| /* |
| * Copyright (c) 2017-2021, ARM Limited and Contributors. All rights reserved. |
| * |
| * SPDX-License-Identifier: BSD-3-Clause |
| */ |
| |
| #include <assert.h> |
| #include <stdbool.h> |
| |
| #include <platform_def.h> |
| |
| #include <arch.h> |
| #include <arch_features.h> |
| #include <arch_helpers.h> |
| #include <lib/cassert.h> |
| #include <lib/utils_def.h> |
| #include <lib/xlat_tables/xlat_tables_v2.h> |
| |
| #include "../xlat_tables_private.h" |
| |
| #if (ARM_ARCH_MAJOR == 7) && !defined(ARMV7_SUPPORTS_LARGE_PAGE_ADDRESSING) |
| #error ARMv7 target does not support LPAE MMU descriptors |
| #endif |
| |
| /* |
| * Returns true if the provided granule size is supported, false otherwise. |
| */ |
| bool xlat_arch_is_granule_size_supported(size_t size) |
| { |
| /* |
| * The library uses the long descriptor translation table format, which |
| * supports 4 KiB pages only. |
| */ |
| return size == PAGE_SIZE_4KB; |
| } |
| |
| size_t xlat_arch_get_max_supported_granule_size(void) |
| { |
| return PAGE_SIZE_4KB; |
| } |
| |
| /* |
| * Determine the physical address space encoded in the 'attr' parameter. |
| * |
| * The physical address will fall into one of two spaces; secure or |
| * nonsecure. |
| */ |
| uint32_t xlat_arch_get_pas(uint32_t attr) |
| { |
| uint32_t pas = MT_PAS(attr); |
| |
| if (pas == MT_NS) { |
| return LOWER_ATTRS(NS); |
| } else { /* MT_SECURE */ |
| return 0U; |
| } |
| } |
| |
| #if ENABLE_ASSERTIONS |
| unsigned long long xlat_arch_get_max_supported_pa(void) |
| { |
| /* Physical address space size for long descriptor format. */ |
| return (1ULL << 40) - 1ULL; |
| } |
| |
| /* |
| * Return minimum virtual address space size supported by the architecture |
| */ |
| uintptr_t xlat_get_min_virt_addr_space_size(void) |
| { |
| return MIN_VIRT_ADDR_SPACE_SIZE; |
| } |
| #endif /* ENABLE_ASSERTIONS*/ |
| |
| bool is_mmu_enabled_ctx(const xlat_ctx_t *ctx) |
| { |
| if (ctx->xlat_regime == EL1_EL0_REGIME) { |
| assert(xlat_arch_current_el() == 1U); |
| return (read_sctlr() & SCTLR_M_BIT) != 0U; |
| } else { |
| assert(ctx->xlat_regime == EL2_REGIME); |
| assert(xlat_arch_current_el() == 2U); |
| return (read_hsctlr() & HSCTLR_M_BIT) != 0U; |
| } |
| } |
| |
| bool is_dcache_enabled(void) |
| { |
| if (IS_IN_EL2()) { |
| return (read_hsctlr() & HSCTLR_C_BIT) != 0U; |
| } else { |
| return (read_sctlr() & SCTLR_C_BIT) != 0U; |
| } |
| } |
| |
| uint64_t xlat_arch_regime_get_xn_desc(int xlat_regime) |
| { |
| if (xlat_regime == EL1_EL0_REGIME) { |
| return UPPER_ATTRS(XN) | UPPER_ATTRS(PXN); |
| } else { |
| assert(xlat_regime == EL2_REGIME); |
| return UPPER_ATTRS(XN); |
| } |
| } |
| |
| void xlat_arch_tlbi_va(uintptr_t va, int xlat_regime) |
| { |
| /* |
| * Ensure the translation table write has drained into memory before |
| * invalidating the TLB entry. |
| */ |
| dsbishst(); |
| |
| if (xlat_regime == EL1_EL0_REGIME) { |
| tlbimvaais(TLBI_ADDR(va)); |
| } else { |
| assert(xlat_regime == EL2_REGIME); |
| tlbimvahis(TLBI_ADDR(va)); |
| } |
| } |
| |
| void xlat_arch_tlbi_va_sync(void) |
| { |
| /* Invalidate all entries from branch predictors. */ |
| bpiallis(); |
| |
| /* |
| * A TLB maintenance instruction can complete at any time after |
| * it is issued, but is only guaranteed to be complete after the |
| * execution of DSB by the PE that executed the TLB maintenance |
| * instruction. After the TLB invalidate instruction is |
| * complete, no new memory accesses using the invalidated TLB |
| * entries will be observed by any observer of the system |
| * domain. See section D4.8.2 of the ARMv8 (issue k), paragraph |
| * "Ordering and completion of TLB maintenance instructions". |
| */ |
| dsbish(); |
| |
| /* |
| * The effects of a completed TLB maintenance instruction are |
| * only guaranteed to be visible on the PE that executed the |
| * instruction after the execution of an ISB instruction by the |
| * PE that executed the TLB maintenance instruction. |
| */ |
| isb(); |
| } |
| |
| unsigned int xlat_arch_current_el(void) |
| { |
| if (IS_IN_HYP()) { |
| return 2U; |
| } else { |
| assert(IS_IN_SVC() || IS_IN_MON()); |
| /* |
| * If EL3 is in AArch32 mode, all secure PL1 modes (Monitor, |
| * System, SVC, Abort, UND, IRQ and FIQ modes) execute at EL3. |
| * |
| * The PL1&0 translation regime in AArch32 behaves like the |
| * EL1&0 regime in AArch64 except for the XN bits, but we set |
| * and unset them at the same time, so there's no difference in |
| * practice. |
| */ |
| return 1U; |
| } |
| } |
| |
| /******************************************************************************* |
| * Function for enabling the MMU in PL1 or PL2, assuming that the page tables |
| * have already been created. |
| ******************************************************************************/ |
| void setup_mmu_cfg(uint64_t *params, unsigned int flags, |
| const uint64_t *base_table, unsigned long long max_pa, |
| uintptr_t max_va, __unused int xlat_regime) |
| { |
| uint64_t mair, ttbr0; |
| uint32_t ttbcr; |
| |
| /* Set attributes in the right indices of the MAIR */ |
| mair = MAIR0_ATTR_SET(ATTR_DEVICE, ATTR_DEVICE_INDEX); |
| mair |= MAIR0_ATTR_SET(ATTR_IWBWA_OWBWA_NTR, |
| ATTR_IWBWA_OWBWA_NTR_INDEX); |
| mair |= MAIR0_ATTR_SET(ATTR_NON_CACHEABLE, |
| ATTR_NON_CACHEABLE_INDEX); |
| |
| /* |
| * Configure the control register for stage 1 of the PL1&0 or EL2 |
| * translation regimes. |
| */ |
| |
| /* Use the Long-descriptor translation table format. */ |
| ttbcr = TTBCR_EAE_BIT; |
| |
| if (xlat_regime == EL1_EL0_REGIME) { |
| assert(IS_IN_SVC() || IS_IN_MON()); |
| /* |
| * Disable translation table walk for addresses that are |
| * translated using TTBR1. Therefore, only TTBR0 is used. |
| */ |
| ttbcr |= TTBCR_EPD1_BIT; |
| } else { |
| assert(xlat_regime == EL2_REGIME); |
| assert(IS_IN_HYP()); |
| |
| /* |
| * Set HTCR bits as well. Set HTTBR table properties |
| * as Inner & outer WBWA & shareable. |
| */ |
| ttbcr |= HTCR_RES1 | |
| HTCR_SH0_INNER_SHAREABLE | HTCR_RGN0_OUTER_WBA | |
| HTCR_RGN0_INNER_WBA; |
| } |
| |
| /* |
| * Limit the input address ranges and memory region sizes translated |
| * using TTBR0 to the given virtual address space size, if smaller than |
| * 32 bits. |
| */ |
| if (max_va != UINT32_MAX) { |
| uintptr_t virtual_addr_space_size = max_va + 1U; |
| |
| assert(virtual_addr_space_size >= |
| xlat_get_min_virt_addr_space_size()); |
| assert(IS_POWER_OF_TWO(virtual_addr_space_size)); |
| |
| /* |
| * __builtin_ctzll(0) is undefined but here we are guaranteed |
| * that virtual_addr_space_size is in the range [1, UINT32_MAX]. |
| */ |
| int t0sz = 32 - __builtin_ctzll(virtual_addr_space_size); |
| |
| ttbcr |= (uint32_t) t0sz; |
| } |
| |
| /* |
| * Set the cacheability and shareability attributes for memory |
| * associated with translation table walks using TTBR0. |
| */ |
| if ((flags & XLAT_TABLE_NC) != 0U) { |
| /* Inner & outer non-cacheable non-shareable. */ |
| ttbcr |= TTBCR_SH0_NON_SHAREABLE | TTBCR_RGN0_OUTER_NC | |
| TTBCR_RGN0_INNER_NC; |
| } else { |
| /* Inner & outer WBWA & shareable. */ |
| ttbcr |= TTBCR_SH0_INNER_SHAREABLE | TTBCR_RGN0_OUTER_WBA | |
| TTBCR_RGN0_INNER_WBA; |
| } |
| |
| /* Set TTBR0 bits as well */ |
| ttbr0 = (uint64_t)(uintptr_t) base_table; |
| |
| if (is_armv8_2_ttcnp_present()) { |
| /* Enable CnP bit so as to share page tables with all PEs. */ |
| ttbr0 |= TTBR_CNP_BIT; |
| } |
| |
| /* Now populate MMU configuration */ |
| params[MMU_CFG_MAIR] = mair; |
| params[MMU_CFG_TCR] = (uint64_t) ttbcr; |
| params[MMU_CFG_TTBR0] = ttbr0; |
| } |