blob: c30f0f5726007057c97f1b2809c0d806b3d509c3 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2018 Intel Corporation */
#include <linux/module.h>
#include <linux/types.h>
#include <linux/if_vlan.h>
#include <linux/tcp.h>
#include <linux/udp.h>
#include <linux/ip.h>
#include <linux/pm_runtime.h>
#include <net/pkt_sched.h>
#include <linux/bpf_trace.h>
#include <net/xdp_sock_drv.h>
#include <linux/pci.h>
#include <net/ipv6.h>
#include "igc.h"
#include "igc_hw.h"
#include "igc_tsn.h"
#include "igc_xdp.h"
#define DRV_SUMMARY "Intel(R) 2.5G Ethernet Linux Driver"
#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
#define IGC_XDP_PASS 0
#define IGC_XDP_CONSUMED BIT(0)
#define IGC_XDP_TX BIT(1)
#define IGC_XDP_REDIRECT BIT(2)
static int debug = -1;
MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
MODULE_DESCRIPTION(DRV_SUMMARY);
MODULE_LICENSE("GPL v2");
module_param(debug, int, 0);
MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
char igc_driver_name[] = "igc";
static const char igc_driver_string[] = DRV_SUMMARY;
static const char igc_copyright[] =
"Copyright(c) 2018 Intel Corporation.";
static const struct igc_info *igc_info_tbl[] = {
[board_base] = &igc_base_info,
};
static const struct pci_device_id igc_pci_tbl[] = {
{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LM), board_base },
{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_V), board_base },
{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_I), board_base },
{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I220_V), board_base },
{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K), board_base },
{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K2), board_base },
{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_K), board_base },
{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LMVP), board_base },
{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LMVP), board_base },
{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_IT), board_base },
{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LM), board_base },
{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_V), board_base },
{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_IT), board_base },
{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I221_V), board_base },
{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_BLANK_NVM), board_base },
{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_BLANK_NVM), board_base },
/* required last entry */
{0, }
};
MODULE_DEVICE_TABLE(pci, igc_pci_tbl);
enum latency_range {
lowest_latency = 0,
low_latency = 1,
bulk_latency = 2,
latency_invalid = 255
};
void igc_reset(struct igc_adapter *adapter)
{
struct net_device *dev = adapter->netdev;
struct igc_hw *hw = &adapter->hw;
struct igc_fc_info *fc = &hw->fc;
u32 pba, hwm;
/* Repartition PBA for greater than 9k MTU if required */
pba = IGC_PBA_34K;
/* flow control settings
* The high water mark must be low enough to fit one full frame
* after transmitting the pause frame. As such we must have enough
* space to allow for us to complete our current transmit and then
* receive the frame that is in progress from the link partner.
* Set it to:
* - the full Rx FIFO size minus one full Tx plus one full Rx frame
*/
hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
fc->low_water = fc->high_water - 16;
fc->pause_time = 0xFFFF;
fc->send_xon = 1;
fc->current_mode = fc->requested_mode;
hw->mac.ops.reset_hw(hw);
if (hw->mac.ops.init_hw(hw))
netdev_err(dev, "Error on hardware initialization\n");
/* Re-establish EEE setting */
igc_set_eee_i225(hw, true, true, true);
if (!netif_running(adapter->netdev))
igc_power_down_phy_copper_base(&adapter->hw);
/* Enable HW to recognize an 802.1Q VLAN Ethernet packet */
wr32(IGC_VET, ETH_P_8021Q);
/* Re-enable PTP, where applicable. */
igc_ptp_reset(adapter);
/* Re-enable TSN offloading, where applicable. */
igc_tsn_reset(adapter);
igc_get_phy_info(hw);
}
/**
* igc_power_up_link - Power up the phy link
* @adapter: address of board private structure
*/
static void igc_power_up_link(struct igc_adapter *adapter)
{
igc_reset_phy(&adapter->hw);
igc_power_up_phy_copper(&adapter->hw);
igc_setup_link(&adapter->hw);
}
/**
* igc_release_hw_control - release control of the h/w to f/w
* @adapter: address of board private structure
*
* igc_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
* For ASF and Pass Through versions of f/w this means that the
* driver is no longer loaded.
*/
static void igc_release_hw_control(struct igc_adapter *adapter)
{
struct igc_hw *hw = &adapter->hw;
u32 ctrl_ext;
if (!pci_device_is_present(adapter->pdev))
return;
/* Let firmware take over control of h/w */
ctrl_ext = rd32(IGC_CTRL_EXT);
wr32(IGC_CTRL_EXT,
ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD);
}
/**
* igc_get_hw_control - get control of the h/w from f/w
* @adapter: address of board private structure
*
* igc_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
* For ASF and Pass Through versions of f/w this means that
* the driver is loaded.
*/
static void igc_get_hw_control(struct igc_adapter *adapter)
{
struct igc_hw *hw = &adapter->hw;
u32 ctrl_ext;
/* Let firmware know the driver has taken over */
ctrl_ext = rd32(IGC_CTRL_EXT);
wr32(IGC_CTRL_EXT,
ctrl_ext | IGC_CTRL_EXT_DRV_LOAD);
}
static void igc_unmap_tx_buffer(struct device *dev, struct igc_tx_buffer *buf)
{
dma_unmap_single(dev, dma_unmap_addr(buf, dma),
dma_unmap_len(buf, len), DMA_TO_DEVICE);
dma_unmap_len_set(buf, len, 0);
}
/**
* igc_clean_tx_ring - Free Tx Buffers
* @tx_ring: ring to be cleaned
*/
static void igc_clean_tx_ring(struct igc_ring *tx_ring)
{
u16 i = tx_ring->next_to_clean;
struct igc_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
u32 xsk_frames = 0;
while (i != tx_ring->next_to_use) {
union igc_adv_tx_desc *eop_desc, *tx_desc;
switch (tx_buffer->type) {
case IGC_TX_BUFFER_TYPE_XSK:
xsk_frames++;
break;
case IGC_TX_BUFFER_TYPE_XDP:
xdp_return_frame(tx_buffer->xdpf);
igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
break;
case IGC_TX_BUFFER_TYPE_SKB:
dev_kfree_skb_any(tx_buffer->skb);
igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
break;
default:
netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n");
break;
}
/* check for eop_desc to determine the end of the packet */
eop_desc = tx_buffer->next_to_watch;
tx_desc = IGC_TX_DESC(tx_ring, i);
/* unmap remaining buffers */
while (tx_desc != eop_desc) {
tx_buffer++;
tx_desc++;
i++;
if (unlikely(i == tx_ring->count)) {
i = 0;
tx_buffer = tx_ring->tx_buffer_info;
tx_desc = IGC_TX_DESC(tx_ring, 0);
}
/* unmap any remaining paged data */
if (dma_unmap_len(tx_buffer, len))
igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
}
tx_buffer->next_to_watch = NULL;
/* move us one more past the eop_desc for start of next pkt */
tx_buffer++;
i++;
if (unlikely(i == tx_ring->count)) {
i = 0;
tx_buffer = tx_ring->tx_buffer_info;
}
}
if (tx_ring->xsk_pool && xsk_frames)
xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
/* reset BQL for queue */
netdev_tx_reset_queue(txring_txq(tx_ring));
/* Zero out the buffer ring */
memset(tx_ring->tx_buffer_info, 0,
sizeof(*tx_ring->tx_buffer_info) * tx_ring->count);
/* Zero out the descriptor ring */
memset(tx_ring->desc, 0, tx_ring->size);
/* reset next_to_use and next_to_clean */
tx_ring->next_to_use = 0;
tx_ring->next_to_clean = 0;
}
/**
* igc_free_tx_resources - Free Tx Resources per Queue
* @tx_ring: Tx descriptor ring for a specific queue
*
* Free all transmit software resources
*/
void igc_free_tx_resources(struct igc_ring *tx_ring)
{
igc_disable_tx_ring(tx_ring);
vfree(tx_ring->tx_buffer_info);
tx_ring->tx_buffer_info = NULL;
/* if not set, then don't free */
if (!tx_ring->desc)
return;
dma_free_coherent(tx_ring->dev, tx_ring->size,
tx_ring->desc, tx_ring->dma);
tx_ring->desc = NULL;
}
/**
* igc_free_all_tx_resources - Free Tx Resources for All Queues
* @adapter: board private structure
*
* Free all transmit software resources
*/
static void igc_free_all_tx_resources(struct igc_adapter *adapter)
{
int i;
for (i = 0; i < adapter->num_tx_queues; i++)
igc_free_tx_resources(adapter->tx_ring[i]);
}
/**
* igc_clean_all_tx_rings - Free Tx Buffers for all queues
* @adapter: board private structure
*/
static void igc_clean_all_tx_rings(struct igc_adapter *adapter)
{
int i;
for (i = 0; i < adapter->num_tx_queues; i++)
if (adapter->tx_ring[i])
igc_clean_tx_ring(adapter->tx_ring[i]);
}
static void igc_disable_tx_ring_hw(struct igc_ring *ring)
{
struct igc_hw *hw = &ring->q_vector->adapter->hw;
u8 idx = ring->reg_idx;
u32 txdctl;
txdctl = rd32(IGC_TXDCTL(idx));
txdctl &= ~IGC_TXDCTL_QUEUE_ENABLE;
txdctl |= IGC_TXDCTL_SWFLUSH;
wr32(IGC_TXDCTL(idx), txdctl);
}
/**
* igc_disable_all_tx_rings_hw - Disable all transmit queue operation
* @adapter: board private structure
*/
static void igc_disable_all_tx_rings_hw(struct igc_adapter *adapter)
{
int i;
for (i = 0; i < adapter->num_tx_queues; i++) {
struct igc_ring *tx_ring = adapter->tx_ring[i];
igc_disable_tx_ring_hw(tx_ring);
}
}
/**
* igc_setup_tx_resources - allocate Tx resources (Descriptors)
* @tx_ring: tx descriptor ring (for a specific queue) to setup
*
* Return 0 on success, negative on failure
*/
int igc_setup_tx_resources(struct igc_ring *tx_ring)
{
struct net_device *ndev = tx_ring->netdev;
struct device *dev = tx_ring->dev;
int size = 0;
size = sizeof(struct igc_tx_buffer) * tx_ring->count;
tx_ring->tx_buffer_info = vzalloc(size);
if (!tx_ring->tx_buffer_info)
goto err;
/* round up to nearest 4K */
tx_ring->size = tx_ring->count * sizeof(union igc_adv_tx_desc);
tx_ring->size = ALIGN(tx_ring->size, 4096);
tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
&tx_ring->dma, GFP_KERNEL);
if (!tx_ring->desc)
goto err;
tx_ring->next_to_use = 0;
tx_ring->next_to_clean = 0;
return 0;
err:
vfree(tx_ring->tx_buffer_info);
netdev_err(ndev, "Unable to allocate memory for Tx descriptor ring\n");
return -ENOMEM;
}
/**
* igc_setup_all_tx_resources - wrapper to allocate Tx resources for all queues
* @adapter: board private structure
*
* Return 0 on success, negative on failure
*/
static int igc_setup_all_tx_resources(struct igc_adapter *adapter)
{
struct net_device *dev = adapter->netdev;
int i, err = 0;
for (i = 0; i < adapter->num_tx_queues; i++) {
err = igc_setup_tx_resources(adapter->tx_ring[i]);
if (err) {
netdev_err(dev, "Error on Tx queue %u setup\n", i);
for (i--; i >= 0; i--)
igc_free_tx_resources(adapter->tx_ring[i]);
break;
}
}
return err;
}
static void igc_clean_rx_ring_page_shared(struct igc_ring *rx_ring)
{
u16 i = rx_ring->next_to_clean;
dev_kfree_skb(rx_ring->skb);
rx_ring->skb = NULL;
/* Free all the Rx ring sk_buffs */
while (i != rx_ring->next_to_alloc) {
struct igc_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
/* Invalidate cache lines that may have been written to by
* device so that we avoid corrupting memory.
*/
dma_sync_single_range_for_cpu(rx_ring->dev,
buffer_info->dma,
buffer_info->page_offset,
igc_rx_bufsz(rx_ring),
DMA_FROM_DEVICE);
/* free resources associated with mapping */
dma_unmap_page_attrs(rx_ring->dev,
buffer_info->dma,
igc_rx_pg_size(rx_ring),
DMA_FROM_DEVICE,
IGC_RX_DMA_ATTR);
__page_frag_cache_drain(buffer_info->page,
buffer_info->pagecnt_bias);
i++;
if (i == rx_ring->count)
i = 0;
}
}
static void igc_clean_rx_ring_xsk_pool(struct igc_ring *ring)
{
struct igc_rx_buffer *bi;
u16 i;
for (i = 0; i < ring->count; i++) {
bi = &ring->rx_buffer_info[i];
if (!bi->xdp)
continue;
xsk_buff_free(bi->xdp);
bi->xdp = NULL;
}
}
/**
* igc_clean_rx_ring - Free Rx Buffers per Queue
* @ring: ring to free buffers from
*/
static void igc_clean_rx_ring(struct igc_ring *ring)
{
if (ring->xsk_pool)
igc_clean_rx_ring_xsk_pool(ring);
else
igc_clean_rx_ring_page_shared(ring);
clear_ring_uses_large_buffer(ring);
ring->next_to_alloc = 0;
ring->next_to_clean = 0;
ring->next_to_use = 0;
}
/**
* igc_clean_all_rx_rings - Free Rx Buffers for all queues
* @adapter: board private structure
*/
static void igc_clean_all_rx_rings(struct igc_adapter *adapter)
{
int i;
for (i = 0; i < adapter->num_rx_queues; i++)
if (adapter->rx_ring[i])
igc_clean_rx_ring(adapter->rx_ring[i]);
}
/**
* igc_free_rx_resources - Free Rx Resources
* @rx_ring: ring to clean the resources from
*
* Free all receive software resources
*/
void igc_free_rx_resources(struct igc_ring *rx_ring)
{
igc_clean_rx_ring(rx_ring);
xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
vfree(rx_ring->rx_buffer_info);
rx_ring->rx_buffer_info = NULL;
/* if not set, then don't free */
if (!rx_ring->desc)
return;
dma_free_coherent(rx_ring->dev, rx_ring->size,
rx_ring->desc, rx_ring->dma);
rx_ring->desc = NULL;
}
/**
* igc_free_all_rx_resources - Free Rx Resources for All Queues
* @adapter: board private structure
*
* Free all receive software resources
*/
static void igc_free_all_rx_resources(struct igc_adapter *adapter)
{
int i;
for (i = 0; i < adapter->num_rx_queues; i++)
igc_free_rx_resources(adapter->rx_ring[i]);
}
/**
* igc_setup_rx_resources - allocate Rx resources (Descriptors)
* @rx_ring: rx descriptor ring (for a specific queue) to setup
*
* Returns 0 on success, negative on failure
*/
int igc_setup_rx_resources(struct igc_ring *rx_ring)
{
struct net_device *ndev = rx_ring->netdev;
struct device *dev = rx_ring->dev;
u8 index = rx_ring->queue_index;
int size, desc_len, res;
/* XDP RX-queue info */
if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
res = xdp_rxq_info_reg(&rx_ring->xdp_rxq, ndev, index,
rx_ring->q_vector->napi.napi_id);
if (res < 0) {
netdev_err(ndev, "Failed to register xdp_rxq index %u\n",
index);
return res;
}
size = sizeof(struct igc_rx_buffer) * rx_ring->count;
rx_ring->rx_buffer_info = vzalloc(size);
if (!rx_ring->rx_buffer_info)
goto err;
desc_len = sizeof(union igc_adv_rx_desc);
/* Round up to nearest 4K */
rx_ring->size = rx_ring->count * desc_len;
rx_ring->size = ALIGN(rx_ring->size, 4096);
rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
&rx_ring->dma, GFP_KERNEL);
if (!rx_ring->desc)
goto err;
rx_ring->next_to_alloc = 0;
rx_ring->next_to_clean = 0;
rx_ring->next_to_use = 0;
return 0;
err:
xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
vfree(rx_ring->rx_buffer_info);
rx_ring->rx_buffer_info = NULL;
netdev_err(ndev, "Unable to allocate memory for Rx descriptor ring\n");
return -ENOMEM;
}
/**
* igc_setup_all_rx_resources - wrapper to allocate Rx resources
* (Descriptors) for all queues
* @adapter: board private structure
*
* Return 0 on success, negative on failure
*/
static int igc_setup_all_rx_resources(struct igc_adapter *adapter)
{
struct net_device *dev = adapter->netdev;
int i, err = 0;
for (i = 0; i < adapter->num_rx_queues; i++) {
err = igc_setup_rx_resources(adapter->rx_ring[i]);
if (err) {
netdev_err(dev, "Error on Rx queue %u setup\n", i);
for (i--; i >= 0; i--)
igc_free_rx_resources(adapter->rx_ring[i]);
break;
}
}
return err;
}
static struct xsk_buff_pool *igc_get_xsk_pool(struct igc_adapter *adapter,
struct igc_ring *ring)
{
if (!igc_xdp_is_enabled(adapter) ||
!test_bit(IGC_RING_FLAG_AF_XDP_ZC, &ring->flags))
return NULL;
return xsk_get_pool_from_qid(ring->netdev, ring->queue_index);
}
/**
* igc_configure_rx_ring - Configure a receive ring after Reset
* @adapter: board private structure
* @ring: receive ring to be configured
*
* Configure the Rx unit of the MAC after a reset.
*/
static void igc_configure_rx_ring(struct igc_adapter *adapter,
struct igc_ring *ring)
{
struct igc_hw *hw = &adapter->hw;
union igc_adv_rx_desc *rx_desc;
int reg_idx = ring->reg_idx;
u32 srrctl = 0, rxdctl = 0;
u64 rdba = ring->dma;
u32 buf_size;
xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
ring->xsk_pool = igc_get_xsk_pool(adapter, ring);
if (ring->xsk_pool) {
WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
MEM_TYPE_XSK_BUFF_POOL,
NULL));
xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq);
} else {
WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
MEM_TYPE_PAGE_SHARED,
NULL));
}
if (igc_xdp_is_enabled(adapter))
set_ring_uses_large_buffer(ring);
/* disable the queue */
wr32(IGC_RXDCTL(reg_idx), 0);
/* Set DMA base address registers */
wr32(IGC_RDBAL(reg_idx),
rdba & 0x00000000ffffffffULL);
wr32(IGC_RDBAH(reg_idx), rdba >> 32);
wr32(IGC_RDLEN(reg_idx),
ring->count * sizeof(union igc_adv_rx_desc));
/* initialize head and tail */
ring->tail = adapter->io_addr + IGC_RDT(reg_idx);
wr32(IGC_RDH(reg_idx), 0);
writel(0, ring->tail);
/* reset next-to- use/clean to place SW in sync with hardware */
ring->next_to_clean = 0;
ring->next_to_use = 0;
if (ring->xsk_pool)
buf_size = xsk_pool_get_rx_frame_size(ring->xsk_pool);
else if (ring_uses_large_buffer(ring))
buf_size = IGC_RXBUFFER_3072;
else
buf_size = IGC_RXBUFFER_2048;
srrctl = rd32(IGC_SRRCTL(reg_idx));
srrctl &= ~(IGC_SRRCTL_BSIZEPKT_MASK | IGC_SRRCTL_BSIZEHDR_MASK |
IGC_SRRCTL_DESCTYPE_MASK);
srrctl |= IGC_SRRCTL_BSIZEHDR(IGC_RX_HDR_LEN);
srrctl |= IGC_SRRCTL_BSIZEPKT(buf_size);
srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF;
wr32(IGC_SRRCTL(reg_idx), srrctl);
rxdctl |= IGC_RX_PTHRESH;
rxdctl |= IGC_RX_HTHRESH << 8;
rxdctl |= IGC_RX_WTHRESH << 16;
/* initialize rx_buffer_info */
memset(ring->rx_buffer_info, 0,
sizeof(struct igc_rx_buffer) * ring->count);
/* initialize Rx descriptor 0 */
rx_desc = IGC_RX_DESC(ring, 0);
rx_desc->wb.upper.length = 0;
/* enable receive descriptor fetching */
rxdctl |= IGC_RXDCTL_QUEUE_ENABLE;
wr32(IGC_RXDCTL(reg_idx), rxdctl);
}
/**
* igc_configure_rx - Configure receive Unit after Reset
* @adapter: board private structure
*
* Configure the Rx unit of the MAC after a reset.
*/
static void igc_configure_rx(struct igc_adapter *adapter)
{
int i;
/* Setup the HW Rx Head and Tail Descriptor Pointers and
* the Base and Length of the Rx Descriptor Ring
*/
for (i = 0; i < adapter->num_rx_queues; i++)
igc_configure_rx_ring(adapter, adapter->rx_ring[i]);
}
/**
* igc_configure_tx_ring - Configure transmit ring after Reset
* @adapter: board private structure
* @ring: tx ring to configure
*
* Configure a transmit ring after a reset.
*/
static void igc_configure_tx_ring(struct igc_adapter *adapter,
struct igc_ring *ring)
{
struct igc_hw *hw = &adapter->hw;
int reg_idx = ring->reg_idx;
u64 tdba = ring->dma;
u32 txdctl = 0;
ring->xsk_pool = igc_get_xsk_pool(adapter, ring);
/* disable the queue */
wr32(IGC_TXDCTL(reg_idx), 0);
wrfl();
wr32(IGC_TDLEN(reg_idx),
ring->count * sizeof(union igc_adv_tx_desc));
wr32(IGC_TDBAL(reg_idx),
tdba & 0x00000000ffffffffULL);
wr32(IGC_TDBAH(reg_idx), tdba >> 32);
ring->tail = adapter->io_addr + IGC_TDT(reg_idx);
wr32(IGC_TDH(reg_idx), 0);
writel(0, ring->tail);
txdctl |= IGC_TX_PTHRESH;
txdctl |= IGC_TX_HTHRESH << 8;
txdctl |= IGC_TX_WTHRESH << 16;
txdctl |= IGC_TXDCTL_QUEUE_ENABLE;
wr32(IGC_TXDCTL(reg_idx), txdctl);
}
/**
* igc_configure_tx - Configure transmit Unit after Reset
* @adapter: board private structure
*
* Configure the Tx unit of the MAC after a reset.
*/
static void igc_configure_tx(struct igc_adapter *adapter)
{
int i;
for (i = 0; i < adapter->num_tx_queues; i++)
igc_configure_tx_ring(adapter, adapter->tx_ring[i]);
}
/**
* igc_setup_mrqc - configure the multiple receive queue control registers
* @adapter: Board private structure
*/
static void igc_setup_mrqc(struct igc_adapter *adapter)
{
struct igc_hw *hw = &adapter->hw;
u32 j, num_rx_queues;
u32 mrqc, rxcsum;
u32 rss_key[10];
netdev_rss_key_fill(rss_key, sizeof(rss_key));
for (j = 0; j < 10; j++)
wr32(IGC_RSSRK(j), rss_key[j]);
num_rx_queues = adapter->rss_queues;
if (adapter->rss_indir_tbl_init != num_rx_queues) {
for (j = 0; j < IGC_RETA_SIZE; j++)
adapter->rss_indir_tbl[j] =
(j * num_rx_queues) / IGC_RETA_SIZE;
adapter->rss_indir_tbl_init = num_rx_queues;
}
igc_write_rss_indir_tbl(adapter);
/* Disable raw packet checksumming so that RSS hash is placed in
* descriptor on writeback. No need to enable TCP/UDP/IP checksum
* offloads as they are enabled by default
*/
rxcsum = rd32(IGC_RXCSUM);
rxcsum |= IGC_RXCSUM_PCSD;
/* Enable Receive Checksum Offload for SCTP */
rxcsum |= IGC_RXCSUM_CRCOFL;
/* Don't need to set TUOFL or IPOFL, they default to 1 */
wr32(IGC_RXCSUM, rxcsum);
/* Generate RSS hash based on packet types, TCP/UDP
* port numbers and/or IPv4/v6 src and dst addresses
*/
mrqc = IGC_MRQC_RSS_FIELD_IPV4 |
IGC_MRQC_RSS_FIELD_IPV4_TCP |
IGC_MRQC_RSS_FIELD_IPV6 |
IGC_MRQC_RSS_FIELD_IPV6_TCP |
IGC_MRQC_RSS_FIELD_IPV6_TCP_EX;
if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV4_UDP)
mrqc |= IGC_MRQC_RSS_FIELD_IPV4_UDP;
if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV6_UDP)
mrqc |= IGC_MRQC_RSS_FIELD_IPV6_UDP;
mrqc |= IGC_MRQC_ENABLE_RSS_MQ;
wr32(IGC_MRQC, mrqc);
}
/**
* igc_setup_rctl - configure the receive control registers
* @adapter: Board private structure
*/
static void igc_setup_rctl(struct igc_adapter *adapter)
{
struct igc_hw *hw = &adapter->hw;
u32 rctl;
rctl = rd32(IGC_RCTL);
rctl &= ~(3 << IGC_RCTL_MO_SHIFT);
rctl &= ~(IGC_RCTL_LBM_TCVR | IGC_RCTL_LBM_MAC);
rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_RDMTS_HALF |
(hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT);
/* enable stripping of CRC. Newer features require
* that the HW strips the CRC.
*/
rctl |= IGC_RCTL_SECRC;
/* disable store bad packets and clear size bits. */
rctl &= ~(IGC_RCTL_SBP | IGC_RCTL_SZ_256);
/* enable LPE to allow for reception of jumbo frames */
rctl |= IGC_RCTL_LPE;
/* disable queue 0 to prevent tail write w/o re-config */
wr32(IGC_RXDCTL(0), 0);
/* This is useful for sniffing bad packets. */
if (adapter->netdev->features & NETIF_F_RXALL) {
/* UPE and MPE will be handled by normal PROMISC logic
* in set_rx_mode
*/
rctl |= (IGC_RCTL_SBP | /* Receive bad packets */
IGC_RCTL_BAM | /* RX All Bcast Pkts */
IGC_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
rctl &= ~(IGC_RCTL_DPF | /* Allow filtered pause */
IGC_RCTL_CFIEN); /* Disable VLAN CFIEN Filter */
}
wr32(IGC_RCTL, rctl);
}
/**
* igc_setup_tctl - configure the transmit control registers
* @adapter: Board private structure
*/
static void igc_setup_tctl(struct igc_adapter *adapter)
{
struct igc_hw *hw = &adapter->hw;
u32 tctl;
/* disable queue 0 which icould be enabled by default */
wr32(IGC_TXDCTL(0), 0);
/* Program the Transmit Control Register */
tctl = rd32(IGC_TCTL);
tctl &= ~IGC_TCTL_CT;
tctl |= IGC_TCTL_PSP | IGC_TCTL_RTLC |
(IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT);
/* Enable transmits */
tctl |= IGC_TCTL_EN;
wr32(IGC_TCTL, tctl);
}
/**
* igc_set_mac_filter_hw() - Set MAC address filter in hardware
* @adapter: Pointer to adapter where the filter should be set
* @index: Filter index
* @type: MAC address filter type (source or destination)
* @addr: MAC address
* @queue: If non-negative, queue assignment feature is enabled and frames
* matching the filter are enqueued onto 'queue'. Otherwise, queue
* assignment is disabled.
*/
static void igc_set_mac_filter_hw(struct igc_adapter *adapter, int index,
enum igc_mac_filter_type type,
const u8 *addr, int queue)
{
struct net_device *dev = adapter->netdev;
struct igc_hw *hw = &adapter->hw;
u32 ral, rah;
if (WARN_ON(index >= hw->mac.rar_entry_count))
return;
ral = le32_to_cpup((__le32 *)(addr));
rah = le16_to_cpup((__le16 *)(addr + 4));
if (type == IGC_MAC_FILTER_TYPE_SRC) {
rah &= ~IGC_RAH_ASEL_MASK;
rah |= IGC_RAH_ASEL_SRC_ADDR;
}
if (queue >= 0) {
rah &= ~IGC_RAH_QSEL_MASK;
rah |= (queue << IGC_RAH_QSEL_SHIFT);
rah |= IGC_RAH_QSEL_ENABLE;
}
rah |= IGC_RAH_AV;
wr32(IGC_RAL(index), ral);
wr32(IGC_RAH(index), rah);
netdev_dbg(dev, "MAC address filter set in HW: index %d", index);
}
/**
* igc_clear_mac_filter_hw() - Clear MAC address filter in hardware
* @adapter: Pointer to adapter where the filter should be cleared
* @index: Filter index
*/
static void igc_clear_mac_filter_hw(struct igc_adapter *adapter, int index)
{
struct net_device *dev = adapter->netdev;
struct igc_hw *hw = &adapter->hw;
if (WARN_ON(index >= hw->mac.rar_entry_count))
return;
wr32(IGC_RAL(index), 0);
wr32(IGC_RAH(index), 0);
netdev_dbg(dev, "MAC address filter cleared in HW: index %d", index);
}
/* Set default MAC address for the PF in the first RAR entry */
static void igc_set_default_mac_filter(struct igc_adapter *adapter)
{
struct net_device *dev = adapter->netdev;
u8 *addr = adapter->hw.mac.addr;
netdev_dbg(dev, "Set default MAC address filter: address %pM", addr);
igc_set_mac_filter_hw(adapter, 0, IGC_MAC_FILTER_TYPE_DST, addr, -1);
}
/**
* igc_set_mac - Change the Ethernet Address of the NIC
* @netdev: network interface device structure
* @p: pointer to an address structure
*
* Returns 0 on success, negative on failure
*/
static int igc_set_mac(struct net_device *netdev, void *p)
{
struct igc_adapter *adapter = netdev_priv(netdev);
struct igc_hw *hw = &adapter->hw;
struct sockaddr *addr = p;
if (!is_valid_ether_addr(addr->sa_data))
return -EADDRNOTAVAIL;
eth_hw_addr_set(netdev, addr->sa_data);
memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
/* set the correct pool for the new PF MAC address in entry 0 */
igc_set_default_mac_filter(adapter);
return 0;
}
/**
* igc_write_mc_addr_list - write multicast addresses to MTA
* @netdev: network interface device structure
*
* Writes multicast address list to the MTA hash table.
* Returns: -ENOMEM on failure
* 0 on no addresses written
* X on writing X addresses to MTA
**/
static int igc_write_mc_addr_list(struct net_device *netdev)
{
struct igc_adapter *adapter = netdev_priv(netdev);
struct igc_hw *hw = &adapter->hw;
struct netdev_hw_addr *ha;
u8 *mta_list;
int i;
if (netdev_mc_empty(netdev)) {
/* nothing to program, so clear mc list */
igc_update_mc_addr_list(hw, NULL, 0);
return 0;
}
mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
if (!mta_list)
return -ENOMEM;
/* The shared function expects a packed array of only addresses. */
i = 0;
netdev_for_each_mc_addr(ha, netdev)
memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
igc_update_mc_addr_list(hw, mta_list, i);
kfree(mta_list);
return netdev_mc_count(netdev);
}
static __le32 igc_tx_launchtime(struct igc_ring *ring, ktime_t txtime,
bool *first_flag, bool *insert_empty)
{
struct igc_adapter *adapter = netdev_priv(ring->netdev);
ktime_t cycle_time = adapter->cycle_time;
ktime_t base_time = adapter->base_time;
ktime_t now = ktime_get_clocktai();
ktime_t baset_est, end_of_cycle;
s32 launchtime;
s64 n;
n = div64_s64(ktime_sub_ns(now, base_time), cycle_time);
baset_est = ktime_add_ns(base_time, cycle_time * (n));
end_of_cycle = ktime_add_ns(baset_est, cycle_time);
if (ktime_compare(txtime, end_of_cycle) >= 0) {
if (baset_est != ring->last_ff_cycle) {
*first_flag = true;
ring->last_ff_cycle = baset_est;
if (ktime_compare(end_of_cycle, ring->last_tx_cycle) > 0)
*insert_empty = true;
}
}
/* Introducing a window at end of cycle on which packets
* potentially not honor launchtime. Window of 5us chosen
* considering software update the tail pointer and packets
* are dma'ed to packet buffer.
*/
if ((ktime_sub_ns(end_of_cycle, now) < 5 * NSEC_PER_USEC))
netdev_warn(ring->netdev, "Packet with txtime=%llu may not be honoured\n",
txtime);
ring->last_tx_cycle = end_of_cycle;
launchtime = ktime_sub_ns(txtime, baset_est);
if (launchtime > 0)
div_s64_rem(launchtime, cycle_time, &launchtime);
else
launchtime = 0;
return cpu_to_le32(launchtime);
}
static int igc_init_empty_frame(struct igc_ring *ring,
struct igc_tx_buffer *buffer,
struct sk_buff *skb)
{
unsigned int size;
dma_addr_t dma;
size = skb_headlen(skb);
dma = dma_map_single(ring->dev, skb->data, size, DMA_TO_DEVICE);
if (dma_mapping_error(ring->dev, dma)) {
netdev_err_once(ring->netdev, "Failed to map DMA for TX\n");
return -ENOMEM;
}
buffer->skb = skb;
buffer->protocol = 0;
buffer->bytecount = skb->len;
buffer->gso_segs = 1;
buffer->time_stamp = jiffies;
dma_unmap_len_set(buffer, len, skb->len);
dma_unmap_addr_set(buffer, dma, dma);
return 0;
}
static int igc_init_tx_empty_descriptor(struct igc_ring *ring,
struct sk_buff *skb,
struct igc_tx_buffer *first)
{
union igc_adv_tx_desc *desc;
u32 cmd_type, olinfo_status;
int err;
if (!igc_desc_unused(ring))
return -EBUSY;
err = igc_init_empty_frame(ring, first, skb);
if (err)
return err;
cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD |
first->bytecount;
olinfo_status = first->bytecount << IGC_ADVTXD_PAYLEN_SHIFT;
desc = IGC_TX_DESC(ring, ring->next_to_use);
desc->read.cmd_type_len = cpu_to_le32(cmd_type);
desc->read.olinfo_status = cpu_to_le32(olinfo_status);
desc->read.buffer_addr = cpu_to_le64(dma_unmap_addr(first, dma));
netdev_tx_sent_queue(txring_txq(ring), skb->len);
first->next_to_watch = desc;
ring->next_to_use++;
if (ring->next_to_use == ring->count)
ring->next_to_use = 0;
return 0;
}
#define IGC_EMPTY_FRAME_SIZE 60
static void igc_tx_ctxtdesc(struct igc_ring *tx_ring,
__le32 launch_time, bool first_flag,
u32 vlan_macip_lens, u32 type_tucmd,
u32 mss_l4len_idx)
{
struct igc_adv_tx_context_desc *context_desc;
u16 i = tx_ring->next_to_use;
context_desc = IGC_TX_CTXTDESC(tx_ring, i);
i++;
tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
/* set bits to identify this as an advanced context descriptor */
type_tucmd |= IGC_TXD_CMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
/* For i225, context index must be unique per ring. */
if (test_bit(IGC_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
mss_l4len_idx |= tx_ring->reg_idx << 4;
if (first_flag)
mss_l4len_idx |= IGC_ADVTXD_TSN_CNTX_FIRST;
context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
context_desc->launch_time = launch_time;
}
static void igc_tx_csum(struct igc_ring *tx_ring, struct igc_tx_buffer *first,
__le32 launch_time, bool first_flag)
{
struct sk_buff *skb = first->skb;
u32 vlan_macip_lens = 0;
u32 type_tucmd = 0;
if (skb->ip_summed != CHECKSUM_PARTIAL) {
csum_failed:
if (!(first->tx_flags & IGC_TX_FLAGS_VLAN) &&
!tx_ring->launchtime_enable)
return;
goto no_csum;
}
switch (skb->csum_offset) {
case offsetof(struct tcphdr, check):
type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
fallthrough;
case offsetof(struct udphdr, check):
break;
case offsetof(struct sctphdr, checksum):
/* validate that this is actually an SCTP request */
if (skb_csum_is_sctp(skb)) {
type_tucmd = IGC_ADVTXD_TUCMD_L4T_SCTP;
break;
}
fallthrough;
default:
skb_checksum_help(skb);
goto csum_failed;
}
/* update TX checksum flag */
first->tx_flags |= IGC_TX_FLAGS_CSUM;
vlan_macip_lens = skb_checksum_start_offset(skb) -
skb_network_offset(skb);
no_csum:
vlan_macip_lens |= skb_network_offset(skb) << IGC_ADVTXD_MACLEN_SHIFT;
vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
igc_tx_ctxtdesc(tx_ring, launch_time, first_flag,
vlan_macip_lens, type_tucmd, 0);
}
static int __igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
{
struct net_device *netdev = tx_ring->netdev;
netif_stop_subqueue(netdev, tx_ring->queue_index);
/* memory barriier comment */
smp_mb();
/* We need to check again in a case another CPU has just
* made room available.
*/
if (igc_desc_unused(tx_ring) < size)
return -EBUSY;
/* A reprieve! */
netif_wake_subqueue(netdev, tx_ring->queue_index);
u64_stats_update_begin(&tx_ring->tx_syncp2);
tx_ring->tx_stats.restart_queue2++;
u64_stats_update_end(&tx_ring->tx_syncp2);
return 0;
}
static inline int igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
{
if (igc_desc_unused(tx_ring) >= size)
return 0;
return __igc_maybe_stop_tx(tx_ring, size);
}
#define IGC_SET_FLAG(_input, _flag, _result) \
(((_flag) <= (_result)) ? \
((u32)((_input) & (_flag)) * ((_result) / (_flag))) : \
((u32)((_input) & (_flag)) / ((_flag) / (_result))))
static u32 igc_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
{
/* set type for advanced descriptor with frame checksum insertion */
u32 cmd_type = IGC_ADVTXD_DTYP_DATA |
IGC_ADVTXD_DCMD_DEXT |
IGC_ADVTXD_DCMD_IFCS;
/* set HW vlan bit if vlan is present */
cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_VLAN,
IGC_ADVTXD_DCMD_VLE);
/* set segmentation bits for TSO */
cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSO,
(IGC_ADVTXD_DCMD_TSE));
/* set timestamp bit if present, will select the register set
* based on the _TSTAMP(_X) bit.
*/
cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP,
(IGC_ADVTXD_MAC_TSTAMP));
cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_1,
(IGC_ADVTXD_TSTAMP_REG_1));
cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_2,
(IGC_ADVTXD_TSTAMP_REG_2));
cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_3,
(IGC_ADVTXD_TSTAMP_REG_3));
/* insert frame checksum */
cmd_type ^= IGC_SET_FLAG(skb->no_fcs, 1, IGC_ADVTXD_DCMD_IFCS);
return cmd_type;
}
static void igc_tx_olinfo_status(struct igc_ring *tx_ring,
union igc_adv_tx_desc *tx_desc,
u32 tx_flags, unsigned int paylen)
{
u32 olinfo_status = paylen << IGC_ADVTXD_PAYLEN_SHIFT;
/* insert L4 checksum */
olinfo_status |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_CSUM,
(IGC_TXD_POPTS_TXSM << 8));
/* insert IPv4 checksum */
olinfo_status |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_IPV4,
(IGC_TXD_POPTS_IXSM << 8));
/* Use the second timer (free running, in general) for the timestamp */
olinfo_status |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_TIMER_1,
IGC_TXD_PTP2_TIMER_1);
tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
}
static int igc_tx_map(struct igc_ring *tx_ring,
struct igc_tx_buffer *first,
const u8 hdr_len)
{
struct sk_buff *skb = first->skb;
struct igc_tx_buffer *tx_buffer;
union igc_adv_tx_desc *tx_desc;
u32 tx_flags = first->tx_flags;
skb_frag_t *frag;
u16 i = tx_ring->next_to_use;
unsigned int data_len, size;
dma_addr_t dma;
u32 cmd_type;
cmd_type = igc_tx_cmd_type(skb, tx_flags);
tx_desc = IGC_TX_DESC(tx_ring, i);
igc_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
size = skb_headlen(skb);
data_len = skb->data_len;
dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
tx_buffer = first;
for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
if (dma_mapping_error(tx_ring->dev, dma))
goto dma_error;
/* record length, and DMA address */
dma_unmap_len_set(tx_buffer, len, size);
dma_unmap_addr_set(tx_buffer, dma, dma);
tx_desc->read.buffer_addr = cpu_to_le64(dma);
while (unlikely(size > IGC_MAX_DATA_PER_TXD)) {
tx_desc->read.cmd_type_len =
cpu_to_le32(cmd_type ^ IGC_MAX_DATA_PER_TXD);
i++;
tx_desc++;
if (i == tx_ring->count) {
tx_desc = IGC_TX_DESC(tx_ring, 0);
i = 0;
}
tx_desc->read.olinfo_status = 0;
dma += IGC_MAX_DATA_PER_TXD;
size -= IGC_MAX_DATA_PER_TXD;
tx_desc->read.buffer_addr = cpu_to_le64(dma);
}
if (likely(!data_len))
break;
tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
i++;
tx_desc++;
if (i == tx_ring->count) {
tx_desc = IGC_TX_DESC(tx_ring, 0);
i = 0;
}
tx_desc->read.olinfo_status = 0;
size = skb_frag_size(frag);
data_len -= size;
dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
size, DMA_TO_DEVICE);
tx_buffer = &tx_ring->tx_buffer_info[i];
}
/* write last descriptor with RS and EOP bits */
cmd_type |= size | IGC_TXD_DCMD;
tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
/* set the timestamp */
first->time_stamp = jiffies;
skb_tx_timestamp(skb);
/* Force memory writes to complete before letting h/w know there
* are new descriptors to fetch. (Only applicable for weak-ordered
* memory model archs, such as IA-64).
*
* We also need this memory barrier to make certain all of the
* status bits have been updated before next_to_watch is written.
*/
wmb();
/* set next_to_watch value indicating a packet is present */
first->next_to_watch = tx_desc;
i++;
if (i == tx_ring->count)
i = 0;
tx_ring->next_to_use = i;
/* Make sure there is space in the ring for the next send. */
igc_maybe_stop_tx(tx_ring, DESC_NEEDED);
if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
writel(i, tx_ring->tail);
}
return 0;
dma_error:
netdev_err(tx_ring->netdev, "TX DMA map failed\n");
tx_buffer = &tx_ring->tx_buffer_info[i];
/* clear dma mappings for failed tx_buffer_info map */
while (tx_buffer != first) {
if (dma_unmap_len(tx_buffer, len))
igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
if (i-- == 0)
i += tx_ring->count;
tx_buffer = &tx_ring->tx_buffer_info[i];
}
if (dma_unmap_len(tx_buffer, len))
igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
dev_kfree_skb_any(tx_buffer->skb);
tx_buffer->skb = NULL;
tx_ring->next_to_use = i;
return -1;
}
static int igc_tso(struct igc_ring *tx_ring,
struct igc_tx_buffer *first,
__le32 launch_time, bool first_flag,
u8 *hdr_len)
{
u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
struct sk_buff *skb = first->skb;
union {
struct iphdr *v4;
struct ipv6hdr *v6;
unsigned char *hdr;
} ip;
union {
struct tcphdr *tcp;
struct udphdr *udp;
unsigned char *hdr;
} l4;
u32 paylen, l4_offset;
int err;
if (skb->ip_summed != CHECKSUM_PARTIAL)
return 0;
if (!skb_is_gso(skb))
return 0;
err = skb_cow_head(skb, 0);
if (err < 0)
return err;
ip.hdr = skb_network_header(skb);
l4.hdr = skb_checksum_start(skb);
/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
/* initialize outer IP header fields */
if (ip.v4->version == 4) {
unsigned char *csum_start = skb_checksum_start(skb);
unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
/* IP header will have to cancel out any data that
* is not a part of the outer IP header
*/
ip.v4->check = csum_fold(csum_partial(trans_start,
csum_start - trans_start,
0));
type_tucmd |= IGC_ADVTXD_TUCMD_IPV4;
ip.v4->tot_len = 0;
first->tx_flags |= IGC_TX_FLAGS_TSO |
IGC_TX_FLAGS_CSUM |
IGC_TX_FLAGS_IPV4;
} else {
ip.v6->payload_len = 0;
first->tx_flags |= IGC_TX_FLAGS_TSO |
IGC_TX_FLAGS_CSUM;
}
/* determine offset of inner transport header */
l4_offset = l4.hdr - skb->data;
/* remove payload length from inner checksum */
paylen = skb->len - l4_offset;
if (type_tucmd & IGC_ADVTXD_TUCMD_L4T_TCP) {
/* compute length of segmentation header */
*hdr_len = (l4.tcp->doff * 4) + l4_offset;
csum_replace_by_diff(&l4.tcp->check,
(__force __wsum)htonl(paylen));
} else {
/* compute length of segmentation header */
*hdr_len = sizeof(*l4.udp) + l4_offset;
csum_replace_by_diff(&l4.udp->check,
(__force __wsum)htonl(paylen));
}
/* update gso size and bytecount with header size */
first->gso_segs = skb_shinfo(skb)->gso_segs;
first->bytecount += (first->gso_segs - 1) * *hdr_len;
/* MSS L4LEN IDX */
mss_l4len_idx = (*hdr_len - l4_offset) << IGC_ADVTXD_L4LEN_SHIFT;
mss_l4len_idx |= skb_shinfo(skb)->gso_size << IGC_ADVTXD_MSS_SHIFT;
/* VLAN MACLEN IPLEN */
vlan_macip_lens = l4.hdr - ip.hdr;
vlan_macip_lens |= (ip.hdr - skb->data) << IGC_ADVTXD_MACLEN_SHIFT;
vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
igc_tx_ctxtdesc(tx_ring, launch_time, first_flag,
vlan_macip_lens, type_tucmd, mss_l4len_idx);
return 1;
}
static bool igc_request_tx_tstamp(struct igc_adapter *adapter, struct sk_buff *skb, u32 *flags)
{
int i;
for (i = 0; i < IGC_MAX_TX_TSTAMP_REGS; i++) {
struct igc_tx_timestamp_request *tstamp = &adapter->tx_tstamp[i];
if (tstamp->skb)
continue;
tstamp->skb = skb_get(skb);
tstamp->start = jiffies;
*flags = tstamp->flags;
return true;
}
return false;
}
static netdev_tx_t igc_xmit_frame_ring(struct sk_buff *skb,
struct igc_ring *tx_ring)
{
struct igc_adapter *adapter = netdev_priv(tx_ring->netdev);
bool first_flag = false, insert_empty = false;
u16 count = TXD_USE_COUNT(skb_headlen(skb));
__be16 protocol = vlan_get_protocol(skb);
struct igc_tx_buffer *first;
__le32 launch_time = 0;
u32 tx_flags = 0;
unsigned short f;
ktime_t txtime;
u8 hdr_len = 0;
int tso = 0;
/* need: 1 descriptor per page * PAGE_SIZE/IGC_MAX_DATA_PER_TXD,
* + 1 desc for skb_headlen/IGC_MAX_DATA_PER_TXD,
* + 2 desc gap to keep tail from touching head,
* + 1 desc for context descriptor,
* otherwise try next time
*/
for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
count += TXD_USE_COUNT(skb_frag_size(
&skb_shinfo(skb)->frags[f]));
if (igc_maybe_stop_tx(tx_ring, count + 5)) {
/* this is a hard error */
return NETDEV_TX_BUSY;
}
if (!tx_ring->launchtime_enable)
goto done;
txtime = skb->tstamp;
skb->tstamp = ktime_set(0, 0);
launch_time = igc_tx_launchtime(tx_ring, txtime, &first_flag, &insert_empty);
if (insert_empty) {
struct igc_tx_buffer *empty_info;
struct sk_buff *empty;
void *data;
empty_info = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
empty = alloc_skb(IGC_EMPTY_FRAME_SIZE, GFP_ATOMIC);
if (!empty)
goto done;
data = skb_put(empty, IGC_EMPTY_FRAME_SIZE);
memset(data, 0, IGC_EMPTY_FRAME_SIZE);
igc_tx_ctxtdesc(tx_ring, 0, false, 0, 0, 0);
if (igc_init_tx_empty_descriptor(tx_ring,
empty,
empty_info) < 0)
dev_kfree_skb_any(empty);
}
done:
/* record the location of the first descriptor for this packet */
first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
first->type = IGC_TX_BUFFER_TYPE_SKB;
first->skb = skb;
first->bytecount = skb->len;
first->gso_segs = 1;
if (adapter->qbv_transition || tx_ring->oper_gate_closed)
goto out_drop;
if (tx_ring->max_sdu > 0 && first->bytecount > tx_ring->max_sdu) {
adapter->stats.txdrop++;
goto out_drop;
}
if (unlikely(test_bit(IGC_RING_FLAG_TX_HWTSTAMP, &tx_ring->flags) &&
skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
unsigned long flags;
u32 tstamp_flags;
spin_lock_irqsave(&adapter->ptp_tx_lock, flags);
if (igc_request_tx_tstamp(adapter, skb, &tstamp_flags)) {
skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
tx_flags |= IGC_TX_FLAGS_TSTAMP | tstamp_flags;
if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_USE_CYCLES)
tx_flags |= IGC_TX_FLAGS_TSTAMP_TIMER_1;
} else {
adapter->tx_hwtstamp_skipped++;
}
spin_unlock_irqrestore(&adapter->ptp_tx_lock, flags);
}
if (skb_vlan_tag_present(skb)) {
tx_flags |= IGC_TX_FLAGS_VLAN;
tx_flags |= (skb_vlan_tag_get(skb) << IGC_TX_FLAGS_VLAN_SHIFT);
}
/* record initial flags and protocol */
first->tx_flags = tx_flags;
first->protocol = protocol;
tso = igc_tso(tx_ring, first, launch_time, first_flag, &hdr_len);
if (tso < 0)
goto out_drop;
else if (!tso)
igc_tx_csum(tx_ring, first, launch_time, first_flag);
igc_tx_map(tx_ring, first, hdr_len);
return NETDEV_TX_OK;
out_drop:
dev_kfree_skb_any(first->skb);
first->skb = NULL;
return NETDEV_TX_OK;
}
static inline struct igc_ring *igc_tx_queue_mapping(struct igc_adapter *adapter,
struct sk_buff *skb)
{
unsigned int r_idx = skb->queue_mapping;
if (r_idx >= adapter->num_tx_queues)
r_idx = r_idx % adapter->num_tx_queues;
return adapter->tx_ring[r_idx];
}
static netdev_tx_t igc_xmit_frame(struct sk_buff *skb,
struct net_device *netdev)
{
struct igc_adapter *adapter = netdev_priv(netdev);
/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
* in order to meet this minimum size requirement.
*/
if (skb->len < 17) {
if (skb_padto(skb, 17))
return NETDEV_TX_OK;
skb->len = 17;
}
return igc_xmit_frame_ring(skb, igc_tx_queue_mapping(adapter, skb));
}
static void igc_rx_checksum(struct igc_ring *ring,
union igc_adv_rx_desc *rx_desc,
struct sk_buff *skb)
{
skb_checksum_none_assert(skb);
/* Ignore Checksum bit is set */
if (igc_test_staterr(rx_desc, IGC_RXD_STAT_IXSM))
return;
/* Rx checksum disabled via ethtool */
if (!(ring->netdev->features & NETIF_F_RXCSUM))
return;
/* TCP/UDP checksum error bit is set */
if (igc_test_staterr(rx_desc,
IGC_RXDEXT_STATERR_L4E |
IGC_RXDEXT_STATERR_IPE)) {
/* work around errata with sctp packets where the TCPE aka
* L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
* packets (aka let the stack check the crc32c)
*/
if (!(skb->len == 60 &&
test_bit(IGC_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
u64_stats_update_begin(&ring->rx_syncp);
ring->rx_stats.csum_err++;
u64_stats_update_end(&ring->rx_syncp);
}
/* let the stack verify checksum errors */
return;
}
/* It must be a TCP or UDP packet with a valid checksum */
if (igc_test_staterr(rx_desc, IGC_RXD_STAT_TCPCS |
IGC_RXD_STAT_UDPCS))
skb->ip_summed = CHECKSUM_UNNECESSARY;
netdev_dbg(ring->netdev, "cksum success: bits %08X\n",
le32_to_cpu(rx_desc->wb.upper.status_error));
}
/* Mapping HW RSS Type to enum pkt_hash_types */
static const enum pkt_hash_types igc_rss_type_table[IGC_RSS_TYPE_MAX_TABLE] = {
[IGC_RSS_TYPE_NO_HASH] = PKT_HASH_TYPE_L2,
[IGC_RSS_TYPE_HASH_TCP_IPV4] = PKT_HASH_TYPE_L4,
[IGC_RSS_TYPE_HASH_IPV4] = PKT_HASH_TYPE_L3,
[IGC_RSS_TYPE_HASH_TCP_IPV6] = PKT_HASH_TYPE_L4,
[IGC_RSS_TYPE_HASH_IPV6_EX] = PKT_HASH_TYPE_L3,
[IGC_RSS_TYPE_HASH_IPV6] = PKT_HASH_TYPE_L3,
[IGC_RSS_TYPE_HASH_TCP_IPV6_EX] = PKT_HASH_TYPE_L4,
[IGC_RSS_TYPE_HASH_UDP_IPV4] = PKT_HASH_TYPE_L4,
[IGC_RSS_TYPE_HASH_UDP_IPV6] = PKT_HASH_TYPE_L4,
[IGC_RSS_TYPE_HASH_UDP_IPV6_EX] = PKT_HASH_TYPE_L4,
[10] = PKT_HASH_TYPE_NONE, /* RSS Type above 9 "Reserved" by HW */
[11] = PKT_HASH_TYPE_NONE, /* keep array sized for SW bit-mask */
[12] = PKT_HASH_TYPE_NONE, /* to handle future HW revisons */
[13] = PKT_HASH_TYPE_NONE,
[14] = PKT_HASH_TYPE_NONE,
[15] = PKT_HASH_TYPE_NONE,
};
static inline void igc_rx_hash(struct igc_ring *ring,
union igc_adv_rx_desc *rx_desc,
struct sk_buff *skb)
{
if (ring->netdev->features & NETIF_F_RXHASH) {
u32 rss_hash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
u32 rss_type = igc_rss_type(rx_desc);
skb_set_hash(skb, rss_hash, igc_rss_type_table[rss_type]);
}
}
static void igc_rx_vlan(struct igc_ring *rx_ring,
union igc_adv_rx_desc *rx_desc,
struct sk_buff *skb)
{
struct net_device *dev = rx_ring->netdev;
u16 vid;
if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
igc_test_staterr(rx_desc, IGC_RXD_STAT_VP)) {
if (igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_LB) &&
test_bit(IGC_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan);
else
vid = le16_to_cpu(rx_desc->wb.upper.vlan);
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
}
}
/**
* igc_process_skb_fields - Populate skb header fields from Rx descriptor
* @rx_ring: rx descriptor ring packet is being transacted on
* @rx_desc: pointer to the EOP Rx descriptor
* @skb: pointer to current skb being populated
*
* This function checks the ring, descriptor, and packet information in order
* to populate the hash, checksum, VLAN, protocol, and other fields within the
* skb.
*/
static void igc_process_skb_fields(struct igc_ring *rx_ring,
union igc_adv_rx_desc *rx_desc,
struct sk_buff *skb)
{
igc_rx_hash(rx_ring, rx_desc, skb);
igc_rx_checksum(rx_ring, rx_desc, skb);
igc_rx_vlan(rx_ring, rx_desc, skb);
skb_record_rx_queue(skb, rx_ring->queue_index);
skb->protocol = eth_type_trans(skb, rx_ring->netdev);
}
static void igc_vlan_mode(struct net_device *netdev, netdev_features_t features)
{
bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
struct igc_adapter *adapter = netdev_priv(netdev);
struct igc_hw *hw = &adapter->hw;
u32 ctrl;
ctrl = rd32(IGC_CTRL);
if (enable) {
/* enable VLAN tag insert/strip */
ctrl |= IGC_CTRL_VME;
} else {
/* disable VLAN tag insert/strip */
ctrl &= ~IGC_CTRL_VME;
}
wr32(IGC_CTRL, ctrl);
}
static void igc_restore_vlan(struct igc_adapter *adapter)
{
igc_vlan_mode(adapter->netdev, adapter->netdev->features);
}
static struct igc_rx_buffer *igc_get_rx_buffer(struct igc_ring *rx_ring,
const unsigned int size,
int *rx_buffer_pgcnt)
{
struct igc_rx_buffer *rx_buffer;
rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
*rx_buffer_pgcnt =
#if (PAGE_SIZE < 8192)
page_count(rx_buffer->page);
#else
0;
#endif
prefetchw(rx_buffer->page);
/* we are reusing so sync this buffer for CPU use */
dma_sync_single_range_for_cpu(rx_ring->dev,
rx_buffer->dma,
rx_buffer->page_offset,
size,
DMA_FROM_DEVICE);
rx_buffer->pagecnt_bias--;
return rx_buffer;
}
static void igc_rx_buffer_flip(struct igc_rx_buffer *buffer,
unsigned int truesize)
{
#if (PAGE_SIZE < 8192)
buffer->page_offset ^= truesize;
#else
buffer->page_offset += truesize;
#endif
}
static unsigned int igc_get_rx_frame_truesize(struct igc_ring *ring,
unsigned int size)
{
unsigned int truesize;
#if (PAGE_SIZE < 8192)
truesize = igc_rx_pg_size(ring) / 2;
#else
truesize = ring_uses_build_skb(ring) ?
SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
SKB_DATA_ALIGN(size);
#endif
return truesize;
}
/**
* igc_add_rx_frag - Add contents of Rx buffer to sk_buff
* @rx_ring: rx descriptor ring to transact packets on
* @rx_buffer: buffer containing page to add
* @skb: sk_buff to place the data into
* @size: size of buffer to be added
*
* This function will add the data contained in rx_buffer->page to the skb.
*/
static void igc_add_rx_frag(struct igc_ring *rx_ring,
struct igc_rx_buffer *rx_buffer,
struct sk_buff *skb,
unsigned int size)
{
unsigned int truesize;
#if (PAGE_SIZE < 8192)
truesize = igc_rx_pg_size(rx_ring) / 2;
#else
truesize = ring_uses_build_skb(rx_ring) ?
SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
SKB_DATA_ALIGN(size);
#endif
skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
rx_buffer->page_offset, size, truesize);
igc_rx_buffer_flip(rx_buffer, truesize);
}
static struct sk_buff *igc_build_skb(struct igc_ring *rx_ring,
struct igc_rx_buffer *rx_buffer,
struct xdp_buff *xdp)
{
unsigned int size = xdp->data_end - xdp->data;
unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size);
unsigned int metasize = xdp->data - xdp->data_meta;
struct sk_buff *skb;
/* prefetch first cache line of first page */
net_prefetch(xdp->data_meta);
/* build an skb around the page buffer */
skb = napi_build_skb(xdp->data_hard_start, truesize);
if (unlikely(!skb))
return NULL;
/* update pointers within the skb to store the data */
skb_reserve(skb, xdp->data - xdp->data_hard_start);
__skb_put(skb, size);
if (metasize)
skb_metadata_set(skb, metasize);
igc_rx_buffer_flip(rx_buffer, truesize);
return skb;
}
static struct sk_buff *igc_construct_skb(struct igc_ring *rx_ring,
struct igc_rx_buffer *rx_buffer,
struct igc_xdp_buff *ctx)
{
struct xdp_buff *xdp = &ctx->xdp;
unsigned int metasize = xdp->data - xdp->data_meta;
unsigned int size = xdp->data_end - xdp->data;
unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size);
void *va = xdp->data;
unsigned int headlen;
struct sk_buff *skb;
/* prefetch first cache line of first page */
net_prefetch(xdp->data_meta);
/* allocate a skb to store the frags */
skb = napi_alloc_skb(&rx_ring->q_vector->napi,
IGC_RX_HDR_LEN + metasize);
if (unlikely(!skb))
return NULL;
if (ctx->rx_ts) {
skb_shinfo(skb)->tx_flags |= SKBTX_HW_TSTAMP_NETDEV;
skb_hwtstamps(skb)->netdev_data = ctx->rx_ts;
}
/* Determine available headroom for copy */
headlen = size;
if (headlen > IGC_RX_HDR_LEN)
headlen = eth_get_headlen(skb->dev, va, IGC_RX_HDR_LEN);
/* align pull length to size of long to optimize memcpy performance */
memcpy(__skb_put(skb, headlen + metasize), xdp->data_meta,
ALIGN(headlen + metasize, sizeof(long)));
if (metasize) {
skb_metadata_set(skb, metasize);
__skb_pull(skb, metasize);
}
/* update all of the pointers */
size -= headlen;
if (size) {
skb_add_rx_frag(skb, 0, rx_buffer->page,
(va + headlen) - page_address(rx_buffer->page),
size, truesize);
igc_rx_buffer_flip(rx_buffer, truesize);
} else {
rx_buffer->pagecnt_bias++;
}
return skb;
}
/**
* igc_reuse_rx_page - page flip buffer and store it back on the ring
* @rx_ring: rx descriptor ring to store buffers on
* @old_buff: donor buffer to have page reused
*
* Synchronizes page for reuse by the adapter
*/
static void igc_reuse_rx_page(struct igc_ring *rx_ring,
struct igc_rx_buffer *old_buff)
{
u16 nta = rx_ring->next_to_alloc;
struct igc_rx_buffer *new_buff;
new_buff = &rx_ring->rx_buffer_info[nta];
/* update, and store next to alloc */
nta++;
rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
/* Transfer page from old buffer to new buffer.
* Move each member individually to avoid possible store
* forwarding stalls.
*/
new_buff->dma = old_buff->dma;
new_buff->page = old_buff->page;
new_buff->page_offset = old_buff->page_offset;
new_buff->pagecnt_bias = old_buff->pagecnt_bias;
}
static bool igc_can_reuse_rx_page(struct igc_rx_buffer *rx_buffer,
int rx_buffer_pgcnt)
{
unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
struct page *page = rx_buffer->page;
/* avoid re-using remote and pfmemalloc pages */
if (!dev_page_is_reusable(page))
return false;
#if (PAGE_SIZE < 8192)
/* if we are only owner of page we can reuse it */
if (unlikely((rx_buffer_pgcnt - pagecnt_bias) > 1))
return false;
#else
#define IGC_LAST_OFFSET \
(SKB_WITH_OVERHEAD(PAGE_SIZE) - IGC_RXBUFFER_2048)
if (rx_buffer->page_offset > IGC_LAST_OFFSET)
return false;
#endif
/* If we have drained the page fragment pool we need to update
* the pagecnt_bias and page count so that we fully restock the
* number of references the driver holds.
*/
if (unlikely(pagecnt_bias == 1)) {
page_ref_add(page, USHRT_MAX - 1);
rx_buffer->pagecnt_bias = USHRT_MAX;
}
return true;
}
/**
* igc_is_non_eop - process handling of non-EOP buffers
* @rx_ring: Rx ring being processed
* @rx_desc: Rx descriptor for current buffer
*
* This function updates next to clean. If the buffer is an EOP buffer
* this function exits returning false, otherwise it will place the
* sk_buff in the next buffer to be chained and return true indicating
* that this is in fact a non-EOP buffer.
*/
static bool igc_is_non_eop(struct igc_ring *rx_ring,
union igc_adv_rx_desc *rx_desc)
{
u32 ntc = rx_ring->next_to_clean + 1;
/* fetch, update, and store next to clean */
ntc = (ntc < rx_ring->count) ? ntc : 0;
rx_ring->next_to_clean = ntc;
prefetch(IGC_RX_DESC(rx_ring, ntc));
if (likely(igc_test_staterr(rx_desc, IGC_RXD_STAT_EOP)))
return false;
return true;
}
/**
* igc_cleanup_headers - Correct corrupted or empty headers
* @rx_ring: rx descriptor ring packet is being transacted on
* @rx_desc: pointer to the EOP Rx descriptor
* @skb: pointer to current skb being fixed
*
* Address the case where we are pulling data in on pages only
* and as such no data is present in the skb header.
*
* In addition if skb is not at least 60 bytes we need to pad it so that
* it is large enough to qualify as a valid Ethernet frame.
*
* Returns true if an error was encountered and skb was freed.
*/
static bool igc_cleanup_headers(struct igc_ring *rx_ring,
union igc_adv_rx_desc *rx_desc,
struct sk_buff *skb)
{
/* XDP packets use error pointer so abort at this point */
if (IS_ERR(skb))
return true;
if (unlikely(igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_RXE))) {
struct net_device *netdev = rx_ring->netdev;
if (!(netdev->features & NETIF_F_RXALL)) {
dev_kfree_skb_any(skb);
return true;
}
}
/* if eth_skb_pad returns an error the skb was freed */
if (eth_skb_pad(skb))
return true;
return false;
}
static void igc_put_rx_buffer(struct igc_ring *rx_ring,
struct igc_rx_buffer *rx_buffer,
int rx_buffer_pgcnt)
{
if (igc_can_reuse_rx_page(rx_buffer, rx_buffer_pgcnt)) {
/* hand second half of page back to the ring */
igc_reuse_rx_page(rx_ring, rx_buffer);
} else {
/* We are not reusing the buffer so unmap it and free
* any references we are holding to it
*/
dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
igc_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
IGC_RX_DMA_ATTR);
__page_frag_cache_drain(rx_buffer->page,
rx_buffer->pagecnt_bias);
}
/* clear contents of rx_buffer */
rx_buffer->page = NULL;
}
static inline unsigned int igc_rx_offset(struct igc_ring *rx_ring)
{
struct igc_adapter *adapter = rx_ring->q_vector->adapter;
if (ring_uses_build_skb(rx_ring))
return IGC_SKB_PAD;
if (igc_xdp_is_enabled(adapter))
return XDP_PACKET_HEADROOM;
return 0;
}
static bool igc_alloc_mapped_page(struct igc_ring *rx_ring,
struct igc_rx_buffer *bi)
{
struct page *page = bi->page;
dma_addr_t dma;
/* since we are recycling buffers we should seldom need to alloc */
if (likely(page))
return true;
/* alloc new page for storage */
page = dev_alloc_pages(igc_rx_pg_order(rx_ring));
if (unlikely(!page)) {
rx_ring->rx_stats.alloc_failed++;
return false;
}
/* map page for use */
dma = dma_map_page_attrs(rx_ring->dev, page, 0,
igc_rx_pg_size(rx_ring),
DMA_FROM_DEVICE,
IGC_RX_DMA_ATTR);
/* if mapping failed free memory back to system since
* there isn't much point in holding memory we can't use
*/
if (dma_mapping_error(rx_ring->dev, dma)) {
__free_page(page);
rx_ring->rx_stats.alloc_failed++;
return false;
}
bi->dma = dma;
bi->page = page;
bi->page_offset = igc_rx_offset(rx_ring);
page_ref_add(page, USHRT_MAX - 1);
bi->pagecnt_bias = USHRT_MAX;
return true;
}
/**
* igc_alloc_rx_buffers - Replace used receive buffers; packet split
* @rx_ring: rx descriptor ring
* @cleaned_count: number of buffers to clean
*/
static void igc_alloc_rx_buffers(struct igc_ring *rx_ring, u16 cleaned_count)
{
union igc_adv_rx_desc *rx_desc;
u16 i = rx_ring->next_to_use;
struct igc_rx_buffer *bi;
u16 bufsz;
/* nothing to do */
if (!cleaned_count)
return;
rx_desc = IGC_RX_DESC(rx_ring, i);
bi = &rx_ring->rx_buffer_info[i];
i -= rx_ring->count;
bufsz = igc_rx_bufsz(rx_ring);
do {
if (!igc_alloc_mapped_page(rx_ring, bi))
break;
/* sync the buffer for use by the device */
dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
bi->page_offset, bufsz,
DMA_FROM_DEVICE);
/* Refresh the desc even if buffer_addrs didn't change
* because each write-back erases this info.
*/
rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
rx_desc++;
bi++;
i++;
if (unlikely(!i)) {
rx_desc = IGC_RX_DESC(rx_ring, 0);
bi = rx_ring->rx_buffer_info;
i -= rx_ring->count;
}
/* clear the length for the next_to_use descriptor */
rx_desc->wb.upper.length = 0;
cleaned_count--;
} while (cleaned_count);
i += rx_ring->count;
if (rx_ring->next_to_use != i) {
/* record the next descriptor to use */
rx_ring->next_to_use = i;
/* update next to alloc since we have filled the ring */
rx_ring->next_to_alloc = i;
/* Force memory writes to complete before letting h/w
* know there are new descriptors to fetch. (Only
* applicable for weak-ordered memory model archs,
* such as IA-64).
*/
wmb();
writel(i, rx_ring->tail);
}
}
static bool igc_alloc_rx_buffers_zc(struct igc_ring *ring, u16 count)
{
union igc_adv_rx_desc *desc;
u16 i = ring->next_to_use;
struct igc_rx_buffer *bi;
dma_addr_t dma;
bool ok = true;
if (!count)
return ok;
XSK_CHECK_PRIV_TYPE(struct igc_xdp_buff);
desc = IGC_RX_DESC(ring, i);
bi = &ring->rx_buffer_info[i];
i -= ring->count;
do {
bi->xdp = xsk_buff_alloc(ring->xsk_pool);
if (!bi->xdp) {
ok = false;
break;
}
dma = xsk_buff_xdp_get_dma(bi->xdp);
desc->read.pkt_addr = cpu_to_le64(dma);
desc++;
bi++;
i++;
if (unlikely(!i)) {
desc = IGC_RX_DESC(ring, 0);
bi = ring->rx_buffer_info;
i -= ring->count;
}
/* Clear the length for the next_to_use descriptor. */
desc->wb.upper.length = 0;
count--;
} while (count);
i += ring->count;
if (ring->next_to_use != i) {
ring->next_to_use = i;
/* Force memory writes to complete before letting h/w
* know there are new descriptors to fetch. (Only
* applicable for weak-ordered memory model archs,
* such as IA-64).
*/
wmb();
writel(i, ring->tail);
}
return ok;
}
/* This function requires __netif_tx_lock is held by the caller. */
static int igc_xdp_init_tx_descriptor(struct igc_ring *ring,
struct xdp_frame *xdpf)
{
struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
u16 count, index = ring->next_to_use;
struct igc_tx_buffer *head = &ring->tx_buffer_info[index];
struct igc_tx_buffer *buffer = head;
union igc_adv_tx_desc *desc = IGC_TX_DESC(ring, index);
u32 olinfo_status, len = xdpf->len, cmd_type;
void *data = xdpf->data;
u16 i;
count = TXD_USE_COUNT(len);
for (i = 0; i < nr_frags; i++)
count += TXD_USE_COUNT(skb_frag_size(&sinfo->frags[i]));
if (igc_maybe_stop_tx(ring, count + 3)) {
/* this is a hard error */
return -EBUSY;
}
i = 0;
head->bytecount = xdp_get_frame_len(xdpf);
head->type = IGC_TX_BUFFER_TYPE_XDP;
head->gso_segs = 1;
head->xdpf = xdpf;
olinfo_status = head->bytecount << IGC_ADVTXD_PAYLEN_SHIFT;
desc->read.olinfo_status = cpu_to_le32(olinfo_status);
for (;;) {
dma_addr_t dma;
dma = dma_map_single(ring->dev, data, len, DMA_TO_DEVICE);
if (dma_mapping_error(ring->dev, dma)) {
netdev_err_once(ring->netdev,
"Failed to map DMA for TX\n");
goto unmap;
}
dma_unmap_len_set(buffer, len, len);
dma_unmap_addr_set(buffer, dma, dma);
cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
IGC_ADVTXD_DCMD_IFCS | len;
desc->read.cmd_type_len = cpu_to_le32(cmd_type);
desc->read.buffer_addr = cpu_to_le64(dma);
buffer->protocol = 0;
if (++index == ring->count)
index = 0;
if (i == nr_frags)
break;
buffer = &ring->tx_buffer_info[index];
desc = IGC_TX_DESC(ring, index);
desc->read.olinfo_status = 0;
data = skb_frag_address(&sinfo->frags[i]);
len = skb_frag_size(&sinfo->frags[i]);
i++;
}
desc->read.cmd_type_len |= cpu_to_le32(IGC_TXD_DCMD);
netdev_tx_sent_queue(txring_txq(ring), head->bytecount);
/* set the timestamp */
head->time_stamp = jiffies;
/* set next_to_watch value indicating a packet is present */
head->next_to_watch = desc;
ring->next_to_use = index;
return 0;
unmap:
for (;;) {
buffer = &ring->tx_buffer_info[index];
if (dma_unmap_len(buffer, len))
dma_unmap_page(ring->dev,
dma_unmap_addr(buffer, dma),
dma_unmap_len(buffer, len),
DMA_TO_DEVICE);
dma_unmap_len_set(buffer, len, 0);
if (buffer == head)
break;
if (!index)
index += ring->count;
index--;
}
return -ENOMEM;
}
static struct igc_ring *igc_xdp_get_tx_ring(struct igc_adapter *adapter,
int cpu)
{
int index = cpu;
if (unlikely(index < 0))
index = 0;
while (index >= adapter->num_tx_queues)
index -= adapter->num_tx_queues;
return adapter->tx_ring[index];
}
static int igc_xdp_xmit_back(struct igc_adapter *adapter, struct xdp_buff *xdp)
{
struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
int cpu = smp_processor_id();
struct netdev_queue *nq;
struct igc_ring *ring;
int res;
if (unlikely(!xdpf))
return -EFAULT;
ring = igc_xdp_get_tx_ring(adapter, cpu);
nq = txring_txq(ring);
__netif_tx_lock(nq, cpu);
/* Avoid transmit queue timeout since we share it with the slow path */
txq_trans_cond_update(nq);
res = igc_xdp_init_tx_descriptor(ring, xdpf);
__netif_tx_unlock(nq);
return res;
}
/* This function assumes rcu_read_lock() is held by the caller. */
static int __igc_xdp_run_prog(struct igc_adapter *adapter,
struct bpf_prog *prog,
struct xdp_buff *xdp)
{
u32 act = bpf_prog_run_xdp(prog, xdp);
switch (act) {
case XDP_PASS:
return IGC_XDP_PASS;
case XDP_TX:
if (igc_xdp_xmit_back(adapter, xdp) < 0)
goto out_failure;
return IGC_XDP_TX;
case XDP_REDIRECT:
if (xdp_do_redirect(adapter->netdev, xdp, prog) < 0)
goto out_failure;
return IGC_XDP_REDIRECT;
break;
default:
bpf_warn_invalid_xdp_action(adapter->netdev, prog, act);
fallthrough;
case XDP_ABORTED:
out_failure:
trace_xdp_exception(adapter->netdev, prog, act);
fallthrough;
case XDP_DROP:
return IGC_XDP_CONSUMED;
}
}
static struct sk_buff *igc_xdp_run_prog(struct igc_adapter *adapter,
struct xdp_buff *xdp)
{
struct bpf_prog *prog;
int res;
prog = READ_ONCE(adapter->xdp_prog);
if (!prog) {
res = IGC_XDP_PASS;
goto out;
}
res = __igc_xdp_run_prog(adapter, prog, xdp);
out:
return ERR_PTR(-res);
}
/* This function assumes __netif_tx_lock is held by the caller. */
static void igc_flush_tx_descriptors(struct igc_ring *ring)
{
/* Once tail pointer is updated, hardware can fetch the descriptors
* any time so we issue a write membar here to ensure all memory
* writes are complete before the tail pointer is updated.
*/
wmb();
writel(ring->next_to_use, ring->tail);
}
static void igc_finalize_xdp(struct igc_adapter *adapter, int status)
{
int cpu = smp_processor_id();
struct netdev_queue *nq;
struct igc_ring *ring;
if (status & IGC_XDP_TX) {
ring = igc_xdp_get_tx_ring(adapter, cpu);
nq = txring_txq(ring);
__netif_tx_lock(nq, cpu);
igc_flush_tx_descriptors(ring);
__netif_tx_unlock(nq);
}
if (status & IGC_XDP_REDIRECT)
xdp_do_flush();
}
static void igc_update_rx_stats(struct igc_q_vector *q_vector,
unsigned int packets, unsigned int bytes)
{
struct igc_ring *ring = q_vector->rx.ring;
u64_stats_update_begin(&ring->rx_syncp);
ring->rx_stats.packets += packets;
ring->rx_stats.bytes += bytes;
u64_stats_update_end(&ring->rx_syncp);
q_vector->rx.total_packets += packets;
q_vector->rx.total_bytes += bytes;
}
static int igc_clean_rx_irq(struct igc_q_vector *q_vector, const int budget)
{
unsigned int total_bytes = 0, total_packets = 0;
struct igc_adapter *adapter = q_vector->adapter;
struct igc_ring *rx_ring = q_vector->rx.ring;
struct sk_buff *skb = rx_ring->skb;
u16 cleaned_count = igc_desc_unused(rx_ring);
int xdp_status = 0, rx_buffer_pgcnt;
while (likely(total_packets < budget)) {
struct igc_xdp_buff ctx = { .rx_ts = NULL };
struct igc_rx_buffer *rx_buffer;
union igc_adv_rx_desc *rx_desc;
unsigned int size, truesize;
int pkt_offset = 0;
void *pktbuf;
/* return some buffers to hardware, one at a time is too slow */
if (cleaned_count >= IGC_RX_BUFFER_WRITE) {
igc_alloc_rx_buffers(rx_ring, cleaned_count);
cleaned_count = 0;
}
rx_desc = IGC_RX_DESC(rx_ring, rx_ring->next_to_clean);
size = le16_to_cpu(rx_desc->wb.upper.length);
if (!size)
break;
/* This memory barrier is needed to keep us from reading
* any other fields out of the rx_desc until we know the
* descriptor has been written back
*/
dma_rmb();
rx_buffer = igc_get_rx_buffer(rx_ring, size, &rx_buffer_pgcnt);
truesize = igc_get_rx_frame_truesize(rx_ring, size);
pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset;
if (igc_test_staterr(rx_desc, IGC_RXDADV_STAT_TSIP)) {
ctx.rx_ts = pktbuf;
pkt_offset = IGC_TS_HDR_LEN;
size -= IGC_TS_HDR_LEN;
}
if (!skb) {
xdp_init_buff(&ctx.xdp, truesize, &rx_ring->xdp_rxq);
xdp_prepare_buff(&ctx.xdp, pktbuf - igc_rx_offset(rx_ring),
igc_rx_offset(rx_ring) + pkt_offset,
size, true);
xdp_buff_clear_frags_flag(&ctx.xdp);
ctx.rx_desc = rx_desc;
skb = igc_xdp_run_prog(adapter, &ctx.xdp);
}
if (IS_ERR(skb)) {
unsigned int xdp_res = -PTR_ERR(skb);
switch (xdp_res) {
case IGC_XDP_CONSUMED:
rx_buffer->pagecnt_bias++;
break;
case IGC_XDP_TX:
case IGC_XDP_REDIRECT:
igc_rx_buffer_flip(rx_buffer, truesize);
xdp_status |= xdp_res;
break;
}
total_packets++;
total_bytes += size;
} else if (skb)
igc_add_rx_frag(rx_ring, rx_buffer, skb, size);
else if (ring_uses_build_skb(rx_ring))
skb = igc_build_skb(rx_ring, rx_buffer, &ctx.xdp);
else
skb = igc_construct_skb(rx_ring, rx_buffer, &ctx);
/* exit if we failed to retrieve a buffer */
if (!skb) {
rx_ring->rx_stats.alloc_failed++;
rx_buffer->pagecnt_bias++;
break;
}
igc_put_rx_buffer(rx_ring, rx_buffer, rx_buffer_pgcnt);
cleaned_count++;
/* fetch next buffer in frame if non-eop */
if (igc_is_non_eop(rx_ring, rx_desc))
continue;
/* verify the packet layout is correct */
if (igc_cleanup_headers(rx_ring, rx_desc, skb)) {
skb = NULL;
continue;
}
/* probably a little skewed due to removing CRC */
total_bytes += skb->len;
/* populate checksum, VLAN, and protocol */
igc_process_skb_fields(rx_ring, rx_desc, skb);
napi_gro_receive(&q_vector->napi, skb);
/* reset skb pointer */
skb = NULL;
/* update budget accounting */
total_packets++;
}
if (xdp_status)
igc_finalize_xdp(adapter, xdp_status);
/* place incomplete frames back on ring for completion */
rx_ring->skb = skb;
igc_update_rx_stats(q_vector, total_packets, total_bytes);
if (cleaned_count)
igc_alloc_rx_buffers(rx_ring, cleaned_count);
return total_packets;
}
static struct sk_buff *igc_construct_skb_zc(struct igc_ring *ring,
struct xdp_buff *xdp)
{
unsigned int totalsize = xdp->data_end - xdp->data_meta;
unsigned int metasize = xdp->data - xdp->data_meta;
struct sk_buff *skb;
net_prefetch(xdp->data_meta);
skb = napi_alloc_skb(&ring->q_vector->napi, totalsize);
if (unlikely(!skb))
return NULL;
memcpy(__skb_put(skb, totalsize), xdp->data_meta,
ALIGN(totalsize, sizeof(long)));
if (metasize) {
skb_metadata_set(skb, metasize);
__skb_pull(skb, metasize);
}
return skb;
}
static void igc_dispatch_skb_zc(struct igc_q_vector *q_vector,
union igc_adv_rx_desc *desc,
struct xdp_buff *xdp,
ktime_t timestamp)
{
struct igc_ring *ring = q_vector->rx.ring;
struct sk_buff *skb;
skb = igc_construct_skb_zc(ring, xdp);
if (!skb) {
ring->rx_stats.alloc_failed++;
return;
}
if (timestamp)
skb_hwtstamps(skb)->hwtstamp = timestamp;
if (igc_cleanup_headers(ring, desc, skb))
return;
igc_process_skb_fields(ring, desc, skb);
napi_gro_receive(&q_vector->napi, skb);
}
static struct igc_xdp_buff *xsk_buff_to_igc_ctx(struct xdp_buff *xdp)
{
/* xdp_buff pointer used by ZC code path is alloc as xdp_buff_xsk. The
* igc_xdp_buff shares its layout with xdp_buff_xsk and private
* igc_xdp_buff fields fall into xdp_buff_xsk->cb
*/
return (struct igc_xdp_buff *)xdp;
}
static int igc_clean_rx_irq_zc(struct igc_q_vector *q_vector, const int budget)
{
struct igc_adapter *adapter = q_vector->adapter;
struct igc_ring *ring = q_vector->rx.ring;
u16 cleaned_count = igc_desc_unused(ring);
int total_bytes = 0, total_packets = 0;
u16 ntc = ring->next_to_clean;
struct bpf_prog *prog;
bool failure = false;
int xdp_status = 0;
rcu_read_lock();
prog = READ_ONCE(adapter->xdp_prog);
while (likely(total_packets < budget)) {
union igc_adv_rx_desc *desc;
struct igc_rx_buffer *bi;
struct igc_xdp_buff *ctx;
ktime_t timestamp = 0;
unsigned int size;
int res;
desc = IGC_RX_DESC(ring, ntc);
size = le16_to_cpu(desc->wb.upper.length);
if (!size)
break;
/* This memory barrier is needed to keep us from reading
* any other fields out of the rx_desc until we know the
* descriptor has been written back
*/
dma_rmb();
bi = &ring->rx_buffer_info[ntc];
ctx = xsk_buff_to_igc_ctx(bi->xdp);
ctx->rx_desc = desc;
if (igc_test_staterr(desc, IGC_RXDADV_STAT_TSIP)) {
ctx->rx_ts = bi->xdp->data;
bi->xdp->data += IGC_TS_HDR_LEN;
/* HW timestamp has been copied into local variable. Metadata
* length when XDP program is called should be 0.
*/
bi->xdp->data_meta += IGC_TS_HDR_LEN;
size -= IGC_TS_HDR_LEN;
}
bi->xdp->data_end = bi->xdp->data + size;
xsk_buff_dma_sync_for_cpu(bi->xdp, ring->xsk_pool);
res = __igc_xdp_run_prog(adapter, prog, bi->xdp);
switch (res) {
case IGC_XDP_PASS:
igc_dispatch_skb_zc(q_vector, desc, bi->xdp, timestamp);
fallthrough;
case IGC_XDP_CONSUMED:
xsk_buff_free(bi->xdp);
break;
case IGC_XDP_TX:
case IGC_XDP_REDIRECT:
xdp_status |= res;
break;
}
bi->xdp = NULL;
total_bytes += size;
total_packets++;
cleaned_count++;
ntc++;
if (ntc == ring->count)
ntc = 0;
}
ring->next_to_clean = ntc;
rcu_read_unlock();
if (cleaned_count >= IGC_RX_BUFFER_WRITE)
failure = !igc_alloc_rx_buffers_zc(ring, cleaned_count);
if (xdp_status)
igc_finalize_xdp(adapter, xdp_status);
igc_update_rx_stats(q_vector, total_packets, total_bytes);
if (xsk_uses_need_wakeup(ring->xsk_pool)) {
if (failure || ring->next_to_clean == ring->next_to_use)
xsk_set_rx_need_wakeup(ring->xsk_pool);
else
xsk_clear_rx_need_wakeup(ring->xsk_pool);
return total_packets;
}
return failure ? budget : total_packets;
}
static void igc_update_tx_stats(struct igc_q_vector *q_vector,
unsigned int packets, unsigned int bytes)
{
struct igc_ring *ring = q_vector->tx.ring;
u64_stats_update_begin(&ring->tx_syncp);
ring->tx_stats.bytes += bytes;
ring->tx_stats.packets += packets;
u64_stats_update_end(&ring->tx_syncp);
q_vector->tx.total_bytes += bytes;
q_vector->tx.total_packets += packets;
}
static void igc_xsk_request_timestamp(void *_priv)
{
struct igc_metadata_request *meta_req = _priv;
struct igc_ring *tx_ring = meta_req->tx_ring;
struct igc_tx_timestamp_request *tstamp;
u32 tx_flags = IGC_TX_FLAGS_TSTAMP;
struct igc_adapter *adapter;
unsigned long lock_flags;
bool found = false;
int i;
if (test_bit(IGC_RING_FLAG_TX_HWTSTAMP, &tx_ring->flags)) {
adapter = netdev_priv(tx_ring->netdev);
spin_lock_irqsave(&adapter->ptp_tx_lock, lock_flags);
/* Search for available tstamp regs */
for (i = 0; i < IGC_MAX_TX_TSTAMP_REGS; i++) {
tstamp = &adapter->tx_tstamp[i];
/* tstamp->skb and tstamp->xsk_tx_buffer are in union.
* When tstamp->skb is equal to NULL,
* tstamp->xsk_tx_buffer is equal to NULL as well.
* This condition means that the particular tstamp reg
* is not occupied by other packet.
*/
if (!tstamp->skb) {
found = true;
break;
}
}
/* Return if no available tstamp regs */
if (!found) {
adapter->tx_hwtstamp_skipped++;
spin_unlock_irqrestore(&adapter->ptp_tx_lock,
lock_flags);
return;
}
tstamp->start = jiffies;
tstamp->xsk_queue_index = tx_ring->queue_index;
tstamp->xsk_tx_buffer = meta_req->tx_buffer;
tstamp->buffer_type = IGC_TX_BUFFER_TYPE_XSK;
/* Hold the transmit completion until timestamp is ready */
meta_req->tx_buffer->xsk_pending_ts = true;
/* Keep the pointer to tx_timestamp, which is located in XDP
* metadata area. It is the location to store the value of
* tx hardware timestamp.
*/
xsk_tx_metadata_to_compl(meta_req->meta, &tstamp->xsk_meta);
/* Set timestamp bit based on the _TSTAMP(_X) bit. */
tx_flags |= tstamp->flags;
meta_req->cmd_type |= IGC_SET_FLAG(tx_flags,
IGC_TX_FLAGS_TSTAMP,
(IGC_ADVTXD_MAC_TSTAMP));
meta_req->cmd_type |= IGC_SET_FLAG(tx_flags,
IGC_TX_FLAGS_TSTAMP_1,
(IGC_ADVTXD_TSTAMP_REG_1));
meta_req->cmd_type |= IGC_SET_FLAG(tx_flags,
IGC_TX_FLAGS_TSTAMP_2,
(IGC_ADVTXD_TSTAMP_REG_2));
meta_req->cmd_type |= IGC_SET_FLAG(tx_flags,
IGC_TX_FLAGS_TSTAMP_3,
(IGC_ADVTXD_TSTAMP_REG_3));
spin_unlock_irqrestore(&adapter->ptp_tx_lock, lock_flags);
}
}
static u64 igc_xsk_fill_timestamp(void *_priv)
{
return *(u64 *)_priv;
}
const struct xsk_tx_metadata_ops igc_xsk_tx_metadata_ops = {
.tmo_request_timestamp = igc_xsk_request_timestamp,
.tmo_fill_timestamp = igc_xsk_fill_timestamp,
};
static void igc_xdp_xmit_zc(struct igc_ring *ring)
{
struct xsk_buff_pool *pool = ring->xsk_pool;
struct netdev_queue *nq = txring_txq(ring);
union igc_adv_tx_desc *tx_desc = NULL;
int cpu = smp_processor_id();
struct xdp_desc xdp_desc;
u16 budget, ntu;
if (!netif_carrier_ok(ring->netdev))
return;
__netif_tx_lock(nq, cpu);
/* Avoid transmit queue timeout since we share it with the slow path */
txq_trans_cond_update(nq);
ntu = ring->next_to_use;
budget = igc_desc_unused(ring);
while (xsk_tx_peek_desc(pool, &xdp_desc) && budget--) {
struct igc_metadata_request meta_req;
struct xsk_tx_metadata *meta = NULL;
struct igc_tx_buffer *bi;
u32 olinfo_status;
dma_addr_t dma;
meta_req.cmd_type = IGC_ADVTXD_DTYP_DATA |
IGC_ADVTXD_DCMD_DEXT |
IGC_ADVTXD_DCMD_IFCS |
IGC_TXD_DCMD | xdp_desc.len;
olinfo_status = xdp_desc.len << IGC_ADVTXD_PAYLEN_SHIFT;
dma = xsk_buff_raw_get_dma(pool, xdp_desc.addr);
meta = xsk_buff_get_metadata(pool, xdp_desc.addr);
xsk_buff_raw_dma_sync_for_device(pool, dma, xdp_desc.len);
bi = &ring->tx_buffer_info[ntu];
meta_req.tx_ring = ring;
meta_req.tx_buffer = bi;
meta_req.meta = meta;
xsk_tx_metadata_request(meta, &igc_xsk_tx_metadata_ops,
&meta_req);
tx_desc = IGC_TX_DESC(ring, ntu);
tx_desc->read.cmd_type_len = cpu_to_le32(meta_req.cmd_type);
tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
tx_desc->read.buffer_addr = cpu_to_le64(dma);
bi->type = IGC_TX_BUFFER_TYPE_XSK;
bi->protocol = 0;
bi->bytecount = xdp_desc.len;
bi->gso_segs = 1;
bi->time_stamp = jiffies;
bi->next_to_watch = tx_desc;
netdev_tx_sent_queue(txring_txq(ring), xdp_desc.len);
ntu++;
if (ntu == ring->count)
ntu = 0;
}
ring->next_to_use = ntu;
if (tx_desc) {
igc_flush_tx_descriptors(ring);
xsk_tx_release(pool);
}
__netif_tx_unlock(nq);
}
/**
* igc_clean_tx_irq - Reclaim resources after transmit completes
* @q_vector: pointer to q_vector containing needed info
* @napi_budget: Used to determine if we are in netpoll
*
* returns true if ring is completely cleaned
*/
static bool igc_clean_tx_irq(struct igc_q_vector *q_vector, int napi_budget)
{
struct igc_adapter *adapter = q_vector->adapter;
unsigned int total_bytes = 0, total_packets = 0;
unsigned int budget = q_vector->tx.work_limit;
struct igc_ring *tx_ring = q_vector->tx.ring;
unsigned int i = tx_ring->next_to_clean;
struct igc_tx_buffer *tx_buffer;
union igc_adv_tx_desc *tx_desc;
u32 xsk_frames = 0;
if (test_bit(__IGC_DOWN, &adapter->state))
return true;
tx_buffer = &tx_ring->tx_buffer_info[i];
tx_desc = IGC_TX_DESC(tx_ring, i);
i -= tx_ring->count;
do {
union igc_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
/* if next_to_watch is not set then there is no work pending */
if (!eop_desc)
break;
/* prevent any other reads prior to eop_desc */
smp_rmb();
/* if DD is not set pending work has not been completed */
if (!(eop_desc->wb.status & cpu_to_le32(IGC_TXD_STAT_DD)))
break;
/* Hold the completions while there's a pending tx hardware
* timestamp request from XDP Tx metadata.
*/
if (tx_buffer->type == IGC_TX_BUFFER_TYPE_XSK &&
tx_buffer->xsk_pending_ts)
break;
/* clear next_to_watch to prevent false hangs */
tx_buffer->next_to_watch = NULL;
/* update the statistics for this packet */
total_bytes += tx_buffer->bytecount;
total_packets += tx_buffer->gso_segs;
switch (tx_buffer->type) {
case IGC_TX_BUFFER_TYPE_XSK:
xsk_frames++;
break;
case IGC_TX_BUFFER_TYPE_XDP:
xdp_return_frame(tx_buffer->xdpf);
igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
break;
case IGC_TX_BUFFER_TYPE_SKB:
napi_consume_skb(tx_buffer->skb, napi_budget);
igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
break;
default:
netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n");
break;
}
/* clear last DMA location and unmap remaining buffers */
while (tx_desc != eop_desc) {
tx_buffer++;
tx_desc++;
i++;
if (unlikely(!i)) {
i -= tx_ring->count;
tx_buffer = tx_ring->tx_buffer_info;
tx_desc = IGC_TX_DESC(tx_ring, 0);
}
/* unmap any remaining paged data */
if (dma_unmap_len(tx_buffer, len))
igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
}
/* move us one more past the eop_desc for start of next pkt */
tx_buffer++;
tx_desc++;
i++;
if (unlikely(!i)) {
i -= tx_ring->count;
tx_buffer = tx_ring->tx_buffer_info;
tx_desc = IGC_TX_DESC(tx_ring, 0);
}
/* issue prefetch for next Tx descriptor */
prefetch(tx_desc);
/* update budget accounting */
budget--;
} while (likely(budget));
netdev_tx_completed_queue(txring_txq(tx_ring),
total_packets, total_bytes);
i += tx_ring->count;
tx_ring->next_to_clean = i;
igc_update_tx_stats(q_vector, total_packets, total_bytes);
if (tx_ring->xsk_pool) {
if (xsk_frames)
xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
if (xsk_uses_need_wakeup(tx_ring->xsk_pool))
xsk_set_tx_need_wakeup(tx_ring->xsk_pool);
igc_xdp_xmit_zc(tx_ring);
}
if (test_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
struct igc_hw *hw = &adapter->hw;
/* Detect a transmit hang in hardware, this serializes the
* check with the clearing of time_stamp and movement of i
*/
clear_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
if (tx_buffer->next_to_watch &&
time_after(jiffies, tx_buffer->time_stamp +
(adapter->tx_timeout_factor * HZ)) &&
!(rd32(IGC_STATUS) & IGC_STATUS_TXOFF) &&
(rd32(IGC_TDH(tx_ring->reg_idx)) != readl(tx_ring->tail)) &&
!tx_ring->oper_gate_closed) {
/* detected Tx unit hang */
netdev_err(tx_ring->netdev,
"Detected Tx Unit Hang\n"
" Tx Queue <%d>\n"
" TDH <%x>\n"
" TDT <%x>\n"
" next_to_use <%x>\n"
" next_to_clean <%x>\n"
"buffer_info[next_to_clean]\n"
" time_stamp <%lx>\n"
" next_to_watch <%p>\n"
" jiffies <%lx>\n"
" desc.status <%x>\n",
tx_ring->queue_index,
rd32(IGC_TDH(tx_ring->reg_idx)),
readl(tx_ring->tail),
tx_ring->next_to_use,
tx_ring->next_to_clean,
tx_buffer->time_stamp,
tx_buffer->next_to_watch,
jiffies,
tx_buffer->next_to_watch->wb.status);
netif_stop_subqueue(tx_ring->netdev,
tx_ring->queue_index);
/* we are about to reset, no point in enabling stuff */
return true;
}
}
#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
if (unlikely(total_packets &&
netif_carrier_ok(tx_ring->netdev) &&
igc_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
/* Make sure that anybody stopping the queue after this
* sees the new next_to_clean.
*/
smp_mb();
if (__netif_subqueue_stopped(tx_ring->netdev,
tx_ring->queue_index) &&
!(test_bit(__IGC_DOWN, &adapter->state))) {
netif_wake_subqueue(tx_ring->netdev,
tx_ring->queue_index);
u64_stats_update_begin(&tx_ring->tx_syncp);
tx_ring->tx_stats.restart_queue++;
u64_stats_update_end(&tx_ring->tx_syncp);
}
}
return !!budget;
}
static int igc_find_mac_filter(struct igc_adapter *adapter,
enum igc_mac_filter_type type, const u8 *addr)
{
struct igc_hw *hw = &adapter->hw;
int max_entries = hw->mac.rar_entry_count;
u32 ral, rah;
int i;
for (i = 0; i < max_entries; i++) {
ral = rd32(IGC_RAL(i));
rah = rd32(IGC_RAH(i));
if (!(rah & IGC_RAH_AV))
continue;
if (!!(rah & IGC_RAH_ASEL_SRC_ADDR) != type)
continue;
if ((rah & IGC_RAH_RAH_MASK) !=
le16_to_cpup((__le16 *)(addr + 4)))
continue;
if (ral != le32_to_cpup((__le32 *)(addr)))
continue;
return i;
}
return -1;
}
static int igc_get_avail_mac_filter_slot(struct igc_adapter *adapter)
{
struct igc_hw *hw = &adapter->hw;
int max_entries = hw->mac.rar_entry_count;
u32 rah;
int i;
for (i = 0; i < max_entries; i++) {
rah = rd32(IGC_RAH(i));
if (!(rah & IGC_RAH_AV))
return i;
}
return -1;
}
/**
* igc_add_mac_filter() - Add MAC address filter
* @adapter: Pointer to adapter where the filter should be added
* @type: MAC address filter type (source or destination)
* @addr: MAC address
* @queue: If non-negative, queue assignment feature is enabled and frames
* matching the filter are enqueued onto 'queue'. Otherwise, queue
* assignment is disabled.
*
* Return: 0 in case of success, negative errno code otherwise.
*/
static int igc_add_mac_filter(struct igc_adapter *adapter,
enum igc_mac_filter_type type, const u8 *addr,
int queue)
{
struct net_device *dev = adapter->netdev;
int index;
index = igc_find_mac_filter(adapter, type, addr);
if (index >= 0)
goto update_filter;
index = igc_get_avail_mac_filter_slot(adapter);
if (index < 0)
return -ENOSPC;
netdev_dbg(dev, "Add MAC address filter: index %d type %s address %pM queue %d\n",
index, type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
addr, queue);
update_filter:
igc_set_mac_filter_hw(adapter, index, type, addr, queue);
return 0;
}
/**
* igc_del_mac_filter() - Delete MAC address filter
* @adapter: Pointer to adapter where the filter should be deleted from
* @type: MAC address filter type (source or destination)
* @addr: MAC address
*/
static void igc_del_mac_filter(struct igc_adapter *adapter,
enum igc_mac_filter_type type, const u8 *addr)
{
struct net_device *dev = adapter->netdev;
int index;
index = igc_find_mac_filter(adapter, type, addr);
if (index < 0)
return;
if (index == 0) {
/* If this is the default filter, we don't actually delete it.
* We just reset to its default value i.e. disable queue
* assignment.
*/
netdev_dbg(dev, "Disable default MAC filter queue assignment");
igc_set_mac_filter_hw(adapter, 0, type, addr, -1);
} else {
netdev_dbg(dev, "Delete MAC address filter: index %d type %s address %pM\n",
index,
type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
addr);
igc_clear_mac_filter_hw(adapter, index);
}
}
/**
* igc_add_vlan_prio_filter() - Add VLAN priority filter
* @adapter: Pointer to adapter where the filter should be added
* @prio: VLAN priority value
* @queue: Queue number which matching frames are assigned to
*
* Return: 0 in case of success, negative errno code otherwise.
*/
static int igc_add_vlan_prio_filter(struct igc_adapter *adapter, int prio,
int queue)
{
struct net_device *dev = adapter->netdev;
struct igc_hw *hw = &adapter->hw;
u32 vlanpqf;
vlanpqf = rd32(IGC_VLANPQF);
if (vlanpqf & IGC_VLANPQF_VALID(prio)) {
netdev_dbg(dev, "VLAN priority filter already in use\n");
return -EEXIST;
}
vlanpqf |= IGC_VLANPQF_QSEL(prio, queue);
vlanpqf |= IGC_VLANPQF_VALID(prio);
wr32(IGC_VLANPQF, vlanpqf);
netdev_dbg(dev, "Add VLAN priority filter: prio %d queue %d\n",
prio, queue);
return 0;
}
/**
* igc_del_vlan_prio_filter() - Delete VLAN priority filter
* @adapter: Pointer to adapter where the filter should be deleted from
* @prio: VLAN priority value
*/
static void igc_del_vlan_prio_filter(struct igc_adapter *adapter, int prio)
{
struct igc_hw *hw = &adapter->hw;
u32 vlanpqf;
vlanpqf = rd32(IGC_VLANPQF);
vlanpqf &= ~IGC_VLANPQF_VALID(prio);
vlanpqf &= ~IGC_VLANPQF_QSEL(prio, IGC_VLANPQF_QUEUE_MASK);
wr32(IGC_VLANPQF, vlanpqf);
netdev_dbg(adapter->netdev, "Delete VLAN priority filter: prio %d\n",
prio);
}
static int igc_get_avail_etype_filter_slot(struct igc_adapter *adapter)
{
struct igc_hw *hw = &adapter->hw;
int i;
for (i = 0; i < MAX_ETYPE_FILTER; i++) {
u32 etqf = rd32(IGC_ETQF(i));
if (!(etqf & IGC_ETQF_FILTER_ENABLE))
return i;
}
return -1;
}
/**
* igc_add_etype_filter() - Add ethertype filter
* @adapter: Pointer to adapter where the filter should be added
* @etype: Ethertype value
* @queue: If non-negative, queue assignment feature is enabled and frames
* matching the filter are enqueued onto 'queue'. Otherwise, queue
* assignment is disabled.
*
* Return: 0 in case of success, negative errno code otherwise.
*/
static int igc_add_etype_filter(struct igc_adapter *adapter, u16 etype,
int queue)
{
struct igc_hw *hw = &adapter->hw;
int index;
u32 etqf;
index = igc_get_avail_etype_filter_slot(adapter);
if (index < 0)
return -ENOSPC;
etqf = rd32(IGC_ETQF(index));
etqf &= ~IGC_ETQF_ETYPE_MASK;
etqf |= etype;
if (queue >= 0) {
etqf &= ~IGC_ETQF_QUEUE_MASK;
etqf |= (queue << IGC_ETQF_QUEUE_SHIFT);
etqf |= IGC_ETQF_QUEUE_ENABLE;
}
etqf |= IGC_ETQF_FILTER_ENABLE;
wr32(IGC_ETQF(index), etqf);
netdev_dbg(adapter->netdev, "Add ethertype filter: etype %04x queue %d\n",
etype, queue);
return 0;
}
static int igc_find_etype_filter(struct igc_adapter *adapter, u16 etype)
{
struct igc_hw *hw = &adapter->hw;
int i;
for (i = 0; i < MAX_ETYPE_FILTER; i++) {
u32 etqf = rd32(IGC_ETQF(i));
if ((etqf & IGC_ETQF_ETYPE_MASK) == etype)
return i;
}
return -1;
}
/**
* igc_del_etype_filter() - Delete ethertype filter
* @adapter: Pointer to adapter where the filter should be deleted from
* @etype: Ethertype value
*/
static void igc_del_etype_filter(struct igc_adapter *adapter, u16 etype)
{
struct igc_hw *hw = &adapter->hw;
int index;
index = igc_find_etype_filter(adapter, etype);
if (index < 0)
return;
wr32(IGC_ETQF(index), 0);
netdev_dbg(adapter->netdev, "Delete ethertype filter: etype %04x\n",
etype);
}
static int igc_flex_filter_select(struct igc_adapter *adapter,
struct igc_flex_filter *input,
u32 *fhft)
{
struct igc_hw *hw = &adapter->hw;
u8 fhft_index;
u32 fhftsl;
if (input->index >= MAX_FLEX_FILTER) {
netdev_err(adapter->netdev, "Wrong Flex Filter index selected!\n");
return -EINVAL;
}
/* Indirect table select register */
fhftsl = rd32(IGC_FHFTSL);
fhftsl &= ~IGC_FHFTSL_FTSL_MASK;
switch (input->index) {
case 0 ... 7:
fhftsl |= 0x00;
break;
case 8 ... 15:
fhftsl |= 0x01;
break;
case 16 ... 23:
fhftsl |= 0x02;
break;
case 24 ... 31:
fhftsl |= 0x03;
break;
}
wr32(IGC_FHFTSL, fhftsl);
/* Normalize index down to host table register */
fhft_index = input->index % 8;
*fhft = (fhft_index < 4) ? IGC_FHFT(fhft_index) :
IGC_FHFT_EXT(fhft_index - 4);
return 0;
}
static int igc_write_flex_filter_ll(struct igc_adapter *adapter,
struct igc_flex_filter *input)
{
struct igc_hw *hw = &adapter->hw;
u8 *data = input->data;
u8 *mask = input->mask;
u32 queuing;
u32 fhft;
u32 wufc;
int ret;
int i;
/* Length has to be aligned to 8. Otherwise the filter will fail. Bail
* out early to avoid surprises later.
*/
if (input->length % 8 != 0) {
netdev_err(adapter->netdev, "The length of a flex filter has to be 8 byte aligned!\n");
return -EINVAL;
}
/* Select corresponding flex filter register and get base for host table. */
ret = igc_flex_filter_select(adapter, input, &fhft);
if (ret)
return ret;
/* When adding a filter globally disable flex filter feature. That is
* recommended within the datasheet.
*/
wufc = rd32(IGC_WUFC);
wufc &= ~IGC_WUFC_FLEX_HQ;
wr32(IGC_WUFC, wufc);
/* Configure filter */
queuing = input->length & IGC_FHFT_LENGTH_MASK;
queuing |= FIELD_PREP(IGC_FHFT_QUEUE_MASK, input->rx_queue);
queuing |= FIELD_PREP(IGC_FHFT_PRIO_MASK, input->prio);
if (input->immediate_irq)
queuing |= IGC_FHFT_IMM_INT;
if (input->drop)
queuing |= IGC_FHFT_DROP;
wr32(fhft + 0xFC, queuing);
/* Write data (128 byte) and mask (128 bit) */
for (i = 0; i < 16; ++i) {
const size_t data_idx = i * 8;
const size_t row_idx = i * 16;
u32 dw0 =
(data[data_idx + 0] << 0) |
(data[data_idx + 1] << 8) |
(data[data_idx + 2] << 16) |
(data[data_idx + 3] << 24);
u32 dw1 =
(data[data_idx + 4] << 0) |
(data[data_idx + 5] << 8) |
(data[data_idx + 6] << 16) |
(data[data_idx + 7] << 24);
u32 tmp;
/* Write row: dw0, dw1 and mask */
wr32(fhft + row_idx, dw0);
wr32(fhft + row_idx + 4, dw1);
/* mask is only valid for MASK(7, 0) */
tmp = rd32(fhft + row_idx + 8);
tmp &= ~GENMASK(7, 0);
tmp |= mask[i];
wr32(fhft + row_idx + 8, tmp);
}
/* Enable filter. */
wufc |= IGC_WUFC_FLEX_HQ;
if (input->index > 8) {
/* Filter 0-7 are enabled via WUFC. The other 24 filters are not. */
u32 wufc_ext = rd32(IGC_WUFC_EXT);
wufc_ext |= (IGC_WUFC_EXT_FLX8 << (input->index - 8));
wr32(IGC_WUFC_EXT, wufc_ext);
} else {
wufc |= (IGC_WUFC_FLX0 << input->index);
}
wr32(IGC_WUFC, wufc);
netdev_dbg(adapter->netdev, "Added flex filter %u to HW.\n",
input->index);
return 0;
}
static void igc_flex_filter_add_field(struct igc_flex_filter *flex,
const void *src, unsigned int offset,
size_t len, const void *mask)
{
int i;
/* data */
memcpy(&flex->data[offset], src, len);
/* mask */
for (i = 0; i < len; ++i) {
const unsigned int idx = i + offset;
const u8 *ptr = mask;
if (mask) {
if (ptr[i] & 0xff)
flex->mask[idx / 8] |= BIT(idx % 8);
continue;
}
flex->mask[idx / 8] |= BIT(idx % 8);
}
}
static int igc_find_avail_flex_filter_slot(struct igc_adapter *adapter)
{
struct igc_hw *hw = &adapter->hw;
u32 wufc, wufc_ext;
int i;
wufc = rd32(IGC_WUFC);
wufc_ext = rd32(IGC_WUFC_EXT);
for (i = 0; i < MAX_FLEX_FILTER; i++) {
if (i < 8) {
if (!(wufc & (IGC_WUFC_FLX0 << i)))
return i;
} else {
if (!(wufc_ext & (IGC_WUFC_EXT_FLX8 << (i - 8))))
return i;
}
}
return -ENOSPC;
}
static bool igc_flex_filter_in_use(struct igc_adapter *adapter)
{
struct igc_hw *hw = &adapter->hw;
u32 wufc, wufc_ext;
wufc = rd32(IGC_WUFC);
wufc_ext = rd32(IGC_WUFC_EXT);
if (wufc & IGC_WUFC_FILTER_MASK)
return true;
if (wufc_ext & IGC_WUFC_EXT_FILTER_MASK)
return true;
return false;
}
static int igc_add_flex_filter(struct igc_adapter *adapter,
struct igc_nfc_rule *rule)
{
struct igc_nfc_filter *filter = &rule->filter;
unsigned int eth_offset, user_offset;
struct igc_flex_filter flex = { };
int ret, index;
bool vlan;
index = igc_find_avail_flex_filter_slot(adapter);
if (index < 0)
return -ENOSPC;
/* Construct the flex filter:
* -> dest_mac [6]
* -> src_mac [6]
* -> tpid [2]
* -> vlan tci [2]
* -> ether type [2]
* -> user data [8]
* -> = 26 bytes => 32 length
*/
flex.index = index;
flex.length = 32;
flex.rx_queue = rule->action;
vlan = rule->filter.vlan_tci || rule->filter.vlan_etype;
eth_offset = vlan ? 16 : 12;
user_offset = vlan ? 18 : 14;
/* Add destination MAC */
if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
igc_flex_filter_add_field(&flex, &filter->dst_addr, 0,
ETH_ALEN, NULL);
/* Add source MAC */
if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
igc_flex_filter_add_field(&flex, &filter->src_addr, 6,
ETH_ALEN, NULL);
/* Add VLAN etype */
if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_ETYPE) {
__be16 vlan_etype = cpu_to_be16(filter->vlan_etype);
igc_flex_filter_add_field(&flex, &vlan_etype, 12,
sizeof(vlan_etype), NULL);
}
/* Add VLAN TCI */
if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI)
igc_flex_filter_add_field(&flex, &filter->vlan_tci, 14,
sizeof(filter->vlan_tci), NULL);
/* Add Ether type */
if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
__be16 etype = cpu_to_be16(filter->etype);
igc_flex_filter_add_field(&flex, &etype, eth_offset,
sizeof(etype), NULL);
}
/* Add user data */
if (rule->filter.match_flags & IGC_FILTER_FLAG_USER_DATA)
igc_flex_filter_add_field(&flex, &filter->user_data,
user_offset,
sizeof(filter->user_data),
filter->user_mask);
/* Add it down to the hardware and enable it. */
ret = igc_write_flex_filter_ll(adapter, &flex);
if (ret)
return ret;
filter->flex_index = index;
return 0;
}
static void igc_del_flex_filter(struct igc_adapter *adapter,
u16 reg_index)
{
struct igc_hw *hw = &adapter->hw;
u32 wufc;
/* Just disable the filter. The filter table itself is kept
* intact. Another flex_filter_add() should override the "old" data
* then.
*/
if (reg_index > 8) {
u32 wufc_ext = rd32(IGC_WUFC_EXT);
wufc_ext &= ~(IGC_WUFC_EXT_FLX8 << (reg_index - 8));
wr32(IGC_WUFC_EXT, wufc_ext);
} else {
wufc = rd32(IGC_WUFC);
wufc &= ~(IGC_WUFC_FLX0 << reg_index);
wr32(IGC_WUFC, wufc);
}
if (igc_flex_filter_in_use(adapter))
return;
/* No filters are in use, we may disable flex filters */
wufc = rd32(IGC_WUFC);
wufc &= ~IGC_WUFC_FLEX_HQ;
wr32(IGC_WUFC, wufc);
}
static int igc_enable_nfc_rule(struct igc_adapter *adapter,
struct igc_nfc_rule *rule)
{
int err;
if (rule->flex) {
return igc_add_flex_filter(adapter, rule);
}
if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
err = igc_add_etype_filter(adapter, rule->filter.etype,
rule->action);
if (err)
return err;
}
if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) {
err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
rule->filter.src_addr, rule->action);
if (err)
return err;
}
if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) {
err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
rule->filter.dst_addr, rule->action);
if (err)
return err;
}
if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
int prio = FIELD_GET(VLAN_PRIO_MASK, rule->filter.vlan_tci);
err = igc_add_vlan_prio_filter(adapter, prio, rule->action);
if (err)
return err;
}
return 0;
}
static void igc_disable_nfc_rule(struct igc_adapter *adapter,
const struct igc_nfc_rule *rule)
{
if (rule->flex) {
igc_del_flex_filter(adapter, rule->filter.flex_index);
return;
}
if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE)
igc_del_etype_filter(adapter, rule->filter.etype);
if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
int prio = FIELD_GET(VLAN_PRIO_MASK, rule->filter.vlan_tci);
igc_del_vlan_prio_filter(adapter, prio);
}
if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
rule->filter.src_addr);
if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
rule->filter.dst_addr);
}
/**
* igc_get_nfc_rule() - Get NFC rule
* @adapter: Pointer to adapter
* @location: Rule location
*
* Context: Expects adapter->nfc_rule_lock to be held by caller.
*
* Return: Pointer to NFC rule at @location. If not found, NULL.
*/
struct igc_nfc_rule *igc_get_nfc_rule(struct igc_adapter *adapter,
u32 location)
{
struct igc_nfc_rule *rule;
list_for_each_entry(rule, &adapter->nfc_rule_list, list) {
if (rule->location == location)
return rule;
if (rule->location > location)
break;
}
return NULL;
}
/**
* igc_del_nfc_rule() - Delete NFC rule
* @adapter: Pointer to adapter
* @rule: Pointer to rule to be deleted
*
* Disable NFC rule in hardware and delete it from adapter.
*
* Context: Expects adapter->nfc_rule_lock to be held by caller.
*/
void igc_del_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
{
igc_disable_nfc_rule(adapter, rule);
list_del(&rule->list);
adapter->nfc_rule_count--;
kfree(rule);
}
static void igc_flush_nfc_rules(struct igc_adapter *adapter)
{
struct igc_nfc_rule *rule, *tmp;
mutex_lock(&adapter->nfc_rule_lock);
list_for_each_entry_safe(rule, tmp, &adapter->nfc_rule_list, list)
igc_del_nfc_rule(adapter, rule);
mutex_unlock(&adapter->nfc_rule_lock);
}
/**
* igc_add_nfc_rule() - Add NFC rule
* @adapter: Pointer to adapter
* @rule: Pointer to rule to be added
*
* Enable NFC rule in hardware and add it to adapter.
*
* Context: Expects adapter->nfc_rule_lock to be held by caller.
*
* Return: 0 on success, negative errno on failure.
*/
int igc_add_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
{
struct igc_nfc_rule *pred, *cur;
int err;
err = igc_enable_nfc_rule(adapter, rule);
if (err)
return err;
pred = NULL;
list_for_each_entry(cur, &adapter->nfc_rule_list, list) {
if (cur->location >= rule->location)
break;
pred = cur;
}
list_add(&rule->list, pred ? &pred->list : &adapter->nfc_rule_list);
adapter->nfc_rule_count++;
return 0;
}
static void igc_restore_nfc_rules(struct igc_adapter *adapter)
{
struct igc_nfc_rule *rule;
mutex_lock(&adapter->nfc_rule_lock);
list_for_each_entry_reverse(rule, &adapter->nfc_rule_list, list)
igc_enable_nfc_rule(adapter, rule);
mutex_unlock(&adapter->nfc_rule_lock);
}
static int igc_uc_sync(struct net_device *netdev, const unsigned char *addr)
{
struct igc_adapter *adapter = netdev_priv(netdev);
return igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr, -1);
}
static int igc_uc_unsync(struct net_device *netdev, const unsigned char *addr)
{
struct igc_adapter *adapter = netdev_priv(netdev);
igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr);
return 0;
}
/**
* igc_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
* @netdev: network interface device structure
*
* The set_rx_mode entry point is called whenever the unicast or multicast
* address lists or the network interface flags are updated. This routine is
* responsible for configuring the hardware for proper unicast, multicast,
* promiscuous mode, and all-multi behavior.
*/
static void igc_set_rx_mode(struct net_device *netdev)
{
struct igc_adapter *adapter = netdev_priv(netdev);
struct igc_hw *hw = &adapter->hw;
u32 rctl = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
int count;
/* Check for Promiscuous and All Multicast modes */
if (netdev->flags & IFF_PROMISC) {
rctl |= IGC_RCTL_UPE | IGC_RCTL_MPE;
} else {
if (netdev->flags & IFF_ALLMULTI) {
rctl |= IGC_RCTL_MPE;
} else {
/* Write addresses to the MTA, if the attempt fails
* then we should just turn on promiscuous mode so
* that we can at least receive multicast traffic
*/
count = igc_write_mc_addr_list(netdev);
if (count < 0)
rctl |= IGC_RCTL_MPE;
}
}
/* Write addresses to available RAR registers, if there is not
* sufficient space to store all the addresses then enable
* unicast promiscuous mode
*/
if (__dev_uc_sync(netdev, igc_uc_sync, igc_uc_unsync))
rctl |= IGC_RCTL_UPE;
/* update state of unicast and multicast */
rctl |= rd32(IGC_RCTL) & ~(IGC_RCTL_UPE | IGC_RCTL_MPE);
wr32(IGC_RCTL, rctl);
#if (PAGE_SIZE < 8192)
if (adapter->max_frame_size <= IGC_MAX_FRAME_BUILD_SKB)
rlpml = IGC_MAX_FRAME_BUILD_SKB;
#endif
wr32(IGC_RLPML, rlpml);
}
/**
* igc_configure - configure the hardware for RX and TX
* @adapter: private board structure
*/
static void igc_configure(struct igc_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
int i = 0;
igc_get_hw_control(adapter);
igc_set_rx_mode(netdev);
igc_restore_vlan(adapter);
igc_setup_tctl(adapter);
igc_setup_mrqc(adapter);
igc_setup_rctl(adapter);
igc_set_default_mac_filter(adapter);
igc_restore_nfc_rules(adapter);
igc_configure_tx(adapter);
igc_configure_rx(adapter);
igc_rx_fifo_flush_base(&adapter->hw);
/* call igc_desc_unused which always leaves
* at least 1 descriptor unused to make sure
* next_to_use != next_to_clean
*/
for (i = 0; i < adapter->num_rx_queues; i++) {
struct igc_ring *ring = adapter->rx_ring[i];
if (ring->xsk_pool)
igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring));
else
igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
}
}
/**
* igc_write_ivar - configure ivar for given MSI-X vector
* @hw: pointer to the HW structure
* @msix_vector: vector number we are allocating to a given ring
* @index: row index of IVAR register to write within IVAR table
* @offset: column offset of in IVAR, should be multiple of 8
*
* The IVAR table consists of 2 columns,
* each containing an cause allocation for an Rx and Tx ring, and a
* variable number of rows depending on the number of queues supported.
*/
static void igc_write_ivar(struct igc_hw *hw, int msix_vector,
int index, int offset)
{
u32 ivar = array_rd32(IGC_IVAR0, index);
/* clear any bits that are currently set */
ivar &= ~((u32)0xFF << offset);
/* write vector and valid bit */
ivar |= (msix_vector | IGC_IVAR_VALID) << offset;
array_wr32(IGC_IVAR0, index, ivar);
}
static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector)
{
struct igc_adapter *adapter = q_vector->adapter;
struct igc_hw *hw = &adapter->hw;
int rx_queue = IGC_N0_QUEUE;
int tx_queue = IGC_N0_QUEUE;
if (q_vector->rx.ring)
rx_queue = q_vector->rx.ring->reg_idx;
if (q_vector->tx.ring)
tx_queue = q_vector->tx.ring->reg_idx;
switch (hw->mac.type) {
case igc_i225:
if (rx_queue > IGC_N0_QUEUE)
igc_write_ivar(hw, msix_vector,
rx_queue >> 1,
(rx_queue & 0x1) << 4);
if (tx_queue > IGC_N0_QUEUE)
igc_write_ivar(hw, msix_vector,
tx_queue >> 1,
((tx_queue & 0x1) << 4) + 8);
q_vector->eims_value = BIT(msix_vector);
break;
default:
WARN_ONCE(hw->mac.type != igc_i225, "Wrong MAC type\n");
break;
}
/* add q_vector eims value to global eims_enable_mask */
adapter->eims_enable_mask |= q_vector->eims_value;
/* configure q_vector to set itr on first interrupt */
q_vector->set_itr = 1;
}
/**
* igc_configure_msix - Configure MSI-X hardware
* @adapter: Pointer to adapter structure
*
* igc_configure_msix sets up the hardware to properly
* generate MSI-X interrupts.
*/
static void igc_configure_msix(struct igc_adapter *adapter)
{
struct igc_hw *hw = &adapter->hw;
int i, vector = 0;
u32 tmp;
adapter->eims_enable_mask = 0;
/* set vector for other causes, i.e. link changes */
switch (hw->mac.type) {
case igc_i225:
/* Turn on MSI-X capability first, or our settings
* won't stick. And it will take days to debug.
*/
wr32(IGC_GPIE, IGC_GPIE_MSIX_MODE |
IGC_GPIE_PBA | IGC_GPIE_EIAME |
IGC_GPIE_NSICR);
/* enable msix_other interrupt */
adapter->eims_other = BIT(vector);
tmp = (vector++ | IGC_IVAR_VALID) << 8;
wr32(IGC_IVAR_MISC, tmp);
break;
default:
/* do nothing, since nothing else supports MSI-X */
break;
} /* switch (hw->mac.type) */
adapter->eims_enable_mask |= adapter->eims_other;
for (i = 0; i < adapter->num_q_vectors; i++)
igc_assign_vector(adapter->q_vector[i], vector++);
wrfl();
}
/**
* igc_irq_enable - Enable default interrupt generation settings
* @adapter: board private structure
*/
static void igc_irq_enable(struct igc_adapter *adapter)
{
struct igc_hw *hw = &adapter->hw;
if (adapter->msix_entries) {
u32 ims = IGC_IMS_LSC | IGC_IMS_DOUTSYNC | IGC_IMS_DRSTA;
u32 regval = rd32(IGC_EIAC);
wr32(IGC_EIAC, regval | adapter->eims_enable_mask);
regval = rd32(IGC_EIAM);
wr32(IGC_EIAM, regval | adapter->eims_enable_mask);
wr32(IGC_EIMS, adapter->eims_enable_mask);
wr32(IGC_IMS, ims);
} else {
wr32(IGC_IMS, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
wr32(IGC_IAM, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
}
}
/**
* igc_irq_disable - Mask off interrupt generation on the NIC
* @adapter: board private structure
*/
static void igc_irq_disable(struct igc_adapter *adapter)
{
struct igc_hw *hw = &adapter->hw;
if (adapter->msix_entries) {
u32 regval = rd32(IGC_EIAM);
wr32(IGC_EIAM, regval & ~adapter->eims_enable_mask);
wr32(IGC_EIMC, adapter->eims_enable_mask);
regval = rd32(IGC_EIAC);
wr32(IGC_EIAC, regval & ~adapter->eims_enable_mask);
}
wr32(IGC_IAM, 0);
wr32(IGC_IMC, ~0);
wrfl();
if (adapter->msix_entries) {
int vector = 0, i;
synchronize_irq(adapter->msix_entries[vector++].vector);
for (i = 0; i < adapter->num_q_vectors; i++)
synchronize_irq(adapter->msix_entries[vector++].vector);
} else {
synchronize_irq(adapter->pdev->irq);
}
}
void igc_set_flag_queue_pairs(struct igc_adapter *adapter,
const u32 max_rss_queues)
{
/* Determine if we need to pair queues. */
/* If rss_queues > half of max_rss_queues, pair the queues in
* order to conserve interrupts due to limited supply.
*/
if (adapter->rss_queues > (max_rss_queues / 2))
adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
else
adapter->flags &= ~IGC_FLAG_QUEUE_PAIRS;
}
unsigned int igc_get_max_rss_queues(struct igc_adapter *adapter)
{
return IGC_MAX_RX_QUEUES;
}
static void igc_init_queue_configuration(struct igc_adapter *adapter)
{
u32 max_rss_queues;
max_rss_queues = igc_get_max_rss_queues(adapter);
adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
igc_set_flag_queue_pairs(adapter, max_rss_queues);
}
/**
* igc_reset_q_vector - Reset config for interrupt vector
* @adapter: board private structure to initialize
* @v_idx: Index of vector to be reset
*
* If NAPI is enabled it will delete any references to the
* NAPI struct. This is preparation for igc_free_q_vector.
*/
static void igc_reset_q_vector(struct igc_adapter *adapter, int v_idx)
{
struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
/* if we're coming from igc_set_interrupt_capability, the vectors are
* not yet allocated
*/
if (!q_vector)
return;
if (q_vector->tx.ring)
adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
if (q_vector->rx.ring)
adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
netif_napi_del(&q_vector->napi);
}
/**
* igc_free_q_vector - Free memory allocated for specific interrupt vector
* @adapter: board private structure to initialize
* @v_idx: Index of vector to be freed
*
* This function frees the memory allocated to the q_vector.
*/
static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx)
{
struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
adapter->q_vector[v_idx] = NULL;
/* igc_get_stats64() might access the rings on this vector,
* we must wait a grace period before freeing it.
*/
if (q_vector)
kfree_rcu(q_vector, rcu);
}
/**
* igc_free_q_vectors - Free memory allocated for interrupt vectors
* @adapter: board private structure to initialize
*
* This function frees the memory allocated to the q_vectors. In addition if
* NAPI is enabled it will delete any references to the NAPI struct prior
* to freeing the q_vector.
*/
static void igc_free_q_vectors(struct igc_adapter *adapter)
{
int v_idx = adapter->num_q_vectors;
adapter->num_tx_queues = 0;
adapter->num_rx_queues = 0;
adapter->num_q_vectors = 0;
while (v_idx--) {
igc_reset_q_vector(adapter, v_idx);
igc_free_q_vector(adapter, v_idx);
}
}
/**
* igc_update_itr - update the dynamic ITR value based on statistics
* @q_vector: pointer to q_vector
* @ring_container: ring info to update the itr for
*
* Stores a new ITR value based on packets and byte
* counts during the last interrupt. The advantage of per interrupt
* computation is faster updates and more accurate ITR for the current
* traffic pattern. Constants in this function were computed
* based on theoretical maximum wire speed and thresholds were set based
* on testing data as well as attempting to minimize response time
* while increasing bulk throughput.
* NOTE: These calculations are only valid when operating in a single-
* queue environment.
*/
static void igc_update_itr(struct igc_q_vector *q_vector,
struct igc_ring_container *ring_container)
{
unsigned int packets = ring_container->total_packets;
unsigned int bytes = ring_container->total_bytes;
u8 itrval = ring_container->itr;
/* no packets, exit with status unchanged */
if (packets == 0)
return;
switch (itrval) {
case lowest_latency:
/* handle TSO and jumbo frames */
if (bytes / packets > 8000)
itrval = bulk_latency;
else if ((packets < 5) && (bytes > 512))
itrval = low_latency;
break;
case low_latency: /* 50 usec aka 20000 ints/s */
if (bytes > 10000) {
/* this if handles the TSO accounting */
if (bytes / packets > 8000)
itrval = bulk_latency;
else if ((packets < 10) || ((bytes / packets) > 1200))
itrval = bulk_latency;
else if ((packets > 35))
itrval = lowest_latency;
} else if (bytes / packets > 2000) {
itrval = bulk_latency;
} else if (packets <= 2 && bytes < 512) {
itrval = lowest_latency;
}
break;
case bulk_latency: /* 250 usec aka 4000 ints/s */
if (bytes > 25000) {
if (packets > 35)
itrval = low_latency;
} else if (bytes < 1500) {
itrval = low_latency;
}
break;
}
/* clear work counters since we have the values we need */
ring_container->total_bytes = 0;
ring_container->total_packets = 0;
/* write updated itr to ring container */
ring_container->itr = itrval;
}
static void igc_set_itr(struct igc_q_vector *q_vector)
{
struct igc_adapter *adapter = q_vector->adapter;
u32 new_itr = q_vector->itr_val;
u8 current_itr = 0;
/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
switch (adapter->link_speed) {
case SPEED_10:
case SPEED_100:
current_itr = 0;
new_itr = IGC_4K_ITR;
goto set_itr_now;
default:
break;
}
igc_update_itr(q_vector, &q_vector->tx);
igc_update_itr(q_vector, &q_vector->rx);
current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
/* conservative mode (itr 3) eliminates the lowest_latency setting */
if (current_itr == lowest_latency &&
((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
(!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
current_itr = low_latency;
switch (current_itr) {
/* counts and packets in update_itr are dependent on these numbers */
case lowest_latency:
new_itr = IGC_70K_ITR; /* 70,000 ints/sec */
break;
case low_latency:
new_itr = IGC_20K_ITR; /* 20,000 ints/sec */
break;
case bulk_latency:
new_itr = IGC_4K_ITR; /* 4,000 ints/sec */
break;
default:
break;
}
set_itr_now:
if (new_itr != q_vector->itr_val) {
/* this attempts to bias the interrupt rate towards Bulk
* by adding intermediate steps when interrupt rate is
* increasing
*/
new_itr = new_itr > q_vector->itr_val ?
max((new_itr * q_vector->itr_val) /
(new_itr + (q_vector->itr_val >> 2)),
new_itr) : new_itr;
/* Don't write the value here; it resets the adapter's
* internal timer, and causes us to delay far longer than
* we should between interrupts. Instead, we write the ITR
* value at the beginning of the next interrupt so the timing
* ends up being correct.
*/
q_vector->itr_val = new_itr;
q_vector->set_itr = 1;
}
}
static void igc_reset_interrupt_capability(struct igc_adapter *adapter)
{
int v_idx = adapter->num_q_vectors;
if (adapter->msix_entries) {
pci_disable_msix(adapter->pdev);
kfree(adapter->msix_entries);
adapter->msix_entries = NULL;
} else if (adapter->flags & IGC_FLAG_HAS_MSI) {
pci_disable_msi(adapter->pdev);
}
while (v_idx--)
igc_reset_q_vector(adapter, v_idx);
}
/**
* igc_set_interrupt_capability - set MSI or MSI-X if supported
* @adapter: Pointer to adapter structure
* @msix: boolean value for MSI-X capability
*
* Attempt to configure interrupts using the best available
* capabilities of the hardware and kernel.
*/
static void igc_set_interrupt_capability(struct igc_adapter *adapter,
bool msix)
{
int numvecs, i;
int err;
if (!msix)
goto msi_only;
adapter->flags |= IGC_FLAG_HAS_MSIX;
/* Number of supported queues. */
adapter->num_rx_queues = adapter->rss_queues;
adapter->num_tx_queues = adapter->rss_queues;
/* start with one vector for every Rx queue */
numvecs = adapter->num_rx_queues;
/* if Tx handler is separate add 1 for every Tx queue */
if (!(adapter->flags & IGC_FLAG_QUEUE_PAIRS))
numvecs += adapter->num_tx_queues;
/* store the number of vectors reserved for queues */
adapter->num_q_vectors = numvecs;
/* add 1 vector for link status interrupts */
numvecs++;
adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
GFP_KERNEL);
if (!adapter->msix_entries)
return;
/* populate entry values */
for (i = 0; i < numvecs; i++)
adapter->msix_entries[i].entry = i;
err = pci_enable_msix_range(adapter->pdev,
adapter->msix_entries,
numvecs,
numvecs);
if (err > 0)
return;
kfree(adapter->msix_entries);
adapter->msix_entries = NULL;
igc_reset_interrupt_capability(adapter);
msi_only:
adapter->flags &= ~IGC_FLAG_HAS_MSIX;
adapter->rss_queues = 1;
adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
adapter->num_rx_queues = 1;
adapter->num_tx_queues = 1;
adapter->num_q_vectors = 1;
if (!pci_enable_msi(adapter->pdev))
adapter->flags |= IGC_FLAG_HAS_MSI;
}
/**
* igc_update_ring_itr - update the dynamic ITR value based on packet size
* @q_vector: pointer to q_vector
*
* Stores a new ITR value based on strictly on packet size. This
* algorithm is less sophisticated than that used in igc_update_itr,
* due to the difficulty of synchronizing statistics across multiple
* receive rings. The divisors and thresholds used by this function
* were determined based on theoretical maximum wire speed and testing
* data, in order to minimize response time while increasing bulk
* throughput.
* NOTE: This function is called only when operating in a multiqueue
* receive environment.
*/
static void igc_update_ring_itr(struct igc_q_vector *q_vector)
{
struct igc_adapter *adapter = q_vector->adapter;
int new_val = q_vector->itr_val;
int avg_wire_size = 0;
unsigned int packets;
/* For non-gigabit speeds, just fix the interrupt rate at 4000
* ints/sec - ITR timer value of 120 ticks.
*/
switch (adapter->link_speed) {
case SPEED_10:
case SPEED_100:
new_val = IGC_4K_ITR;
goto set_itr_val;
default:
break;
}
packets = q_vector->rx.total_packets;
if (packets)
avg_wire_size = q_vector->rx.total_bytes / packets;
packets = q_vector->tx.total_packets;
if (packets)
avg_wire_size = max_t(u32, avg_wire_size,
q_vector->tx.total_bytes / packets);
/* if avg_wire_size isn't set no work was done */
if (!avg_wire_size)
goto clear_counts;
/* Add 24 bytes to size to account for CRC, preamble, and gap */
avg_wire_size += 24;
/* Don't starve jumbo frames */
avg_wire_size = min(avg_wire_size, 3000);
/* Give a little boost to mid-size frames */
if (avg_wire_size > 300 && avg_wire_size < 1200)
new_val = avg_wire_size / 3;
else
new_val = avg_wire_size / 2;
/* conservative mode (itr 3) eliminates the lowest_latency setting */
if (new_val < IGC_20K_ITR &&
((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
(!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
new_val = IGC_20K_ITR;
set_itr_val:
if (new_val != q_vector->itr_val) {
q_vector->itr_val = new_val;
q_vector->set_itr = 1;
}
clear_counts:
q_vector->rx.total_bytes = 0;
q_vector->rx.total_packets = 0;
q_vector->tx.total_bytes = 0;
q_vector->tx.total_packets = 0;
}
static void igc_ring_irq_enable(struct igc_q_vector *q_vector)
{
struct igc_adapter *adapter = q_vector->adapter;
struct igc_hw *hw = &adapter->hw;
if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
(!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
if (adapter->num_q_vectors == 1)
igc_set_itr(q_vector);
else
igc_update_ring_itr(q_vector);
}
if (!test_bit(__IGC_DOWN, &adapter->state)) {
if (adapter->msix_entries)
wr32(IGC_EIMS, q_vector->eims_value);
else
igc_irq_enable(adapter);
}
}
static void igc_add_ring(struct igc_ring *ring,
struct igc_ring_container *head)
{
head->ring = ring;
head->count++;
}
/**
* igc_cache_ring_register - Descriptor ring to register mapping
* @adapter: board private structure to initialize
*
* Once we know the feature-set enabled for the device, we'll cache
* the register offset the descriptor ring is assigned to.
*/
static void igc_cache_ring_register(struct igc_adapter *adapter)
{
int i = 0, j = 0;
switch (adapter->hw.mac.type) {
case igc_i225:
default:
for (; i < adapter->num_rx_queues; i++)
adapter->rx_ring[i]->reg_idx = i;
for (; j < adapter->num_tx_queues; j++)
adapter->tx_ring[j]->reg_idx = j;
break;
}
}
/**
* igc_poll - NAPI Rx polling callback
* @napi: napi polling structure
* @budget: count of how many packets we should handle
*/
static int igc_poll(struct napi_struct *napi, int budget)
{
struct igc_q_vector *q_vector = container_of(napi,
struct igc_q_vector,
napi);
struct igc_ring *rx_ring = q_vector->rx.ring;
bool clean_complete = true;
int work_done = 0;
if (q_vector->tx.ring)
clean_complete = igc_clean_tx_irq(q_vector, budget);
if (rx_ring) {
int cleaned = rx_ring->xsk_pool ?
igc_clean_rx_irq_zc(q_vector, budget) :
igc_clean_rx_irq(q_vector, budget);
work_done += cleaned;
if (cleaned >= budget)
clean_complete = false;
}
/* If all work not completed, return budget and keep polling */
if (!clean_complete)
return budget;
/* Exit the polling mode, but don't re-enable interrupts if stack might
* poll us due to busy-polling
*/
if (likely(napi_complete_done(napi, work_done)))
igc_ring_irq_enable(q_vector);
return min(work_done, budget - 1);
}
/**
* igc_alloc_q_vector - Allocate memory for a single interrupt vector
* @adapter: board private structure to initialize
* @v_count: q_vectors allocated on adapter, used for ring interleaving
* @v_idx: index of vector in adapter struct
* @txr_count: total number of Tx rings to allocate
* @txr_idx: index of first Tx ring to allocate
* @rxr_count: total number of Rx rings to allocate
* @rxr_idx: index of first Rx ring to allocate
*
* We allocate one q_vector. If allocation fails we return -ENOMEM.
*/
static int igc_alloc_q_vector(struct igc_adapter *adapter,
unsigned int v_count, unsigned int v_idx,
unsigned int txr_count, unsigned int txr_idx,
unsigned int rxr_count, unsigned int rxr_idx)
{
struct igc_q_vector *q_vector;
struct igc_ring *ring;
int ring_count;
/* igc only supports 1 Tx and/or 1 Rx queue per vector */
if (txr_count > 1 || rxr_count > 1)
return -ENOMEM;
ring_count = txr_count + rxr_count;
/* allocate q_vector and rings */
q_vector = adapter->q_vector[v_idx];
if (!q_vector)
q_vector = kzalloc(struct_size(q_vector, ring, ring_count),
GFP_KERNEL);
else
memset(q_vector, 0, struct_size(q_vector, ring, ring_count));
if (!q_vector)
return -ENOMEM;
/* initialize NAPI */
netif_napi_add(adapter->netdev, &q_vector->napi, igc_poll);
/* tie q_vector and adapter together */
adapter->q_vector[v_idx] = q_vector;
q_vector->adapter = adapter;
/* initialize work limits */
q_vector->tx.work_limit = adapter->tx_work_limit;
/* initialize ITR configuration */
q_vector->itr_register = adapter->io_addr + IGC_EITR(0);
q_vector->itr_val = IGC_START_ITR;
/* initialize pointer to rings */
ring = q_vector->ring;
/* initialize ITR */
if (rxr_count) {
/* rx or rx/tx vector */
if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
q_vector->itr_val = adapter->rx_itr_setting;
} else {
/* tx only vector */
if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
q_vector->itr_val = adapter->tx_itr_setting;
}
if (txr_count) {
/* assign generic ring traits */
ring->dev = &adapter->pdev->dev;
ring->netdev = adapter->netdev;
/* configure backlink on ring */
ring->q_vector = q_vector;
/* update q_vector Tx values */
igc_add_ring(ring, &q_vector->tx);
/* apply Tx specific ring traits */
ring->count = adapter->tx_ring_count;
ring->queue_index = txr_idx;
/* assign ring to adapter */
adapter->tx_ring[txr_idx] = ring;
/* push pointer to next ring */
ring++;
}
if (rxr_count) {
/* assign generic ring traits */
ring->dev = &adapter->pdev->dev;
ring->netdev = adapter->netdev;
/* configure backlink on ring */
ring->q_vector = q_vector;
/* update q_vector Rx values */
igc_add_ring(ring, &q_vector->rx);
/* apply Rx specific ring traits */
ring->count = adapter->rx_ring_count;
ring->queue_index = rxr_idx;
/* assign ring to adapter */
adapter->rx_ring[rxr_idx] = ring;
}
return 0;
}
/**
* igc_alloc_q_vectors - Allocate memory for interrupt vectors
* @adapter: board private structure to initialize
*
* We allocate one q_vector per queue interrupt. If allocation fails we
* return -ENOMEM.
*/
static int igc_alloc_q_vectors(struct igc_adapter *adapter)
{
int rxr_remaining = adapter->num_rx_queues;
int txr_remaining = adapter->num_tx_queues;
int rxr_idx = 0, txr_idx = 0, v_idx = 0;
int q_vectors = adapter->num_q_vectors;
int err;
if (q_vectors >= (rxr_remaining + txr_remaining)) {
for (; rxr_remaining; v_idx++) {
err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
0, 0, 1, rxr_idx);
if (err)
goto err_out;
/* update counts and index */
rxr_remaining--;
rxr_idx++;
}
}
for (; v_idx < q_vectors; v_idx++) {
int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
tqpv, txr_idx, rqpv, rxr_idx);
if (err)
goto err_out;
/* update counts and index */
rxr_remaining -= rqpv;
txr_remaining -= tqpv;
rxr_idx++;
txr_idx++;
}
return 0;
err_out:
adapter->num_tx_queues = 0;
adapter->num_rx_queues = 0;
adapter->num_q_vectors = 0;
while (v_idx--)
igc_free_q_vector(adapter, v_idx);
return -ENOMEM;
}
/**
* igc_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
* @adapter: Pointer to adapter structure
* @msix: boolean for MSI-X capability
*
* This function initializes the interrupts and allocates all of the queues.
*/
static int igc_init_interrupt_scheme(struct igc_adapter *adapter, bool msix)
{
struct net_device *dev = adapter->netdev;
int err = 0;
igc_set_interrupt_capability(adapter, msix);
err = igc_alloc_q_vectors(adapter);
if (err) {
netdev_err(dev, "Unable to allocate memory for vectors\n");
goto err_alloc_q_vectors;
}
igc_cache_ring_register(adapter);
return 0;
err_alloc_q_vectors:
igc_reset_interrupt_capability(adapter);
return err;
}
/**
* igc_sw_init - Initialize general software structures (struct igc_adapter)
* @adapter: board private structure to initialize
*
* igc_sw_init initializes the Adapter private data structure.
* Fields are initialized based on PCI device information and
* OS network device settings (MTU size).
*/
static int igc_sw_init(struct igc_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
struct pci_dev *pdev = adapter->pdev;
struct igc_hw *hw = &adapter->hw;
pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
/* set default ring sizes */
adapter->tx_ring_count = IGC_DEFAULT_TXD;
adapter->rx_ring_count = IGC_DEFAULT_RXD;
/* set default ITR values */
adapter->rx_itr_setting = IGC_DEFAULT_ITR;
adapter->tx_itr_setting = IGC_DEFAULT_ITR;
/* set default work limits */
adapter->tx_work_limit = IGC_DEFAULT_TX_WORK;
/* adjust max frame to be at least the size of a standard frame */
adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
VLAN_HLEN;
adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
mutex_init(&adapter->nfc_rule_lock);
INIT_LIST_HEAD(&adapter->nfc_rule_list);
adapter->nfc_rule_count = 0;
spin_lock_init(&adapter->stats64_lock);
spin_lock_init(&adapter->qbv_tx_lock);
/* Assume MSI-X interrupts, will be checked during IRQ allocation */
adapter->flags |= IGC_FLAG_HAS_MSIX;
igc_init_queue_configuration(adapter);
/* This call may decrease the number of queues */
if (igc_init_interrupt_scheme(adapter, true)) {
netdev_err(netdev, "Unable to allocate memory for queues\n");
return -ENOMEM;
}
/* Explicitly disable IRQ since the NIC can be in any state. */
igc_irq_disable(adapter);
set_bit(__IGC_DOWN, &adapter->state);
return 0;
}
/**
* igc_up - Open the interface and prepare it to handle traffic
* @adapter: board private structure
*/
void igc_up(struct igc_adapter *adapter)
{
struct igc_hw *hw = &adapter->hw;
int i = 0;
/* hardware has been reset, we need to reload some things */
igc_configure(adapter);
clear_bit(__IGC_DOWN, &adapter->state);
for (i = 0; i < adapter->num_q_vectors; i++)
napi_enable(&adapter->q_vector[i]->napi);
if (adapter->msix_entries)
igc_configure_msix(adapter);
else
igc_assign_vector(adapter->q_vector[0], 0);
/* Clear any pending interrupts. */
rd32(IGC_ICR);
igc_irq_enable(adapter);
netif_tx_start_all_queues(adapter->netdev);
/* start the watchdog. */
hw->mac.get_link_status = true;
schedule_work(&adapter->watchdog_task);
}
/**
* igc_update_stats - Update the board statistics counters
* @adapter: board private structure
*/
void igc_update_stats(struct igc_adapter *adapter)
{
struct rtnl_link_stats64 *net_stats = &adapter->stats64;
struct pci_dev *pdev = adapter->pdev;
struct igc_hw *hw = &adapter->hw;
u64 _bytes, _packets;
u64 bytes, packets;
unsigned int start;
u32 mpc;
int i;
/* Prevent stats update while adapter is being reset, or if the pci
* connection is down.
*/
if (adapter->link_speed == 0)
return;
if (pci_channel_offline(pdev))
return;
packets = 0;
bytes = 0;
rcu_read_lock();
for (i = 0; i < adapter->num_rx_queues; i++) {
struct igc_ring *ring = adapter->rx_ring[i];
u32 rqdpc = rd32(IGC_RQDPC(i));
if (hw->mac.type >= igc_i225)
wr32(IGC_RQDPC(i), 0);
if (rqdpc) {
ring->rx_stats.drops += rqdpc;
net_stats->rx_fifo_errors += rqdpc;
}
do {
start = u64_stats_fetch_begin(&ring->rx_syncp);
_bytes = ring->rx_stats.bytes;
_packets = ring->rx_stats.packets;
} while (u64_stats_fetch_retry(&ring->rx_syncp, start));
bytes += _bytes;
packets += _packets;
}
net_stats->rx_bytes = bytes;
net_stats->rx_packets = packets;
packets = 0;
bytes = 0;
for (i = 0; i < adapter->num_tx_queues; i++) {
struct igc_ring *ring = adapter->tx_ring[i];
do {
start = u64_stats_fetch_begin(&ring->tx_syncp);
_bytes = ring->tx_stats.bytes;
_packets = ring->tx_stats.packets;
} while (u64_stats_fetch_retry(&ring->tx_syncp, start));
bytes += _bytes;
packets += _packets;
}
net_stats->tx_bytes = bytes;
net_stats->tx_packets = packets;
rcu_read_unlock();
/* read stats registers */
adapter->stats.crcerrs += rd32(IGC_CRCERRS);
adapter->stats.gprc += rd32(IGC_GPRC);
adapter->stats.gorc += rd32(IGC_GORCL);
rd32(IGC_GORCH); /* clear GORCL */
adapter->stats.bprc += rd32(IGC_BPRC);
adapter->stats.mprc += rd32(IGC_MPRC);
adapter->stats.roc += rd32(IGC_ROC);
adapter->stats.prc64 += rd32(IGC_PRC64);
adapter->stats.prc127 += rd32(IGC_PRC127);
adapter->stats.prc255 += rd32(IGC_PRC255);
adapter->stats.prc511 += rd32(IGC_PRC511);
adapter->stats.prc1023 += rd32(IGC_PRC1023);
adapter->stats.prc1522 += rd32(IGC_PRC1522);
adapter->stats.tlpic += rd32(IGC_TLPIC);
adapter->stats.rlpic += rd32(IGC_RLPIC);
adapter->stats.hgptc += rd32(IGC_HGPTC);
mpc = rd32(IGC_MPC);
adapter->stats.mpc += mpc;
net_stats->rx_fifo_errors += mpc;
adapter->stats.scc += rd32(IGC_SCC);
adapter->stats.ecol += rd32(IGC_ECOL);
adapter->stats.mcc += rd32(IGC_MCC);
adapter->stats.latecol += rd32(IGC_LATECOL);
adapter->stats.dc += rd32(IGC_DC);
adapter->stats.rlec += rd32(IGC_RLEC);
adapter->stats.xonrxc += rd32(IGC_XONRXC);
adapter->stats.xontxc += rd32(IGC_XONTXC);
adapter->stats.xoffrxc += rd32(IGC_XOFFRXC);
adapter->stats.xofftxc += rd32(IGC_XOFFTXC);
adapter->stats.fcruc += rd32(IGC_FCRUC);
adapter->stats.gptc += rd32(IGC_GPTC);
adapter->stats.gotc += rd32(IGC_GOTCL);
rd32(IGC_GOTCH); /* clear GOTCL */
adapter->stats.rnbc += rd32(IGC_RNBC);
adapter->stats.ruc += rd32(IGC_RUC);
adapter->stats.rfc += rd32(IGC_RFC);
adapter->stats.rjc += rd32(IGC_RJC);
adapter->stats.tor += rd32(IGC_TORH);
adapter->stats.tot += rd32(IGC_TOTH);
adapter->stats.tpr += rd32(IGC_TPR);
adapter->stats.ptc64 += rd32(IGC_PTC64);
adapter->stats.ptc127 += rd32(IGC_PTC127);
adapter->stats.ptc255 += rd32(IGC_PTC255);
adapter->stats.ptc511 += rd32(IGC_PTC511);
adapter->stats.ptc1023 += rd32(IGC_PTC1023);
adapter->stats.ptc1522 += rd32(IGC_PTC1522);
adapter->stats.mptc += rd32(IGC_MPTC);
adapter->stats.bptc += rd32(IGC_BPTC);
adapter->stats.tpt += rd32(IGC_TPT);
adapter->stats.colc += rd32(IGC_COLC);
adapter->stats.colc += rd32(IGC_RERC);
adapter->stats.algnerrc += rd32(IGC_ALGNERRC);
adapter->stats.tsctc += rd32(IGC_TSCTC);
adapter->stats.iac += rd32(IGC_IAC);
/* Fill out the OS statistics structure */
net_stats->multicast = adapter->stats.mprc;
net_stats->collisions = adapter->stats.colc;
/* Rx Errors */
/* RLEC on some newer hardware can be incorrect so build
* our own version based on RUC and ROC
*/
net_stats->rx_errors = adapter->stats.rxerrc +
adapter->stats.crcerrs + adapter->stats.algnerrc +
adapter->stats.ruc + adapter->stats.roc +
adapter->stats.cexterr;
net_stats->rx_length_errors = adapter->stats.ruc +
adapter->stats.roc;
net_stats->rx_crc_errors = adapter->stats.crcerrs;
net_stats->rx_frame_errors = adapter->stats.algnerrc;
net_stats->rx_missed_errors = adapter->stats.mpc;
/* Tx Errors */
net_stats->tx_errors = adapter->stats.ecol +
adapter->stats.latecol;
net_stats->tx_aborted_errors = adapter->stats.ecol;
net_stats->tx_window_errors = adapter->stats.latecol;
net_stats->tx_carrier_errors = adapter->stats.tncrs;
/* Tx Dropped */
net_stats->tx_dropped = adapter->stats.txdrop;
/* Management Stats */
adapter->stats.mgptc += rd32(IGC_MGTPTC);
adapter->stats.mgprc += rd32(IGC_MGTPRC);
adapter->stats.mgpdc += rd32(IGC_MGTPDC);
}
/**
* igc_down - Close the interface
* @adapter: board private structure
*/
void igc_down(struct igc_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
struct igc_hw *hw = &adapter->hw;
u32 tctl, rctl;
int i = 0;
set_bit(__IGC_DOWN, &adapter->state);
igc_ptp_suspend(adapter);
if (pci_device_is_present(adapter->pdev)) {
/* disable receives in the hardware */
rctl = rd32(IGC_RCTL);
wr32(IGC_RCTL, rctl & ~IGC_RCTL_EN);
/* flush and sleep below */
}
/* set trans_start so we don't get spurious watchdogs during reset */
netif_trans_update(netdev);
netif_carrier_off(netdev);
netif_tx_stop_all_queues(netdev);
if (pci_device_is_present(adapter->pdev)) {
/* disable transmits in the hardware */
tctl = rd32(IGC_TCTL);
tctl &= ~IGC_TCTL_EN;
wr32(IGC_TCTL, tctl);
/* flush both disables and wait for them to finish */
wrfl();
usleep_range(10000, 20000);
igc_irq_disable(adapter);
}
adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
for (i = 0; i < adapter->num_q_vectors; i++) {
if (adapter->q_vector[i]) {
napi_synchronize(&adapter->q_vector[i]->napi);
napi_disable(&adapter->q_vector[i]->napi);
}
}
del_timer_sync(&adapter->watchdog_timer);
del_timer_sync(&adapter->phy_info_timer);
/* record the stats before reset*/
spin_lock(&adapter->stats64_lock);
igc_update_stats(adapter);
spin_unlock(&adapter->stats64_lock);
adapter->link_speed = 0;
adapter->link_duplex = 0;
if (!pci_channel_offline(adapter->pdev))
igc_reset(adapter);
/* clear VLAN promisc flag so VFTA will be updated if necessary */
adapter->flags &= ~IGC_FLAG_VLAN_PROMISC;
igc_disable_all_tx_rings_hw(adapter);
igc_clean_all_tx_rings(adapter);
igc_clean_all_rx_rings(adapter);
}
void igc_reinit_locked(struct igc_adapter *adapter)
{
while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
usleep_range(1000, 2000);
igc_down(adapter);
igc_up(adapter);
clear_bit(__IGC_RESETTING, &adapter->state);
}
static void igc_reset_task(struct work_struct *work)
{
struct igc_adapter *adapter;
adapter = container_of(work, struct igc_adapter, reset_task);
rtnl_lock();
/* If we're already down or resetting, just bail */
if (test_bit(__IGC_DOWN, &adapter->state) ||
test_bit(__IGC_RESETTING, &adapter->state)) {
rtnl_unlock();
return;
}
igc_rings_dump(adapter);
igc_regs_dump(adapter);
netdev_err(adapter->netdev, "Reset adapter\n");
igc_reinit_locked(adapter);
rtnl_unlock();
}
/**
* igc_change_mtu - Change the Maximum Transfer Unit
* @netdev: network interface device structure
* @new_mtu: new value for maximum frame size
*
* Returns 0 on success, negative on failure
*/
static int igc_change_mtu(struct net_device *netdev, int new_mtu)
{
int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
struct igc_adapter *adapter = netdev_priv(netdev);
if (igc_xdp_is_enabled(adapter) && new_mtu > ETH_DATA_LEN) {
netdev_dbg(netdev, "Jumbo frames not supported with XDP");
return -EINVAL;
}
/* adjust max frame to be at least the size of a standard frame */
if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
usleep_range(1000, 2000);
/* igc_down has a dependency on max_frame_size */
adapter->max_frame_size = max_frame;
if (netif_running(netdev))
igc_down(adapter);
netdev_dbg(netdev, "changing MTU from %d to %d\n", netdev->mtu, new_mtu);
WRITE_ONCE(netdev->mtu, new_mtu);
if (netif_running(netdev))
igc_up(adapter);
else
igc_reset(adapter);
clear_bit(__IGC_RESETTING, &adapter->state);
return 0;
}
/**
* igc_tx_timeout - Respond to a Tx Hang
* @netdev: network interface device structure
* @txqueue: queue number that timed out
**/
static void igc_tx_timeout(struct net_device *netdev,
unsigned int __always_unused txqueue)
{
struct igc_adapter *adapter = netdev_priv(netdev);
struct igc_hw *hw = &adapter->hw;
/* Do the reset outside of interrupt context */
adapter->tx_timeout_count++;
schedule_work(&adapter->reset_task);
wr32(IGC_EICS,
(adapter->eims_enable_mask & ~adapter->eims_other));
}
/**
* igc_get_stats64 - Get System Network Statistics
* @netdev: network interface device structure
* @stats: rtnl_link_stats64 pointer
*
* Returns the address of the device statistics structure.
* The statistics are updated here and also from the timer callback.
*/
static void igc_get_stats64(struct net_device *netdev,
struct rtnl_link_stats64 *stats)
{
struct igc_adapter *adapter = netdev_priv(netdev);
spin_lock(&adapter->stats64_lock);
if (!test_bit(__IGC_RESETTING, &adapter->state))
igc_update_stats(adapter);
memcpy(stats, &adapter->stats64, sizeof(*stats));
spin_unlock(&adapter->stats64_lock);
}
static netdev_features_t igc_fix_features(struct net_device *netdev,
netdev_features_t features)
{
/* Since there is no support for separate Rx/Tx vlan accel
* enable/disable make sure Tx flag is always in same state as Rx.
*/
if (features & NETIF_F_HW_VLAN_CTAG_RX)
features |= NETIF_F_HW_VLAN_CTAG_TX;
else
features &= ~NETIF_F_HW_VLAN_CTAG_TX;
return features;
}
static int igc_set_features(struct net_device *netdev,
netdev_features_t features)
{
netdev_features_t changed = netdev->features ^ features;
struct igc_adapter *adapter = netdev_priv(netdev);
if (changed & NETIF_F_HW_VLAN_CTAG_RX)
igc_vlan_mode(netdev, features);
/* Add VLAN support */
if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
return 0;
if (!(features & NETIF_F_NTUPLE))
igc_flush_nfc_rules(adapter);
netdev->features = features;
if (netif_running(netdev))
igc_reinit_locked(adapter);
else
igc_reset(adapter);
return 1;
}
static netdev_features_t
igc_features_check(struct sk_buff *skb, struct net_device *dev,
netdev_features_t features)
{
unsigned int network_hdr_len, mac_hdr_len;
/* Make certain the headers can be described by a context descriptor */
mac_hdr_len = skb_network_offset(skb);
if (unlikely(mac_hdr_len > IGC_MAX_MAC_HDR_LEN))
return features & ~(NETIF_F_HW_CSUM |
NETIF_F_SCTP_CRC |
NETIF_F_HW_VLAN_CTAG_TX |
NETIF_F_TSO |
NETIF_F_TSO6);
network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
if (unlikely(network_hdr_len > IGC_MAX_NETWORK_HDR_LEN))
return features & ~(NETIF_F_HW_CSUM |
NETIF_F_SCTP_CRC |
NETIF_F_TSO |
NETIF_F_TSO6);
/* We can only support IPv4 TSO in tunnels if we can mangle the
* inner IP ID field, so strip TSO if MANGLEID is not supported.
*/
if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
features &= ~NETIF_F_TSO;
return features;
}
static void igc_tsync_interrupt(struct igc_adapter *adapter)
{
struct igc_hw *hw = &adapter->hw;
u32 tsauxc, sec, nsec, tsicr;
struct ptp_clock_event event;
struct timespec64 ts;
tsicr = rd32(IGC_TSICR);
if (tsicr & IGC_TSICR_SYS_WRAP) {
event.type = PTP_CLOCK_PPS;
if (adapter->ptp_caps.pps)
ptp_clock_event(adapter->ptp_clock, &event);
}
if (tsicr & IGC_TSICR_TXTS) {
/* retrieve hardware timestamp */
igc_ptp_tx_tstamp_event(adapter);
}
if (tsicr & IGC_TSICR_TT0) {
spin_lock(&adapter->tmreg_lock);
ts = timespec64_add(adapter->perout[0].start,
adapter->perout[0].period);
wr32(IGC_TRGTTIML0, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
wr32(IGC_TRGTTIMH0, (u32)ts.tv_sec);
tsauxc = rd32(IGC_TSAUXC);
tsauxc |= IGC_TSAUXC_EN_TT0;
wr32(IGC_TSAUXC, tsauxc);
adapter->perout[0].start = ts;
spin_unlock(&adapter->tmreg_lock);
}
if (tsicr & IGC_TSICR_TT1) {
spin_lock(&adapter->tmreg_lock);
ts = timespec64_add(adapter->perout[1].start,
adapter->perout[1].period);
wr32(IGC_TRGTTIML1, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
wr32(IGC_TRGTTIMH1, (u32)ts.tv_sec);
tsauxc = rd32(IGC_TSAUXC);
tsauxc |= IGC_TSAUXC_EN_TT1;
wr32(IGC_TSAUXC, tsauxc);
adapter->perout[1].start = ts;
spin_unlock(&adapter->tmreg_lock);
}
if (tsicr & IGC_TSICR_AUTT0) {
nsec = rd32(IGC_AUXSTMPL0);
sec = rd32(IGC_AUXSTMPH0);
event.type = PTP_CLOCK_EXTTS;
event.index = 0;
event.timestamp = sec * NSEC_PER_SEC + nsec;
ptp_clock_event(adapter->ptp_clock, &event);
}
if (tsicr & IGC_TSICR_AUTT1) {
nsec = rd32(IGC_AUXSTMPL1);
sec = rd32(IGC_AUXSTMPH1);
event.type = PTP_CLOCK_EXTTS;
event.index = 1;
event.timestamp = sec * NSEC_PER_SEC + nsec;
ptp_clock_event(adapter->ptp_clock, &event);
}
}
/**
* igc_msix_other - msix other interrupt handler
* @irq: interrupt number
* @data: pointer to a q_vector
*/
static irqreturn_t igc_msix_other(int irq, void *data)
{
struct igc_adapter *adapter = data;
struct igc_hw *hw = &adapter->hw;
u32 icr = rd32(IGC_ICR);
/* reading ICR causes bit 31 of EICR to be cleared */
if (icr & IGC_ICR_DRSTA)
schedule_work(&adapter->reset_task);
if (icr & IGC_ICR_DOUTSYNC) {
/* HW is reporting DMA is out of sync */
adapter->stats.doosync++;
}
if (icr & IGC_ICR_LSC) {
hw->mac.get_link_status = true;
/* guard against interrupt when we're going down */
if (!test_bit(__IGC_DOWN, &adapter->state))
mod_timer(&adapter->watchdog_timer, jiffies + 1);
}
if (icr & IGC_ICR_TS)
igc_tsync_interrupt(adapter);
wr32(IGC_EIMS, adapter->eims_other);
return IRQ_HANDLED;
}
static void igc_write_itr(struct igc_q_vector *q_vector)
{
u32 itr_val = q_vector->itr_val & IGC_QVECTOR_MASK;
if (!q_vector->set_itr)
return;
if (!itr_val)
itr_val = IGC_ITR_VAL_MASK;
itr_val |= IGC_EITR_CNT_IGNR;
writel(itr_val, q_vector->itr_register);
q_vector->set_itr = 0;
}
static irqreturn_t igc_msix_ring(int irq, void *data)
{
struct igc_q_vector *q_vector = data;
/* Write the ITR value calculated from the previous interrupt. */
igc_write_itr(q_vector);
napi_schedule(&q_vector->napi);
return IRQ_HANDLED;
}
/**
* igc_request_msix - Initialize MSI-X interrupts
* @adapter: Pointer to adapter structure
*
* igc_request_msix allocates MSI-X vectors and requests interrupts from the
* kernel.
*/
static int igc_request_msix(struct igc_adapter *adapter)
{
unsigned int num_q_vectors = adapter->num_q_vectors;
int i = 0, err = 0, vector = 0, free_vector = 0;
struct net_device *netdev = adapter->netdev;
err = request_irq(adapter->msix_entries[vector].vector,
&igc_msix_other, 0, netdev->name, adapter);
if (err)
goto err_out;
if (num_q_vectors > MAX_Q_VECTORS) {
num_q_vectors = MAX_Q_VECTORS;
dev_warn(&adapter->pdev->dev,
"The number of queue vectors (%d) is higher than max allowed (%d)\n",
adapter->num_q_vectors, MAX_Q_VECTORS);
}
for (i = 0; i < num_q_vectors; i++) {
struct igc_q_vector *q_vector = adapter->q_vector[i];
vector++;
q_vector->itr_register = adapter->io_addr + IGC_EITR(vector);
if (q_vector->rx.ring && q_vector->tx.ring)
sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
q_vector->rx.ring->queue_index);
else if (q_vector->tx.ring)
sprintf(q_vector->name, "%s-tx-%u", netdev->name,
q_vector->tx.ring->queue_index);
else if (q_vector->rx.ring)
sprintf(q_vector->name, "%s-rx-%u", netdev->name,
q_vector->rx.ring->queue_index);
else
sprintf(q_vector->name, "%s-unused", netdev->name);
err = request_irq(adapter->msix_entries[vector].vector,
igc_msix_ring, 0, q_vector->name,
q_vector);
if (err)
goto err_free;
}
igc_configure_msix(adapter);
return 0;
err_free:
/* free already assigned IRQs */
free_irq(adapter->msix_entries[free_vector++].vector, adapter);
vector--;
for (i = 0; i < vector; i++) {
free_irq(adapter->msix_entries[free_vector++].vector,
adapter->q_vector[i]);
}
err_out:
return err;
}
/**
* igc_clear_interrupt_scheme - reset the device to a state of no interrupts
* @adapter: Pointer to adapter structure
*
* This function resets the device so that it has 0 rx queues, tx queues, and
* MSI-X interrupts allocated.
*/
static void igc_clear_interrupt_scheme(struct igc_adapter *adapter)
{
igc_free_q_vectors(adapter);
igc_reset_interrupt_capability(adapter);
}
/* Need to wait a few seconds after link up to get diagnostic information from
* the phy
*/
static void igc_update_phy_info(struct timer_list *t)
{
struct igc_adapter *adapter = from_timer(adapter, t, phy_info_timer);
igc_get_phy_info(&adapter->hw);
}
/**
* igc_has_link - check shared code for link and determine up/down
* @adapter: pointer to driver private info
*/
bool igc_has_link(struct igc_adapter *adapter)
{
struct igc_hw *hw = &adapter->hw;
bool link_active = false;
/* get_link_status is set on LSC (link status) interrupt or
* rx sequence error interrupt. get_link_status will stay
* false until the igc_check_for_link establishes link
* for copper adapters ONLY
*/
if (!hw->mac.get_link_status)
return true;
hw->mac.ops.check_for_link(hw);
link_active = !hw->mac.get_link_status;
if (hw->mac.type == igc_i225) {
if (!netif_carrier_ok(adapter->netdev)) {
adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
} else if (!(adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)) {
adapter->flags |= IGC_FLAG_NEED_LINK_UPDATE;
adapter->link_check_timeout = jiffies;
}
}
return link_active;
}
/**
* igc_watchdog - Timer Call-back
* @t: timer for the watchdog
*/
static void igc_watchdog(struct timer_list *t)
{
struct igc_adapter *adapter = from_timer(adapter, t, watchdog_timer);
/* Do the rest outside of interrupt context */
schedule_work(&adapter->watchdog_task);
}
static void igc_watchdog_task(struct work_struct *work)
{
struct igc_adapter *adapter = container_of(work,
struct igc_adapter,
watchdog_task);
struct net_device *netdev = adapter->netdev;
struct igc_hw *hw = &adapter->hw;
struct igc_phy_info *phy = &hw->phy;
u16 phy_data, retry_count = 20;
u32 link;
int i;
link = igc_has_link(adapter);
if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) {
if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
else
link = false;
}
if (link) {
/* Cancel scheduled suspend requests. */
pm_runtime_resume(netdev->dev.parent);
if (!netif_carrier_ok(netdev)) {
u32 ctrl;
hw->mac.ops.get_speed_and_duplex(hw,
&adapter->link_speed,
&adapter->link_duplex);
ctrl = rd32(IGC_CTRL);
/* Link status message must follow this format */
netdev_info(netdev,
"NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
adapter->link_speed,
adapter->link_duplex == FULL_DUPLEX ?
"Full" : "Half",
(ctrl & IGC_CTRL_TFCE) &&
(ctrl & IGC_CTRL_RFCE) ? "RX/TX" :
(ctrl & IGC_CTRL_RFCE) ? "RX" :
(ctrl & IGC_CTRL_TFCE) ? "TX" : "None");
/* disable EEE if enabled */
if ((adapter->flags & IGC_FLAG_EEE) &&
adapter->link_duplex == HALF_DUPLEX) {
netdev_info(netdev,
"EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex\n");
adapter->hw.dev_spec._base.eee_enable = false;
adapter->flags &= ~IGC_FLAG_EEE;
}
/* check if SmartSpeed worked */
igc_check_downshift(hw);
if (phy->speed_downgraded)
netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
/* adjust timeout factor according to speed/duplex */
adapter->tx_timeout_factor = 1;
switch (adapter->link_speed) {
case SPEED_10:
adapter->tx_timeout_factor = 14;
break;
case SPEED_100:
case SPEED_1000:
case SPEED_2500:
adapter->tx_timeout_factor = 1;
break;
}
/* Once the launch time has been set on the wire, there
* is a delay before the link speed can be determined
* based on link-up activity. Write into the register
* as soon as we know the correct link speed.
*/
igc_tsn_adjust_txtime_offset(adapter);
if (adapter->link_speed != SPEED_1000)
goto no_wait;
/* wait for Remote receiver status OK */
retry_read_status:
if (!igc_read_phy_reg(hw, PHY_1000T_STATUS,
&phy_data)) {
if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
retry_count) {
msleep(100);
retry_count--;
goto retry_read_status;
} else if (!retry_count) {
netdev_err(netdev, "exceed max 2 second\n");
}
} else {
netdev_err(netdev, "read 1000Base-T Status Reg\n");
}
no_wait:
netif_carrier_on(netdev);
/* link state has changed, schedule phy info update */
if (!test_bit(__IGC_DOWN, &adapter->state))
mod_timer(&adapter->phy_info_timer,
round_jiffies(jiffies + 2 * HZ));
}
} else {
if (netif_carrier_ok(netdev)) {
adapter->link_speed = 0;
adapter->link_duplex = 0;
/* Links status message must follow this format */
netdev_info(netdev, "NIC Link is Down\n");
netif_carrier_off(netdev);
/* link state has changed, schedule phy info update */
if (!test_bit(__IGC_DOWN, &adapter->state))
mod_timer(&adapter->phy_info_timer,
round_jiffies(jiffies + 2 * HZ));
pm_schedule_suspend(netdev->dev.parent,
MSEC_PER_SEC * 5);
}
}
spin_lock(&adapter->stats64_lock);
igc_update_stats(adapter);
spin_unlock(&adapter->stats64_lock);
for (i = 0; i < adapter->num_tx_queues; i++) {
struct igc_ring *tx_ring = adapter->tx_ring[i];
if (!netif_carrier_ok(netdev)) {
/* We've lost link, so the controller stops DMA,
* but we've got queued Tx work that's never going
* to get done, so reset controller to flush Tx.
* (Do the reset outside of interrupt context).
*/
if (igc_desc_unused(tx_ring) + 1 < tx_ring->count) {
adapter->tx_timeout_count++;
schedule_work(&adapter->reset_task);
/* return immediately since reset is imminent */
return;
}
}
/* Force detection of hung controller every watchdog period */
set_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
}
/* Cause software interrupt to ensure Rx ring is cleaned */
if (adapter->flags & IGC_FLAG_HAS_MSIX) {
u32 eics = 0;
for (i = 0; i < adapter->num_q_vectors; i++)
eics |= adapter->q_vector[i]->eims_value;
wr32(IGC_EICS, eics);
} else {
wr32(IGC_ICS, IGC_ICS_RXDMT0);
}
igc_ptp_tx_hang(adapter);
/* Reset the timer */
if (!test_bit(__IGC_DOWN, &adapter->state)) {
if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)
mod_timer(&adapter->watchdog_timer,
round_jiffies(jiffies + HZ));
else
mod_timer(&adapter->watchdog_timer,
round_jiffies(jiffies + 2 * HZ));
}
}
/**
* igc_intr_msi - Interrupt Handler
* @irq: interrupt number
* @data: pointer to a network interface device structure
*/
static irqreturn_t igc_intr_msi(int irq, void *data)
{
struct igc_adapter *adapter = data;
struct igc_q_vector *q_vector = adapter->q_vector[0];
struct igc_hw *hw = &adapter->hw;
/* read ICR disables interrupts using IAM */
u32 icr = rd32(IGC_ICR);
igc_write_itr(q_vector);
if (icr & IGC_ICR_DRSTA)
schedule_work(&adapter->reset_task);
if (icr & IGC_ICR_DOUTSYNC) {
/* HW is reporting DMA is out of sync */
adapter->stats.doosync++;
}
if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
hw->mac.get_link_status = true;
if (!test_bit(__IGC_DOWN, &adapter->state))
mod_timer(&adapter->watchdog_timer, jiffies + 1);
}
if (icr & IGC_ICR_TS)
igc_tsync_interrupt(adapter);
napi_schedule(&q_vector->napi);
return IRQ_HANDLED;
}
/**
* igc_intr - Legacy Interrupt Handler
* @irq: interrupt number
* @data: pointer to a network interface device structure
*/
static irqreturn_t igc_intr(int irq, void *data)
{
struct igc_adapter *adapter = data;
struct igc_q_vector *q_vector = adapter->q_vector[0];
struct igc_hw *hw = &adapter->hw;
/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
* need for the IMC write
*/
u32 icr = rd32(IGC_ICR);
/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
* not set, then the adapter didn't send an interrupt
*/
if (!(icr & IGC_ICR_INT_ASSERTED))
return IRQ_NONE;
igc_write_itr(q_vector);
if (icr & IGC_ICR_DRSTA)
schedule_work(&adapter->reset_task);
if (icr & IGC_ICR_DOUTSYNC) {
/* HW is reporting DMA is out of sync */
adapter->stats.doosync++;
}
if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
hw->mac.get_link_status = true;
/* guard against interrupt when we're going down */
if (!test_bit(__IGC_DOWN, &adapter->state))
mod_timer(&adapter->watchdog_timer, jiffies + 1);
}
if (icr & IGC_ICR_TS)
igc_tsync_interrupt(adapter);
napi_schedule(&q_vector->napi);
return IRQ_HANDLED;
}
static void igc_free_irq(struct igc_adapter *adapter)
{
if (adapter->msix_entries) {
int vector = 0, i;
free_irq(adapter->msix_entries[vector++].vector, adapter);
for (i = 0; i < adapter->num_q_vectors; i++)
free_irq(adapter->msix_entries[vector++].vector,
adapter->q_vector[i]);
} else {
free_irq(adapter->pdev->irq, adapter);
}
}
/**
* igc_request_irq - initialize interrupts
* @adapter: Pointer to adapter structure
*
* Attempts to configure interrupts using the best available
* capabilities of the hardware and kernel.
*/
static int igc_request_irq(struct igc_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
struct pci_dev *pdev = adapter->pdev;
int err = 0;
if (adapter->flags & IGC_FLAG_HAS_MSIX) {
err = igc_request_msix(adapter);
if (!err)
goto request_done;
/* fall back to MSI */
igc_free_all_tx_resources(adapter);
igc_free_all_rx_resources(adapter);
igc_clear_interrupt_scheme(adapter);
err = igc_init_interrupt_scheme(adapter, false);
if (err)
goto request_done;
igc_setup_all_tx_resources(adapter);
igc_setup_all_rx_resources(adapter);
igc_configure(adapter);
}
igc_assign_vector(adapter->q_vector[0], 0);
if (adapter->flags & IGC_FLAG_HAS_MSI) {
err = request_irq(pdev->irq, &igc_intr_msi, 0,
netdev->name, adapter);
if (!err)
goto request_done;
/* fall back to legacy interrupts */
igc_reset_interrupt_capability(adapter);
adapter->flags &= ~IGC_FLAG_HAS_MSI;
}
err = request_irq(pdev->irq, &igc_intr, IRQF_SHARED,
netdev->name, adapter);
if (err)
netdev_err(netdev, "Error %d getting interrupt\n", err);
request_done:
return err;
}
/**
* __igc_open - Called when a network interface is made active
* @netdev: network interface device structure
* @resuming: boolean indicating if the device is resuming
*
* Returns 0 on success, negative value on failure
*
* The open entry point is called when a network interface is made
* active by the system (IFF_UP). At this point all resources needed
* for transmit and receive operations are allocated, the interrupt
* handler is registered with the OS, the watchdog timer is started,
* and the stack is notified that the interface is ready.
*/
static int __igc_open(struct net_device *netdev, bool resuming)
{
struct igc_adapter *adapter = netdev_priv(netdev);
struct pci_dev *pdev = adapter->pdev;
struct igc_hw *hw = &adapter->hw;
int err = 0;
int i = 0;
/* disallow open during test */
if (test_bit(__IGC_TESTING, &adapter->state)) {
WARN_ON(resuming);
return -EBUSY;
}
if (!resuming)
pm_runtime_get_sync(&pdev->dev);
netif_carrier_off(netdev);
/* allocate transmit descriptors */
err = igc_setup_all_tx_resources(adapter);
if (err)
goto err_setup_tx;
/* allocate receive descriptors */
err = igc_setup_all_rx_resources(adapter);
if (err)
goto err_setup_rx;
igc_power_up_link(adapter);
igc_configure(adapter);
err = igc_request_irq(adapter);
if (err)
goto err_req_irq;
clear_bit(__IGC_DOWN, &adapter->state);
for (i = 0; i < adapter->num_q_vectors; i++)
napi_enable(&adapter->q_vector[i]->napi);
/* Clear any pending interrupts. */
rd32(IGC_ICR);
igc_irq_enable(adapter);
if (!resuming)
pm_runtime_put(&pdev->dev);
netif_tx_start_all_queues(netdev);
/* start the watchdog. */
hw->mac.get_link_status = true;
schedule_work(&adapter->watchdog_task);
return IGC_SUCCESS;
err_req_irq:
igc_release_hw_control(adapter);
igc_power_down_phy_copper_base(&adapter->hw);
igc_free_all_rx_resources(adapter);
err_setup_rx:
igc_free_all_tx_resources(adapter);
err_setup_tx:
igc_reset(adapter);
if (!resuming)
pm_runtime_put(&pdev->dev);
return err;
}
int igc_open(struct net_device *netdev)
{
struct igc_adapter *adapter = netdev_priv(netdev);
int err;
/* Notify the stack of the actual queue counts. */
err = netif_set_real_num_queues(netdev, adapter->num_tx_queues,
adapter->num_rx_queues);
if (err) {
netdev_err(netdev, "error setting real queue count\n");
return err;
}
return __igc_open(netdev, false);
}
/**
* __igc_close - Disables a network interface
* @netdev: network interface device structure
* @suspending: boolean indicating the device is suspending
*
* Returns 0, this is not allowed to fail
*
* The close entry point is called when an interface is de-activated
* by the OS. The hardware is still under the driver's control, but
* needs to be disabled. A global MAC reset is issued to stop the
* hardware, and all transmit and receive resources are freed.
*/
static int __igc_close(struct net_device *netdev, bool suspending)
{
struct igc_adapter *adapter = netdev_priv(netdev);
struct pci_dev *pdev = adapter->pdev;
WARN_ON(test_bit(__IGC_RESETTING, &adapter->state));
if (!suspending)
pm_runtime_get_sync(&pdev->dev);
igc_down(adapter);
igc_release_hw_control(adapter);
igc_free_irq(adapter);
igc_free_all_tx_resources(adapter);
igc_free_all_rx_resources(adapter);
if (!suspending)
pm_runtime_put_sync(&pdev->dev);
return 0;
}
int igc_close(struct net_device *netdev)
{
if (netif_device_present(netdev) || netdev->dismantle)
return __igc_close(netdev, false);
return 0;
}
/**
* igc_ioctl - Access the hwtstamp interface
* @netdev: network interface device structure
* @ifr: interface request data
* @cmd: ioctl command
**/
static int igc_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
switch (cmd) {
case SIOCGHWTSTAMP:
return igc_ptp_get_ts_config(netdev, ifr);
case SIOCSHWTSTAMP:
return igc_ptp_set_ts_config(netdev, ifr);
default:
return -EOPNOTSUPP;
}
}
static int igc_save_launchtime_params(struct igc_adapter *adapter, int queue,
bool enable)
{
struct igc_ring *ring;
if (queue < 0 || queue >= adapter->num_tx_queues)
return -EINVAL;
ring = adapter->tx_ring[queue];
ring->launchtime_enable = enable;
return 0;
}
static bool is_base_time_past(ktime_t base_time, const struct timespec64 *now)
{
struct timespec64 b;
b = ktime_to_timespec64(base_time);
return timespec64_compare(now, &b) > 0;
}
static bool validate_schedule(struct igc_adapter *adapter,
const struct tc_taprio_qopt_offload *qopt)
{
int queue_uses[IGC_MAX_TX_QUEUES] = { };
struct igc_hw *hw = &adapter->hw;
struct timespec64 now;
size_t n;
if (qopt->cycle_time_extension)
return false;
igc_ptp_read(adapter, &now);
/* If we program the controller's BASET registers with a time
* in the future, it will hold all the packets until that
* time, causing a lot of TX Hangs, so to avoid that, we
* reject schedules that would start in the future.
* Note: Limitation above is no longer in i226.
*/
if (!is_base_time_past(qopt->base_time, &now) &&
igc_is_device_id_i225(hw))
return false;
for (n = 0; n < qopt->num_entries; n++) {
const struct tc_taprio_sched_entry *e, *prev;
int i;
prev = n ? &qopt->entries[n - 1] : NULL;
e = &qopt->entries[n];
/* i225 only supports "global" frame preemption
* settings.
*/
if (e->command != TC_TAPRIO_CMD_SET_GATES)
return false;
for (i = 0; i < adapter->num_tx_queues; i++)
if (e->gate_mask & BIT(i)) {
queue_uses[i]++;
/* There are limitations: A single queue cannot
* be opened and closed multiple times per cycle
* unless the gate stays open. Check for it.
*/
if (queue_uses[i] > 1 &&
!(prev->gate_mask & BIT(i)))
return false;
}
}
return true;
}
static int igc_tsn_enable_launchtime(struct igc_adapter *adapter,
struct tc_etf_qopt_offload *qopt)
{
struct igc_hw *hw = &adapter->hw;
int err;
if (hw->mac.type != igc_i225)
return -EOPNOTSUPP;
err = igc_save_launchtime_params(adapter, qopt->queue, qopt->enable);
if (err)
return err;
return igc_tsn_offload_apply(adapter);
}
static int igc_qbv_clear_schedule(struct igc_adapter *adapter)
{
unsigned long flags;
int i;
adapter->base_time = 0;
adapter->cycle_time = NSEC_PER_SEC;
adapter->taprio_offload_enable = false;
adapter->qbv_config_change_errors = 0;
adapter->qbv_count = 0;
for (i = 0; i < adapter->num_tx_queues; i++) {
struct igc_ring *ring = adapter->tx_ring[i];
ring->start_time = 0;
ring->end_time = NSEC_PER_SEC;
ring->max_sdu = 0;
}
spin_lock_irqsave(&adapter->qbv_tx_lock, flags);
adapter->qbv_transition = false;
for (i = 0; i < adapter->num_tx_queues; i++) {
struct igc_ring *ring = adapter->tx_ring[i];
ring->oper_gate_closed = false;
ring->admin_gate_closed = false;
}
spin_unlock_irqrestore(&adapter->qbv_tx_lock, flags);
return 0;
}
static int igc_tsn_clear_schedule(struct igc_adapter *adapter)
{
igc_qbv_clear_schedule(adapter);
return 0;
}
static void igc_taprio_stats(struct net_device *dev,
struct tc_taprio_qopt_stats *stats)
{
/* When Strict_End is enabled, the tx_overruns counter
* will always be zero.
*/
stats->tx_overruns = 0;
}
static void igc_taprio_queue_stats(struct net_device *dev,
struct tc_taprio_qopt_queue_stats *queue_stats)
{
struct tc_taprio_qopt_stats *stats = &queue_stats->stats;
/* When Strict_End is enabled, the tx_overruns counter
* will always be zero.
*/
stats->tx_overruns = 0;
}
static int igc_save_qbv_schedule(struct igc_adapter *adapter,
struct tc_taprio_qopt_offload *qopt)
{
bool queue_configured[IGC_MAX_TX_QUEUES] = { };
struct igc_hw *hw = &adapter->hw;
u32 start_time = 0, end_time = 0;
struct timespec64 now;
unsigned long flags;
size_t n;
int i;
switch (qopt->cmd) {
case TAPRIO_CMD_REPLACE:
break;
case TAPRIO_CMD_DESTROY:
return igc_tsn_clear_schedule(adapter);
case TAPRIO_CMD_STATS:
igc_taprio_stats(adapter->netdev, &qopt->stats);
return 0;
case TAPRIO_CMD_QUEUE_STATS:
igc_taprio_queue_stats(adapter->netdev, &qopt->queue_stats);
return 0;
default:
return -EOPNOTSUPP;
}
if (qopt->base_time < 0)
return -ERANGE;
if (igc_is_device_id_i225(hw) && adapter->taprio_offload_enable)
return -EALREADY;
if (!validate_schedule(adapter, qopt))
return -EINVAL;
adapter->cycle_time = qopt->cycle_time;
adapter->base_time = qopt->base_time;
adapter->taprio_offload_enable = true;
igc_ptp_read(adapter, &now);
for (n = 0; n < qopt->num_entries; n++) {
struct tc_taprio_sched_entry *e = &qopt->entries[n];
end_time += e->interval;
/* If any of the conditions below are true, we need to manually
* control the end time of the cycle.
* 1. Qbv users can specify a cycle time that is not equal
* to the total GCL intervals. Hence, recalculation is
* necessary here to exclude the time interval that
* exceeds the cycle time.
* 2. According to IEEE Std. 802.1Q-2018 section 8.6.9.2,
* once the end of the list is reached, it will switch
* to the END_OF_CYCLE state and leave the gates in the
* same state until the next cycle is started.
*/
if (end_time > adapter->cycle_time ||
n + 1 == qopt->num_entries)
end_time = adapter->cycle_time;
for (i = 0; i < adapter->num_tx_queues; i++) {
struct igc_ring *ring = adapter->tx_ring[i];
if (!(e->gate_mask & BIT(i)))
continue;
/* Check whether a queue stays open for more than one
* entry. If so, keep the start and advance the end
* time.
*/
if (!queue_configured[i])
ring->start_time = start_time;
ring->end_time = end_time;
if (ring->start_time >= adapter->cycle_time)
queue_configured[i] = false;
else
queue_configured[i] = true;
}
start_time += e->interval;
}
spin_lock_irqsave(&adapter->qbv_tx_lock, flags);
/* Check whether a queue gets configured.
* If not, set the start and end time to be end time.
*/
for (i = 0; i < adapter->num_tx_queues; i++) {
struct igc_ring *ring = adapter->tx_ring[i];
if (!is_base_time_past(qopt->base_time, &now)) {
ring->admin_gate_closed = false;
} else {
ring->oper_gate_closed = false;
ring->admin_gate_closed = false;
}
if (!queue_configured[i]) {
if (!is_base_time_past(qopt->base_time, &now))
ring->admin_gate_closed = true;
else
ring->oper_gate_closed = true;
ring->start_time = end_time;
ring->end_time = end_time;
}
}
spin_unlock_irqrestore(&adapter->qbv_tx_lock, flags);
for (i = 0; i < adapter->num_tx_queues; i++) {
struct igc_ring *ring = adapter->tx_ring[i];
struct net_device *dev = adapter->netdev;
if (qopt->max_sdu[i])
ring->max_sdu = qopt->max_sdu[i] + dev->hard_header_len - ETH_TLEN;
else
ring->max_sdu = 0;
}
return 0;
}
static int igc_tsn_enable_qbv_scheduling(struct igc_adapter *adapter,
struct tc_taprio_qopt_offload *qopt)
{
struct igc_hw *hw = &adapter->hw;
int err;
if (hw->mac.type != igc_i225)
return -EOPNOTSUPP;
err = igc_save_qbv_schedule(adapter, qopt);
if (err)
return err;
return igc_tsn_offload_apply(adapter);
}
static int igc_save_cbs_params(struct igc_adapter *adapter, int queue,
bool enable, int idleslope, int sendslope,
int hicredit, int locredit)
{
bool cbs_status[IGC_MAX_SR_QUEUES] = { false };
struct net_device *netdev = adapter->netdev;
struct igc_ring *ring;
int i;
/* i225 has two sets of credit-based shaper logic.
* Supporting it only on the top two priority queues
*/
if (queue < 0 || queue > 1)
return -EINVAL;
ring = adapter->tx_ring[queue];
for (i = 0; i < IGC_MAX_SR_QUEUES; i++)
if (adapter->tx_ring[i])
cbs_status[i] = adapter->tx_ring[i]->cbs_enable;
/* CBS should be enabled on the highest priority queue first in order
* for the CBS algorithm to operate as intended.
*/
if (enable) {
if (queue == 1 && !cbs_status[0]) {
netdev_err(netdev,
"Enabling CBS on queue1 before queue0\n");
return -EINVAL;
}
} else {
if (queue == 0 && cbs_status[1]) {
netdev_err(netdev,
"Disabling CBS on queue0 before queue1\n");
return -EINVAL;
}
}
ring->cbs_enable = enable;
ring->idleslope = idleslope;
ring->sendslope = sendslope;
ring->hicredit = hicredit;
ring->locredit = locredit;
return 0;
}
static int igc_tsn_enable_cbs(struct igc_adapter *adapter,
struct tc_cbs_qopt_offload *qopt)
{
struct igc_hw *hw = &adapter->hw;
int err;
if (hw->mac.type != igc_i225)
return -EOPNOTSUPP;
if (qopt->queue < 0 || qopt->queue > 1)
return -EINVAL;
err = igc_save_cbs_params(adapter, qopt->queue, qopt->enable,
qopt->idleslope, qopt->sendslope,
qopt->hicredit, qopt->locredit);
if (err)
return err;
return igc_tsn_offload_apply(adapter);
}
static int igc_tc_query_caps(struct igc_adapter *adapter,
struct tc_query_caps_base *base)
{
struct igc_hw *hw = &adapter->hw;
switch (base->type) {
case TC_SETUP_QDISC_TAPRIO: {
struct tc_taprio_caps *caps = base->caps;
caps->broken_mqprio = true;
if (hw->mac.type == igc_i225) {
caps->supports_queue_max_sdu = true;
caps->gate_mask_per_txq = true;
}
return 0;
}
default:
return -EOPNOTSUPP;
}
}
static int igc_setup_tc(struct net_device *dev, enum tc_setup_type type,
void *type_data)
{
struct igc_adapter *adapter = netdev_priv(dev);
adapter->tc_setup_type = type;
switch (type) {
case TC_QUERY_CAPS:
return igc_tc_query_caps(adapter, type_data);
case TC_SETUP_QDISC_TAPRIO:
return igc_tsn_enable_qbv_scheduling(adapter, type_data);
case TC_SETUP_QDISC_ETF:
return igc_tsn_enable_launchtime(adapter, type_data);
case TC_SETUP_QDISC_CBS:
return igc_tsn_enable_cbs(adapter, type_data);
default:
return -EOPNOTSUPP;
}
}
static int igc_bpf(struct net_device *dev, struct netdev_bpf *bpf)
{
struct igc_adapter *adapter = netdev_priv(dev);
switch (bpf->command) {
case XDP_SETUP_PROG:
return igc_xdp_set_prog(adapter, bpf->prog, bpf->extack);
case XDP_SETUP_XSK_POOL:
return igc_xdp_setup_pool(adapter, bpf->xsk.pool,
bpf->xsk.queue_id);
default:
return -EOPNOTSUPP;
}
}
static int igc_xdp_xmit(struct net_device *dev, int num_frames,
struct xdp_frame **frames, u32 flags)
{
struct igc_adapter *adapter = netdev_priv(dev);
int cpu = smp_processor_id();
struct netdev_queue *nq;
struct igc_ring *ring;
int i, nxmit;
if (unlikely(!netif_carrier_ok(dev)))
return -ENETDOWN;
if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
return -EINVAL;
ring = igc_xdp_get_tx_ring(adapter, cpu);
nq = txring_txq(ring);
__netif_tx_lock(nq, cpu);
/* Avoid transmit queue timeout since we share it with the slow path */
txq_trans_cond_update(nq);
nxmit = 0;
for (i = 0; i < num_frames; i++) {
int err;
struct xdp_frame *xdpf = frames[i];
err = igc_xdp_init_tx_descriptor(ring, xdpf);
if (err)
break;
nxmit++;
}
if (flags & XDP_XMIT_FLUSH)
igc_flush_tx_descriptors(ring);
__netif_tx_unlock(nq);
return nxmit;
}
static void igc_trigger_rxtxq_interrupt(struct igc_adapter *adapter,
struct igc_q_vector *q_vector)
{
struct igc_hw *hw = &adapter->hw;
u32 eics = 0;
eics |= q_vector->eims_value;
wr32(IGC_EICS, eics);
}
int igc_xsk_wakeup(struct net_device *dev, u32 queue_id, u32 flags)
{
struct igc_adapter *adapter = netdev_priv(dev);
struct igc_q_vector *q_vector;
struct igc_ring *ring;
if (test_bit(__IGC_DOWN, &adapter->state))
return -ENETDOWN;
if (!igc_xdp_is_enabled(adapter))
return -ENXIO;
if (queue_id >= adapter->num_rx_queues)
return -EINVAL;
ring = adapter->rx_ring[queue_id];
if (!ring->xsk_pool)
return -ENXIO;
q_vector = adapter->q_vector[queue_id];
if (!napi_if_scheduled_mark_missed(&q_vector->napi))
igc_trigger_rxtxq_interrupt(adapter, q_vector);
return 0;
}
static ktime_t igc_get_tstamp(struct net_device *dev,
const struct skb_shared_hwtstamps *hwtstamps,
bool cycles)
{
struct igc_adapter *adapter = netdev_priv(dev);
struct igc_inline_rx_tstamps *tstamp;
ktime_t timestamp;
tstamp = hwtstamps->netdev_data;
if (cycles)
timestamp = igc_ptp_rx_pktstamp(adapter, tstamp->timer1);
else
timestamp = igc_ptp_rx_pktstamp(adapter, tstamp->timer0);
return timestamp;
}
static const struct net_device_ops igc_netdev_ops = {
.ndo_open = igc_open,
.ndo_stop = igc_close,
.ndo_start_xmit = igc_xmit_frame,
.ndo_set_rx_mode = igc_set_rx_mode,
.ndo_set_mac_address = igc_set_mac,
.ndo_change_mtu = igc_change_mtu,
.ndo_tx_timeout = igc_tx_timeout,
.ndo_get_stats64 = igc_get_stats64,
.ndo_fix_features = igc_fix_features,
.ndo_set_features = igc_set_features,
.ndo_features_check = igc_features_check,
.ndo_eth_ioctl = igc_ioctl,
.ndo_setup_tc = igc_setup_tc,
.ndo_bpf = igc_bpf,
.ndo_xdp_xmit = igc_xdp_xmit,
.ndo_xsk_wakeup = igc_xsk_wakeup,
.ndo_get_tstamp = igc_get_tstamp,
};
/* PCIe configuration access */
void igc_read_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
{
struct igc_adapter *adapter = hw->back;
pci_read_config_word(adapter->pdev, reg, value);
}
void igc_write_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
{
struct igc_adapter *adapter = hw->back;
pci_write_config_word(adapter->pdev, reg, *value);
}
s32 igc_read_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
{
struct igc_adapter *adapter = hw->back;
if (!pci_is_pcie(adapter->pdev))
return -IGC_ERR_CONFIG;
pcie_capability_read_word(adapter->pdev, reg, value);
return IGC_SUCCESS;
}
s32 igc_write_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
{
struct igc_adapter *adapter = hw->back;
if (!pci_is_pcie(adapter->pdev))
return -IGC_ERR_CONFIG;
pcie_capability_write_word(adapter->pdev, reg, *value);
return IGC_SUCCESS;
}
u32 igc_rd32(struct igc_hw *hw, u32 reg)
{
struct igc_adapter *igc = container_of(hw, struct igc_adapter, hw);
u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
u32 value = 0;
if (IGC_REMOVED(hw_addr))
return ~value;
value = readl(&hw_addr[reg]);
/* reads should not return all F's */
if (!(~value) && (!reg || !(~readl(hw_addr)))) {
struct net_device *netdev = igc->netdev;
hw->hw_addr = NULL;
netif_device_detach(netdev);
netdev_err(netdev, "PCIe link lost, device now detached\n");
WARN(pci_device_is_present(igc->pdev),
"igc: Failed to read reg 0x%x!\n", reg);
}
return value;
}
/* Mapping HW RSS Type to enum xdp_rss_hash_type */
static enum xdp_rss_hash_type igc_xdp_rss_type[IGC_RSS_TYPE_MAX_TABLE] = {
[IGC_RSS_TYPE_NO_HASH] = XDP_RSS_TYPE_L2,
[IGC_RSS_TYPE_HASH_TCP_IPV4] = XDP_RSS_TYPE_L4_IPV4_TCP,
[IGC_RSS_TYPE_HASH_IPV4] = XDP_RSS_TYPE_L3_IPV4,
[IGC_RSS_TYPE_HASH_TCP_IPV6] = XDP_RSS_TYPE_L4_IPV6_TCP,
[IGC_RSS_TYPE_HASH_IPV6_EX] = XDP_RSS_TYPE_L3_IPV6_EX,
[IGC_RSS_TYPE_HASH_IPV6] = XDP_RSS_TYPE_L3_IPV6,
[IGC_RSS_TYPE_HASH_TCP_IPV6_EX] = XDP_RSS_TYPE_L4_IPV6_TCP_EX,
[IGC_RSS_TYPE_HASH_UDP_IPV4] = XDP_RSS_TYPE_L4_IPV4_UDP,
[IGC_RSS_TYPE_HASH_UDP_IPV6] = XDP_RSS_TYPE_L4_IPV6_UDP,
[IGC_RSS_TYPE_HASH_UDP_IPV6_EX] = XDP_RSS_TYPE_L4_IPV6_UDP_EX,
[10] = XDP_RSS_TYPE_NONE, /* RSS Type above 9 "Reserved" by HW */
[11] = XDP_RSS_TYPE_NONE, /* keep array sized for SW bit-mask */
[12] = XDP_RSS_TYPE_NONE, /* to handle future HW revisons */
[13] = XDP_RSS_TYPE_NONE,
[14] = XDP_RSS_TYPE_NONE,
[15] = XDP_RSS_TYPE_NONE,
};
static int igc_xdp_rx_hash(const struct xdp_md *_ctx, u32 *hash,
enum xdp_rss_hash_type *rss_type)
{
const struct igc_xdp_buff *ctx = (void *)_ctx;
if (!(ctx->xdp.rxq->dev->features & NETIF_F_RXHASH))
return -ENODATA;
*hash = le32_to_cpu(ctx->rx_desc->wb.lower.hi_dword.rss);
*rss_type = igc_xdp_rss_type[igc_rss_type(ctx->rx_desc)];
return 0;
}
static int igc_xdp_rx_timestamp(const struct xdp_md *_ctx, u64 *timestamp)
{
const struct igc_xdp_buff *ctx = (void *)_ctx;
struct igc_adapter *adapter = netdev_priv(ctx->xdp.rxq->dev);
struct igc_inline_rx_tstamps *tstamp = ctx->rx_ts;
if (igc_test_staterr(ctx->rx_desc, IGC_RXDADV_STAT_TSIP)) {
*timestamp = igc_ptp_rx_pktstamp(adapter, tstamp->timer0);
return 0;
}
return -ENODATA;
}
static const struct xdp_metadata_ops igc_xdp_metadata_ops = {
.xmo_rx_hash = igc_xdp_rx_hash,
.xmo_rx_timestamp = igc_xdp_rx_timestamp,
};
static enum hrtimer_restart igc_qbv_scheduling_timer(struct hrtimer *timer)
{
struct igc_adapter *adapter = container_of(timer, struct igc_adapter,
hrtimer);
unsigned long flags;
unsigned int i;
spin_lock_irqsave(&adapter->qbv_tx_lock, flags);
adapter->qbv_transition = true;
for (i = 0; i < adapter->num_tx_queues; i++) {
struct igc_ring *tx_ring = adapter->tx_ring[i];
if (tx_ring->admin_gate_closed) {
tx_ring->admin_gate_closed = false;
tx_ring->oper_gate_closed = true;
} else {
tx_ring->oper_gate_closed = false;
}
}
adapter->qbv_transition = false;
spin_unlock_irqrestore(&adapter->qbv_tx_lock, flags);
return HRTIMER_NORESTART;
}
/**
* igc_probe - Device Initialization Routine
* @pdev: PCI device information struct
* @ent: entry in igc_pci_tbl
*
* Returns 0 on success, negative on failure
*
* igc_probe initializes an adapter identified by a pci_dev structure.
* The OS initialization, configuring the adapter private structure,
* and a hardware reset occur.
*/
static int igc_probe(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
struct igc_adapter *adapter;
struct net_device *netdev;
struct igc_hw *hw;
const struct igc_info *ei = igc_info_tbl[ent->driver_data];
int err;
err = pci_enable_device_mem(pdev);
if (err)
return err;
err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
if (err) {
dev_err(&pdev->dev,
"No usable DMA configuration, aborting\n");
goto err_dma;
}
err = pci_request_mem_regions(pdev, igc_driver_name);
if (err)
goto err_pci_reg;
err = pci_enable_ptm(pdev, NULL);
if (err < 0)
dev_info(&pdev->dev, "PCIe PTM not supported by PCIe bus/controller\n");
pci_set_master(pdev);
err = -ENOMEM;
netdev = alloc_etherdev_mq(sizeof(struct igc_adapter),
IGC_MAX_TX_QUEUES);
if (!netdev)
goto err_alloc_etherdev;
SET_NETDEV_DEV(netdev, &pdev->dev);
pci_set_drvdata(pdev, netdev);
adapter = netdev_priv(netdev);
adapter->netdev = netdev;
adapter->pdev = pdev;
hw = &adapter->hw;
hw->back = adapter;
adapter->port_num = hw->bus.func;
adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
err = pci_save_state(pdev);
if (err)
goto err_ioremap;
err = -EIO;
adapter->io_addr = ioremap(pci_resource_start(pdev, 0),
pci_resource_len(pdev, 0));
if (!adapter->io_addr)
goto err_ioremap;
/* hw->hw_addr can be zeroed, so use adapter->io_addr for unmap */
hw->hw_addr = adapter->io_addr;
netdev->netdev_ops = &igc_netdev_ops;
netdev->xdp_metadata_ops = &igc_xdp_metadata_ops;
netdev->xsk_tx_metadata_ops = &igc_xsk_tx_metadata_ops;
igc_ethtool_set_ops(netdev);
netdev->watchdog_timeo = 5 * HZ;
netdev->mem_start = pci_resource_start(pdev, 0);
netdev->mem_end = pci_resource_end(pdev, 0);
/* PCI config space info */
hw->vendor_id = pdev->vendor;
hw->device_id = pdev->device;
hw->revision_id = pdev->revision;
hw->subsystem_vendor_id = pdev->subsystem_vendor;
hw->subsystem_device_id = pdev->subsystem_device;
/* Copy the default MAC and PHY function pointers */
memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
/* Initialize skew-specific constants */
err = ei->get_invariants(hw);
if (err)
goto err_sw_init;
/* Add supported features to the features list*/
netdev->features |= NETIF_F_SG;
netdev->features |= NETIF_F_TSO;
netdev->features |= NETIF_F_TSO6;
netdev->features |= NETIF_F_TSO_ECN;
netdev->features |= NETIF_F_RXHASH;
netdev->features |= NETIF_F_RXCSUM;
netdev->features |= NETIF_F_HW_CSUM;
netdev->features |= NETIF_F_SCTP_CRC;
netdev->features |= NETIF_F_HW_TC;
#define IGC_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
NETIF_F_GSO_GRE_CSUM | \
NETIF_F_GSO_IPXIP4 | \
NETIF_F_GSO_IPXIP6 | \
NETIF_F_GSO_UDP_TUNNEL | \
NETIF_F_GSO_UDP_TUNNEL_CSUM)
netdev->gso_partial_features = IGC_GSO_PARTIAL_FEATURES;
netdev->features |= NETIF_F_GSO_PARTIAL | IGC_GSO_PARTIAL_FEATURES;
/* setup the private structure */
err = igc_sw_init(adapter);
if (err)
goto err_sw_init;
/* copy netdev features into list of user selectable features */
netdev->hw_features |= NETIF_F_NTUPLE;
netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
netdev->hw_features |= netdev->features;
netdev->features |= NETIF_F_HIGHDMA;
netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
netdev->mpls_features |= NETIF_F_HW_CSUM;
netdev->hw_enc_features |= netdev->vlan_features;
netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
NETDEV_XDP_ACT_XSK_ZEROCOPY;
/* MTU range: 68 - 9216 */
netdev->min_mtu = ETH_MIN_MTU;
netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
/* before reading the NVM, reset the controller to put the device in a
* known good starting state
*/
hw->mac.ops.reset_hw(hw);
if (igc_get_flash_presence_i225(hw)) {
if (hw->nvm.ops.validate(hw) < 0) {
dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
err = -EIO;
goto err_eeprom;
}
}
if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
/* copy the MAC address out of the NVM */
if (hw->mac.ops.read_mac_addr(hw))
dev_err(&pdev->dev, "NVM Read Error\n");
}
eth_hw_addr_set(netdev, hw->mac.addr);
if (!is_valid_ether_addr(netdev->dev_addr)) {
dev_err(&pdev->dev, "Invalid MAC Address\n");
err = -EIO;
goto err_eeprom;
}
/* configure RXPBSIZE and TXPBSIZE */
wr32(IGC_RXPBS, I225_RXPBSIZE_DEFAULT);
wr32(IGC_TXPBS, I225_TXPBSIZE_DEFAULT);
timer_setup(&adapter->watchdog_timer, igc_watchdog, 0);
timer_setup(&adapter->phy_info_timer, igc_update_phy_info, 0);
INIT_WORK(&adapter->reset_task, igc_reset_task);
INIT_WORK(&adapter->watchdog_task, igc_watchdog_task);
hrtimer_init(&adapter->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
adapter->hrtimer.function = &igc_qbv_scheduling_timer;
/* Initialize link properties that are user-changeable */
adapter->fc_autoneg = true;
hw->mac.autoneg = true;
hw->phy.autoneg_advertised = 0xaf;
hw->fc.requested_mode = igc_fc_default;
hw->fc.current_mode = igc_fc_default;
/* By default, support wake on port A */
adapter->flags |= IGC_FLAG_WOL_SUPPORTED;
/* initialize the wol settings based on the eeprom settings */
if (adapter->flags & IGC_FLAG_WOL_SUPPORTED)
adapter->wol |= IGC_WUFC_MAG;
device_set_wakeup_enable(&adapter->pdev->dev,
adapter->flags & IGC_FLAG_WOL_SUPPORTED);
igc_ptp_init(adapter);
igc_tsn_clear_schedule(adapter);
/* reset the hardware with the new settings */
igc_reset(adapter);
/* let the f/w know that the h/w is now under the control of the
* driver.
*/
igc_get_hw_control(adapter);
strscpy(netdev->name, "eth%d", sizeof(netdev->name));
err = register_netdev(netdev);
if (err)
goto err_register;
/* carrier off reporting is important to ethtool even BEFORE open */
netif_carrier_off(netdev);
/* Check if Media Autosense is enabled */
adapter->ei = *ei;
/* print pcie link status and MAC address */
pcie_print_link_status(pdev);
netdev_info(netdev, "MAC: %pM\n", netdev->dev_addr);
dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
/* Disable EEE for internal PHY devices */
hw->dev_spec._base.eee_enable = false;
adapter->flags &= ~IGC_FLAG_EEE;
igc_set_eee_i225(hw, false, false, false);
pm_runtime_put_noidle(&pdev->dev);
if (IS_ENABLED(CONFIG_IGC_LEDS)) {
err = igc_led_setup(adapter);
if (err)
goto err_register;
}
return 0;
err_register:
igc_release_hw_control(adapter);
err_eeprom:
if (!igc_check_reset_block(hw))
igc_reset_phy(hw);
err_sw_init:
igc_clear_interrupt_scheme(adapter);
iounmap(adapter->io_addr);
err_ioremap:
free_netdev(netdev);
err_alloc_etherdev:
pci_release_mem_regions(pdev);
err_pci_reg:
err_dma:
pci_disable_device(pdev);
return err;
}
/**
* igc_remove - Device Removal Routine
* @pdev: PCI device information struct
*
* igc_remove is called by the PCI subsystem to alert the driver
* that it should release a PCI device. This could be caused by a
* Hot-Plug event, or because the driver is going to be removed from
* memory.
*/
static void igc_remove(struct pci_dev *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct igc_adapter *adapter = netdev_priv(netdev);
pm_runtime_get_noresume(&pdev->dev);
igc_flush_nfc_rules(adapter);
igc_ptp_stop(adapter);
pci_disable_ptm(pdev);
pci_clear_master(pdev);
set_bit(__IGC_DOWN, &adapter->state);
del_timer_sync(&adapter->watchdog_timer);
del_timer_sync(&adapter->phy_info_timer);
cancel_work_sync(&adapter->reset_task);
cancel_work_sync(&adapter->watchdog_task);
hrtimer_cancel(&adapter->hrtimer);
if (IS_ENABLED(CONFIG_IGC_LEDS))
igc_led_free(adapter);
/* Release control of h/w to f/w. If f/w is AMT enabled, this
* would have already happened in close and is redundant.
*/
igc_release_hw_control(adapter);
unregister_netdev(netdev);
igc_clear_interrupt_scheme(adapter);
pci_iounmap(pdev, adapter->io_addr);
pci_release_mem_regions(pdev);
free_netdev(netdev);
pci_disable_device(pdev);
}
static int __igc_shutdown(struct pci_dev *pdev, bool *enable_wake,
bool runtime)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct igc_adapter *adapter = netdev_priv(netdev);
u32 wufc = runtime ? IGC_WUFC_LNKC : adapter->wol;
struct igc_hw *hw = &adapter->hw;
u32 ctrl, rctl, status;
bool wake;
rtnl_lock();
netif_device_detach(netdev);
if (netif_running(netdev))
__igc_close(netdev, true);
igc_ptp_suspend(adapter);
igc_clear_interrupt_scheme(adapter);
rtnl_unlock();
status = rd32(IGC_STATUS);
if (status & IGC_STATUS_LU)
wufc &= ~IGC_WUFC_LNKC;
if (wufc) {
igc_setup_rctl(adapter);
igc_set_rx_mode(netdev);
/* turn on all-multi mode if wake on multicast is enabled */
if (wufc & IGC_WUFC_MC) {
rctl = rd32(IGC_RCTL);
rctl |= IGC_RCTL_MPE;
wr32(IGC_RCTL, rctl);
}
ctrl = rd32(IGC_CTRL);
ctrl |= IGC_CTRL_ADVD3WUC;
wr32(IGC_CTRL, ctrl);
/* Allow time for pending master requests to run */
igc_disable_pcie_master(hw);
wr32(IGC_WUC, IGC_WUC_PME_EN);
wr32(IGC_WUFC, wufc);
} else {
wr32(IGC_WUC, 0);
wr32(IGC_WUFC, 0);
}
wake = wufc || adapter->en_mng_pt;
if (!wake)
igc_power_down_phy_copper_base(&adapter->hw);
else
igc_power_up_link(adapter);
if (enable_wake)
*enable_wake = wake;
/* Release control of h/w to f/w. If f/w is AMT enabled, this
* would have already happened in close and is redundant.
*/
igc_release_hw_control(adapter);
pci_disable_device(pdev);
return 0;
}
static int igc_runtime_suspend(struct device *dev)
{
return __igc_shutdown(to_pci_dev(dev), NULL, 1);
}
static void igc_deliver_wake_packet(struct net_device *netdev)
{
struct igc_adapter *adapter = netdev_priv(netdev);
struct igc_hw *hw = &adapter->hw;
struct sk_buff *skb;
u32 wupl;
wupl = rd32(IGC_WUPL) & IGC_WUPL_MASK;
/* WUPM stores only the first 128 bytes of the wake packet.
* Read the packet only if we have the whole thing.
*/
if (wupl == 0 || wupl > IGC_WUPM_BYTES)
return;
skb = netdev_alloc_skb_ip_align(netdev, IGC_WUPM_BYTES);
if (!skb)
return;
skb_put(skb, wupl);
/* Ensure reads are 32-bit aligned */
wupl = roundup(wupl, 4);
memcpy_fromio(skb->data, hw->hw_addr + IGC_WUPM_REG(0), wupl);
skb->protocol = eth_type_trans(skb, netdev);
netif_rx(skb);
}
static int igc_resume(struct device *dev)
{
struct pci_dev *pdev = to_pci_dev(dev);
struct net_device *netdev = pci_get_drvdata(pdev);
struct igc_adapter *adapter = netdev_priv(netdev);
struct igc_hw *hw = &adapter->hw;
u32 err, val;
pci_set_power_state(pdev, PCI_D0);
pci_restore_state(pdev);
pci_save_state(pdev);
if (!pci_device_is_present(pdev))
return -ENODEV;
err = pci_enable_device_mem(pdev);
if (err) {
netdev_err(netdev, "Cannot enable PCI device from suspend\n");
return err;
}
pci_set_master(pdev);
pci_enable_wake(pdev, PCI_D3hot, 0);
pci_enable_wake(pdev, PCI_D3cold, 0);
if (igc_init_interrupt_scheme(adapter, true)) {
netdev_err(netdev, "Unable to allocate memory for queues\n");
return -ENOMEM;
}
igc_reset(adapter);
/* let the f/w know that the h/w is now under the control of the
* driver.
*/
igc_get_hw_control(adapter);
val = rd32(IGC_WUS);
if (val & WAKE_PKT_WUS)
igc_deliver_wake_packet(netdev);
wr32(IGC_WUS, ~0);
if (netif_running(netdev)) {
err = __igc_open(netdev, true);
if (!err)
netif_device_attach(netdev);
}
return err;
}
static int igc_runtime_resume(struct device *dev)
{
return igc_resume(dev);
}
static int igc_suspend(struct device *dev)
{
return __igc_shutdown(to_pci_dev(dev), NULL, 0);
}
static int __maybe_unused igc_runtime_idle(struct device *dev)
{
struct net_device *netdev = dev_get_drvdata(dev);
struct igc_adapter *adapter = netdev_priv(netdev);
if (!igc_has_link(adapter))
pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
return -EBUSY;
}
static void igc_shutdown(struct pci_dev *pdev)
{
bool wake;
__igc_shutdown(pdev, &wake, 0);
if (system_state == SYSTEM_POWER_OFF) {
pci_wake_from_d3(pdev, wake);
pci_set_power_state(pdev, PCI_D3hot);
}
}
/**
* igc_io_error_detected - called when PCI error is detected
* @pdev: Pointer to PCI device
* @state: The current PCI connection state
*
* This function is called after a PCI bus error affecting
* this device has been detected.
**/
static pci_ers_result_t igc_io_error_detected(struct pci_dev *pdev,
pci_channel_state_t state)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct igc_adapter *adapter = netdev_priv(netdev);
netif_device_detach(netdev);
if (state == pci_channel_io_perm_failure)
return PCI_ERS_RESULT_DISCONNECT;
if (netif_running(netdev))
igc_down(adapter);
pci_disable_device(pdev);
/* Request a slot reset. */
return PCI_ERS_RESULT_NEED_RESET;
}
/**
* igc_io_slot_reset - called after the PCI bus has been reset.
* @pdev: Pointer to PCI device
*
* Restart the card from scratch, as if from a cold-boot. Implementation
* resembles the first-half of the igc_resume routine.
**/
static pci_ers_result_t igc_io_slot_reset(struct pci_dev *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct igc_adapter *adapter = netdev_priv(netdev);
struct igc_hw *hw = &adapter->hw;
pci_ers_result_t result;
if (pci_enable_device_mem(pdev)) {
netdev_err(netdev, "Could not re-enable PCI device after reset\n");
result = PCI_ERS_RESULT_DISCONNECT;
} else {
pci_set_master(pdev);
pci_restore_state(pdev);
pci_save_state(pdev);
pci_enable_wake(pdev, PCI_D3hot, 0);
pci_enable_wake(pdev, PCI_D3cold, 0);
/* In case of PCI error, adapter loses its HW address
* so we should re-assign it here.
*/
hw->hw_addr = adapter->io_addr;
igc_reset(adapter);
wr32(IGC_WUS, ~0);
result = PCI_ERS_RESULT_RECOVERED;
}
return result;
}
/**
* igc_io_resume - called when traffic can start to flow again.
* @pdev: Pointer to PCI device
*
* This callback is called when the error recovery driver tells us that
* its OK to resume normal operation. Implementation resembles the
* second-half of the igc_resume routine.
*/
static void igc_io_resume(struct pci_dev *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct igc_adapter *adapter = netdev_priv(netdev);
rtnl_lock();
if (netif_running(netdev)) {
if (igc_open(netdev)) {
netdev_err(netdev, "igc_open failed after reset\n");
return;
}
}
netif_device_attach(netdev);
/* let the f/w know that the h/w is now under the control of the
* driver.
*/
igc_get_hw_control(adapter);
rtnl_unlock();
}
static const struct pci_error_handlers igc_err_handler = {
.error_detected = igc_io_error_detected,
.slot_reset = igc_io_slot_reset,
.resume = igc_io_resume,
};
static _DEFINE_DEV_PM_OPS(igc_pm_ops, igc_suspend, igc_resume,
igc_runtime_suspend, igc_runtime_resume,
igc_runtime_idle);
static struct pci_driver igc_driver = {
.name = igc_driver_name,
.id_table = igc_pci_tbl,
.probe = igc_probe,
.remove = igc_remove,
.driver.pm = pm_ptr(&igc_pm_ops),
.shutdown = igc_shutdown,
.err_handler = &igc_err_handler,
};
/**
* igc_reinit_queues - return error
* @adapter: pointer to adapter structure
*/
int igc_reinit_queues(struct igc_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
int err = 0;
if (netif_running(netdev))
igc_close(netdev);
igc_reset_interrupt_capability(adapter);
if (igc_init_interrupt_scheme(adapter, true)) {
netdev_err(netdev, "Unable to allocate memory for queues\n");
return -ENOMEM;
}
if (netif_running(netdev))
err = igc_open(netdev);
return err;
}
/**
* igc_get_hw_dev - return device
* @hw: pointer to hardware structure
*
* used by hardware layer to print debugging information
*/
struct net_device *igc_get_hw_dev(struct igc_hw *hw)
{
struct igc_adapter *adapter = hw->back;
return adapter->netdev;
}
static void igc_disable_rx_ring_hw(struct igc_ring *ring)
{
struct igc_hw *hw = &ring->q_vector->adapter->hw;
u8 idx = ring->reg_idx;
u32 rxdctl;
rxdctl = rd32(IGC_RXDCTL(idx));
rxdctl &= ~IGC_RXDCTL_QUEUE_ENABLE;
rxdctl |= IGC_RXDCTL_SWFLUSH;
wr32(IGC_RXDCTL(idx), rxdctl);
}
void igc_disable_rx_ring(struct igc_ring *ring)
{
igc_disable_rx_ring_hw(ring);
igc_clean_rx_ring(ring);
}
void igc_enable_rx_ring(struct igc_ring *ring)
{
struct igc_adapter *adapter = ring->q_vector->adapter;
igc_configure_rx_ring(adapter, ring);
if (ring->xsk_pool)
igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring));
else
igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
}
void igc_disable_tx_ring(struct igc_ring *ring)
{
igc_disable_tx_ring_hw(ring);
igc_clean_tx_ring(ring);
}
void igc_enable_tx_ring(struct igc_ring *ring)
{
struct igc_adapter *adapter = ring->q_vector->adapter;
igc_configure_tx_ring(adapter, ring);
}
/**
* igc_init_module - Driver Registration Routine
*
* igc_init_module is the first routine called when the driver is
* loaded. All it does is register with the PCI subsystem.
*/
static int __init igc_init_module(void)
{
int ret;
pr_info("%s\n", igc_driver_string);
pr_info("%s\n", igc_copyright);
ret = pci_register_driver(&igc_driver);
return ret;
}
module_init(igc_init_module);
/**
* igc_exit_module - Driver Exit Cleanup Routine
*
* igc_exit_module is called just before the driver is removed
* from memory.
*/
static void __exit igc_exit_module(void)
{
pci_unregister_driver(&igc_driver);
}
module_exit(igc_exit_module);
/* igc_main.c */