| /* |
| * Copyright (c) 2013-2024, Arm Limited and Contributors. All rights reserved. |
| * Copyright (c) 2022, NVIDIA Corporation. All rights reserved. |
| * |
| * SPDX-License-Identifier: BSD-3-Clause |
| */ |
| |
| #include <assert.h> |
| #include <stdbool.h> |
| #include <string.h> |
| |
| #include <platform_def.h> |
| |
| #include <arch.h> |
| #include <arch_helpers.h> |
| #include <arch_features.h> |
| #include <bl31/interrupt_mgmt.h> |
| #include <common/bl_common.h> |
| #include <common/debug.h> |
| #include <context.h> |
| #include <drivers/arm/gicv3.h> |
| #include <lib/cpus/cpu_ops.h> |
| #include <lib/cpus/errata.h> |
| #include <lib/el3_runtime/context_mgmt.h> |
| #include <lib/el3_runtime/cpu_data.h> |
| #include <lib/el3_runtime/pubsub_events.h> |
| #include <lib/extensions/amu.h> |
| #include <lib/extensions/brbe.h> |
| #include <lib/extensions/debug_v8p9.h> |
| #include <lib/extensions/fgt2.h> |
| #include <lib/extensions/mpam.h> |
| #include <lib/extensions/pmuv3.h> |
| #include <lib/extensions/sme.h> |
| #include <lib/extensions/spe.h> |
| #include <lib/extensions/sve.h> |
| #include <lib/extensions/sys_reg_trace.h> |
| #include <lib/extensions/tcr2.h> |
| #include <lib/extensions/trbe.h> |
| #include <lib/extensions/trf.h> |
| #include <lib/utils.h> |
| |
| #if ENABLE_FEAT_TWED |
| /* Make sure delay value fits within the range(0-15) */ |
| CASSERT(((TWED_DELAY & ~SCR_TWEDEL_MASK) == 0U), assert_twed_delay_value_check); |
| #endif /* ENABLE_FEAT_TWED */ |
| |
| per_world_context_t per_world_context[CPU_DATA_CONTEXT_NUM]; |
| static bool has_secure_perworld_init; |
| |
| static void manage_extensions_common(cpu_context_t *ctx); |
| static void manage_extensions_nonsecure(cpu_context_t *ctx); |
| static void manage_extensions_secure(cpu_context_t *ctx); |
| static void manage_extensions_secure_per_world(void); |
| |
| #if ((IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS))) |
| static void setup_el1_context(cpu_context_t *ctx, const struct entry_point_info *ep) |
| { |
| u_register_t sctlr_elx, actlr_elx; |
| |
| /* |
| * Initialise SCTLR_EL1 to the reset value corresponding to the target |
| * execution state setting all fields rather than relying on the hw. |
| * Some fields have architecturally UNKNOWN reset values and these are |
| * set to zero. |
| * |
| * SCTLR.EE: Endianness is taken from the entrypoint attributes. |
| * |
| * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as |
| * required by PSCI specification) |
| */ |
| sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL; |
| if (GET_RW(ep->spsr) == MODE_RW_64) { |
| sctlr_elx |= SCTLR_EL1_RES1; |
| } else { |
| /* |
| * If the target execution state is AArch32 then the following |
| * fields need to be set. |
| * |
| * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE |
| * instructions are not trapped to EL1. |
| * |
| * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI |
| * instructions are not trapped to EL1. |
| * |
| * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the |
| * CP15DMB, CP15DSB, and CP15ISB instructions. |
| */ |
| sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT |
| | SCTLR_NTWI_BIT | SCTLR_NTWE_BIT; |
| } |
| |
| #if ERRATA_A75_764081 |
| /* |
| * If workaround of errata 764081 for Cortex-A75 is used then set |
| * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier. |
| */ |
| sctlr_elx |= SCTLR_IESB_BIT; |
| #endif |
| |
| /* Store the initialised SCTLR_EL1 value in the cpu_context */ |
| write_ctx_sctlr_el1_reg_errata(ctx, sctlr_elx); |
| |
| /* |
| * Base the context ACTLR_EL1 on the current value, as it is |
| * implementation defined. The context restore process will write |
| * the value from the context to the actual register and can cause |
| * problems for processor cores that don't expect certain bits to |
| * be zero. |
| */ |
| actlr_elx = read_actlr_el1(); |
| write_el1_ctx_common(get_el1_sysregs_ctx(ctx), actlr_el1, actlr_elx); |
| } |
| #endif /* (IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS)) */ |
| |
| /****************************************************************************** |
| * This function performs initializations that are specific to SECURE state |
| * and updates the cpu context specified by 'ctx'. |
| *****************************************************************************/ |
| static void setup_secure_context(cpu_context_t *ctx, const struct entry_point_info *ep) |
| { |
| u_register_t scr_el3; |
| el3_state_t *state; |
| |
| state = get_el3state_ctx(ctx); |
| scr_el3 = read_ctx_reg(state, CTX_SCR_EL3); |
| |
| #if defined(IMAGE_BL31) && !defined(SPD_spmd) |
| /* |
| * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as |
| * indicated by the interrupt routing model for BL31. |
| */ |
| scr_el3 |= get_scr_el3_from_routing_model(SECURE); |
| #endif |
| |
| /* Allow access to Allocation Tags when FEAT_MTE2 is implemented and enabled. */ |
| if (is_feat_mte2_supported()) { |
| scr_el3 |= SCR_ATA_BIT; |
| } |
| |
| write_ctx_reg(state, CTX_SCR_EL3, scr_el3); |
| |
| /* |
| * Initialize EL1 context registers unless SPMC is running |
| * at S-EL2. |
| */ |
| #if (!SPMD_SPM_AT_SEL2) |
| setup_el1_context(ctx, ep); |
| #endif |
| |
| manage_extensions_secure(ctx); |
| |
| /** |
| * manage_extensions_secure_per_world api has to be executed once, |
| * as the registers getting initialised, maintain constant value across |
| * all the cpus for the secure world. |
| * Henceforth, this check ensures that the registers are initialised once |
| * and avoids re-initialization from multiple cores. |
| */ |
| if (!has_secure_perworld_init) { |
| manage_extensions_secure_per_world(); |
| } |
| } |
| |
| #if ENABLE_RME |
| /****************************************************************************** |
| * This function performs initializations that are specific to REALM state |
| * and updates the cpu context specified by 'ctx'. |
| *****************************************************************************/ |
| static void setup_realm_context(cpu_context_t *ctx, const struct entry_point_info *ep) |
| { |
| u_register_t scr_el3; |
| el3_state_t *state; |
| |
| state = get_el3state_ctx(ctx); |
| scr_el3 = read_ctx_reg(state, CTX_SCR_EL3); |
| |
| scr_el3 |= SCR_NS_BIT | SCR_NSE_BIT; |
| |
| /* CSV2 version 2 and above */ |
| if (is_feat_csv2_2_supported()) { |
| /* Enable access to the SCXTNUM_ELx registers. */ |
| scr_el3 |= SCR_EnSCXT_BIT; |
| } |
| |
| write_ctx_reg(state, CTX_SCR_EL3, scr_el3); |
| } |
| #endif /* ENABLE_RME */ |
| |
| /****************************************************************************** |
| * This function performs initializations that are specific to NON-SECURE state |
| * and updates the cpu context specified by 'ctx'. |
| *****************************************************************************/ |
| static void setup_ns_context(cpu_context_t *ctx, const struct entry_point_info *ep) |
| { |
| u_register_t scr_el3; |
| el3_state_t *state; |
| |
| state = get_el3state_ctx(ctx); |
| scr_el3 = read_ctx_reg(state, CTX_SCR_EL3); |
| |
| /* SCR_NS: Set the NS bit */ |
| scr_el3 |= SCR_NS_BIT; |
| |
| /* Allow access to Allocation Tags when FEAT_MTE2 is implemented and enabled. */ |
| if (is_feat_mte2_supported()) { |
| scr_el3 |= SCR_ATA_BIT; |
| } |
| |
| #if !CTX_INCLUDE_PAUTH_REGS |
| /* |
| * Pointer Authentication feature, if present, is always enabled by default |
| * for Non secure lower exception levels. We do not have an explicit |
| * flag to set it. |
| * CTX_INCLUDE_PAUTH_REGS flag, is explicitly used to enable for lower |
| * exception levels of secure and realm worlds. |
| * |
| * To prevent the leakage between the worlds during world switch, |
| * we enable it only for the non-secure world. |
| * |
| * If the Secure/realm world wants to use pointer authentication, |
| * CTX_INCLUDE_PAUTH_REGS must be explicitly set to 1, in which case |
| * it will be enabled globally for all the contexts. |
| * |
| * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs |
| * other than EL3 |
| * |
| * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other |
| * than EL3 |
| */ |
| scr_el3 |= SCR_API_BIT | SCR_APK_BIT; |
| |
| #endif /* CTX_INCLUDE_PAUTH_REGS */ |
| |
| #if HANDLE_EA_EL3_FIRST_NS |
| /* SCR_EL3.EA: Route External Abort and SError Interrupt to EL3. */ |
| scr_el3 |= SCR_EA_BIT; |
| #endif |
| |
| #if RAS_TRAP_NS_ERR_REC_ACCESS |
| /* |
| * SCR_EL3.TERR: Trap Error record accesses. Accesses to the RAS ERR |
| * and RAS ERX registers from EL1 and EL2(from any security state) |
| * are trapped to EL3. |
| * Set here to trap only for NS EL1/EL2 |
| * |
| */ |
| scr_el3 |= SCR_TERR_BIT; |
| #endif |
| |
| /* CSV2 version 2 and above */ |
| if (is_feat_csv2_2_supported()) { |
| /* Enable access to the SCXTNUM_ELx registers. */ |
| scr_el3 |= SCR_EnSCXT_BIT; |
| } |
| |
| #ifdef IMAGE_BL31 |
| /* |
| * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as |
| * indicated by the interrupt routing model for BL31. |
| */ |
| scr_el3 |= get_scr_el3_from_routing_model(NON_SECURE); |
| #endif |
| write_ctx_reg(state, CTX_SCR_EL3, scr_el3); |
| |
| /* Initialize EL2 context registers */ |
| #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) |
| |
| /* |
| * Initialize SCTLR_EL2 context register with reset value. |
| */ |
| write_el2_ctx_common(get_el2_sysregs_ctx(ctx), sctlr_el2, SCTLR_EL2_RES1); |
| |
| if (is_feat_hcx_supported()) { |
| /* |
| * Initialize register HCRX_EL2 with its init value. |
| * As the value of HCRX_EL2 is UNKNOWN on reset, there is a |
| * chance that this can lead to unexpected behavior in lower |
| * ELs that have not been updated since the introduction of |
| * this feature if not properly initialized, especially when |
| * it comes to those bits that enable/disable traps. |
| */ |
| write_el2_ctx_hcx(get_el2_sysregs_ctx(ctx), hcrx_el2, |
| HCRX_EL2_INIT_VAL); |
| } |
| |
| if (is_feat_fgt_supported()) { |
| /* |
| * Initialize HFG*_EL2 registers with a default value so legacy |
| * systems unaware of FEAT_FGT do not get trapped due to their lack |
| * of initialization for this feature. |
| */ |
| write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgitr_el2, |
| HFGITR_EL2_INIT_VAL); |
| write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgrtr_el2, |
| HFGRTR_EL2_INIT_VAL); |
| write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgwtr_el2, |
| HFGWTR_EL2_INIT_VAL); |
| } |
| #else |
| /* Initialize EL1 context registers */ |
| setup_el1_context(ctx, ep); |
| #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */ |
| |
| manage_extensions_nonsecure(ctx); |
| } |
| |
| /******************************************************************************* |
| * The following function performs initialization of the cpu_context 'ctx' |
| * for first use that is common to all security states, and sets the |
| * initial entrypoint state as specified by the entry_point_info structure. |
| * |
| * The EE and ST attributes are used to configure the endianness and secure |
| * timer availability for the new execution context. |
| ******************************************************************************/ |
| static void setup_context_common(cpu_context_t *ctx, const entry_point_info_t *ep) |
| { |
| u_register_t scr_el3; |
| u_register_t mdcr_el3; |
| el3_state_t *state; |
| gp_regs_t *gp_regs; |
| |
| state = get_el3state_ctx(ctx); |
| |
| /* Clear any residual register values from the context */ |
| zeromem(ctx, sizeof(*ctx)); |
| |
| /* |
| * The lower-EL context is zeroed so that no stale values leak to a world. |
| * It is assumed that an all-zero lower-EL context is good enough for it |
| * to boot correctly. However, there are very few registers where this |
| * is not true and some values need to be recreated. |
| */ |
| #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) |
| el2_sysregs_t *el2_ctx = get_el2_sysregs_ctx(ctx); |
| |
| /* |
| * These bits are set in the gicv3 driver. Losing them (especially the |
| * SRE bit) is problematic for all worlds. Henceforth recreate them. |
| */ |
| u_register_t icc_sre_el2_val = ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT | |
| ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT; |
| write_el2_ctx_common(el2_ctx, icc_sre_el2, icc_sre_el2_val); |
| |
| /* |
| * The actlr_el2 register can be initialized in platform's reset handler |
| * and it may contain access control bits (e.g. CLUSTERPMUEN bit). |
| */ |
| write_el2_ctx_common(el2_ctx, actlr_el2, read_actlr_el2()); |
| #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */ |
| |
| /* Start with a clean SCR_EL3 copy as all relevant values are set */ |
| scr_el3 = SCR_RESET_VAL; |
| |
| /* |
| * SCR_EL3.TWE: Set to zero so that execution of WFE instructions at |
| * EL2, EL1 and EL0 are not trapped to EL3. |
| * |
| * SCR_EL3.TWI: Set to zero so that execution of WFI instructions at |
| * EL2, EL1 and EL0 are not trapped to EL3. |
| * |
| * SCR_EL3.SMD: Set to zero to enable SMC calls at EL1 and above, from |
| * both Security states and both Execution states. |
| * |
| * SCR_EL3.SIF: Set to one to disable secure instruction execution from |
| * Non-secure memory. |
| */ |
| scr_el3 &= ~(SCR_TWE_BIT | SCR_TWI_BIT | SCR_SMD_BIT); |
| |
| scr_el3 |= SCR_SIF_BIT; |
| |
| /* |
| * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next |
| * Exception level as specified by SPSR. |
| */ |
| if (GET_RW(ep->spsr) == MODE_RW_64) { |
| scr_el3 |= SCR_RW_BIT; |
| } |
| |
| /* |
| * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical |
| * Secure timer registers to EL3, from AArch64 state only, if specified |
| * by the entrypoint attributes. If SEL2 is present and enabled, the ST |
| * bit always behaves as 1 (i.e. secure physical timer register access |
| * is not trapped) |
| */ |
| if (EP_GET_ST(ep->h.attr) != 0U) { |
| scr_el3 |= SCR_ST_BIT; |
| } |
| |
| /* |
| * If FEAT_HCX is enabled, enable access to HCRX_EL2 by setting |
| * SCR_EL3.HXEn. |
| */ |
| if (is_feat_hcx_supported()) { |
| scr_el3 |= SCR_HXEn_BIT; |
| } |
| |
| /* |
| * If FEAT_RNG_TRAP is enabled, all reads of the RNDR and RNDRRS |
| * registers are trapped to EL3. |
| */ |
| #if ENABLE_FEAT_RNG_TRAP |
| scr_el3 |= SCR_TRNDR_BIT; |
| #endif |
| |
| #if FAULT_INJECTION_SUPPORT |
| /* Enable fault injection from lower ELs */ |
| scr_el3 |= SCR_FIEN_BIT; |
| #endif |
| |
| #if CTX_INCLUDE_PAUTH_REGS |
| /* |
| * Enable Pointer Authentication globally for all the worlds. |
| * |
| * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs |
| * other than EL3 |
| * |
| * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other |
| * than EL3 |
| */ |
| scr_el3 |= SCR_API_BIT | SCR_APK_BIT; |
| #endif /* CTX_INCLUDE_PAUTH_REGS */ |
| |
| /* |
| * SCR_EL3.TCR2EN: Enable access to TCR2_ELx for AArch64 if present. |
| */ |
| if (is_feat_tcr2_supported() && (GET_RW(ep->spsr) == MODE_RW_64)) { |
| scr_el3 |= SCR_TCR2EN_BIT; |
| } |
| |
| /* |
| * SCR_EL3.PIEN: Enable permission indirection and overlay |
| * registers for AArch64 if present. |
| */ |
| if (is_feat_sxpie_supported() || is_feat_sxpoe_supported()) { |
| scr_el3 |= SCR_PIEN_BIT; |
| } |
| |
| /* |
| * SCR_EL3.GCSEn: Enable GCS registers for AArch64 if present. |
| */ |
| if ((is_feat_gcs_supported()) && (GET_RW(ep->spsr) == MODE_RW_64)) { |
| scr_el3 |= SCR_GCSEn_BIT; |
| } |
| |
| /* |
| * SCR_EL3.HCE: Enable HVC instructions if next execution state is |
| * AArch64 and next EL is EL2, or if next execution state is AArch32 and |
| * next mode is Hyp. |
| * SCR_EL3.FGTEn: Enable Fine Grained Virtualization Traps under the |
| * same conditions as HVC instructions and when the processor supports |
| * ARMv8.6-FGT. |
| * SCR_EL3.ECVEn: Enable Enhanced Counter Virtualization (ECV) |
| * CNTPOFF_EL2 register under the same conditions as HVC instructions |
| * and when the processor supports ECV. |
| */ |
| if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2)) |
| || ((GET_RW(ep->spsr) != MODE_RW_64) |
| && (GET_M32(ep->spsr) == MODE32_hyp))) { |
| scr_el3 |= SCR_HCE_BIT; |
| |
| if (is_feat_fgt_supported()) { |
| scr_el3 |= SCR_FGTEN_BIT; |
| } |
| |
| if (is_feat_ecv_supported()) { |
| scr_el3 |= SCR_ECVEN_BIT; |
| } |
| } |
| |
| /* Enable WFE trap delay in SCR_EL3 if supported and configured */ |
| if (is_feat_twed_supported()) { |
| /* Set delay in SCR_EL3 */ |
| scr_el3 &= ~(SCR_TWEDEL_MASK << SCR_TWEDEL_SHIFT); |
| scr_el3 |= ((TWED_DELAY & SCR_TWEDEL_MASK) |
| << SCR_TWEDEL_SHIFT); |
| |
| /* Enable WFE delay */ |
| scr_el3 |= SCR_TWEDEn_BIT; |
| } |
| |
| #if IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2 |
| /* Enable S-EL2 if FEAT_SEL2 is implemented for all the contexts. */ |
| if (is_feat_sel2_supported()) { |
| scr_el3 |= SCR_EEL2_BIT; |
| } |
| #endif /* (IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2) */ |
| |
| /* |
| * Populate EL3 state so that we've the right context |
| * before doing ERET |
| */ |
| write_ctx_reg(state, CTX_SCR_EL3, scr_el3); |
| write_ctx_reg(state, CTX_ELR_EL3, ep->pc); |
| write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr); |
| |
| /* Start with a clean MDCR_EL3 copy as all relevant values are set */ |
| mdcr_el3 = MDCR_EL3_RESET_VAL; |
| |
| /* --------------------------------------------------------------------- |
| * Initialise MDCR_EL3, setting all fields rather than relying on hw. |
| * Some fields are architecturally UNKNOWN on reset. |
| * |
| * MDCR_EL3.SDD: Set to one to disable AArch64 Secure self-hosted debug. |
| * Debug exceptions, other than Breakpoint Instruction exceptions, are |
| * disabled from all ELs in Secure state. |
| * |
| * MDCR_EL3.SPD32: Set to 0b10 to disable AArch32 Secure self-hosted |
| * privileged debug from S-EL1. |
| * |
| * MDCR_EL3.TDOSA: Set to zero so that EL2 and EL2 System register |
| * access to the powerdown debug registers do not trap to EL3. |
| * |
| * MDCR_EL3.TDA: Set to zero to allow EL0, EL1 and EL2 access to the |
| * debug registers, other than those registers that are controlled by |
| * MDCR_EL3.TDOSA. |
| */ |
| mdcr_el3 |= ((MDCR_SDD_BIT | MDCR_SPD32(MDCR_SPD32_DISABLE)) |
| & ~(MDCR_TDA_BIT | MDCR_TDOSA_BIT)) ; |
| write_ctx_reg(state, CTX_MDCR_EL3, mdcr_el3); |
| |
| /* |
| * Configure MDCR_EL3 register as applicable for each world |
| * (NS/Secure/Realm) context. |
| */ |
| manage_extensions_common(ctx); |
| |
| /* |
| * Store the X0-X7 value from the entrypoint into the context |
| * Use memcpy as we are in control of the layout of the structures |
| */ |
| gp_regs = get_gpregs_ctx(ctx); |
| memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t)); |
| } |
| |
| /******************************************************************************* |
| * Context management library initialization routine. This library is used by |
| * runtime services to share pointers to 'cpu_context' structures for secure |
| * non-secure and realm states. Management of the structures and their associated |
| * memory is not done by the context management library e.g. the PSCI service |
| * manages the cpu context used for entry from and exit to the non-secure state. |
| * The Secure payload dispatcher service manages the context(s) corresponding to |
| * the secure state. It also uses this library to get access to the non-secure |
| * state cpu context pointers. |
| * Lastly, this library provides the API to make SP_EL3 point to the cpu context |
| * which will be used for programming an entry into a lower EL. The same context |
| * will be used to save state upon exception entry from that EL. |
| ******************************************************************************/ |
| void __init cm_init(void) |
| { |
| /* |
| * The context management library has only global data to initialize, but |
| * that will be done when the BSS is zeroed out. |
| */ |
| } |
| |
| /******************************************************************************* |
| * This is the high-level function used to initialize the cpu_context 'ctx' for |
| * first use. It performs initializations that are common to all security states |
| * and initializations specific to the security state specified in 'ep' |
| ******************************************************************************/ |
| void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep) |
| { |
| unsigned int security_state; |
| |
| assert(ctx != NULL); |
| |
| /* |
| * Perform initializations that are common |
| * to all security states |
| */ |
| setup_context_common(ctx, ep); |
| |
| security_state = GET_SECURITY_STATE(ep->h.attr); |
| |
| /* Perform security state specific initializations */ |
| switch (security_state) { |
| case SECURE: |
| setup_secure_context(ctx, ep); |
| break; |
| #if ENABLE_RME |
| case REALM: |
| setup_realm_context(ctx, ep); |
| break; |
| #endif |
| case NON_SECURE: |
| setup_ns_context(ctx, ep); |
| break; |
| default: |
| ERROR("Invalid security state\n"); |
| panic(); |
| break; |
| } |
| } |
| |
| /******************************************************************************* |
| * Enable architecture extensions for EL3 execution. This function only updates |
| * registers in-place which are expected to either never change or be |
| * overwritten by el3_exit. |
| ******************************************************************************/ |
| #if IMAGE_BL31 |
| void cm_manage_extensions_el3(void) |
| { |
| if (is_feat_amu_supported()) { |
| amu_init_el3(); |
| } |
| |
| if (is_feat_sme_supported()) { |
| sme_init_el3(); |
| } |
| |
| pmuv3_init_el3(); |
| } |
| #endif /* IMAGE_BL31 */ |
| |
| /****************************************************************************** |
| * Function to initialise the registers with the RESET values in the context |
| * memory, which are maintained per world. |
| ******************************************************************************/ |
| #if IMAGE_BL31 |
| void cm_el3_arch_init_per_world(per_world_context_t *per_world_ctx) |
| { |
| /* |
| * Initialise CPTR_EL3, setting all fields rather than relying on hw. |
| * |
| * CPTR_EL3.TFP: Set to zero so that accesses to the V- or Z- registers |
| * by Advanced SIMD, floating-point or SVE instructions (if |
| * implemented) do not trap to EL3. |
| * |
| * CPTR_EL3.TCPAC: Set to zero so that accesses to CPACR_EL1, |
| * CPTR_EL2,CPACR, or HCPTR do not trap to EL3. |
| */ |
| uint64_t cptr_el3 = CPTR_EL3_RESET_VAL & ~(TCPAC_BIT | TFP_BIT); |
| |
| per_world_ctx->ctx_cptr_el3 = cptr_el3; |
| |
| /* |
| * Initialize MPAM3_EL3 to its default reset value |
| * |
| * MPAM3_EL3_RESET_VAL sets the MPAM3_EL3.TRAPLOWER bit that forces |
| * all lower ELn MPAM3_EL3 register access to, trap to EL3 |
| */ |
| |
| per_world_ctx->ctx_mpam3_el3 = MPAM3_EL3_RESET_VAL; |
| } |
| #endif /* IMAGE_BL31 */ |
| |
| /******************************************************************************* |
| * Initialise per_world_context for Non-Secure world. |
| * This function enables the architecture extensions, which have same value |
| * across the cores for the non-secure world. |
| ******************************************************************************/ |
| #if IMAGE_BL31 |
| void manage_extensions_nonsecure_per_world(void) |
| { |
| cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_NS]); |
| |
| if (is_feat_sme_supported()) { |
| sme_enable_per_world(&per_world_context[CPU_CONTEXT_NS]); |
| } |
| |
| if (is_feat_sve_supported()) { |
| sve_enable_per_world(&per_world_context[CPU_CONTEXT_NS]); |
| } |
| |
| if (is_feat_amu_supported()) { |
| amu_enable_per_world(&per_world_context[CPU_CONTEXT_NS]); |
| } |
| |
| if (is_feat_sys_reg_trace_supported()) { |
| sys_reg_trace_enable_per_world(&per_world_context[CPU_CONTEXT_NS]); |
| } |
| |
| if (is_feat_mpam_supported()) { |
| mpam_enable_per_world(&per_world_context[CPU_CONTEXT_NS]); |
| } |
| } |
| #endif /* IMAGE_BL31 */ |
| |
| /******************************************************************************* |
| * Initialise per_world_context for Secure world. |
| * This function enables the architecture extensions, which have same value |
| * across the cores for the secure world. |
| ******************************************************************************/ |
| static void manage_extensions_secure_per_world(void) |
| { |
| #if IMAGE_BL31 |
| cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_SECURE]); |
| |
| if (is_feat_sme_supported()) { |
| |
| if (ENABLE_SME_FOR_SWD) { |
| /* |
| * Enable SME, SVE, FPU/SIMD in secure context, SPM must ensure |
| * SME, SVE, and FPU/SIMD context properly managed. |
| */ |
| sme_enable_per_world(&per_world_context[CPU_CONTEXT_SECURE]); |
| } else { |
| /* |
| * Disable SME, SVE, FPU/SIMD in secure context so non-secure |
| * world can safely use the associated registers. |
| */ |
| sme_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]); |
| } |
| } |
| if (is_feat_sve_supported()) { |
| if (ENABLE_SVE_FOR_SWD) { |
| /* |
| * Enable SVE and FPU in secure context, SPM must ensure |
| * that the SVE and FPU register contexts are properly managed. |
| */ |
| sve_enable_per_world(&per_world_context[CPU_CONTEXT_SECURE]); |
| } else { |
| /* |
| * Disable SVE and FPU in secure context so non-secure world |
| * can safely use them. |
| */ |
| sve_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]); |
| } |
| } |
| |
| /* NS can access this but Secure shouldn't */ |
| if (is_feat_sys_reg_trace_supported()) { |
| sys_reg_trace_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]); |
| } |
| |
| has_secure_perworld_init = true; |
| #endif /* IMAGE_BL31 */ |
| } |
| |
| /******************************************************************************* |
| * Enable architecture extensions on first entry to Non-secure world only |
| * and disable for secure world. |
| * |
| * NOTE: Arch features which have been provided with the capability of getting |
| * enabled only for non-secure world and being disabled for secure world are |
| * grouped here, as the MDCR_EL3 context value remains same across the worlds. |
| ******************************************************************************/ |
| static void manage_extensions_common(cpu_context_t *ctx) |
| { |
| #if IMAGE_BL31 |
| if (is_feat_spe_supported()) { |
| /* |
| * Enable FEAT_SPE for Non-Secure and prohibit for Secure state. |
| */ |
| spe_enable(ctx); |
| } |
| |
| if (is_feat_trbe_supported()) { |
| /* |
| * Enable FEAT_TRBE for Non-Secure and prohibit for Secure and |
| * Realm state. |
| */ |
| trbe_enable(ctx); |
| } |
| |
| if (is_feat_trf_supported()) { |
| /* |
| * Enable FEAT_TRF for Non-Secure and prohibit for Secure state. |
| */ |
| trf_enable(ctx); |
| } |
| |
| if (is_feat_brbe_supported()) { |
| /* |
| * Enable FEAT_BRBE for Non-Secure and prohibit for Secure state. |
| */ |
| brbe_enable(ctx); |
| } |
| #endif /* IMAGE_BL31 */ |
| } |
| |
| /******************************************************************************* |
| * Enable architecture extensions on first entry to Non-secure world. |
| ******************************************************************************/ |
| static void manage_extensions_nonsecure(cpu_context_t *ctx) |
| { |
| #if IMAGE_BL31 |
| if (is_feat_amu_supported()) { |
| amu_enable(ctx); |
| } |
| |
| if (is_feat_sme_supported()) { |
| sme_enable(ctx); |
| } |
| |
| if (is_feat_fgt2_supported()) { |
| fgt2_enable(ctx); |
| } |
| |
| if (is_feat_debugv8p9_supported()) { |
| debugv8p9_extended_bp_wp_enable(ctx); |
| } |
| |
| pmuv3_enable(ctx); |
| #endif /* IMAGE_BL31 */ |
| } |
| |
| /* TODO: move to lib/extensions/pauth when it has been ported to FEAT_STATE */ |
| static __unused void enable_pauth_el2(void) |
| { |
| u_register_t hcr_el2 = read_hcr_el2(); |
| /* |
| * For Armv8.3 pointer authentication feature, disable traps to EL2 when |
| * accessing key registers or using pointer authentication instructions |
| * from lower ELs. |
| */ |
| hcr_el2 |= (HCR_API_BIT | HCR_APK_BIT); |
| |
| write_hcr_el2(hcr_el2); |
| } |
| |
| #if INIT_UNUSED_NS_EL2 |
| /******************************************************************************* |
| * Enable architecture extensions in-place at EL2 on first entry to Non-secure |
| * world when EL2 is empty and unused. |
| ******************************************************************************/ |
| static void manage_extensions_nonsecure_el2_unused(void) |
| { |
| #if IMAGE_BL31 |
| if (is_feat_spe_supported()) { |
| spe_init_el2_unused(); |
| } |
| |
| if (is_feat_amu_supported()) { |
| amu_init_el2_unused(); |
| } |
| |
| if (is_feat_mpam_supported()) { |
| mpam_init_el2_unused(); |
| } |
| |
| if (is_feat_trbe_supported()) { |
| trbe_init_el2_unused(); |
| } |
| |
| if (is_feat_sys_reg_trace_supported()) { |
| sys_reg_trace_init_el2_unused(); |
| } |
| |
| if (is_feat_trf_supported()) { |
| trf_init_el2_unused(); |
| } |
| |
| pmuv3_init_el2_unused(); |
| |
| if (is_feat_sve_supported()) { |
| sve_init_el2_unused(); |
| } |
| |
| if (is_feat_sme_supported()) { |
| sme_init_el2_unused(); |
| } |
| |
| #if ENABLE_PAUTH |
| enable_pauth_el2(); |
| #endif /* ENABLE_PAUTH */ |
| #endif /* IMAGE_BL31 */ |
| } |
| #endif /* INIT_UNUSED_NS_EL2 */ |
| |
| /******************************************************************************* |
| * Enable architecture extensions on first entry to Secure world. |
| ******************************************************************************/ |
| static void manage_extensions_secure(cpu_context_t *ctx) |
| { |
| #if IMAGE_BL31 |
| if (is_feat_sme_supported()) { |
| if (ENABLE_SME_FOR_SWD) { |
| /* |
| * Enable SME, SVE, FPU/SIMD in secure context, secure manager |
| * must ensure SME, SVE, and FPU/SIMD context properly managed. |
| */ |
| sme_init_el3(); |
| sme_enable(ctx); |
| } else { |
| /* |
| * Disable SME, SVE, FPU/SIMD in secure context so non-secure |
| * world can safely use the associated registers. |
| */ |
| sme_disable(ctx); |
| } |
| } |
| #endif /* IMAGE_BL31 */ |
| } |
| |
| #if !IMAGE_BL1 |
| /******************************************************************************* |
| * The following function initializes the cpu_context for a CPU specified by |
| * its `cpu_idx` for first use, and sets the initial entrypoint state as |
| * specified by the entry_point_info structure. |
| ******************************************************************************/ |
| void cm_init_context_by_index(unsigned int cpu_idx, |
| const entry_point_info_t *ep) |
| { |
| cpu_context_t *ctx; |
| ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr)); |
| cm_setup_context(ctx, ep); |
| } |
| #endif /* !IMAGE_BL1 */ |
| |
| /******************************************************************************* |
| * The following function initializes the cpu_context for the current CPU |
| * for first use, and sets the initial entrypoint state as specified by the |
| * entry_point_info structure. |
| ******************************************************************************/ |
| void cm_init_my_context(const entry_point_info_t *ep) |
| { |
| cpu_context_t *ctx; |
| ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr)); |
| cm_setup_context(ctx, ep); |
| } |
| |
| /* EL2 present but unused, need to disable safely. SCTLR_EL2 can be ignored */ |
| static void init_nonsecure_el2_unused(cpu_context_t *ctx) |
| { |
| #if INIT_UNUSED_NS_EL2 |
| u_register_t hcr_el2 = HCR_RESET_VAL; |
| u_register_t mdcr_el2; |
| u_register_t scr_el3; |
| |
| scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3); |
| |
| /* Set EL2 register width: Set HCR_EL2.RW to match SCR_EL3.RW */ |
| if ((scr_el3 & SCR_RW_BIT) != 0U) { |
| hcr_el2 |= HCR_RW_BIT; |
| } |
| |
| write_hcr_el2(hcr_el2); |
| |
| /* |
| * Initialise CPTR_EL2 setting all fields rather than relying on the hw. |
| * All fields have architecturally UNKNOWN reset values. |
| */ |
| write_cptr_el2(CPTR_EL2_RESET_VAL); |
| |
| /* |
| * Initialise CNTHCTL_EL2. All fields are architecturally UNKNOWN on |
| * reset and are set to zero except for field(s) listed below. |
| * |
| * CNTHCTL_EL2.EL1PTEN: Set to one to disable traps to Hyp mode of |
| * Non-secure EL0 and EL1 accesses to the physical timer registers. |
| * |
| * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to Hyp mode of |
| * Non-secure EL0 and EL1 accesses to the physical counter registers. |
| */ |
| write_cnthctl_el2(CNTHCTL_RESET_VAL | EL1PCEN_BIT | EL1PCTEN_BIT); |
| |
| /* |
| * Initialise CNTVOFF_EL2 to zero as it resets to an architecturally |
| * UNKNOWN value. |
| */ |
| write_cntvoff_el2(0); |
| |
| /* |
| * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and MPIDR_EL1 |
| * respectively. |
| */ |
| write_vpidr_el2(read_midr_el1()); |
| write_vmpidr_el2(read_mpidr_el1()); |
| |
| /* |
| * Initialise VTTBR_EL2. All fields are architecturally UNKNOWN on reset. |
| * |
| * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage 2 address |
| * translation is disabled, cache maintenance operations depend on the |
| * VMID. |
| * |
| * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address translation is |
| * disabled. |
| */ |
| write_vttbr_el2(VTTBR_RESET_VAL & |
| ~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT) | |
| (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT))); |
| |
| /* |
| * Initialise MDCR_EL2, setting all fields rather than relying on hw. |
| * Some fields are architecturally UNKNOWN on reset. |
| * |
| * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and EL1 System |
| * register accesses to the Debug ROM registers are not trapped to EL2. |
| * |
| * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1 System register |
| * accesses to the powerdown debug registers are not trapped to EL2. |
| * |
| * MDCR_EL2.TDA: Set to zero so that System register accesses to the |
| * debug registers do not trap to EL2. |
| * |
| * MDCR_EL2.TDE: Set to zero so that debug exceptions are not routed to |
| * EL2. |
| */ |
| mdcr_el2 = MDCR_EL2_RESET_VAL & |
| ~(MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT | MDCR_EL2_TDA_BIT | |
| MDCR_EL2_TDE_BIT); |
| |
| write_mdcr_el2(mdcr_el2); |
| |
| /* |
| * Initialise HSTR_EL2. All fields are architecturally UNKNOWN on reset. |
| * |
| * HSTR_EL2.T<n>: Set all these fields to zero so that Non-secure EL0 or |
| * EL1 accesses to System registers do not trap to EL2. |
| */ |
| write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK)); |
| |
| /* |
| * Initialise CNTHP_CTL_EL2. All fields are architecturally UNKNOWN on |
| * reset. |
| * |
| * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2 physical timer |
| * and prevent timer interrupts. |
| */ |
| write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL & ~(CNTHP_CTL_ENABLE_BIT)); |
| |
| manage_extensions_nonsecure_el2_unused(); |
| #endif /* INIT_UNUSED_NS_EL2 */ |
| } |
| |
| /******************************************************************************* |
| * Prepare the CPU system registers for first entry into realm, secure, or |
| * normal world. |
| * |
| * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized |
| * If execution is requested to non-secure EL1 or svc mode, and the CPU supports |
| * EL2 then EL2 is disabled by configuring all necessary EL2 registers. |
| * For all entries, the EL1 registers are initialized from the cpu_context |
| ******************************************************************************/ |
| void cm_prepare_el3_exit(uint32_t security_state) |
| { |
| u_register_t sctlr_el2, scr_el3; |
| cpu_context_t *ctx = cm_get_context(security_state); |
| |
| assert(ctx != NULL); |
| |
| if (security_state == NON_SECURE) { |
| uint64_t el2_implemented = el_implemented(2); |
| |
| scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), |
| CTX_SCR_EL3); |
| |
| if (el2_implemented != EL_IMPL_NONE) { |
| |
| /* |
| * If context is not being used for EL2, initialize |
| * HCRX_EL2 with its init value here. |
| */ |
| if (is_feat_hcx_supported()) { |
| write_hcrx_el2(HCRX_EL2_INIT_VAL); |
| } |
| |
| /* |
| * Initialize Fine-grained trap registers introduced |
| * by FEAT_FGT so all traps are initially disabled when |
| * switching to EL2 or a lower EL, preventing undesired |
| * behavior. |
| */ |
| if (is_feat_fgt_supported()) { |
| /* |
| * Initialize HFG*_EL2 registers with a default |
| * value so legacy systems unaware of FEAT_FGT |
| * do not get trapped due to their lack of |
| * initialization for this feature. |
| */ |
| write_hfgitr_el2(HFGITR_EL2_INIT_VAL); |
| write_hfgrtr_el2(HFGRTR_EL2_INIT_VAL); |
| write_hfgwtr_el2(HFGWTR_EL2_INIT_VAL); |
| } |
| |
| /* Condition to ensure EL2 is being used. */ |
| if ((scr_el3 & SCR_HCE_BIT) != 0U) { |
| /* Initialize SCTLR_EL2 register with reset value. */ |
| sctlr_el2 = SCTLR_EL2_RES1; |
| #if ERRATA_A75_764081 |
| /* |
| * If workaround of errata 764081 for Cortex-A75 |
| * is used then set SCTLR_EL2.IESB to enable |
| * Implicit Error Synchronization Barrier. |
| */ |
| sctlr_el2 |= SCTLR_IESB_BIT; |
| #endif |
| write_sctlr_el2(sctlr_el2); |
| } else { |
| /* |
| * (scr_el3 & SCR_HCE_BIT==0) |
| * EL2 implemented but unused. |
| */ |
| init_nonsecure_el2_unused(ctx); |
| } |
| } |
| } |
| #if (!CTX_INCLUDE_EL2_REGS) |
| /* Restore EL1 system registers, only when CTX_INCLUDE_EL2_REGS=0 */ |
| cm_el1_sysregs_context_restore(security_state); |
| #endif |
| cm_set_next_eret_context(security_state); |
| } |
| |
| #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) |
| |
| static void el2_sysregs_context_save_fgt(el2_sysregs_t *ctx) |
| { |
| write_el2_ctx_fgt(ctx, hdfgrtr_el2, read_hdfgrtr_el2()); |
| if (is_feat_amu_supported()) { |
| write_el2_ctx_fgt(ctx, hafgrtr_el2, read_hafgrtr_el2()); |
| } |
| write_el2_ctx_fgt(ctx, hdfgwtr_el2, read_hdfgwtr_el2()); |
| write_el2_ctx_fgt(ctx, hfgitr_el2, read_hfgitr_el2()); |
| write_el2_ctx_fgt(ctx, hfgrtr_el2, read_hfgrtr_el2()); |
| write_el2_ctx_fgt(ctx, hfgwtr_el2, read_hfgwtr_el2()); |
| } |
| |
| static void el2_sysregs_context_restore_fgt(el2_sysregs_t *ctx) |
| { |
| write_hdfgrtr_el2(read_el2_ctx_fgt(ctx, hdfgrtr_el2)); |
| if (is_feat_amu_supported()) { |
| write_hafgrtr_el2(read_el2_ctx_fgt(ctx, hafgrtr_el2)); |
| } |
| write_hdfgwtr_el2(read_el2_ctx_fgt(ctx, hdfgwtr_el2)); |
| write_hfgitr_el2(read_el2_ctx_fgt(ctx, hfgitr_el2)); |
| write_hfgrtr_el2(read_el2_ctx_fgt(ctx, hfgrtr_el2)); |
| write_hfgwtr_el2(read_el2_ctx_fgt(ctx, hfgwtr_el2)); |
| } |
| |
| static void el2_sysregs_context_save_fgt2(el2_sysregs_t *ctx) |
| { |
| write_el2_ctx_fgt2(ctx, hdfgrtr2_el2, read_hdfgrtr2_el2()); |
| write_el2_ctx_fgt2(ctx, hdfgwtr2_el2, read_hdfgwtr2_el2()); |
| write_el2_ctx_fgt2(ctx, hfgitr2_el2, read_hfgitr2_el2()); |
| write_el2_ctx_fgt2(ctx, hfgrtr2_el2, read_hfgrtr2_el2()); |
| write_el2_ctx_fgt2(ctx, hfgwtr2_el2, read_hfgwtr2_el2()); |
| } |
| |
| static void el2_sysregs_context_restore_fgt2(el2_sysregs_t *ctx) |
| { |
| write_hdfgrtr2_el2(read_el2_ctx_fgt2(ctx, hdfgrtr2_el2)); |
| write_hdfgwtr2_el2(read_el2_ctx_fgt2(ctx, hdfgwtr2_el2)); |
| write_hfgitr2_el2(read_el2_ctx_fgt2(ctx, hfgitr2_el2)); |
| write_hfgrtr2_el2(read_el2_ctx_fgt2(ctx, hfgrtr2_el2)); |
| write_hfgwtr2_el2(read_el2_ctx_fgt2(ctx, hfgwtr2_el2)); |
| } |
| |
| static void el2_sysregs_context_save_mpam(el2_sysregs_t *ctx) |
| { |
| u_register_t mpam_idr = read_mpamidr_el1(); |
| |
| write_el2_ctx_mpam(ctx, mpam2_el2, read_mpam2_el2()); |
| |
| /* |
| * The context registers that we intend to save would be part of the |
| * PE's system register frame only if MPAMIDR_EL1.HAS_HCR == 1. |
| */ |
| if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) { |
| return; |
| } |
| |
| /* |
| * MPAMHCR_EL2, MPAMVPMV_EL2 and MPAMVPM0_EL2 are always present if |
| * MPAMIDR_HAS_HCR_BIT == 1. |
| */ |
| write_el2_ctx_mpam(ctx, mpamhcr_el2, read_mpamhcr_el2()); |
| write_el2_ctx_mpam(ctx, mpamvpm0_el2, read_mpamvpm0_el2()); |
| write_el2_ctx_mpam(ctx, mpamvpmv_el2, read_mpamvpmv_el2()); |
| |
| /* |
| * The number of MPAMVPM registers is implementation defined, their |
| * number is stored in the MPAMIDR_EL1 register. |
| */ |
| switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) { |
| case 7: |
| write_el2_ctx_mpam(ctx, mpamvpm7_el2, read_mpamvpm7_el2()); |
| __fallthrough; |
| case 6: |
| write_el2_ctx_mpam(ctx, mpamvpm6_el2, read_mpamvpm6_el2()); |
| __fallthrough; |
| case 5: |
| write_el2_ctx_mpam(ctx, mpamvpm5_el2, read_mpamvpm5_el2()); |
| __fallthrough; |
| case 4: |
| write_el2_ctx_mpam(ctx, mpamvpm4_el2, read_mpamvpm4_el2()); |
| __fallthrough; |
| case 3: |
| write_el2_ctx_mpam(ctx, mpamvpm3_el2, read_mpamvpm3_el2()); |
| __fallthrough; |
| case 2: |
| write_el2_ctx_mpam(ctx, mpamvpm2_el2, read_mpamvpm2_el2()); |
| __fallthrough; |
| case 1: |
| write_el2_ctx_mpam(ctx, mpamvpm1_el2, read_mpamvpm1_el2()); |
| break; |
| } |
| } |
| |
| static void el2_sysregs_context_restore_mpam(el2_sysregs_t *ctx) |
| { |
| u_register_t mpam_idr = read_mpamidr_el1(); |
| |
| write_mpam2_el2(read_el2_ctx_mpam(ctx, mpam2_el2)); |
| |
| if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) { |
| return; |
| } |
| |
| write_mpamhcr_el2(read_el2_ctx_mpam(ctx, mpamhcr_el2)); |
| write_mpamvpm0_el2(read_el2_ctx_mpam(ctx, mpamvpm0_el2)); |
| write_mpamvpmv_el2(read_el2_ctx_mpam(ctx, mpamvpmv_el2)); |
| |
| switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) { |
| case 7: |
| write_mpamvpm7_el2(read_el2_ctx_mpam(ctx, mpamvpm7_el2)); |
| __fallthrough; |
| case 6: |
| write_mpamvpm6_el2(read_el2_ctx_mpam(ctx, mpamvpm6_el2)); |
| __fallthrough; |
| case 5: |
| write_mpamvpm5_el2(read_el2_ctx_mpam(ctx, mpamvpm5_el2)); |
| __fallthrough; |
| case 4: |
| write_mpamvpm4_el2(read_el2_ctx_mpam(ctx, mpamvpm4_el2)); |
| __fallthrough; |
| case 3: |
| write_mpamvpm3_el2(read_el2_ctx_mpam(ctx, mpamvpm3_el2)); |
| __fallthrough; |
| case 2: |
| write_mpamvpm2_el2(read_el2_ctx_mpam(ctx, mpamvpm2_el2)); |
| __fallthrough; |
| case 1: |
| write_mpamvpm1_el2(read_el2_ctx_mpam(ctx, mpamvpm1_el2)); |
| break; |
| } |
| } |
| |
| /* --------------------------------------------------------------------------- |
| * The following registers are not added: |
| * ICH_AP0R<n>_EL2 |
| * ICH_AP1R<n>_EL2 |
| * ICH_LR<n>_EL2 |
| * |
| * NOTE: For a system with S-EL2 present but not enabled, accessing |
| * ICC_SRE_EL2 is undefined from EL3. To workaround this change the |
| * SCR_EL3.NS = 1 before accessing this register. |
| * --------------------------------------------------------------------------- |
| */ |
| static void el2_sysregs_context_save_gic(el2_sysregs_t *ctx) |
| { |
| #if defined(SPD_spmd) && SPMD_SPM_AT_SEL2 |
| write_el2_ctx_common(ctx, icc_sre_el2, read_icc_sre_el2()); |
| #else |
| u_register_t scr_el3 = read_scr_el3(); |
| write_scr_el3(scr_el3 | SCR_NS_BIT); |
| isb(); |
| |
| write_el2_ctx_common(ctx, icc_sre_el2, read_icc_sre_el2()); |
| |
| write_scr_el3(scr_el3); |
| isb(); |
| #endif |
| write_el2_ctx_common(ctx, ich_hcr_el2, read_ich_hcr_el2()); |
| write_el2_ctx_common(ctx, ich_vmcr_el2, read_ich_vmcr_el2()); |
| } |
| |
| static void el2_sysregs_context_restore_gic(el2_sysregs_t *ctx) |
| { |
| #if defined(SPD_spmd) && SPMD_SPM_AT_SEL2 |
| write_icc_sre_el2(read_el2_ctx_common(ctx, icc_sre_el2)); |
| #else |
| u_register_t scr_el3 = read_scr_el3(); |
| write_scr_el3(scr_el3 | SCR_NS_BIT); |
| isb(); |
| |
| write_icc_sre_el2(read_el2_ctx_common(ctx, icc_sre_el2)); |
| |
| write_scr_el3(scr_el3); |
| isb(); |
| #endif |
| write_ich_hcr_el2(read_el2_ctx_common(ctx, ich_hcr_el2)); |
| write_ich_vmcr_el2(read_el2_ctx_common(ctx, ich_vmcr_el2)); |
| } |
| |
| /* ----------------------------------------------------- |
| * The following registers are not added: |
| * AMEVCNTVOFF0<n>_EL2 |
| * AMEVCNTVOFF1<n>_EL2 |
| * ----------------------------------------------------- |
| */ |
| static void el2_sysregs_context_save_common(el2_sysregs_t *ctx) |
| { |
| write_el2_ctx_common(ctx, actlr_el2, read_actlr_el2()); |
| write_el2_ctx_common(ctx, afsr0_el2, read_afsr0_el2()); |
| write_el2_ctx_common(ctx, afsr1_el2, read_afsr1_el2()); |
| write_el2_ctx_common(ctx, amair_el2, read_amair_el2()); |
| write_el2_ctx_common(ctx, cnthctl_el2, read_cnthctl_el2()); |
| write_el2_ctx_common(ctx, cntvoff_el2, read_cntvoff_el2()); |
| write_el2_ctx_common(ctx, cptr_el2, read_cptr_el2()); |
| if (CTX_INCLUDE_AARCH32_REGS) { |
| write_el2_ctx_common(ctx, dbgvcr32_el2, read_dbgvcr32_el2()); |
| } |
| write_el2_ctx_common(ctx, elr_el2, read_elr_el2()); |
| write_el2_ctx_common(ctx, esr_el2, read_esr_el2()); |
| write_el2_ctx_common(ctx, far_el2, read_far_el2()); |
| write_el2_ctx_common(ctx, hacr_el2, read_hacr_el2()); |
| write_el2_ctx_common(ctx, hcr_el2, read_hcr_el2()); |
| write_el2_ctx_common(ctx, hpfar_el2, read_hpfar_el2()); |
| write_el2_ctx_common(ctx, hstr_el2, read_hstr_el2()); |
| write_el2_ctx_common(ctx, mair_el2, read_mair_el2()); |
| write_el2_ctx_common(ctx, mdcr_el2, read_mdcr_el2()); |
| write_el2_ctx_common(ctx, sctlr_el2, read_sctlr_el2()); |
| write_el2_ctx_common(ctx, spsr_el2, read_spsr_el2()); |
| write_el2_ctx_common(ctx, sp_el2, read_sp_el2()); |
| write_el2_ctx_common(ctx, tcr_el2, read_tcr_el2()); |
| write_el2_ctx_common(ctx, tpidr_el2, read_tpidr_el2()); |
| write_el2_ctx_common(ctx, ttbr0_el2, read_ttbr0_el2()); |
| write_el2_ctx_common(ctx, vbar_el2, read_vbar_el2()); |
| write_el2_ctx_common(ctx, vmpidr_el2, read_vmpidr_el2()); |
| write_el2_ctx_common(ctx, vpidr_el2, read_vpidr_el2()); |
| write_el2_ctx_common(ctx, vtcr_el2, read_vtcr_el2()); |
| write_el2_ctx_common(ctx, vttbr_el2, read_vttbr_el2()); |
| } |
| |
| static void el2_sysregs_context_restore_common(el2_sysregs_t *ctx) |
| { |
| write_actlr_el2(read_el2_ctx_common(ctx, actlr_el2)); |
| write_afsr0_el2(read_el2_ctx_common(ctx, afsr0_el2)); |
| write_afsr1_el2(read_el2_ctx_common(ctx, afsr1_el2)); |
| write_amair_el2(read_el2_ctx_common(ctx, amair_el2)); |
| write_cnthctl_el2(read_el2_ctx_common(ctx, cnthctl_el2)); |
| write_cntvoff_el2(read_el2_ctx_common(ctx, cntvoff_el2)); |
| write_cptr_el2(read_el2_ctx_common(ctx, cptr_el2)); |
| if (CTX_INCLUDE_AARCH32_REGS) { |
| write_dbgvcr32_el2(read_el2_ctx_common(ctx, dbgvcr32_el2)); |
| } |
| write_elr_el2(read_el2_ctx_common(ctx, elr_el2)); |
| write_esr_el2(read_el2_ctx_common(ctx, esr_el2)); |
| write_far_el2(read_el2_ctx_common(ctx, far_el2)); |
| write_hacr_el2(read_el2_ctx_common(ctx, hacr_el2)); |
| write_hcr_el2(read_el2_ctx_common(ctx, hcr_el2)); |
| write_hpfar_el2(read_el2_ctx_common(ctx, hpfar_el2)); |
| write_hstr_el2(read_el2_ctx_common(ctx, hstr_el2)); |
| write_mair_el2(read_el2_ctx_common(ctx, mair_el2)); |
| write_mdcr_el2(read_el2_ctx_common(ctx, mdcr_el2)); |
| write_sctlr_el2(read_el2_ctx_common(ctx, sctlr_el2)); |
| write_spsr_el2(read_el2_ctx_common(ctx, spsr_el2)); |
| write_sp_el2(read_el2_ctx_common(ctx, sp_el2)); |
| write_tcr_el2(read_el2_ctx_common(ctx, tcr_el2)); |
| write_tpidr_el2(read_el2_ctx_common(ctx, tpidr_el2)); |
| write_ttbr0_el2(read_el2_ctx_common(ctx, ttbr0_el2)); |
| write_vbar_el2(read_el2_ctx_common(ctx, vbar_el2)); |
| write_vmpidr_el2(read_el2_ctx_common(ctx, vmpidr_el2)); |
| write_vpidr_el2(read_el2_ctx_common(ctx, vpidr_el2)); |
| write_vtcr_el2(read_el2_ctx_common(ctx, vtcr_el2)); |
| write_vttbr_el2(read_el2_ctx_common(ctx, vttbr_el2)); |
| } |
| |
| /******************************************************************************* |
| * Save EL2 sysreg context |
| ******************************************************************************/ |
| void cm_el2_sysregs_context_save(uint32_t security_state) |
| { |
| cpu_context_t *ctx; |
| el2_sysregs_t *el2_sysregs_ctx; |
| |
| ctx = cm_get_context(security_state); |
| assert(ctx != NULL); |
| |
| el2_sysregs_ctx = get_el2_sysregs_ctx(ctx); |
| |
| el2_sysregs_context_save_common(el2_sysregs_ctx); |
| el2_sysregs_context_save_gic(el2_sysregs_ctx); |
| |
| if (is_feat_mte2_supported()) { |
| write_el2_ctx_mte2(el2_sysregs_ctx, tfsr_el2, read_tfsr_el2()); |
| } |
| |
| if (is_feat_mpam_supported()) { |
| el2_sysregs_context_save_mpam(el2_sysregs_ctx); |
| } |
| |
| if (is_feat_fgt_supported()) { |
| el2_sysregs_context_save_fgt(el2_sysregs_ctx); |
| } |
| |
| if (is_feat_fgt2_supported()) { |
| el2_sysregs_context_save_fgt2(el2_sysregs_ctx); |
| } |
| |
| if (is_feat_ecv_v2_supported()) { |
| write_el2_ctx_ecv(el2_sysregs_ctx, cntpoff_el2, read_cntpoff_el2()); |
| } |
| |
| if (is_feat_vhe_supported()) { |
| write_el2_ctx_vhe(el2_sysregs_ctx, contextidr_el2, |
| read_contextidr_el2()); |
| write_el2_ctx_vhe(el2_sysregs_ctx, ttbr1_el2, read_ttbr1_el2()); |
| } |
| |
| if (is_feat_ras_supported()) { |
| write_el2_ctx_ras(el2_sysregs_ctx, vdisr_el2, read_vdisr_el2()); |
| write_el2_ctx_ras(el2_sysregs_ctx, vsesr_el2, read_vsesr_el2()); |
| } |
| |
| if (is_feat_nv2_supported()) { |
| write_el2_ctx_neve(el2_sysregs_ctx, vncr_el2, read_vncr_el2()); |
| } |
| |
| if (is_feat_trf_supported()) { |
| write_el2_ctx_trf(el2_sysregs_ctx, trfcr_el2, read_trfcr_el2()); |
| } |
| |
| if (is_feat_csv2_2_supported()) { |
| write_el2_ctx_csv2_2(el2_sysregs_ctx, scxtnum_el2, |
| read_scxtnum_el2()); |
| } |
| |
| if (is_feat_hcx_supported()) { |
| write_el2_ctx_hcx(el2_sysregs_ctx, hcrx_el2, read_hcrx_el2()); |
| } |
| |
| if (is_feat_tcr2_supported()) { |
| write_el2_ctx_tcr2(el2_sysregs_ctx, tcr2_el2, read_tcr2_el2()); |
| } |
| |
| if (is_feat_sxpie_supported()) { |
| write_el2_ctx_sxpie(el2_sysregs_ctx, pire0_el2, read_pire0_el2()); |
| write_el2_ctx_sxpie(el2_sysregs_ctx, pir_el2, read_pir_el2()); |
| } |
| |
| if (is_feat_sxpoe_supported()) { |
| write_el2_ctx_sxpoe(el2_sysregs_ctx, por_el2, read_por_el2()); |
| } |
| |
| if (is_feat_s2pie_supported()) { |
| write_el2_ctx_s2pie(el2_sysregs_ctx, s2pir_el2, read_s2pir_el2()); |
| } |
| |
| if (is_feat_gcs_supported()) { |
| write_el2_ctx_gcs(el2_sysregs_ctx, gcscr_el2, read_gcscr_el2()); |
| write_el2_ctx_gcs(el2_sysregs_ctx, gcspr_el2, read_gcspr_el2()); |
| } |
| } |
| |
| /******************************************************************************* |
| * Restore EL2 sysreg context |
| ******************************************************************************/ |
| void cm_el2_sysregs_context_restore(uint32_t security_state) |
| { |
| cpu_context_t *ctx; |
| el2_sysregs_t *el2_sysregs_ctx; |
| |
| ctx = cm_get_context(security_state); |
| assert(ctx != NULL); |
| |
| el2_sysregs_ctx = get_el2_sysregs_ctx(ctx); |
| |
| el2_sysregs_context_restore_common(el2_sysregs_ctx); |
| el2_sysregs_context_restore_gic(el2_sysregs_ctx); |
| |
| if (is_feat_mte2_supported()) { |
| write_tfsr_el2(read_el2_ctx_mte2(el2_sysregs_ctx, tfsr_el2)); |
| } |
| |
| if (is_feat_mpam_supported()) { |
| el2_sysregs_context_restore_mpam(el2_sysregs_ctx); |
| } |
| |
| if (is_feat_fgt_supported()) { |
| el2_sysregs_context_restore_fgt(el2_sysregs_ctx); |
| } |
| |
| if (is_feat_fgt2_supported()) { |
| el2_sysregs_context_restore_fgt2(el2_sysregs_ctx); |
| } |
| |
| if (is_feat_ecv_v2_supported()) { |
| write_cntpoff_el2(read_el2_ctx_ecv(el2_sysregs_ctx, cntpoff_el2)); |
| } |
| |
| if (is_feat_vhe_supported()) { |
| write_contextidr_el2(read_el2_ctx_vhe(el2_sysregs_ctx, |
| contextidr_el2)); |
| write_ttbr1_el2(read_el2_ctx_vhe(el2_sysregs_ctx, ttbr1_el2)); |
| } |
| |
| if (is_feat_ras_supported()) { |
| write_vdisr_el2(read_el2_ctx_ras(el2_sysregs_ctx, vdisr_el2)); |
| write_vsesr_el2(read_el2_ctx_ras(el2_sysregs_ctx, vsesr_el2)); |
| } |
| |
| if (is_feat_nv2_supported()) { |
| write_vncr_el2(read_el2_ctx_neve(el2_sysregs_ctx, vncr_el2)); |
| } |
| |
| if (is_feat_trf_supported()) { |
| write_trfcr_el2(read_el2_ctx_trf(el2_sysregs_ctx, trfcr_el2)); |
| } |
| |
| if (is_feat_csv2_2_supported()) { |
| write_scxtnum_el2(read_el2_ctx_csv2_2(el2_sysregs_ctx, |
| scxtnum_el2)); |
| } |
| |
| if (is_feat_hcx_supported()) { |
| write_hcrx_el2(read_el2_ctx_hcx(el2_sysregs_ctx, hcrx_el2)); |
| } |
| |
| if (is_feat_tcr2_supported()) { |
| write_tcr2_el2(read_el2_ctx_tcr2(el2_sysregs_ctx, tcr2_el2)); |
| } |
| |
| if (is_feat_sxpie_supported()) { |
| write_pire0_el2(read_el2_ctx_sxpie(el2_sysregs_ctx, pire0_el2)); |
| write_pir_el2(read_el2_ctx_sxpie(el2_sysregs_ctx, pir_el2)); |
| } |
| |
| if (is_feat_sxpoe_supported()) { |
| write_por_el2(read_el2_ctx_sxpoe(el2_sysregs_ctx, por_el2)); |
| } |
| |
| if (is_feat_s2pie_supported()) { |
| write_s2pir_el2(read_el2_ctx_s2pie(el2_sysregs_ctx, s2pir_el2)); |
| } |
| |
| if (is_feat_gcs_supported()) { |
| write_gcscr_el2(read_el2_ctx_gcs(el2_sysregs_ctx, gcscr_el2)); |
| write_gcspr_el2(read_el2_ctx_gcs(el2_sysregs_ctx, gcspr_el2)); |
| } |
| } |
| #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */ |
| |
| #if IMAGE_BL31 |
| /********************************************************************************* |
| * This function allows Architecture features asymmetry among cores. |
| * TF-A assumes that all the cores in the platform has architecture feature parity |
| * and hence the context is setup on different core (e.g. primary sets up the |
| * context for secondary cores).This assumption may not be true for systems where |
| * cores are not conforming to same Arch version or there is CPU Erratum which |
| * requires certain feature to be be disabled only on a given core. |
| * |
| * This function is called on secondary cores to override any disparity in context |
| * setup by primary, this would be called during warmboot path. |
| *********************************************************************************/ |
| void cm_handle_asymmetric_features(void) |
| { |
| cpu_context_t *ctx __maybe_unused = cm_get_context(NON_SECURE); |
| |
| assert(ctx != NULL); |
| |
| #if ENABLE_SPE_FOR_NS == FEAT_STATE_CHECK_ASYMMETRIC |
| if (is_feat_spe_supported()) { |
| spe_enable(ctx); |
| } else { |
| spe_disable(ctx); |
| } |
| #endif |
| |
| #if ERRATA_A520_2938996 || ERRATA_X4_2726228 |
| if (check_if_affected_core() == ERRATA_APPLIES) { |
| if (is_feat_trbe_supported()) { |
| trbe_disable(ctx); |
| } |
| } |
| #endif |
| |
| #if ENABLE_FEAT_TCR2 == FEAT_STATE_CHECK_ASYMMETRIC |
| el3_state_t *el3_state = get_el3state_ctx(ctx); |
| u_register_t spsr = read_ctx_reg(el3_state, CTX_SPSR_EL3); |
| |
| if (is_feat_tcr2_supported() && (GET_RW(spsr) == MODE_RW_64)) { |
| tcr2_enable(ctx); |
| } else { |
| tcr2_disable(ctx); |
| } |
| #endif |
| |
| } |
| #endif |
| |
| /******************************************************************************* |
| * This function is used to exit to Non-secure world. If CTX_INCLUDE_EL2_REGS |
| * is enabled, it restores EL1 and EL2 sysreg contexts instead of directly |
| * updating EL1 and EL2 registers. Otherwise, it calls the generic |
| * cm_prepare_el3_exit function. |
| ******************************************************************************/ |
| void cm_prepare_el3_exit_ns(void) |
| { |
| #if IMAGE_BL31 |
| /* |
| * Check and handle Architecture feature asymmetry among cores. |
| * |
| * In warmboot path secondary cores context is initialized on core which |
| * did CPU_ON SMC call, if there is feature asymmetry in these cores handle |
| * it in this function call. |
| * For Symmetric cores this is an empty function. |
| */ |
| cm_handle_asymmetric_features(); |
| #endif |
| |
| #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) |
| #if ENABLE_ASSERTIONS |
| cpu_context_t *ctx = cm_get_context(NON_SECURE); |
| assert(ctx != NULL); |
| |
| /* Assert that EL2 is used. */ |
| u_register_t scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3); |
| assert(((scr_el3 & SCR_HCE_BIT) != 0UL) && |
| (el_implemented(2U) != EL_IMPL_NONE)); |
| #endif /* ENABLE_ASSERTIONS */ |
| |
| /* Restore EL2 sysreg contexts */ |
| cm_el2_sysregs_context_restore(NON_SECURE); |
| cm_set_next_eret_context(NON_SECURE); |
| #else |
| cm_prepare_el3_exit(NON_SECURE); |
| #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */ |
| } |
| |
| #if ((IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS))) |
| /******************************************************************************* |
| * The next set of six functions are used by runtime services to save and restore |
| * EL1 context on the 'cpu_context' structure for the specified security state. |
| ******************************************************************************/ |
| static void el1_sysregs_context_save(el1_sysregs_t *ctx) |
| { |
| write_el1_ctx_common(ctx, spsr_el1, read_spsr_el1()); |
| write_el1_ctx_common(ctx, elr_el1, read_elr_el1()); |
| |
| #if (!ERRATA_SPECULATIVE_AT) |
| write_el1_ctx_common(ctx, sctlr_el1, read_sctlr_el1()); |
| write_el1_ctx_common(ctx, tcr_el1, read_tcr_el1()); |
| #endif /* (!ERRATA_SPECULATIVE_AT) */ |
| |
| write_el1_ctx_common(ctx, cpacr_el1, read_cpacr_el1()); |
| write_el1_ctx_common(ctx, csselr_el1, read_csselr_el1()); |
| write_el1_ctx_common(ctx, sp_el1, read_sp_el1()); |
| write_el1_ctx_common(ctx, esr_el1, read_esr_el1()); |
| write_el1_ctx_common(ctx, ttbr0_el1, read_ttbr0_el1()); |
| write_el1_ctx_common(ctx, ttbr1_el1, read_ttbr1_el1()); |
| write_el1_ctx_common(ctx, mair_el1, read_mair_el1()); |
| write_el1_ctx_common(ctx, amair_el1, read_amair_el1()); |
| write_el1_ctx_common(ctx, actlr_el1, read_actlr_el1()); |
| write_el1_ctx_common(ctx, tpidr_el1, read_tpidr_el1()); |
| write_el1_ctx_common(ctx, tpidr_el0, read_tpidr_el0()); |
| write_el1_ctx_common(ctx, tpidrro_el0, read_tpidrro_el0()); |
| write_el1_ctx_common(ctx, par_el1, read_par_el1()); |
| write_el1_ctx_common(ctx, far_el1, read_far_el1()); |
| write_el1_ctx_common(ctx, afsr0_el1, read_afsr0_el1()); |
| write_el1_ctx_common(ctx, afsr1_el1, read_afsr1_el1()); |
| write_el1_ctx_common(ctx, contextidr_el1, read_contextidr_el1()); |
| write_el1_ctx_common(ctx, vbar_el1, read_vbar_el1()); |
| write_el1_ctx_common(ctx, mdccint_el1, read_mdccint_el1()); |
| write_el1_ctx_common(ctx, mdscr_el1, read_mdscr_el1()); |
| |
| if (CTX_INCLUDE_AARCH32_REGS) { |
| /* Save Aarch32 registers */ |
| write_el1_ctx_aarch32(ctx, spsr_abt, read_spsr_abt()); |
| write_el1_ctx_aarch32(ctx, spsr_und, read_spsr_und()); |
| write_el1_ctx_aarch32(ctx, spsr_irq, read_spsr_irq()); |
| write_el1_ctx_aarch32(ctx, spsr_fiq, read_spsr_fiq()); |
| write_el1_ctx_aarch32(ctx, dacr32_el2, read_dacr32_el2()); |
| write_el1_ctx_aarch32(ctx, ifsr32_el2, read_ifsr32_el2()); |
| } |
| |
| if (NS_TIMER_SWITCH) { |
| /* Save NS Timer registers */ |
| write_el1_ctx_arch_timer(ctx, cntp_ctl_el0, read_cntp_ctl_el0()); |
| write_el1_ctx_arch_timer(ctx, cntp_cval_el0, read_cntp_cval_el0()); |
| write_el1_ctx_arch_timer(ctx, cntv_ctl_el0, read_cntv_ctl_el0()); |
| write_el1_ctx_arch_timer(ctx, cntv_cval_el0, read_cntv_cval_el0()); |
| write_el1_ctx_arch_timer(ctx, cntkctl_el1, read_cntkctl_el1()); |
| } |
| |
| if (is_feat_mte2_supported()) { |
| write_el1_ctx_mte2(ctx, tfsre0_el1, read_tfsre0_el1()); |
| write_el1_ctx_mte2(ctx, tfsr_el1, read_tfsr_el1()); |
| write_el1_ctx_mte2(ctx, rgsr_el1, read_rgsr_el1()); |
| write_el1_ctx_mte2(ctx, gcr_el1, read_gcr_el1()); |
| } |
| |
| if (is_feat_ras_supported()) { |
| write_el1_ctx_ras(ctx, disr_el1, read_disr_el1()); |
| } |
| |
| if (is_feat_s1pie_supported()) { |
| write_el1_ctx_s1pie(ctx, pire0_el1, read_pire0_el1()); |
| write_el1_ctx_s1pie(ctx, pir_el1, read_pir_el1()); |
| } |
| |
| if (is_feat_s1poe_supported()) { |
| write_el1_ctx_s1poe(ctx, por_el1, read_por_el1()); |
| } |
| |
| if (is_feat_s2poe_supported()) { |
| write_el1_ctx_s2poe(ctx, s2por_el1, read_s2por_el1()); |
| } |
| |
| if (is_feat_tcr2_supported()) { |
| write_el1_ctx_tcr2(ctx, tcr2_el1, read_tcr2_el1()); |
| } |
| |
| if (is_feat_trf_supported()) { |
| write_el1_ctx_trf(ctx, trfcr_el1, read_trfcr_el1()); |
| } |
| |
| if (is_feat_csv2_2_supported()) { |
| write_el1_ctx_csv2_2(ctx, scxtnum_el0, read_scxtnum_el0()); |
| write_el1_ctx_csv2_2(ctx, scxtnum_el1, read_scxtnum_el1()); |
| } |
| |
| if (is_feat_gcs_supported()) { |
| write_el1_ctx_gcs(ctx, gcscr_el1, read_gcscr_el1()); |
| write_el1_ctx_gcs(ctx, gcscre0_el1, read_gcscre0_el1()); |
| write_el1_ctx_gcs(ctx, gcspr_el1, read_gcspr_el1()); |
| write_el1_ctx_gcs(ctx, gcspr_el0, read_gcspr_el0()); |
| } |
| } |
| |
| static void el1_sysregs_context_restore(el1_sysregs_t *ctx) |
| { |
| write_spsr_el1(read_el1_ctx_common(ctx, spsr_el1)); |
| write_elr_el1(read_el1_ctx_common(ctx, elr_el1)); |
| |
| #if (!ERRATA_SPECULATIVE_AT) |
| write_sctlr_el1(read_el1_ctx_common(ctx, sctlr_el1)); |
| write_tcr_el1(read_el1_ctx_common(ctx, tcr_el1)); |
| #endif /* (!ERRATA_SPECULATIVE_AT) */ |
| |
| write_cpacr_el1(read_el1_ctx_common(ctx, cpacr_el1)); |
| write_csselr_el1(read_el1_ctx_common(ctx, csselr_el1)); |
| write_sp_el1(read_el1_ctx_common(ctx, sp_el1)); |
| write_esr_el1(read_el1_ctx_common(ctx, esr_el1)); |
| write_ttbr0_el1(read_el1_ctx_common(ctx, ttbr0_el1)); |
| write_ttbr1_el1(read_el1_ctx_common(ctx, ttbr1_el1)); |
| write_mair_el1(read_el1_ctx_common(ctx, mair_el1)); |
| write_amair_el1(read_el1_ctx_common(ctx, amair_el1)); |
| write_actlr_el1(read_el1_ctx_common(ctx, actlr_el1)); |
| write_tpidr_el1(read_el1_ctx_common(ctx, tpidr_el1)); |
| write_tpidr_el0(read_el1_ctx_common(ctx, tpidr_el0)); |
| write_tpidrro_el0(read_el1_ctx_common(ctx, tpidrro_el0)); |
| write_par_el1(read_el1_ctx_common(ctx, par_el1)); |
| write_far_el1(read_el1_ctx_common(ctx, far_el1)); |
| write_afsr0_el1(read_el1_ctx_common(ctx, afsr0_el1)); |
| write_afsr1_el1(read_el1_ctx_common(ctx, afsr1_el1)); |
| write_contextidr_el1(read_el1_ctx_common(ctx, contextidr_el1)); |
| write_vbar_el1(read_el1_ctx_common(ctx, vbar_el1)); |
| write_mdccint_el1(read_el1_ctx_common(ctx, mdccint_el1)); |
| write_mdscr_el1(read_el1_ctx_common(ctx, mdscr_el1)); |
| |
| if (CTX_INCLUDE_AARCH32_REGS) { |
| /* Restore Aarch32 registers */ |
| write_spsr_abt(read_el1_ctx_aarch32(ctx, spsr_abt)); |
| write_spsr_und(read_el1_ctx_aarch32(ctx, spsr_und)); |
| write_spsr_irq(read_el1_ctx_aarch32(ctx, spsr_irq)); |
| write_spsr_fiq(read_el1_ctx_aarch32(ctx, spsr_fiq)); |
| write_dacr32_el2(read_el1_ctx_aarch32(ctx, dacr32_el2)); |
| write_ifsr32_el2(read_el1_ctx_aarch32(ctx, ifsr32_el2)); |
| } |
| |
| if (NS_TIMER_SWITCH) { |
| /* Restore NS Timer registers */ |
| write_cntp_ctl_el0(read_el1_ctx_arch_timer(ctx, cntp_ctl_el0)); |
| write_cntp_cval_el0(read_el1_ctx_arch_timer(ctx, cntp_cval_el0)); |
| write_cntv_ctl_el0(read_el1_ctx_arch_timer(ctx, cntv_ctl_el0)); |
| write_cntv_cval_el0(read_el1_ctx_arch_timer(ctx, cntv_cval_el0)); |
| write_cntkctl_el1(read_el1_ctx_arch_timer(ctx, cntkctl_el1)); |
| } |
| |
| if (is_feat_mte2_supported()) { |
| write_tfsre0_el1(read_el1_ctx_mte2(ctx, tfsre0_el1)); |
| write_tfsr_el1(read_el1_ctx_mte2(ctx, tfsr_el1)); |
| write_rgsr_el1(read_el1_ctx_mte2(ctx, rgsr_el1)); |
| write_gcr_el1(read_el1_ctx_mte2(ctx, gcr_el1)); |
| } |
| |
| if (is_feat_ras_supported()) { |
| write_disr_el1(read_el1_ctx_ras(ctx, disr_el1)); |
| } |
| |
| if (is_feat_s1pie_supported()) { |
| write_pire0_el1(read_el1_ctx_s1pie(ctx, pire0_el1)); |
| write_pir_el1(read_el1_ctx_s1pie(ctx, pir_el1)); |
| } |
| |
| if (is_feat_s1poe_supported()) { |
| write_por_el1(read_el1_ctx_s1poe(ctx, por_el1)); |
| } |
| |
| if (is_feat_s2poe_supported()) { |
| write_s2por_el1(read_el1_ctx_s2poe(ctx, s2por_el1)); |
| } |
| |
| if (is_feat_tcr2_supported()) { |
| write_tcr2_el1(read_el1_ctx_tcr2(ctx, tcr2_el1)); |
| } |
| |
| if (is_feat_trf_supported()) { |
| write_trfcr_el1(read_el1_ctx_trf(ctx, trfcr_el1)); |
| } |
| |
| if (is_feat_csv2_2_supported()) { |
| write_scxtnum_el0(read_el1_ctx_csv2_2(ctx, scxtnum_el0)); |
| write_scxtnum_el1(read_el1_ctx_csv2_2(ctx, scxtnum_el1)); |
| } |
| |
| if (is_feat_gcs_supported()) { |
| write_gcscr_el1(read_el1_ctx_gcs(ctx, gcscr_el1)); |
| write_gcscre0_el1(read_el1_ctx_gcs(ctx, gcscre0_el1)); |
| write_gcspr_el1(read_el1_ctx_gcs(ctx, gcspr_el1)); |
| write_gcspr_el0(read_el1_ctx_gcs(ctx, gcspr_el0)); |
| } |
| } |
| |
| /******************************************************************************* |
| * The next couple of functions are used by runtime services to save and restore |
| * EL1 context on the 'cpu_context' structure for the specified security state. |
| ******************************************************************************/ |
| void cm_el1_sysregs_context_save(uint32_t security_state) |
| { |
| cpu_context_t *ctx; |
| |
| ctx = cm_get_context(security_state); |
| assert(ctx != NULL); |
| |
| el1_sysregs_context_save(get_el1_sysregs_ctx(ctx)); |
| |
| #if IMAGE_BL31 |
| if (security_state == SECURE) |
| PUBLISH_EVENT(cm_exited_secure_world); |
| else |
| PUBLISH_EVENT(cm_exited_normal_world); |
| #endif |
| } |
| |
| void cm_el1_sysregs_context_restore(uint32_t security_state) |
| { |
| cpu_context_t *ctx; |
| |
| ctx = cm_get_context(security_state); |
| assert(ctx != NULL); |
| |
| el1_sysregs_context_restore(get_el1_sysregs_ctx(ctx)); |
| |
| #if IMAGE_BL31 |
| if (security_state == SECURE) |
| PUBLISH_EVENT(cm_entering_secure_world); |
| else |
| PUBLISH_EVENT(cm_entering_normal_world); |
| #endif |
| } |
| |
| #endif /* ((IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS))) */ |
| |
| /******************************************************************************* |
| * This function populates ELR_EL3 member of 'cpu_context' pertaining to the |
| * given security state with the given entrypoint |
| ******************************************************************************/ |
| void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint) |
| { |
| cpu_context_t *ctx; |
| el3_state_t *state; |
| |
| ctx = cm_get_context(security_state); |
| assert(ctx != NULL); |
| |
| /* Populate EL3 state so that ERET jumps to the correct entry */ |
| state = get_el3state_ctx(ctx); |
| write_ctx_reg(state, CTX_ELR_EL3, entrypoint); |
| } |
| |
| /******************************************************************************* |
| * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context' |
| * pertaining to the given security state |
| ******************************************************************************/ |
| void cm_set_elr_spsr_el3(uint32_t security_state, |
| uintptr_t entrypoint, uint32_t spsr) |
| { |
| cpu_context_t *ctx; |
| el3_state_t *state; |
| |
| ctx = cm_get_context(security_state); |
| assert(ctx != NULL); |
| |
| /* Populate EL3 state so that ERET jumps to the correct entry */ |
| state = get_el3state_ctx(ctx); |
| write_ctx_reg(state, CTX_ELR_EL3, entrypoint); |
| write_ctx_reg(state, CTX_SPSR_EL3, spsr); |
| } |
| |
| /******************************************************************************* |
| * This function updates a single bit in the SCR_EL3 member of the 'cpu_context' |
| * pertaining to the given security state using the value and bit position |
| * specified in the parameters. It preserves all other bits. |
| ******************************************************************************/ |
| void cm_write_scr_el3_bit(uint32_t security_state, |
| uint32_t bit_pos, |
| uint32_t value) |
| { |
| cpu_context_t *ctx; |
| el3_state_t *state; |
| u_register_t scr_el3; |
| |
| ctx = cm_get_context(security_state); |
| assert(ctx != NULL); |
| |
| /* Ensure that the bit position is a valid one */ |
| assert(((1UL << bit_pos) & SCR_VALID_BIT_MASK) != 0U); |
| |
| /* Ensure that the 'value' is only a bit wide */ |
| assert(value <= 1U); |
| |
| /* |
| * Get the SCR_EL3 value from the cpu context, clear the desired bit |
| * and set it to its new value. |
| */ |
| state = get_el3state_ctx(ctx); |
| scr_el3 = read_ctx_reg(state, CTX_SCR_EL3); |
| scr_el3 &= ~(1UL << bit_pos); |
| scr_el3 |= (u_register_t)value << bit_pos; |
| write_ctx_reg(state, CTX_SCR_EL3, scr_el3); |
| } |
| |
| /******************************************************************************* |
| * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the |
| * given security state. |
| ******************************************************************************/ |
| u_register_t cm_get_scr_el3(uint32_t security_state) |
| { |
| cpu_context_t *ctx; |
| el3_state_t *state; |
| |
| ctx = cm_get_context(security_state); |
| assert(ctx != NULL); |
| |
| /* Populate EL3 state so that ERET jumps to the correct entry */ |
| state = get_el3state_ctx(ctx); |
| return read_ctx_reg(state, CTX_SCR_EL3); |
| } |
| |
| /******************************************************************************* |
| * This function is used to program the context that's used for exception |
| * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for |
| * the required security state |
| ******************************************************************************/ |
| void cm_set_next_eret_context(uint32_t security_state) |
| { |
| cpu_context_t *ctx; |
| |
| ctx = cm_get_context(security_state); |
| assert(ctx != NULL); |
| |
| cm_set_next_context(ctx); |
| } |