blob: de5718454cdf840be58f1d2190a11383a5418cf7 [file] [log] [blame]
/*
* Copyright (c) 2017-2021, Arm Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <assert.h>
#include <errno.h>
#include <stdbool.h>
#include <stdint.h>
#include <string.h>
#include <platform_def.h>
#include <arch_features.h>
#include <arch_helpers.h>
#include <common/debug.h>
#include <lib/utils_def.h>
#include <lib/xlat_tables/xlat_tables_defs.h>
#include <lib/xlat_tables/xlat_tables_v2.h>
#include "xlat_tables_private.h"
/* Helper function that cleans the data cache only if it is enabled. */
static inline __attribute__((unused)) void xlat_clean_dcache_range(uintptr_t addr, size_t size)
{
if (is_dcache_enabled())
clean_dcache_range(addr, size);
}
#if PLAT_XLAT_TABLES_DYNAMIC
/*
* The following functions assume that they will be called using subtables only.
* The base table can't be unmapped, so it is not needed to do any special
* handling for it.
*/
/*
* Returns the index of the array corresponding to the specified translation
* table.
*/
static int xlat_table_get_index(const xlat_ctx_t *ctx, const uint64_t *table)
{
for (int i = 0; i < ctx->tables_num; i++)
if (ctx->tables[i] == table)
return i;
/*
* Maybe we were asked to get the index of the base level table, which
* should never happen.
*/
assert(false);
return -1;
}
/* Returns a pointer to an empty translation table. */
static uint64_t *xlat_table_get_empty(const xlat_ctx_t *ctx)
{
for (int i = 0; i < ctx->tables_num; i++)
if (ctx->tables_mapped_regions[i] == 0)
return ctx->tables[i];
return NULL;
}
/* Increments region count for a given table. */
static void xlat_table_inc_regions_count(const xlat_ctx_t *ctx,
const uint64_t *table)
{
int idx = xlat_table_get_index(ctx, table);
ctx->tables_mapped_regions[idx]++;
}
/* Decrements region count for a given table. */
static void xlat_table_dec_regions_count(const xlat_ctx_t *ctx,
const uint64_t *table)
{
int idx = xlat_table_get_index(ctx, table);
ctx->tables_mapped_regions[idx]--;
}
/* Returns 0 if the specified table isn't empty, otherwise 1. */
static bool xlat_table_is_empty(const xlat_ctx_t *ctx, const uint64_t *table)
{
return ctx->tables_mapped_regions[xlat_table_get_index(ctx, table)] == 0;
}
#else /* PLAT_XLAT_TABLES_DYNAMIC */
/* Returns a pointer to the first empty translation table. */
static uint64_t *xlat_table_get_empty(xlat_ctx_t *ctx)
{
assert(ctx->next_table < ctx->tables_num);
return ctx->tables[ctx->next_table++];
}
#endif /* PLAT_XLAT_TABLES_DYNAMIC */
/*
* Returns a block/page table descriptor for the given level and attributes.
*/
uint64_t xlat_desc(const xlat_ctx_t *ctx, uint32_t attr,
unsigned long long addr_pa, unsigned int level)
{
uint64_t desc;
uint32_t mem_type;
uint32_t shareability_type;
/* Make sure that the granularity is fine enough to map this address. */
assert((addr_pa & XLAT_BLOCK_MASK(level)) == 0U);
desc = addr_pa;
/*
* There are different translation table descriptors for level 3 and the
* rest.
*/
desc |= (level == XLAT_TABLE_LEVEL_MAX) ? PAGE_DESC : BLOCK_DESC;
/*
* Always set the access flag, as this library assumes access flag
* faults aren't managed.
*/
desc |= LOWER_ATTRS(ACCESS_FLAG);
/* Determine the physical address space this region belongs to. */
desc |= xlat_arch_get_pas(attr);
/*
* Deduce other fields of the descriptor based on the MT_RW memory
* region attributes.
*/
desc |= ((attr & MT_RW) != 0U) ? LOWER_ATTRS(AP_RW) : LOWER_ATTRS(AP_RO);
/*
* Do not allow unprivileged access when the mapping is for a privileged
* EL. For translation regimes that do not have mappings for access for
* lower exception levels, set AP[2] to AP_NO_ACCESS_UNPRIVILEGED.
*/
if (ctx->xlat_regime == EL1_EL0_REGIME) {
if ((attr & MT_USER) != 0U) {
/* EL0 mapping requested, so we give User access */
desc |= LOWER_ATTRS(AP_ACCESS_UNPRIVILEGED);
} else {
/* EL1 mapping requested, no User access granted */
desc |= LOWER_ATTRS(AP_NO_ACCESS_UNPRIVILEGED);
}
} else {
assert((ctx->xlat_regime == EL2_REGIME) ||
(ctx->xlat_regime == EL3_REGIME));
desc |= LOWER_ATTRS(AP_ONE_VA_RANGE_RES1);
}
/*
* Deduce shareability domain and executability of the memory region
* from the memory type of the attributes (MT_TYPE).
*
* Data accesses to device memory and non-cacheable normal memory are
* coherent for all observers in the system, and correspondingly are
* always treated as being Outer Shareable. Therefore, for these 2 types
* of memory, it is not strictly needed to set the shareability field
* in the translation tables.
*/
mem_type = MT_TYPE(attr);
if (mem_type == MT_DEVICE) {
desc |= LOWER_ATTRS(ATTR_DEVICE_INDEX | OSH);
/*
* Always map device memory as execute-never.
* This is to avoid the possibility of a speculative instruction
* fetch, which could be an issue if this memory region
* corresponds to a read-sensitive peripheral.
*/
desc |= xlat_arch_regime_get_xn_desc(ctx->xlat_regime);
} else { /* Normal memory */
/*
* Always map read-write normal memory as execute-never.
* This library assumes that it is used by software that does
* not self-modify its code, therefore R/W memory is reserved
* for data storage, which must not be executable.
*
* Note that setting the XN bit here is for consistency only.
* The function that enables the MMU sets the SCTLR_ELx.WXN bit,
* which makes any writable memory region to be treated as
* execute-never, regardless of the value of the XN bit in the
* translation table.
*
* For read-only memory, rely on the MT_EXECUTE/MT_EXECUTE_NEVER
* attribute to figure out the value of the XN bit. The actual
* XN bit(s) to set in the descriptor depends on the context's
* translation regime and the policy applied in
* xlat_arch_regime_get_xn_desc().
*/
if (((attr & MT_RW) != 0U) || ((attr & MT_EXECUTE_NEVER) != 0U)) {
desc |= xlat_arch_regime_get_xn_desc(ctx->xlat_regime);
}
shareability_type = MT_SHAREABILITY(attr);
if (mem_type == MT_MEMORY) {
desc |= LOWER_ATTRS(ATTR_IWBWA_OWBWA_NTR_INDEX);
if (shareability_type == MT_SHAREABILITY_NSH) {
desc |= LOWER_ATTRS(NSH);
} else if (shareability_type == MT_SHAREABILITY_OSH) {
desc |= LOWER_ATTRS(OSH);
} else {
desc |= LOWER_ATTRS(ISH);
}
/* Check if Branch Target Identification is enabled */
#if ENABLE_BTI
/* Set GP bit for block and page code entries
* if BTI mechanism is implemented.
*/
if (is_armv8_5_bti_present() &&
((attr & (MT_TYPE_MASK | MT_RW |
MT_EXECUTE_NEVER)) == MT_CODE)) {
desc |= GP;
}
#endif
} else {
assert(mem_type == MT_NON_CACHEABLE);
desc |= LOWER_ATTRS(ATTR_NON_CACHEABLE_INDEX | OSH);
}
}
return desc;
}
/*
* Enumeration of actions that can be made when mapping table entries depending
* on the previous value in that entry and information about the region being
* mapped.
*/
typedef enum {
/* Do nothing */
ACTION_NONE,
/* Write a block (or page, if in level 3) entry. */
ACTION_WRITE_BLOCK_ENTRY,
/*
* Create a new table and write a table entry pointing to it. Recurse
* into it for further processing.
*/
ACTION_CREATE_NEW_TABLE,
/*
* There is a table descriptor in this entry, read it and recurse into
* that table for further processing.
*/
ACTION_RECURSE_INTO_TABLE,
} action_t;
/*
* Function that returns the first VA of the table affected by the specified
* mmap region.
*/
static uintptr_t xlat_tables_find_start_va(mmap_region_t *mm,
const uintptr_t table_base_va,
const unsigned int level)
{
uintptr_t table_idx_va;
if (mm->base_va > table_base_va) {
/* Find the first index of the table affected by the region. */
table_idx_va = mm->base_va & ~XLAT_BLOCK_MASK(level);
} else {
/* Start from the beginning of the table. */
table_idx_va = table_base_va;
}
return table_idx_va;
}
/*
* Function that returns table index for the given VA and level arguments.
*/
static inline unsigned int xlat_tables_va_to_index(const uintptr_t table_base_va,
const uintptr_t va,
const unsigned int level)
{
return (unsigned int)((va - table_base_va) >> XLAT_ADDR_SHIFT(level));
}
#if PLAT_XLAT_TABLES_DYNAMIC
/*
* From the given arguments, it decides which action to take when unmapping the
* specified region.
*/
static action_t xlat_tables_unmap_region_action(const mmap_region_t *mm,
const uintptr_t table_idx_va, const uintptr_t table_idx_end_va,
const unsigned int level, const uint64_t desc_type)
{
action_t action;
uintptr_t region_end_va = mm->base_va + mm->size - 1U;
if ((mm->base_va <= table_idx_va) &&
(region_end_va >= table_idx_end_va)) {
/* Region covers all block */
if (level == 3U) {
/*
* Last level, only page descriptors allowed,
* erase it.
*/
assert(desc_type == PAGE_DESC);
action = ACTION_WRITE_BLOCK_ENTRY;
} else {
/*
* Other levels can have table descriptors. If
* so, recurse into it and erase descriptors
* inside it as needed. If there is a block
* descriptor, just erase it. If an invalid
* descriptor is found, this table isn't
* actually mapped, which shouldn't happen.
*/
if (desc_type == TABLE_DESC) {
action = ACTION_RECURSE_INTO_TABLE;
} else {
assert(desc_type == BLOCK_DESC);
action = ACTION_WRITE_BLOCK_ENTRY;
}
}
} else if ((mm->base_va <= table_idx_end_va) ||
(region_end_va >= table_idx_va)) {
/*
* Region partially covers block.
*
* It can't happen in level 3.
*
* There must be a table descriptor here, if not there
* was a problem when mapping the region.
*/
assert(level < 3U);
assert(desc_type == TABLE_DESC);
action = ACTION_RECURSE_INTO_TABLE;
} else {
/* The region doesn't cover the block at all */
action = ACTION_NONE;
}
return action;
}
/*
* Recursive function that writes to the translation tables and unmaps the
* specified region.
*/
static void xlat_tables_unmap_region(xlat_ctx_t *ctx, mmap_region_t *mm,
const uintptr_t table_base_va,
uint64_t *const table_base,
const unsigned int table_entries,
const unsigned int level)
{
assert((level >= ctx->base_level) && (level <= XLAT_TABLE_LEVEL_MAX));
uint64_t *subtable;
uint64_t desc;
uintptr_t table_idx_va;
uintptr_t table_idx_end_va; /* End VA of this entry */
uintptr_t region_end_va = mm->base_va + mm->size - 1U;
unsigned int table_idx;
table_idx_va = xlat_tables_find_start_va(mm, table_base_va, level);
table_idx = xlat_tables_va_to_index(table_base_va, table_idx_va, level);
while (table_idx < table_entries) {
table_idx_end_va = table_idx_va + XLAT_BLOCK_SIZE(level) - 1U;
desc = table_base[table_idx];
uint64_t desc_type = desc & DESC_MASK;
action_t action = xlat_tables_unmap_region_action(mm,
table_idx_va, table_idx_end_va, level,
desc_type);
if (action == ACTION_WRITE_BLOCK_ENTRY) {
table_base[table_idx] = INVALID_DESC;
xlat_arch_tlbi_va(table_idx_va, ctx->xlat_regime);
} else if (action == ACTION_RECURSE_INTO_TABLE) {
subtable = (uint64_t *)(uintptr_t)(desc & TABLE_ADDR_MASK);
/* Recurse to write into subtable */
xlat_tables_unmap_region(ctx, mm, table_idx_va,
subtable, XLAT_TABLE_ENTRIES,
level + 1U);
#if !(HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY)
xlat_clean_dcache_range((uintptr_t)subtable,
XLAT_TABLE_ENTRIES * sizeof(uint64_t));
#endif
/*
* If the subtable is now empty, remove its reference.
*/
if (xlat_table_is_empty(ctx, subtable)) {
table_base[table_idx] = INVALID_DESC;
xlat_arch_tlbi_va(table_idx_va,
ctx->xlat_regime);
}
} else {
assert(action == ACTION_NONE);
}
table_idx++;
table_idx_va += XLAT_BLOCK_SIZE(level);
/* If reached the end of the region, exit */
if (region_end_va <= table_idx_va)
break;
}
if (level > ctx->base_level)
xlat_table_dec_regions_count(ctx, table_base);
}
#endif /* PLAT_XLAT_TABLES_DYNAMIC */
/*
* From the given arguments, it decides which action to take when mapping the
* specified region.
*/
static action_t xlat_tables_map_region_action(const mmap_region_t *mm,
unsigned int desc_type, unsigned long long dest_pa,
uintptr_t table_entry_base_va, unsigned int level)
{
uintptr_t mm_end_va = mm->base_va + mm->size - 1U;
uintptr_t table_entry_end_va =
table_entry_base_va + XLAT_BLOCK_SIZE(level) - 1U;
/*
* The descriptor types allowed depend on the current table level.
*/
if ((mm->base_va <= table_entry_base_va) &&
(mm_end_va >= table_entry_end_va)) {
/*
* Table entry is covered by region
* --------------------------------
*
* This means that this table entry can describe the whole
* translation with this granularity in principle.
*/
if (level == 3U) {
/*
* Last level, only page descriptors are allowed.
*/
if (desc_type == PAGE_DESC) {
/*
* There's another region mapped here, don't
* overwrite.
*/
return ACTION_NONE;
} else {
assert(desc_type == INVALID_DESC);
return ACTION_WRITE_BLOCK_ENTRY;
}
} else {
/*
* Other levels. Table descriptors are allowed. Block
* descriptors too, but they have some limitations.
*/
if (desc_type == TABLE_DESC) {
/* There's already a table, recurse into it. */
return ACTION_RECURSE_INTO_TABLE;
} else if (desc_type == INVALID_DESC) {
/*
* There's nothing mapped here, create a new
* entry.
*
* Check if the destination granularity allows
* us to use a block descriptor or we need a
* finer table for it.
*
* Also, check if the current level allows block
* descriptors. If not, create a table instead.
*/
if (((dest_pa & XLAT_BLOCK_MASK(level)) != 0U)
|| (level < MIN_LVL_BLOCK_DESC) ||
(mm->granularity < XLAT_BLOCK_SIZE(level)))
return ACTION_CREATE_NEW_TABLE;
else
return ACTION_WRITE_BLOCK_ENTRY;
} else {
/*
* There's another region mapped here, don't
* overwrite.
*/
assert(desc_type == BLOCK_DESC);
return ACTION_NONE;
}
}
} else if ((mm->base_va <= table_entry_end_va) ||
(mm_end_va >= table_entry_base_va)) {
/*
* Region partially covers table entry
* -----------------------------------
*
* This means that this table entry can't describe the whole
* translation, a finer table is needed.
* There cannot be partial block overlaps in level 3. If that
* happens, some of the preliminary checks when adding the
* mmap region failed to detect that PA and VA must at least be
* aligned to PAGE_SIZE.
*/
assert(level < 3U);
if (desc_type == INVALID_DESC) {
/*
* The block is not fully covered by the region. Create
* a new table, recurse into it and try to map the
* region with finer granularity.
*/
return ACTION_CREATE_NEW_TABLE;
} else {
assert(desc_type == TABLE_DESC);
/*
* The block is not fully covered by the region, but
* there is already a table here. Recurse into it and
* try to map with finer granularity.
*
* PAGE_DESC for level 3 has the same value as
* TABLE_DESC, but this code can't run on a level 3
* table because there can't be overlaps in level 3.
*/
return ACTION_RECURSE_INTO_TABLE;
}
} else {
/*
* This table entry is outside of the region specified in the
* arguments, don't write anything to it.
*/
return ACTION_NONE;
}
}
/*
* Recursive function that writes to the translation tables and maps the
* specified region. On success, it returns the VA of the last byte that was
* successfully mapped. On error, it returns the VA of the next entry that
* should have been mapped.
*/
static uintptr_t xlat_tables_map_region(xlat_ctx_t *ctx, mmap_region_t *mm,
uintptr_t table_base_va,
uint64_t *const table_base,
unsigned int table_entries,
unsigned int level)
{
assert((level >= ctx->base_level) && (level <= XLAT_TABLE_LEVEL_MAX));
uintptr_t mm_end_va = mm->base_va + mm->size - 1U;
uintptr_t table_idx_va;
unsigned long long table_idx_pa;
uint64_t *subtable;
uint64_t desc;
unsigned int table_idx;
table_idx_va = xlat_tables_find_start_va(mm, table_base_va, level);
table_idx = xlat_tables_va_to_index(table_base_va, table_idx_va, level);
#if PLAT_XLAT_TABLES_DYNAMIC
if (level > ctx->base_level)
xlat_table_inc_regions_count(ctx, table_base);
#endif
while (table_idx < table_entries) {
desc = table_base[table_idx];
table_idx_pa = mm->base_pa + table_idx_va - mm->base_va;
action_t action = xlat_tables_map_region_action(mm,
(uint32_t)(desc & DESC_MASK), table_idx_pa,
table_idx_va, level);
if (action == ACTION_WRITE_BLOCK_ENTRY) {
table_base[table_idx] =
xlat_desc(ctx, (uint32_t)mm->attr, table_idx_pa,
level);
} else if (action == ACTION_CREATE_NEW_TABLE) {
uintptr_t end_va;
subtable = xlat_table_get_empty(ctx);
if (subtable == NULL) {
/* Not enough free tables to map this region */
return table_idx_va;
}
/* Point to new subtable from this one. */
table_base[table_idx] =
TABLE_DESC | (uintptr_t)subtable;
/* Recurse to write into subtable */
end_va = xlat_tables_map_region(ctx, mm, table_idx_va,
subtable, XLAT_TABLE_ENTRIES,
level + 1U);
#if !(HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY)
xlat_clean_dcache_range((uintptr_t)subtable,
XLAT_TABLE_ENTRIES * sizeof(uint64_t));
#endif
if (end_va !=
(table_idx_va + XLAT_BLOCK_SIZE(level) - 1U))
return end_va;
} else if (action == ACTION_RECURSE_INTO_TABLE) {
uintptr_t end_va;
subtable = (uint64_t *)(uintptr_t)(desc & TABLE_ADDR_MASK);
/* Recurse to write into subtable */
end_va = xlat_tables_map_region(ctx, mm, table_idx_va,
subtable, XLAT_TABLE_ENTRIES,
level + 1U);
#if !(HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY)
xlat_clean_dcache_range((uintptr_t)subtable,
XLAT_TABLE_ENTRIES * sizeof(uint64_t));
#endif
if (end_va !=
(table_idx_va + XLAT_BLOCK_SIZE(level) - 1U))
return end_va;
} else {
assert(action == ACTION_NONE);
}
table_idx++;
table_idx_va += XLAT_BLOCK_SIZE(level);
/* If reached the end of the region, exit */
if (mm_end_va <= table_idx_va)
break;
}
return table_idx_va - 1U;
}
/*
* Function that verifies that a region can be mapped.
* Returns:
* 0: Success, the mapping is allowed.
* EINVAL: Invalid values were used as arguments.
* ERANGE: The memory limits were surpassed.
* ENOMEM: There is not enough memory in the mmap array.
* EPERM: Region overlaps another one in an invalid way.
*/
static int mmap_add_region_check(const xlat_ctx_t *ctx, const mmap_region_t *mm)
{
unsigned long long base_pa = mm->base_pa;
uintptr_t base_va = mm->base_va;
size_t size = mm->size;
size_t granularity = mm->granularity;
unsigned long long end_pa = base_pa + size - 1U;
uintptr_t end_va = base_va + size - 1U;
if (!IS_PAGE_ALIGNED(base_pa) || !IS_PAGE_ALIGNED(base_va) ||
!IS_PAGE_ALIGNED(size))
return -EINVAL;
if ((granularity != XLAT_BLOCK_SIZE(1U)) &&
(granularity != XLAT_BLOCK_SIZE(2U)) &&
(granularity != XLAT_BLOCK_SIZE(3U))) {
return -EINVAL;
}
/* Check for overflows */
if ((base_pa > end_pa) || (base_va > end_va))
return -ERANGE;
if (end_va > ctx->va_max_address)
return -ERANGE;
if (end_pa > ctx->pa_max_address)
return -ERANGE;
/* Check that there is space in the ctx->mmap array */
if (ctx->mmap[ctx->mmap_num - 1].size != 0U)
return -ENOMEM;
/* Check for PAs and VAs overlaps with all other regions */
for (const mmap_region_t *mm_cursor = ctx->mmap;
mm_cursor->size != 0U; ++mm_cursor) {
uintptr_t mm_cursor_end_va = mm_cursor->base_va
+ mm_cursor->size - 1U;
/*
* Check if one of the regions is completely inside the other
* one.
*/
bool fully_overlapped_va =
((base_va >= mm_cursor->base_va) &&
(end_va <= mm_cursor_end_va)) ||
((mm_cursor->base_va >= base_va) &&
(mm_cursor_end_va <= end_va));
/*
* Full VA overlaps are only allowed if both regions are
* identity mapped (zero offset) or have the same VA to PA
* offset. Also, make sure that it's not the exact same area.
* This can only be done with static regions.
*/
if (fully_overlapped_va) {
#if PLAT_XLAT_TABLES_DYNAMIC
if (((mm->attr & MT_DYNAMIC) != 0U) ||
((mm_cursor->attr & MT_DYNAMIC) != 0U))
return -EPERM;
#endif /* PLAT_XLAT_TABLES_DYNAMIC */
if ((mm_cursor->base_va - mm_cursor->base_pa) !=
(base_va - base_pa))
return -EPERM;
if ((base_va == mm_cursor->base_va) &&
(size == mm_cursor->size))
return -EPERM;
} else {
/*
* If the regions do not have fully overlapping VAs,
* then they must have fully separated VAs and PAs.
* Partial overlaps are not allowed
*/
unsigned long long mm_cursor_end_pa =
mm_cursor->base_pa + mm_cursor->size - 1U;
bool separated_pa = (end_pa < mm_cursor->base_pa) ||
(base_pa > mm_cursor_end_pa);
bool separated_va = (end_va < mm_cursor->base_va) ||
(base_va > mm_cursor_end_va);
if (!separated_va || !separated_pa)
return -EPERM;
}
}
return 0;
}
void mmap_add_region_ctx(xlat_ctx_t *ctx, const mmap_region_t *mm)
{
mmap_region_t *mm_cursor = ctx->mmap, *mm_destination;
const mmap_region_t *mm_end = ctx->mmap + ctx->mmap_num;
const mmap_region_t *mm_last;
unsigned long long end_pa = mm->base_pa + mm->size - 1U;
uintptr_t end_va = mm->base_va + mm->size - 1U;
int ret;
/* Ignore empty regions */
if (mm->size == 0U)
return;
/* Static regions must be added before initializing the xlat tables. */
assert(!ctx->initialized);
ret = mmap_add_region_check(ctx, mm);
if (ret != 0) {
ERROR("mmap_add_region_check() failed. error %d\n", ret);
assert(false);
return;
}
/*
* Find correct place in mmap to insert new region.
*
* 1 - Lower region VA end first.
* 2 - Smaller region size first.
*
* VA 0 0xFF
*
* 1st |------|
* 2nd |------------|
* 3rd |------|
* 4th |---|
* 5th |---|
* 6th |----------|
* 7th |-------------------------------------|
*
* This is required for overlapping regions only. It simplifies adding
* regions with the loop in xlat_tables_init_internal because the outer
* ones won't overwrite block or page descriptors of regions added
* previously.
*
* Overlapping is only allowed for static regions.
*/
while (((mm_cursor->base_va + mm_cursor->size - 1U) < end_va)
&& (mm_cursor->size != 0U)) {
++mm_cursor;
}
while (((mm_cursor->base_va + mm_cursor->size - 1U) == end_va) &&
(mm_cursor->size != 0U) && (mm_cursor->size < mm->size)) {
++mm_cursor;
}
/*
* Find the last entry marker in the mmap
*/
mm_last = ctx->mmap;
while ((mm_last->size != 0U) && (mm_last < mm_end)) {
++mm_last;
}
/*
* Check if we have enough space in the memory mapping table.
* This shouldn't happen as we have checked in mmap_add_region_check
* that there is free space.
*/
assert(mm_last->size == 0U);
/* Make room for new region by moving other regions up by one place */
mm_destination = mm_cursor + 1;
(void)memmove(mm_destination, mm_cursor,
(uintptr_t)mm_last - (uintptr_t)mm_cursor);
/*
* Check we haven't lost the empty sentinel from the end of the array.
* This shouldn't happen as we have checked in mmap_add_region_check
* that there is free space.
*/
assert(mm_end->size == 0U);
*mm_cursor = *mm;
if (end_pa > ctx->max_pa)
ctx->max_pa = end_pa;
if (end_va > ctx->max_va)
ctx->max_va = end_va;
}
/*
* Determine the table level closest to the initial lookup level that
* can describe this translation. Then, align base VA to the next block
* at the determined level.
*/
static void mmap_alloc_va_align_ctx(xlat_ctx_t *ctx, mmap_region_t *mm)
{
/*
* By or'ing the size and base PA the alignment will be the one
* corresponding to the smallest boundary of the two of them.
*
* There are three different cases. For example (for 4 KiB page size):
*
* +--------------+------------------++--------------+
* | PA alignment | Size multiple of || VA alignment |
* +--------------+------------------++--------------+
* | 2 MiB | 2 MiB || 2 MiB | (1)
* | 2 MiB | 4 KiB || 4 KiB | (2)
* | 4 KiB | 2 MiB || 4 KiB | (3)
* +--------------+------------------++--------------+
*
* - In (1), it is possible to take advantage of the alignment of the PA
* and the size of the region to use a level 2 translation table
* instead of a level 3 one.
*
* - In (2), the size is smaller than a block entry of level 2, so it is
* needed to use a level 3 table to describe the region or the library
* will map more memory than the desired one.
*
* - In (3), even though the region has the size of one level 2 block
* entry, it isn't possible to describe the translation with a level 2
* block entry because of the alignment of the base PA.
*
* Only bits 47:21 of a level 2 block descriptor are used by the MMU,
* bits 20:0 of the resulting address are 0 in this case. Because of
* this, the PA generated as result of this translation is aligned to
* 2 MiB. The PA that was requested to be mapped is aligned to 4 KiB,
* though, which means that the resulting translation is incorrect.
* The only way to prevent this is by using a finer granularity.
*/
unsigned long long align_check;
align_check = mm->base_pa | (unsigned long long)mm->size;
/*
* Assume it is always aligned to level 3. There's no need to check that
* level because its block size is PAGE_SIZE. The checks to verify that
* the addresses and size are aligned to PAGE_SIZE are inside
* mmap_add_region.
*/
for (unsigned int level = ctx->base_level; level <= 2U; ++level) {
if ((align_check & XLAT_BLOCK_MASK(level)) != 0U)
continue;
mm->base_va = round_up(mm->base_va, XLAT_BLOCK_SIZE(level));
return;
}
}
void mmap_add_region_alloc_va_ctx(xlat_ctx_t *ctx, mmap_region_t *mm)
{
mm->base_va = ctx->max_va + 1UL;
assert(mm->size > 0U);
mmap_alloc_va_align_ctx(ctx, mm);
/* Detect overflows. More checks are done in mmap_add_region_check(). */
assert(mm->base_va > ctx->max_va);
mmap_add_region_ctx(ctx, mm);
}
void mmap_add_ctx(xlat_ctx_t *ctx, const mmap_region_t *mm)
{
const mmap_region_t *mm_cursor = mm;
while (mm_cursor->granularity != 0U) {
mmap_add_region_ctx(ctx, mm_cursor);
mm_cursor++;
}
}
#if PLAT_XLAT_TABLES_DYNAMIC
int mmap_add_dynamic_region_ctx(xlat_ctx_t *ctx, mmap_region_t *mm)
{
mmap_region_t *mm_cursor = ctx->mmap;
const mmap_region_t *mm_last = mm_cursor + ctx->mmap_num;
unsigned long long end_pa = mm->base_pa + mm->size - 1U;
uintptr_t end_va = mm->base_va + mm->size - 1U;
int ret;
/* Nothing to do */
if (mm->size == 0U)
return 0;
/* Now this region is a dynamic one */
mm->attr |= MT_DYNAMIC;
ret = mmap_add_region_check(ctx, mm);
if (ret != 0)
return ret;
/*
* Find the adequate entry in the mmap array in the same way done for
* static regions in mmap_add_region_ctx().
*/
while (((mm_cursor->base_va + mm_cursor->size - 1U) < end_va)
&& (mm_cursor->size != 0U)) {
++mm_cursor;
}
while (((mm_cursor->base_va + mm_cursor->size - 1U) == end_va) &&
(mm_cursor->size != 0U) && (mm_cursor->size < mm->size)) {
++mm_cursor;
}
/* Make room for new region by moving other regions up by one place */
(void)memmove(mm_cursor + 1U, mm_cursor,
(uintptr_t)mm_last - (uintptr_t)mm_cursor);
/*
* Check we haven't lost the empty sentinal from the end of the array.
* This shouldn't happen as we have checked in mmap_add_region_check
* that there is free space.
*/
assert(mm_last->size == 0U);
*mm_cursor = *mm;
/*
* Update the translation tables if the xlat tables are initialized. If
* not, this region will be mapped when they are initialized.
*/
if (ctx->initialized) {
end_va = xlat_tables_map_region(ctx, mm_cursor,
0U, ctx->base_table, ctx->base_table_entries,
ctx->base_level);
#if !(HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY)
xlat_clean_dcache_range((uintptr_t)ctx->base_table,
ctx->base_table_entries * sizeof(uint64_t));
#endif
/* Failed to map, remove mmap entry, unmap and return error. */
if (end_va != (mm_cursor->base_va + mm_cursor->size - 1U)) {
(void)memmove(mm_cursor, mm_cursor + 1U,
(uintptr_t)mm_last - (uintptr_t)mm_cursor);
/*
* Check if the mapping function actually managed to map
* anything. If not, just return now.
*/
if (mm->base_va >= end_va)
return -ENOMEM;
/*
* Something went wrong after mapping some table
* entries, undo every change done up to this point.
*/
mmap_region_t unmap_mm = {
.base_pa = 0U,
.base_va = mm->base_va,
.size = end_va - mm->base_va,
.attr = 0U
};
xlat_tables_unmap_region(ctx, &unmap_mm, 0U,
ctx->base_table, ctx->base_table_entries,
ctx->base_level);
#if !(HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY)
xlat_clean_dcache_range((uintptr_t)ctx->base_table,
ctx->base_table_entries * sizeof(uint64_t));
#endif
return -ENOMEM;
}
/*
* Make sure that all entries are written to the memory. There
* is no need to invalidate entries when mapping dynamic regions
* because new table/block/page descriptors only replace old
* invalid descriptors, that aren't TLB cached.
*/
dsbishst();
}
if (end_pa > ctx->max_pa)
ctx->max_pa = end_pa;
if (end_va > ctx->max_va)
ctx->max_va = end_va;
return 0;
}
int mmap_add_dynamic_region_alloc_va_ctx(xlat_ctx_t *ctx, mmap_region_t *mm)
{
mm->base_va = ctx->max_va + 1UL;
if (mm->size == 0U)
return 0;
mmap_alloc_va_align_ctx(ctx, mm);
/* Detect overflows. More checks are done in mmap_add_region_check(). */
if (mm->base_va < ctx->max_va) {
return -ENOMEM;
}
return mmap_add_dynamic_region_ctx(ctx, mm);
}
/*
* Removes the region with given base Virtual Address and size from the given
* context.
*
* Returns:
* 0: Success.
* EINVAL: Invalid values were used as arguments (region not found).
* EPERM: Tried to remove a static region.
*/
int mmap_remove_dynamic_region_ctx(xlat_ctx_t *ctx, uintptr_t base_va,
size_t size)
{
mmap_region_t *mm = ctx->mmap;
const mmap_region_t *mm_last = mm + ctx->mmap_num;
int update_max_va_needed = 0;
int update_max_pa_needed = 0;
/* Check sanity of mmap array. */
assert(mm[ctx->mmap_num].size == 0U);
while (mm->size != 0U) {
if ((mm->base_va == base_va) && (mm->size == size))
break;
++mm;
}
/* Check that the region was found */
if (mm->size == 0U)
return -EINVAL;
/* If the region is static it can't be removed */
if ((mm->attr & MT_DYNAMIC) == 0U)
return -EPERM;
/* Check if this region is using the top VAs or PAs. */
if ((mm->base_va + mm->size - 1U) == ctx->max_va)
update_max_va_needed = 1;
if ((mm->base_pa + mm->size - 1U) == ctx->max_pa)
update_max_pa_needed = 1;
/* Update the translation tables if needed */
if (ctx->initialized) {
xlat_tables_unmap_region(ctx, mm, 0U, ctx->base_table,
ctx->base_table_entries,
ctx->base_level);
#if !(HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY)
xlat_clean_dcache_range((uintptr_t)ctx->base_table,
ctx->base_table_entries * sizeof(uint64_t));
#endif
xlat_arch_tlbi_va_sync();
}
/* Remove this region by moving the rest down by one place. */
(void)memmove(mm, mm + 1U, (uintptr_t)mm_last - (uintptr_t)mm);
/* Check if we need to update the max VAs and PAs */
if (update_max_va_needed == 1) {
ctx->max_va = 0U;
mm = ctx->mmap;
while (mm->size != 0U) {
if ((mm->base_va + mm->size - 1U) > ctx->max_va)
ctx->max_va = mm->base_va + mm->size - 1U;
++mm;
}
}
if (update_max_pa_needed == 1) {
ctx->max_pa = 0U;
mm = ctx->mmap;
while (mm->size != 0U) {
if ((mm->base_pa + mm->size - 1U) > ctx->max_pa)
ctx->max_pa = mm->base_pa + mm->size - 1U;
++mm;
}
}
return 0;
}
void xlat_setup_dynamic_ctx(xlat_ctx_t *ctx, unsigned long long pa_max,
uintptr_t va_max, struct mmap_region *mmap,
unsigned int mmap_num, uint64_t **tables,
unsigned int tables_num, uint64_t *base_table,
int xlat_regime, int *mapped_regions)
{
ctx->xlat_regime = xlat_regime;
ctx->pa_max_address = pa_max;
ctx->va_max_address = va_max;
ctx->mmap = mmap;
ctx->mmap_num = mmap_num;
memset(ctx->mmap, 0, sizeof(struct mmap_region) * mmap_num);
ctx->tables = (void *) tables;
ctx->tables_num = tables_num;
uintptr_t va_space_size = va_max + 1;
ctx->base_level = GET_XLAT_TABLE_LEVEL_BASE(va_space_size);
ctx->base_table = base_table;
ctx->base_table_entries = GET_NUM_BASE_LEVEL_ENTRIES(va_space_size);
ctx->tables_mapped_regions = mapped_regions;
ctx->max_pa = 0;
ctx->max_va = 0;
ctx->initialized = 0;
}
#endif /* PLAT_XLAT_TABLES_DYNAMIC */
void __init init_xlat_tables_ctx(xlat_ctx_t *ctx)
{
assert(ctx != NULL);
assert(!ctx->initialized);
assert((ctx->xlat_regime == EL3_REGIME) ||
(ctx->xlat_regime == EL2_REGIME) ||
(ctx->xlat_regime == EL1_EL0_REGIME));
assert(!is_mmu_enabled_ctx(ctx));
mmap_region_t *mm = ctx->mmap;
assert(ctx->va_max_address >=
(xlat_get_min_virt_addr_space_size() - 1U));
assert(ctx->va_max_address <= (MAX_VIRT_ADDR_SPACE_SIZE - 1U));
assert(IS_POWER_OF_TWO(ctx->va_max_address + 1U));
xlat_mmap_print(mm);
/* All tables must be zeroed before mapping any region. */
for (unsigned int i = 0U; i < ctx->base_table_entries; i++)
ctx->base_table[i] = INVALID_DESC;
for (int j = 0; j < ctx->tables_num; j++) {
#if PLAT_XLAT_TABLES_DYNAMIC
ctx->tables_mapped_regions[j] = 0;
#endif
for (unsigned int i = 0U; i < XLAT_TABLE_ENTRIES; i++)
ctx->tables[j][i] = INVALID_DESC;
}
while (mm->size != 0U) {
uintptr_t end_va = xlat_tables_map_region(ctx, mm, 0U,
ctx->base_table, ctx->base_table_entries,
ctx->base_level);
#if !(HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY)
xlat_clean_dcache_range((uintptr_t)ctx->base_table,
ctx->base_table_entries * sizeof(uint64_t));
#endif
if (end_va != (mm->base_va + mm->size - 1U)) {
ERROR("Not enough memory to map region:\n"
" VA:0x%lx PA:0x%llx size:0x%zx attr:0x%x\n",
mm->base_va, mm->base_pa, mm->size, mm->attr);
panic();
}
mm++;
}
assert(ctx->pa_max_address <= xlat_arch_get_max_supported_pa());
assert(ctx->max_va <= ctx->va_max_address);
assert(ctx->max_pa <= ctx->pa_max_address);
ctx->initialized = true;
xlat_tables_print(ctx);
}