CPU supports
* EL2 then EL2 is disabled by configuring all necessary EL2 registers.
* For all entries, the EL1 registers are initialized from the cpu_context
******************************************************************************/
void cm_prepare_el3_exit(uint32_t security_state)
{
u_register_t sctlr_elx, scr_el3, mdcr_el2;
cpu_context_t *ctx = cm_get_context(security_state);
bool el2_unused = false;
uint64_t hcr_el2 = 0U;
assert(ctx != NULL);
if (security_state == NON_SECURE) {
uint64_t el2_implemented = el_implemented(2);
scr_el3 = read_ctx_reg(get_el3state_ctx(ctx),
CTX_SCR_EL3);
if (((scr_el3 & SCR_HCE_BIT) != 0U)
|| (el2_implemented != EL_IMPL_NONE)) {
/*
* If context is not being used for EL2, initialize
* HCRX_EL2 with its init value here.
*/
if (is_feat_hcx_supported()) {
write_hcrx_el2(HCRX_EL2_INIT_VAL);
}
}
if ((scr_el3 & SCR_HCE_BIT) != 0U) {
/* Use SCTLR_EL1.EE value to initialise sctlr_el2 */
sctlr_elx = read_ctx_reg(get_el1_sysregs_ctx(ctx),
CTX_SCTLR_EL1);
sctlr_elx &= SCTLR_EE_BIT;
sctlr_elx |= SCTLR_EL2_RES1;
#if ERRATA_A75_764081
/*
* If workaround of errata 764081 for Cortex-A75 is used
* then set SCTLR_EL2.IESB to enable Implicit Error
* Synchronization Barrier.
*/
sctlr_elx |= SCTLR_IESB_BIT;
#endif
write_sctlr_el2(sctlr_elx);
} else if (el2_implemented != EL_IMPL_NONE) {
el2_unused = true;
/*
* EL2 present but unused, need to disable safely.
* SCTLR_EL2 can be ignored in this case.
*
* Set EL2 register width appropriately: Set HCR_EL2
* field to match SCR_EL3.RW.
*/
if ((scr_el3 & SCR_RW_BIT) != 0U)
hcr_el2 |= HCR_RW_BIT;
/*
* For Armv8.3 pointer authentication feature, disable
* traps to EL2 when accessing key registers or using
* pointer authentication instructions from lower ELs.
*/
hcr_el2 |= (HCR_API_BIT | HCR_APK_BIT);
write_hcr_el2(hcr_el2);
/*
* Initialise CPTR_EL2 setting all fields rather than
* relying on the hw. All fields have architecturally
* UNKNOWN reset values.
*
* CPTR_EL2.TCPAC: Set to zero so that Non-secure EL1
* accesses to the CPACR_EL1 or CPACR from both
* Execution states do not trap to EL2.
*
* CPTR_EL2.TTA: Set to zero so that Non-secure System
* register accesses to the trace registers from both
* Execution states do not trap to EL2.
* If PE trace unit System registers are not implemented
* then this bit is reserved, and must be set to zero.
*
* CPTR_EL2.TFP: Set to zero so that Non-secure accesses
* to SIMD and floating-point functionality from both
* Execution states do not trap to EL2.
*/
write_cptr_el2(CPTR_EL2_RESET_VAL &
~(CPTR_EL2_TCPAC_BIT | CPTR_EL2_TTA_BIT
| CPTR_EL2_TFP_BIT));
/*
* Initialise CNTHCTL_EL2. All fields are
* architecturally UNKNOWN on reset and are set to zero
* except for field(s) listed below.
*
* CNTHCTL_EL2.EL1PTEN: Set to one to disable traps to
* Hyp mode of Non-secure EL0 and EL1 accesses to the
* physical timer registers.
*
* CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to
* Hyp mode of Non-secure EL0 and EL1 accesses to the
* physical counter registers.
*/
write_cnthctl_el2(CNTHCTL_RESET_VAL |
EL1PCEN_BIT | EL1PCTEN_BIT);
/*
* Initialise CNTVOFF_EL2 to zero as it resets to an
* architecturally UNKNOWN value.
*/
write_cntvoff_el2(0);
/*
* Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and
* MPIDR_EL1 respectively.
*/
write_vpidr_el2(read_midr_el1());
write_vmpidr_el2(read_mpidr_el1());
/*
* Initialise VTTBR_EL2. All fields are architecturally
* UNKNOWN on reset.
*
* VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage
* 2 address translation is disabled, cache maintenance
* operations depend on the VMID.
*
* VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address
* translation is disabled.
*/
write_vttbr_el2(VTTBR_RESET_VAL &
~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT)
| (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
/*
* Initialise MDCR_EL2, setting all fields rather than
* relying on hw. Some fields are architecturally
* UNKNOWN on reset.
*
* MDCR_EL2.HLP: Set to one so that event counter
* overflow, that is recorded in PMOVSCLR_EL0[0-30],
* occurs on the increment that changes
* PMEVCNTR<n>_EL0[63] from 1 to 0, when ARMv8.5-PMU is
* implemented. This bit is RES0 in versions of the
* architecture earlier than ARMv8.5, setting it to 1
* doesn't have any effect on them.
*
* MDCR_EL2.TTRF: Set to zero so that access to Trace
* Filter Control register TRFCR_EL1 at EL1 is not
* trapped to EL2. This bit is RES0 in versions of
* the architecture earlier than ARMv8.4.
*
* MDCR_EL2.HPMD: Set to one so that event counting is
* prohibited at EL2. This bit is RES0 in versions of
* the architecture earlier than ARMv8.1, setting it
* to 1 doesn't have any effect on them.
*
* MDCR_EL2.TPMS: Set to zero so that accesses to
* Statistical Profiling control registers from EL1
* do not trap to EL2. This bit is RES0 when SPE is
* not implemented.
*
* MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and
* EL1 System register accesses to the Debug ROM
* registers are not trapped to EL2.
*
* MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1
* System register accesses to the powerdown debug
* registers are not trapped to EL2.
*
* MDCR_EL2.TDA: Set to zero so that System register
* accesses to the debug registers do not trap to EL2.
*
* MDCR_EL2.TDE: Set to zero so that debug exceptions
* are not routed to EL2.
*
* MDCR_EL2.HPME: Set to zero to disable EL2 Performance
* Monitors.
*
* MDCR_EL2.TPM: Set to zero so that Non-secure EL0 and
* EL1 accesses to all Performance Monitors registers
* are not trapped to EL2.
*
* MDCR_EL2.TPMCR: Set to zero so that Non-secure EL0
* and EL1 accesses to the PMCR_EL0 or PMCR are not
* trapped to EL2.
*
* MDCR_EL2.HPMN: Set to value of PMCR_EL0.N which is the
* architecturally-defined reset value.
*
* MDCR_EL2.E2TB: Set to zero so that the trace Buffer
* owning exception level is NS-EL1 and, tracing is
* prohibited at NS-EL2. These bits are RES0 when
* FEAT_TRBE is not implemented.
*/
mdcr_el2 = ((MDCR_EL2_RESET_VAL | MDCR_EL2_HLP |
MDCR_EL2_HPMD) |
((read_pmcr_el0() & PMCR_EL0_N_BITS)
>> PMCR_EL0_N_SHIFT)) &
~(MDCR_EL2_TTRF | MDCR_EL2_TPMS |
MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT |
MDCR_EL2_TDA_BIT | MDCR_EL2_TDE_BIT |
MDCR_EL2_HPME_BIT | MDCR_EL2_TPM_BIT |
MDCR_EL2_TPMCR_BIT |
MDCR_EL2_E2TB(MDCR_EL2_E2TB_EL1));
write_mdcr_el2(mdcr_el2);
/*
* Initialise HSTR_EL2. All fields are architecturally
* UNKNOWN on reset.
*
* HSTR_EL2.T<n>: Set all these fields to zero so that
* Non-secure EL0 or EL1 accesses to System registers
* do not trap to EL2.
*/
write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
/*
* Initialise CNTHP_CTL_EL2. All fields are
* architecturally UNKNOWN on reset.
*
* CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2
* physical timer and prevent timer interrupts.
*/
write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL &
~(CNTHP_CTL_ENABLE_BIT));
}
manage_extensions_nonsecure(el2_unused, ctx);
}
cm_el1_sysregs_context_restore(security_state);
cm_set_next_eret_context(security_state);
}
#if CTX_INCLUDE_EL2_REGS
static void el2_sysregs_context_save_fgt(el2_sysregs_t *ctx)
{
write_ctx_reg(ctx, CTX_HDFGRTR_EL2, read_hdfgrtr_el2());
if (is_feat_amu_supported()) {
write_ctx_reg(ctx, CTX_HAFGRTR_EL2, read_hafgrtr_el2());
}
write_ctx_reg(ctx, CTX_HDFGWTR_EL2, read_hdfgwtr_el2());
write_ctx_reg(ctx, CTX_HFGITR_EL2, read_hfgitr_el2());
write_ctx_reg(ctx, CTX_HFGRTR_EL2, read_hfgrtr_el2());
write_ctx_reg(ctx, CTX_HFGWTR_EL2, read_hfgwtr_el2());
}
static void el2_sysregs_context_restore_fgt(el2_sysregs_t *ctx)
{
write_hdfgrtr_el2(read_ctx_reg(ctx, CTX_HDFGRTR_EL2));
if (is_feat_amu_supported()) {
write_hafgrtr_el2(read_ctx_reg(ctx, CTX_HAFGRTR_EL2));
}
write_hdfgwtr_el2(read_ctx_reg(ctx, CTX_HDFGWTR_EL2));
write_hfgitr_el2(read_ctx_reg(ctx, CTX_HFGITR_EL2));
write_hfgrtr_el2(read_ctx_reg(ctx, CTX_HFGRTR_EL2));
write_hfgwtr_el2(read_ctx_reg(ctx, CTX_HFGWTR_EL2));
}
static void el2_sysregs_context_save_mpam(el2_sysregs_t *ctx)
{
u_register_t mpam_idr = read_mpamidr_el1();
write_ctx_reg(ctx, CTX_MPAM2_EL2, read_mpam2_el2());
/*
* The context registers that we intend to save would be part of the
* PE's system register frame only if MPAMIDR_EL1.HAS_HCR == 1.
*/
if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
return;
}
/*
* MPAMHCR_EL2, MPAMVPMV_EL2 and MPAMVPM0_EL2 are always present if
* MPAMIDR_HAS_HCR_BIT == 1.
*/
write_ctx_reg(ctx, CTX_MPAMHCR_EL2, read_mpamhcr_el2());
write_ctx_reg(ctx, CTX_MPAMVPM0_EL2, read_mpamvpm0_el2());
write_ctx_reg(ctx, CTX_MPAMVPMV_EL2, read_mpamvpmv_el2());
/*
* The number of MPAMVPM registers is implementation defined, their
* number is stored in the MPAMIDR_EL1 register.
*/
switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
case 7:
write_ctx_reg(ctx, CTX_MPAMVPM7_EL2, read_mpamvpm7_el2());
__fallthrough;
case 6:
write_ctx_reg(ctx, CTX_MPAMVPM6_EL2, read_mpamvpm6_el2());
__fallthrough;
case 5:
write_ctx_reg(ctx, CTX_MPAMVPM5_EL2, read_mpamvpm5_el2());
__fallthrough;
case 4:
write_ctx_reg(ctx, CTX_MPAMVPM4_EL2, read_mpamvpm4_el2());
__fallthrough;
case 3:
write_ctx_reg(ctx, CTX_MPAMVPM3_EL2, read_mpamvpm3_el2());
__fallthrough;
case 2:
write_ctx_reg(ctx, CTX_MPAMVPM2_EL2, read_mpamvpm2_el2());
__fallthrough;
case 1:
write_ctx_reg(ctx, CTX_MPAMVPM1_EL2, read_mpamvpm1_el2());
break;
}
}
static void el2_sysregs_context_restore_mpam(el2_sysregs_t *ctx)
{
u_register_t mpam_idr = read_mpamidr_el1();
write_mpam2_el2(read_ctx_reg(ctx, CTX_MPAM2_EL2));
if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
return;
}
write_mpamhcr_el2(read_ctx_reg(ctx, CTX_MPAMHCR_EL2));
write_mpamvpm0_el2(read_ctx_reg(ctx, CTX_MPAMVPM0_EL2));
write_mpamvpmv_el2(read_ctx_reg(ctx, CTX_MPAMVPMV_EL2));
switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
case 7:
write_mpamvpm7_el2(read_ctx_reg(ctx, CTX_MPAMVPM7_EL2));
__fallthrough;
case 6:
write_mpamvpm6_el2(read_ctx_reg(ctx, CTX_MPAMVPM6_EL2));
__fallthrough;
case 5:
write_mpamvpm5_el2(read_ctx_reg(ctx, CTX_MPAMVPM5_EL2));
__fallthrough;
case 4:
write_mpamvpm4_el2(read_ctx_reg(ctx, CTX_MPAMVPM4_EL2));
__fallthrough;
case 3:
write_mpamvpm3_el2(read_ctx_reg(ctx, CTX_MPAMVPM3_EL2));
__fallthrough;
case 2:
write_mpamvpm2_el2(read_ctx_reg(ctx, CTX_MPAMVPM2_EL2));
__fallthrough;
case 1:
write_mpamvpm1_el2(read_ctx_reg(ctx, CTX_MPAMVPM1_EL2));
break;
}
}
/*******************************************************************************
* Save EL2 sysreg context
******************************************************************************/
void cm_el2_sysregs_context_save(uint32_t security_state)
{
u_register_t scr_el3 = read_scr();
/*
* Always save the non-secure and realm EL2 context, only save the
* S-EL2 context if S-EL2 is enabled.
*/
if ((security_state != SECURE) ||
((security_state == SECURE) && ((scr_el3 & SCR_EEL2_BIT) != 0U))) {
cpu_context_t *ctx;
el2_sysregs_t *el2_sysregs_ctx;
ctx = cm_get_context(security_state);
assert(ctx != NULL);
el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
el2_sysregs_context_save_common(el2_sysregs_ctx);
#if CTX_INCLUDE_MTE_REGS
el2_sysregs_context_save_mte(el2_sysregs_ctx);
#endif
if (is_feat_mpam_supported()) {
el2_sysregs_context_save_mpam(el2_sysregs_ctx);
}
if (is_feat_fgt_supported()) {
el2_sysregs_context_save_fgt(el2_sysregs_ctx);
}
if (is_feat_ecv_v2_supported()) {
write_ctx_reg(el2_sysregs_ctx, CTX_CNTPOFF_EL2,
read_cntpoff_el2());
}
if (is_feat_vhe_supported()) {
write_ctx_reg(el2_sysregs_ctx, CTX_CONTEXTIDR_EL2,
read_contextidr_el2());
write_ctx_reg(el2_sysregs_ctx, CTX_TTBR1_EL2,
read_ttbr1_el2());
}
#if RAS_EXTENSION
el2_sysregs_context_save_ras(el2_sysregs_ctx);
#endif
if (is_feat_nv2_supported()) {
write_ctx_reg(el2_sysregs_ctx, CTX_VNCR_EL2,
read_vncr_el2());
}
if (is_feat_trf_supported()) {
write_ctx_reg(el2_sysregs_ctx, CTX_TRFCR_EL2, read_trfcr_el2());
}
if (is_feat_csv2_2_supported()) {
write_ctx_reg(el2_sysregs_ctx, CTX_SCXTNUM_EL2,
read_scxtnum_el2());
}
if (is_feat_hcx_supported()) {
write_ctx_reg(el2_sysregs_ctx, CTX_HCRX_EL2, read_hcrx_el2());
}
if (is_feat_tcr2_supported()) {
write_ctx_reg(el2_sysregs_ctx, CTX_TCR2_EL2, read_tcr2_el2());
}
if (is_feat_sxpie_supported()) {
write_ctx_reg(el2_sysregs_ctx, CTX_PIRE0_EL2, read_pire0_el2());
write_ctx_reg(el2_sysregs_ctx, CTX_PIR_EL2, read_pir_el2());
}
if (is_feat_s2pie_supported()) {
write_ctx_reg(el2_sysregs_ctx, CTX_S2PIR_EL2, read_s2pir_el2());
}
if (is_feat_sxpoe_supported()) {
write_ctx_reg(el2_sysregs_ctx, CTX_POR_EL2, read_por_el2());
}
if (is_feat_gcs_supported()) {
write_ctx_reg(el2_sysregs_ctx, CTX_GCSPR_EL2, read_gcspr_el2());
write_ctx_reg(el2_sysregs_ctx, CTX_GCSCR_EL2, read_gcscr_el2());
}
}
}
/*******************************************************************************
* Restore EL2 sysreg context
******************************************************************************/
void cm_el2_sysregs_context_restore(uint32_t security_state)
{
u_register_t scr_el3 = read_scr();
/*
* Always restore the non-secure and realm EL2 context, only restore the
* S-EL2 context if S-EL2 is enabled.
*/
if ((security_state != SECURE) ||
((security_state == SECURE) && ((scr_el3 & SCR_EEL2_BIT) != 0U))) {
cpu_context_t *ctx;
el2_sysregs_t *el2_sysregs_ctx;
ctx = cm_get_context(security_state);
assert(ctx != NULL);
el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
el2_sysregs_context_restore_common(el2_sysregs_ctx);
#if CTX_INCLUDE_MTE_REGS
el2_sysregs_context_restore_mte(el2_sysregs_ctx);
#endif
if (is_feat_mpam_supported()) {
el2_sysregs_context_restore_mpam(el2_sysregs_ctx);
}
if (is_feat_fgt_supported()) {
el2_sysregs_context_restore_fgt(el2_sysregs_ctx);
}
if (is_feat_ecv_v2_supported()) {
write_cntpoff_el2(read_ctx_reg(el2_sysregs_ctx,
CTX_CNTPOFF_EL2));
}
if (is_feat_vhe_supported()) {
write_contextidr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_CONTEXTIDR_EL2));
write_ttbr1_el2(read_ctx_reg(el2_sysregs_ctx, CTX_TTBR1_EL2));
}
#if RAS_EXTENSION
el2_sysregs_context_restore_ras(el2_sysregs_ctx);
#endif
if (is_feat_nv2_supported()) {
write_vncr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_VNCR_EL2));
}
if (is_feat_trf_supported()) {
write_trfcr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_TRFCR_EL2));
}
if (is_feat_csv2_2_supported()) {
write_scxtnum_el2(read_ctx_reg(el2_sysregs_ctx,
CTX_SCXTNUM_EL2));
}
if (is_feat_hcx_supported()) {
write_hcrx_el2(read_ctx_reg(el2_sysregs_ctx, CTX_HCRX_EL2));
}
if (is_feat_tcr2_supported()) {
write_tcr2_el2(read_ctx_reg(el2_sysregs_ctx, CTX_TCR2_EL2));
}
if (is_feat_sxpie_supported()) {
write_pire0_el2(read_ctx_reg(el2_sysregs_ctx, CTX_PIRE0_EL2));
write_pir_el2(read_ctx_reg(el2_sysregs_ctx, CTX_PIR_EL2));
}
if (is_feat_s2pie_supported()) {
write_s2pir_el2(read_ctx_reg(el2_sysregs_ctx, CTX_S2PIR_EL2));
}
if (is_feat_sxpoe_supported()) {
write_por_el2(read_ctx_reg(el2_sysregs_ctx, CTX_POR_EL2));
}
if (is_feat_gcs_supported()) {
write_gcscr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_GCSCR_EL2));
write_gcspr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_GCSPR_EL2));
}
}
}
#endif /* CTX_INCLUDE_EL2_REGS */
/*******************************************************************************
* This function is used to exit to Non-secure world. If CTX_INCLUDE_EL2_REGS
* is enabled, it restores EL1 and EL2 sysreg contexts instead of directly
* updating EL1 and EL2 registers. Otherwise, it calls the generic
* cm_prepare_el3_exit function.
******************************************************************************/
void cm_prepare_el3_exit_ns(void)
{
#if CTX_INCLUDE_EL2_REGS
cpu_context_t *ctx = cm_get_context(NON_SECURE);
assert(ctx != NULL);
/* Assert that EL2 is used. */
#if ENABLE_ASSERTIONS
el3_state_t *state = get_el3state_ctx(ctx);
u_register_t scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
#endif
assert(((scr_el3 & SCR_HCE_BIT) != 0UL) &&
(el_implemented(2U) != EL_IMPL_NONE));
/*
* Currently some extensions are configured using
* direct register updates. Therefore, do this here
* instead of when setting up context.
*/
manage_extensions_nonsecure(0, ctx);
/*
* Set the NS bit to be able to access the ICC_SRE_EL2
* register when restoring context.
*/
write_scr_el3(read_scr_el3() | SCR_NS_BIT);
/*
* Ensure the NS bit change is committed before the EL2/EL1
* state restoration.
*/
isb();
/* Restore EL2 and EL1 sysreg contexts */
cm_el2_sysregs_context_restore(NON_SECURE);
cm_el1_sysregs_context_restore(NON_SECURE);
cm_set_next_eret_context(NON_SECURE);
#else
cm_prepare_el3_exit(NON_SECURE);
#endif /* CTX_INCLUDE_EL2_REGS */
}
/*******************************************************************************
* The next four functions are used by runtime services to save and restore
* EL1 context on the 'cpu_context' structure for the specified security
* state.
******************************************************************************/
void cm_el1_sysregs_context_save(uint32_t security_state)
{
cpu_context_t *ctx;
ctx = cm_get_context(security_state);
assert(ctx != NULL);
el1_sysregs_context_save(get_el1_sysregs_ctx(ctx));
#if IMAGE_BL31
if (security_state == SECURE)
PUBLISH_EVENT(cm_exited_secure_world);
else
PUBLISH_EVENT(cm_exited_normal_world);
#endif
}
void cm_el1_sysregs_context_restore(uint32_t security_state)
{
cpu_context_t *ctx;
ctx = cm_get_context(security_state);
assert(ctx != NULL);
el1_sysregs_context_restore(get_el1_sysregs_ctx(ctx));
#if IMAGE_BL31
if (security_state == SECURE)
PUBLISH_EVENT(cm_entering_secure_world);
else
PUBLISH_EVENT(cm_entering_normal_world);
#endif
}
/*******************************************************************************
* This function populates ELR_EL3 member of 'cpu_context' pertaining to the
* given security state with the given entrypoint
******************************************************************************/
void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
{
cpu_context_t *ctx;
el3_state_t *state;
ctx = cm_get_context(security_state);
assert(ctx != NULL);
/* Populate EL3 state so that ERET jumps to the correct entry */
state = get_el3state_ctx(ctx);
write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
}
/*******************************************************************************
* This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
* pertaining to the given security state
******************************************************************************/
void cm_set_elr_spsr_el3(uint32_t security_state,
uintptr_t entrypoint, uint32_t spsr)
{
cpu_context_t *ctx;
el3_state_t *state;
ctx = cm_get_context(security_state);
assert(ctx != NULL);
/* Populate EL3 state so that ERET jumps to the correct entry */
state = get_el3state_ctx(ctx);
write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
write_ctx_reg(state, CTX_SPSR_EL3, spsr);
}
/*******************************************************************************
* This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
* pertaining to the given security state using the value and bit position
* specified in the parameters. It preserves all other bits.
******************************************************************************/
void cm_write_scr_el3_bit(uint32_t security_state,
uint32_t bit_pos,
uint32_t value)
{
cpu_context_t *ctx;
el3_state_t *state;
u_register_t scr_el3;
ctx = cm_get_context(security_state);
assert(ctx != NULL);
/* Ensure that the bit position is a valid one */
assert(((1UL << bit_pos) & SCR_VALID_BIT_MASK) != 0U);
/* Ensure that the 'value' is only a bit wide */
assert(value <= 1U);
/*
* Get the SCR_EL3 value from the cpu context, clear the desired bit
* and set it to its new value.
*/
state = get_el3state_ctx(ctx);
scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
scr_el3 &= ~(1UL << bit_pos);
scr_el3 |= (u_register_t)value << bit_pos;
write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
}
/*******************************************************************************
* This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
* given security state.
******************************************************************************/
u_register_t cm_get_scr_el3(uint32_t security_state)
{
cpu_context_t *ctx;
el3_state_t *state;
ctx = cm_get_context(security_state);
assert(ctx != NULL);
/* Populate EL3 state so that ERET jumps to the correct entry */
state = get_el3state_ctx(ctx);
return read_ctx_reg(state, CTX_SCR_EL3);
}
/*******************************************************************************
* This function is used to program the context that's used for exception
* return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
* the required security state
******************************************************************************/
void cm_set_next_eret_context(uint32_t security_state)
{
cpu_context_t *ctx;
ctx = cm_get_context(security_state);
assert(ctx != NULL);
cm_set_next_context(ctx);
}