blob: f098eb37ef672c82839018b72b4fe929fbbafa56 [file] [log] [blame] [edit]
/*
* Copyright (c) 2015-2024, Arm Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <assert.h>
#include <drivers/clk.h>
#include <drivers/st/stm32_gpio.h>
#include <drivers/st/stm32_iwdg.h>
#include <lib/mmio.h>
#include <lib/xlat_tables/xlat_tables_v2.h>
#include <libfdt.h>
#include <plat/common/platform.h>
#include <platform_def.h>
#if STM32MP13
#define TAMP_BOOT_MODE_BACKUP_REG_ID U(30)
#endif
#if STM32MP15
#define TAMP_BOOT_MODE_BACKUP_REG_ID U(20)
#endif
/*
* Backup register to store fwu update information.
* It should be writeable only by secure world, but also readable by non secure
* (so it should be in Zone 2).
*/
#define TAMP_BOOT_FWU_INFO_REG_ID U(10)
#define TAMP_BOOT_FWU_INFO_IDX_MSK GENMASK(3, 0)
#define TAMP_BOOT_FWU_INFO_IDX_OFF U(0)
#define TAMP_BOOT_FWU_INFO_CNT_MSK GENMASK(7, 4)
#define TAMP_BOOT_FWU_INFO_CNT_OFF U(4)
#if defined(IMAGE_BL2)
#define MAP_SEC_SYSRAM MAP_REGION_FLAT(STM32MP_SYSRAM_BASE, \
STM32MP_SYSRAM_SIZE, \
MT_MEMORY | \
MT_RW | \
MT_SECURE | \
MT_EXECUTE_NEVER)
#elif defined(IMAGE_BL32)
#define MAP_SEC_SYSRAM MAP_REGION_FLAT(STM32MP_SEC_SYSRAM_BASE, \
STM32MP_SEC_SYSRAM_SIZE, \
MT_MEMORY | \
MT_RW | \
MT_SECURE | \
MT_EXECUTE_NEVER)
/* Non-secure SYSRAM is used a uncached memory for SCMI message transfer */
#define MAP_NS_SYSRAM MAP_REGION_FLAT(STM32MP_NS_SYSRAM_BASE, \
STM32MP_NS_SYSRAM_SIZE, \
MT_DEVICE | \
MT_RW | \
MT_NS | \
MT_EXECUTE_NEVER)
#endif
#if STM32MP13
#define MAP_SRAM_ALL MAP_REGION_FLAT(SRAMS_BASE, \
SRAMS_SIZE_2MB_ALIGNED, \
MT_MEMORY | \
MT_RW | \
MT_SECURE | \
MT_EXECUTE_NEVER)
#endif
#define MAP_DEVICE1 MAP_REGION_FLAT(STM32MP1_DEVICE1_BASE, \
STM32MP1_DEVICE1_SIZE, \
MT_DEVICE | \
MT_RW | \
MT_SECURE | \
MT_EXECUTE_NEVER)
#define MAP_DEVICE2 MAP_REGION_FLAT(STM32MP1_DEVICE2_BASE, \
STM32MP1_DEVICE2_SIZE, \
MT_DEVICE | \
MT_RW | \
MT_SECURE | \
MT_EXECUTE_NEVER)
#if defined(IMAGE_BL2)
static const mmap_region_t stm32mp1_mmap[] = {
MAP_SEC_SYSRAM,
#if STM32MP13
MAP_SRAM_ALL,
#endif
MAP_DEVICE1,
#if STM32MP_RAW_NAND
MAP_DEVICE2,
#endif
{0}
};
#endif
#if defined(IMAGE_BL32)
static const mmap_region_t stm32mp1_mmap[] = {
MAP_SEC_SYSRAM,
MAP_NS_SYSRAM,
MAP_DEVICE1,
MAP_DEVICE2,
{0}
};
#endif
void configure_mmu(void)
{
mmap_add(stm32mp1_mmap);
init_xlat_tables();
enable_mmu_svc_mon(0);
}
uintptr_t stm32_get_gpio_bank_base(unsigned int bank)
{
#if STM32MP13
assert((GPIO_BANK_A == 0) && (bank <= GPIO_BANK_I));
#endif
#if STM32MP15
if (bank == GPIO_BANK_Z) {
return GPIOZ_BASE;
}
assert((GPIO_BANK_A == 0) && (bank <= GPIO_BANK_K));
#endif
return GPIOA_BASE + (bank * GPIO_BANK_OFFSET);
}
uint32_t stm32_get_gpio_bank_offset(unsigned int bank)
{
#if STM32MP13
assert((GPIO_BANK_A == 0) && (bank <= GPIO_BANK_I));
#endif
#if STM32MP15
if (bank == GPIO_BANK_Z) {
return 0;
}
assert((GPIO_BANK_A == 0) && (bank <= GPIO_BANK_K));
#endif
return bank * GPIO_BANK_OFFSET;
}
bool stm32_gpio_is_secure_at_reset(unsigned int bank)
{
#if STM32MP13
return true;
#endif
#if STM32MP15
if (bank == GPIO_BANK_Z) {
return true;
}
return false;
#endif
}
unsigned long stm32_get_gpio_bank_clock(unsigned int bank)
{
#if STM32MP13
assert((GPIO_BANK_A == 0) && (bank <= GPIO_BANK_I));
#endif
#if STM32MP15
if (bank == GPIO_BANK_Z) {
return GPIOZ;
}
assert((GPIO_BANK_A == 0) && (bank <= GPIO_BANK_K));
#endif
return GPIOA + (bank - GPIO_BANK_A);
}
int stm32_get_gpio_bank_pinctrl_node(void *fdt, unsigned int bank)
{
const char *node_compatible = NULL;
switch (bank) {
case GPIO_BANK_A:
case GPIO_BANK_B:
case GPIO_BANK_C:
case GPIO_BANK_D:
case GPIO_BANK_E:
case GPIO_BANK_F:
case GPIO_BANK_G:
case GPIO_BANK_H:
case GPIO_BANK_I:
#if STM32MP13
node_compatible = "st,stm32mp135-pinctrl";
break;
#endif
#if STM32MP15
case GPIO_BANK_J:
case GPIO_BANK_K:
node_compatible = "st,stm32mp157-pinctrl";
break;
case GPIO_BANK_Z:
node_compatible = "st,stm32mp157-z-pinctrl";
break;
#endif
default:
panic();
}
return fdt_node_offset_by_compatible(fdt, -1, node_compatible);
}
#if STM32MP_UART_PROGRAMMER || !defined(IMAGE_BL2)
/*
* UART Management
*/
static const uintptr_t stm32mp1_uart_addresses[8] = {
USART1_BASE,
USART2_BASE,
USART3_BASE,
UART4_BASE,
UART5_BASE,
USART6_BASE,
UART7_BASE,
UART8_BASE,
};
uintptr_t get_uart_address(uint32_t instance_nb)
{
if ((instance_nb == 0U) ||
(instance_nb > ARRAY_SIZE(stm32mp1_uart_addresses))) {
return 0U;
}
return stm32mp1_uart_addresses[instance_nb - 1U];
}
#endif
#if STM32MP_USB_PROGRAMMER
struct gpio_bank_pin_list {
uint32_t bank;
uint32_t pin;
};
static const struct gpio_bank_pin_list gpio_list[] = {
{ /* USART2_RX: GPIOA3 */
.bank = 0U,
.pin = 3U,
},
{ /* USART3_RX: GPIOB12 */
.bank = 1U,
.pin = 12U,
},
{ /* UART4_RX: GPIOB2 */
.bank = 1U,
.pin = 2U,
},
{ /* UART5_RX: GPIOB4 */
.bank = 1U,
.pin = 5U,
},
{ /* USART6_RX: GPIOC7 */
.bank = 2U,
.pin = 7U,
},
{ /* UART7_RX: GPIOF6 */
.bank = 5U,
.pin = 6U,
},
{ /* UART8_RX: GPIOE0 */
.bank = 4U,
.pin = 0U,
},
};
void stm32mp1_deconfigure_uart_pins(void)
{
size_t i;
for (i = 0U; i < ARRAY_SIZE(gpio_list); i++) {
set_gpio_reset_cfg(gpio_list[i].bank, gpio_list[i].pin);
}
}
#endif
uint32_t stm32mp_get_chip_version(void)
{
#if STM32MP13
return stm32mp1_syscfg_get_chip_version();
#endif
#if STM32MP15
uint32_t version = 0U;
if (stm32mp1_dbgmcu_get_chip_version(&version) < 0) {
INFO("Cannot get CPU version, debug disabled\n");
return 0U;
}
return version;
#endif
}
uint32_t stm32mp_get_chip_dev_id(void)
{
#if STM32MP13
return stm32mp1_syscfg_get_chip_dev_id();
#endif
#if STM32MP15
uint32_t dev_id;
if (stm32mp1_dbgmcu_get_chip_dev_id(&dev_id) < 0) {
INFO("Use default chip ID, debug disabled\n");
dev_id = STM32MP1_CHIP_ID;
}
return dev_id;
#endif
}
static uint32_t get_part_number(void)
{
static uint32_t part_number;
if (part_number != 0U) {
return part_number;
}
if (stm32_get_otp_value(PART_NUMBER_OTP, &part_number) != 0) {
panic();
}
part_number = (part_number & PART_NUMBER_OTP_PART_MASK) >>
PART_NUMBER_OTP_PART_SHIFT;
part_number |= stm32mp_get_chip_dev_id() << 16;
return part_number;
}
#if STM32MP15
static uint32_t get_cpu_package(void)
{
uint32_t package;
if (stm32_get_otp_value(PACKAGE_OTP, &package) != 0) {
panic();
}
package = (package & PACKAGE_OTP_PKG_MASK) >>
PACKAGE_OTP_PKG_SHIFT;
return package;
}
#endif
void stm32mp_get_soc_name(char name[STM32_SOC_NAME_SIZE])
{
const char *cpu_s, *cpu_r, *pkg;
/* MPUs Part Numbers */
switch (get_part_number()) {
#if STM32MP13
case STM32MP135F_PART_NB:
cpu_s = "135F";
break;
case STM32MP135D_PART_NB:
cpu_s = "135D";
break;
case STM32MP135C_PART_NB:
cpu_s = "135C";
break;
case STM32MP135A_PART_NB:
cpu_s = "135A";
break;
case STM32MP133F_PART_NB:
cpu_s = "133F";
break;
case STM32MP133D_PART_NB:
cpu_s = "133D";
break;
case STM32MP133C_PART_NB:
cpu_s = "133C";
break;
case STM32MP133A_PART_NB:
cpu_s = "133A";
break;
case STM32MP131F_PART_NB:
cpu_s = "131F";
break;
case STM32MP131D_PART_NB:
cpu_s = "131D";
break;
case STM32MP131C_PART_NB:
cpu_s = "131C";
break;
case STM32MP131A_PART_NB:
cpu_s = "131A";
break;
#endif
#if STM32MP15
case STM32MP157C_PART_NB:
cpu_s = "157C";
break;
case STM32MP157A_PART_NB:
cpu_s = "157A";
break;
case STM32MP153C_PART_NB:
cpu_s = "153C";
break;
case STM32MP153A_PART_NB:
cpu_s = "153A";
break;
case STM32MP151C_PART_NB:
cpu_s = "151C";
break;
case STM32MP151A_PART_NB:
cpu_s = "151A";
break;
case STM32MP157F_PART_NB:
cpu_s = "157F";
break;
case STM32MP157D_PART_NB:
cpu_s = "157D";
break;
case STM32MP153F_PART_NB:
cpu_s = "153F";
break;
case STM32MP153D_PART_NB:
cpu_s = "153D";
break;
case STM32MP151F_PART_NB:
cpu_s = "151F";
break;
case STM32MP151D_PART_NB:
cpu_s = "151D";
break;
#endif
default:
cpu_s = "????";
break;
}
/* Package */
#if STM32MP13
/* On STM32MP13, package is not present in OTP */
pkg = "";
#endif
#if STM32MP15
switch (get_cpu_package()) {
case PKG_AA_LFBGA448:
pkg = "AA";
break;
case PKG_AB_LFBGA354:
pkg = "AB";
break;
case PKG_AC_TFBGA361:
pkg = "AC";
break;
case PKG_AD_TFBGA257:
pkg = "AD";
break;
default:
pkg = "??";
break;
}
#endif
/* REVISION */
switch (stm32mp_get_chip_version()) {
case STM32MP1_REV_B:
cpu_r = "B";
break;
#if STM32MP13
case STM32MP1_REV_Y:
cpu_r = "Y";
break;
#endif
case STM32MP1_REV_Z:
cpu_r = "Z";
break;
default:
cpu_r = "?";
break;
}
snprintf(name, STM32_SOC_NAME_SIZE,
"STM32MP%s%s Rev.%s", cpu_s, pkg, cpu_r);
}
void stm32mp_print_cpuinfo(void)
{
char name[STM32_SOC_NAME_SIZE];
stm32mp_get_soc_name(name);
NOTICE("CPU: %s\n", name);
}
void stm32mp_print_boardinfo(void)
{
uint32_t board_id = 0U;
if (stm32_get_otp_value(BOARD_ID_OTP, &board_id) != 0) {
return;
}
if (board_id != 0U) {
stm32_display_board_info(board_id);
}
}
/* Return true when SoC provides a single Cortex-A7 core, and false otherwise */
bool stm32mp_is_single_core(void)
{
#if STM32MP13
return true;
#endif
#if STM32MP15
bool single_core = false;
switch (get_part_number()) {
case STM32MP151A_PART_NB:
case STM32MP151C_PART_NB:
case STM32MP151D_PART_NB:
case STM32MP151F_PART_NB:
single_core = true;
break;
default:
break;
}
return single_core;
#endif
}
/* Return true when device is in closed state */
uint32_t stm32mp_check_closed_device(void)
{
uint32_t value;
if (stm32_get_otp_value(CFG0_OTP, &value) != 0) {
return STM32MP_CHIP_SEC_CLOSED;
}
#if STM32MP13
value = (value & CFG0_OTP_MODE_MASK) >> CFG0_OTP_MODE_SHIFT;
switch (value) {
case CFG0_OPEN_DEVICE:
return STM32MP_CHIP_SEC_OPEN;
case CFG0_CLOSED_DEVICE:
case CFG0_CLOSED_DEVICE_NO_BOUNDARY_SCAN:
case CFG0_CLOSED_DEVICE_NO_JTAG:
return STM32MP_CHIP_SEC_CLOSED;
default:
panic();
}
#endif
#if STM32MP15
if ((value & CFG0_CLOSED_DEVICE) == CFG0_CLOSED_DEVICE) {
return STM32MP_CHIP_SEC_CLOSED;
} else {
return STM32MP_CHIP_SEC_OPEN;
}
#endif
}
/* Return true when device supports secure boot */
bool stm32mp_is_auth_supported(void)
{
bool supported = false;
switch (get_part_number()) {
#if STM32MP13
case STM32MP131C_PART_NB:
case STM32MP131F_PART_NB:
case STM32MP133C_PART_NB:
case STM32MP133F_PART_NB:
case STM32MP135C_PART_NB:
case STM32MP135F_PART_NB:
#endif
#if STM32MP15
case STM32MP151C_PART_NB:
case STM32MP151F_PART_NB:
case STM32MP153C_PART_NB:
case STM32MP153F_PART_NB:
case STM32MP157C_PART_NB:
case STM32MP157F_PART_NB:
#endif
supported = true;
break;
default:
break;
}
return supported;
}
uint32_t stm32_iwdg_get_instance(uintptr_t base)
{
switch (base) {
case IWDG1_BASE:
return IWDG1_INST;
case IWDG2_BASE:
return IWDG2_INST;
default:
panic();
}
}
uint32_t stm32_iwdg_get_otp_config(uint32_t iwdg_inst)
{
uint32_t iwdg_cfg = 0U;
uint32_t otp_value;
if (stm32_get_otp_value(HW2_OTP, &otp_value) != 0) {
panic();
}
if ((otp_value & BIT(iwdg_inst + HW2_OTP_IWDG_HW_POS)) != 0U) {
iwdg_cfg |= IWDG_HW_ENABLED;
}
if ((otp_value & BIT(iwdg_inst + HW2_OTP_IWDG_FZ_STOP_POS)) != 0U) {
iwdg_cfg |= IWDG_DISABLE_ON_STOP;
}
if ((otp_value & BIT(iwdg_inst + HW2_OTP_IWDG_FZ_STANDBY_POS)) != 0U) {
iwdg_cfg |= IWDG_DISABLE_ON_STANDBY;
}
return iwdg_cfg;
}
#if defined(IMAGE_BL2)
uint32_t stm32_iwdg_shadow_update(uint32_t iwdg_inst, uint32_t flags)
{
uint32_t otp_value;
uint32_t otp;
uint32_t result;
if (stm32_get_otp_index(HW2_OTP, &otp, NULL) != 0) {
panic();
}
if (stm32_get_otp_value(HW2_OTP, &otp_value) != 0) {
panic();
}
if ((flags & IWDG_DISABLE_ON_STOP) != 0) {
otp_value |= BIT(iwdg_inst + HW2_OTP_IWDG_FZ_STOP_POS);
}
if ((flags & IWDG_DISABLE_ON_STANDBY) != 0) {
otp_value |= BIT(iwdg_inst + HW2_OTP_IWDG_FZ_STANDBY_POS);
}
result = bsec_write_otp(otp_value, otp);
if (result != BSEC_OK) {
return result;
}
/* Sticky lock OTP_IWDG (read and write) */
if ((bsec_set_sr_lock(otp) != BSEC_OK) ||
(bsec_set_sw_lock(otp) != BSEC_OK)) {
return BSEC_LOCK_FAIL;
}
return BSEC_OK;
}
#endif
uintptr_t stm32_get_bkpr_boot_mode_addr(void)
{
return tamp_bkpr(TAMP_BOOT_MODE_BACKUP_REG_ID);
}
#if PSA_FWU_SUPPORT
void stm32mp1_fwu_set_boot_idx(void)
{
clk_enable(RTCAPB);
mmio_clrsetbits_32(tamp_bkpr(TAMP_BOOT_FWU_INFO_REG_ID),
TAMP_BOOT_FWU_INFO_IDX_MSK,
(plat_fwu_get_boot_idx() << TAMP_BOOT_FWU_INFO_IDX_OFF) &
TAMP_BOOT_FWU_INFO_IDX_MSK);
clk_disable(RTCAPB);
}
uint32_t stm32_get_and_dec_fwu_trial_boot_cnt(void)
{
uintptr_t bkpr_fwu_cnt = tamp_bkpr(TAMP_BOOT_FWU_INFO_REG_ID);
uint32_t try_cnt;
clk_enable(RTCAPB);
try_cnt = (mmio_read_32(bkpr_fwu_cnt) & TAMP_BOOT_FWU_INFO_CNT_MSK) >>
TAMP_BOOT_FWU_INFO_CNT_OFF;
assert(try_cnt <= FWU_MAX_TRIAL_REBOOT);
if (try_cnt != 0U) {
mmio_clrsetbits_32(bkpr_fwu_cnt, TAMP_BOOT_FWU_INFO_CNT_MSK,
(try_cnt - 1U) << TAMP_BOOT_FWU_INFO_CNT_OFF);
}
clk_disable(RTCAPB);
return try_cnt;
}
void stm32_set_max_fwu_trial_boot_cnt(void)
{
uintptr_t bkpr_fwu_cnt = tamp_bkpr(TAMP_BOOT_FWU_INFO_REG_ID);
clk_enable(RTCAPB);
mmio_clrsetbits_32(bkpr_fwu_cnt, TAMP_BOOT_FWU_INFO_CNT_MSK,
(FWU_MAX_TRIAL_REBOOT << TAMP_BOOT_FWU_INFO_CNT_OFF) &
TAMP_BOOT_FWU_INFO_CNT_MSK);
clk_disable(RTCAPB);
}
void stm32_clear_fwu_trial_boot_cnt(void)
{
uintptr_t bkpr_fwu_cnt = tamp_bkpr(TAMP_BOOT_FWU_INFO_REG_ID);
clk_enable(RTCAPB);
mmio_clrbits_32(bkpr_fwu_cnt, TAMP_BOOT_FWU_INFO_CNT_MSK);
clk_disable(RTCAPB);
}
#endif /* PSA_FWU_SUPPORT */