| // SPDX-License-Identifier: GPL-2.0-only |
| /* Copyright (c) 2022 Meta Platforms, Inc. and affiliates. */ |
| #include <linux/mm.h> |
| #include <linux/llist.h> |
| #include <linux/bpf.h> |
| #include <linux/irq_work.h> |
| #include <linux/bpf_mem_alloc.h> |
| #include <linux/memcontrol.h> |
| #include <asm/local.h> |
| |
| /* Any context (including NMI) BPF specific memory allocator. |
| * |
| * Tracing BPF programs can attach to kprobe and fentry. Hence they |
| * run in unknown context where calling plain kmalloc() might not be safe. |
| * |
| * Front-end kmalloc() with per-cpu per-bucket cache of free elements. |
| * Refill this cache asynchronously from irq_work. |
| * |
| * CPU_0 buckets |
| * 16 32 64 96 128 196 256 512 1024 2048 4096 |
| * ... |
| * CPU_N buckets |
| * 16 32 64 96 128 196 256 512 1024 2048 4096 |
| * |
| * The buckets are prefilled at the start. |
| * BPF programs always run with migration disabled. |
| * It's safe to allocate from cache of the current cpu with irqs disabled. |
| * Free-ing is always done into bucket of the current cpu as well. |
| * irq_work trims extra free elements from buckets with kfree |
| * and refills them with kmalloc, so global kmalloc logic takes care |
| * of freeing objects allocated by one cpu and freed on another. |
| * |
| * Every allocated objected is padded with extra 8 bytes that contains |
| * struct llist_node. |
| */ |
| #define LLIST_NODE_SZ sizeof(struct llist_node) |
| |
| /* similar to kmalloc, but sizeof == 8 bucket is gone */ |
| static u8 size_index[24] __ro_after_init = { |
| 3, /* 8 */ |
| 3, /* 16 */ |
| 4, /* 24 */ |
| 4, /* 32 */ |
| 5, /* 40 */ |
| 5, /* 48 */ |
| 5, /* 56 */ |
| 5, /* 64 */ |
| 1, /* 72 */ |
| 1, /* 80 */ |
| 1, /* 88 */ |
| 1, /* 96 */ |
| 6, /* 104 */ |
| 6, /* 112 */ |
| 6, /* 120 */ |
| 6, /* 128 */ |
| 2, /* 136 */ |
| 2, /* 144 */ |
| 2, /* 152 */ |
| 2, /* 160 */ |
| 2, /* 168 */ |
| 2, /* 176 */ |
| 2, /* 184 */ |
| 2 /* 192 */ |
| }; |
| |
| static int bpf_mem_cache_idx(size_t size) |
| { |
| if (!size || size > 4096) |
| return -1; |
| |
| if (size <= 192) |
| return size_index[(size - 1) / 8] - 1; |
| |
| return fls(size - 1) - 2; |
| } |
| |
| #define NUM_CACHES 11 |
| |
| struct bpf_mem_cache { |
| /* per-cpu list of free objects of size 'unit_size'. |
| * All accesses are done with interrupts disabled and 'active' counter |
| * protection with __llist_add() and __llist_del_first(). |
| */ |
| struct llist_head free_llist; |
| local_t active; |
| |
| /* Operations on the free_list from unit_alloc/unit_free/bpf_mem_refill |
| * are sequenced by per-cpu 'active' counter. But unit_free() cannot |
| * fail. When 'active' is busy the unit_free() will add an object to |
| * free_llist_extra. |
| */ |
| struct llist_head free_llist_extra; |
| |
| struct irq_work refill_work; |
| struct obj_cgroup *objcg; |
| int unit_size; |
| /* count of objects in free_llist */ |
| int free_cnt; |
| int low_watermark, high_watermark, batch; |
| int percpu_size; |
| bool draining; |
| struct bpf_mem_cache *tgt; |
| |
| /* list of objects to be freed after RCU GP */ |
| struct llist_head free_by_rcu; |
| struct llist_node *free_by_rcu_tail; |
| struct llist_head waiting_for_gp; |
| struct llist_node *waiting_for_gp_tail; |
| struct rcu_head rcu; |
| atomic_t call_rcu_in_progress; |
| struct llist_head free_llist_extra_rcu; |
| |
| /* list of objects to be freed after RCU tasks trace GP */ |
| struct llist_head free_by_rcu_ttrace; |
| struct llist_head waiting_for_gp_ttrace; |
| struct rcu_head rcu_ttrace; |
| atomic_t call_rcu_ttrace_in_progress; |
| }; |
| |
| struct bpf_mem_caches { |
| struct bpf_mem_cache cache[NUM_CACHES]; |
| }; |
| |
| static const u16 sizes[NUM_CACHES] = {96, 192, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096}; |
| |
| static struct llist_node notrace *__llist_del_first(struct llist_head *head) |
| { |
| struct llist_node *entry, *next; |
| |
| entry = head->first; |
| if (!entry) |
| return NULL; |
| next = entry->next; |
| head->first = next; |
| return entry; |
| } |
| |
| static void *__alloc(struct bpf_mem_cache *c, int node, gfp_t flags) |
| { |
| if (c->percpu_size) { |
| void **obj = kmalloc_node(c->percpu_size, flags, node); |
| void *pptr = __alloc_percpu_gfp(c->unit_size, 8, flags); |
| |
| if (!obj || !pptr) { |
| free_percpu(pptr); |
| kfree(obj); |
| return NULL; |
| } |
| obj[1] = pptr; |
| return obj; |
| } |
| |
| return kmalloc_node(c->unit_size, flags | __GFP_ZERO, node); |
| } |
| |
| static struct mem_cgroup *get_memcg(const struct bpf_mem_cache *c) |
| { |
| #ifdef CONFIG_MEMCG_KMEM |
| if (c->objcg) |
| return get_mem_cgroup_from_objcg(c->objcg); |
| #endif |
| |
| #ifdef CONFIG_MEMCG |
| return root_mem_cgroup; |
| #else |
| return NULL; |
| #endif |
| } |
| |
| static void inc_active(struct bpf_mem_cache *c, unsigned long *flags) |
| { |
| if (IS_ENABLED(CONFIG_PREEMPT_RT)) |
| /* In RT irq_work runs in per-cpu kthread, so disable |
| * interrupts to avoid preemption and interrupts and |
| * reduce the chance of bpf prog executing on this cpu |
| * when active counter is busy. |
| */ |
| local_irq_save(*flags); |
| /* alloc_bulk runs from irq_work which will not preempt a bpf |
| * program that does unit_alloc/unit_free since IRQs are |
| * disabled there. There is no race to increment 'active' |
| * counter. It protects free_llist from corruption in case NMI |
| * bpf prog preempted this loop. |
| */ |
| WARN_ON_ONCE(local_inc_return(&c->active) != 1); |
| } |
| |
| static void dec_active(struct bpf_mem_cache *c, unsigned long *flags) |
| { |
| local_dec(&c->active); |
| if (IS_ENABLED(CONFIG_PREEMPT_RT)) |
| local_irq_restore(*flags); |
| } |
| |
| static void add_obj_to_free_list(struct bpf_mem_cache *c, void *obj) |
| { |
| unsigned long flags; |
| |
| inc_active(c, &flags); |
| __llist_add(obj, &c->free_llist); |
| c->free_cnt++; |
| dec_active(c, &flags); |
| } |
| |
| /* Mostly runs from irq_work except __init phase. */ |
| static void alloc_bulk(struct bpf_mem_cache *c, int cnt, int node, bool atomic) |
| { |
| struct mem_cgroup *memcg = NULL, *old_memcg; |
| gfp_t gfp; |
| void *obj; |
| int i; |
| |
| gfp = __GFP_NOWARN | __GFP_ACCOUNT; |
| gfp |= atomic ? GFP_NOWAIT : GFP_KERNEL; |
| |
| for (i = 0; i < cnt; i++) { |
| /* |
| * For every 'c' llist_del_first(&c->free_by_rcu_ttrace); is |
| * done only by one CPU == current CPU. Other CPUs might |
| * llist_add() and llist_del_all() in parallel. |
| */ |
| obj = llist_del_first(&c->free_by_rcu_ttrace); |
| if (!obj) |
| break; |
| add_obj_to_free_list(c, obj); |
| } |
| if (i >= cnt) |
| return; |
| |
| for (; i < cnt; i++) { |
| obj = llist_del_first(&c->waiting_for_gp_ttrace); |
| if (!obj) |
| break; |
| add_obj_to_free_list(c, obj); |
| } |
| if (i >= cnt) |
| return; |
| |
| memcg = get_memcg(c); |
| old_memcg = set_active_memcg(memcg); |
| for (; i < cnt; i++) { |
| /* Allocate, but don't deplete atomic reserves that typical |
| * GFP_ATOMIC would do. irq_work runs on this cpu and kmalloc |
| * will allocate from the current numa node which is what we |
| * want here. |
| */ |
| obj = __alloc(c, node, gfp); |
| if (!obj) |
| break; |
| add_obj_to_free_list(c, obj); |
| } |
| set_active_memcg(old_memcg); |
| mem_cgroup_put(memcg); |
| } |
| |
| static void free_one(void *obj, bool percpu) |
| { |
| if (percpu) { |
| free_percpu(((void **)obj)[1]); |
| kfree(obj); |
| return; |
| } |
| |
| kfree(obj); |
| } |
| |
| static int free_all(struct llist_node *llnode, bool percpu) |
| { |
| struct llist_node *pos, *t; |
| int cnt = 0; |
| |
| llist_for_each_safe(pos, t, llnode) { |
| free_one(pos, percpu); |
| cnt++; |
| } |
| return cnt; |
| } |
| |
| static void __free_rcu(struct rcu_head *head) |
| { |
| struct bpf_mem_cache *c = container_of(head, struct bpf_mem_cache, rcu_ttrace); |
| |
| free_all(llist_del_all(&c->waiting_for_gp_ttrace), !!c->percpu_size); |
| atomic_set(&c->call_rcu_ttrace_in_progress, 0); |
| } |
| |
| static void __free_rcu_tasks_trace(struct rcu_head *head) |
| { |
| /* If RCU Tasks Trace grace period implies RCU grace period, |
| * there is no need to invoke call_rcu(). |
| */ |
| if (rcu_trace_implies_rcu_gp()) |
| __free_rcu(head); |
| else |
| call_rcu(head, __free_rcu); |
| } |
| |
| static void enque_to_free(struct bpf_mem_cache *c, void *obj) |
| { |
| struct llist_node *llnode = obj; |
| |
| /* bpf_mem_cache is a per-cpu object. Freeing happens in irq_work. |
| * Nothing races to add to free_by_rcu_ttrace list. |
| */ |
| llist_add(llnode, &c->free_by_rcu_ttrace); |
| } |
| |
| static void do_call_rcu_ttrace(struct bpf_mem_cache *c) |
| { |
| struct llist_node *llnode, *t; |
| |
| if (atomic_xchg(&c->call_rcu_ttrace_in_progress, 1)) { |
| if (unlikely(READ_ONCE(c->draining))) { |
| llnode = llist_del_all(&c->free_by_rcu_ttrace); |
| free_all(llnode, !!c->percpu_size); |
| } |
| return; |
| } |
| |
| WARN_ON_ONCE(!llist_empty(&c->waiting_for_gp_ttrace)); |
| llist_for_each_safe(llnode, t, llist_del_all(&c->free_by_rcu_ttrace)) |
| llist_add(llnode, &c->waiting_for_gp_ttrace); |
| |
| if (unlikely(READ_ONCE(c->draining))) { |
| __free_rcu(&c->rcu_ttrace); |
| return; |
| } |
| |
| /* Use call_rcu_tasks_trace() to wait for sleepable progs to finish. |
| * If RCU Tasks Trace grace period implies RCU grace period, free |
| * these elements directly, else use call_rcu() to wait for normal |
| * progs to finish and finally do free_one() on each element. |
| */ |
| call_rcu_tasks_trace(&c->rcu_ttrace, __free_rcu_tasks_trace); |
| } |
| |
| static void free_bulk(struct bpf_mem_cache *c) |
| { |
| struct bpf_mem_cache *tgt = c->tgt; |
| struct llist_node *llnode, *t; |
| unsigned long flags; |
| int cnt; |
| |
| WARN_ON_ONCE(tgt->unit_size != c->unit_size); |
| WARN_ON_ONCE(tgt->percpu_size != c->percpu_size); |
| |
| do { |
| inc_active(c, &flags); |
| llnode = __llist_del_first(&c->free_llist); |
| if (llnode) |
| cnt = --c->free_cnt; |
| else |
| cnt = 0; |
| dec_active(c, &flags); |
| if (llnode) |
| enque_to_free(tgt, llnode); |
| } while (cnt > (c->high_watermark + c->low_watermark) / 2); |
| |
| /* and drain free_llist_extra */ |
| llist_for_each_safe(llnode, t, llist_del_all(&c->free_llist_extra)) |
| enque_to_free(tgt, llnode); |
| do_call_rcu_ttrace(tgt); |
| } |
| |
| static void __free_by_rcu(struct rcu_head *head) |
| { |
| struct bpf_mem_cache *c = container_of(head, struct bpf_mem_cache, rcu); |
| struct bpf_mem_cache *tgt = c->tgt; |
| struct llist_node *llnode; |
| |
| WARN_ON_ONCE(tgt->unit_size != c->unit_size); |
| WARN_ON_ONCE(tgt->percpu_size != c->percpu_size); |
| |
| llnode = llist_del_all(&c->waiting_for_gp); |
| if (!llnode) |
| goto out; |
| |
| llist_add_batch(llnode, c->waiting_for_gp_tail, &tgt->free_by_rcu_ttrace); |
| |
| /* Objects went through regular RCU GP. Send them to RCU tasks trace */ |
| do_call_rcu_ttrace(tgt); |
| out: |
| atomic_set(&c->call_rcu_in_progress, 0); |
| } |
| |
| static void check_free_by_rcu(struct bpf_mem_cache *c) |
| { |
| struct llist_node *llnode, *t; |
| unsigned long flags; |
| |
| /* drain free_llist_extra_rcu */ |
| if (unlikely(!llist_empty(&c->free_llist_extra_rcu))) { |
| inc_active(c, &flags); |
| llist_for_each_safe(llnode, t, llist_del_all(&c->free_llist_extra_rcu)) |
| if (__llist_add(llnode, &c->free_by_rcu)) |
| c->free_by_rcu_tail = llnode; |
| dec_active(c, &flags); |
| } |
| |
| if (llist_empty(&c->free_by_rcu)) |
| return; |
| |
| if (atomic_xchg(&c->call_rcu_in_progress, 1)) { |
| /* |
| * Instead of kmalloc-ing new rcu_head and triggering 10k |
| * call_rcu() to hit rcutree.qhimark and force RCU to notice |
| * the overload just ask RCU to hurry up. There could be many |
| * objects in free_by_rcu list. |
| * This hint reduces memory consumption for an artificial |
| * benchmark from 2 Gbyte to 150 Mbyte. |
| */ |
| rcu_request_urgent_qs_task(current); |
| return; |
| } |
| |
| WARN_ON_ONCE(!llist_empty(&c->waiting_for_gp)); |
| |
| inc_active(c, &flags); |
| WRITE_ONCE(c->waiting_for_gp.first, __llist_del_all(&c->free_by_rcu)); |
| c->waiting_for_gp_tail = c->free_by_rcu_tail; |
| dec_active(c, &flags); |
| |
| if (unlikely(READ_ONCE(c->draining))) { |
| free_all(llist_del_all(&c->waiting_for_gp), !!c->percpu_size); |
| atomic_set(&c->call_rcu_in_progress, 0); |
| } else { |
| call_rcu_hurry(&c->rcu, __free_by_rcu); |
| } |
| } |
| |
| static void bpf_mem_refill(struct irq_work *work) |
| { |
| struct bpf_mem_cache *c = container_of(work, struct bpf_mem_cache, refill_work); |
| int cnt; |
| |
| /* Racy access to free_cnt. It doesn't need to be 100% accurate */ |
| cnt = c->free_cnt; |
| if (cnt < c->low_watermark) |
| /* irq_work runs on this cpu and kmalloc will allocate |
| * from the current numa node which is what we want here. |
| */ |
| alloc_bulk(c, c->batch, NUMA_NO_NODE, true); |
| else if (cnt > c->high_watermark) |
| free_bulk(c); |
| |
| check_free_by_rcu(c); |
| } |
| |
| static void notrace irq_work_raise(struct bpf_mem_cache *c) |
| { |
| irq_work_queue(&c->refill_work); |
| } |
| |
| /* For typical bpf map case that uses bpf_mem_cache_alloc and single bucket |
| * the freelist cache will be elem_size * 64 (or less) on each cpu. |
| * |
| * For bpf programs that don't have statically known allocation sizes and |
| * assuming (low_mark + high_mark) / 2 as an average number of elements per |
| * bucket and all buckets are used the total amount of memory in freelists |
| * on each cpu will be: |
| * 64*16 + 64*32 + 64*64 + 64*96 + 64*128 + 64*196 + 64*256 + 32*512 + 16*1024 + 8*2048 + 4*4096 |
| * == ~ 116 Kbyte using below heuristic. |
| * Initialized, but unused bpf allocator (not bpf map specific one) will |
| * consume ~ 11 Kbyte per cpu. |
| * Typical case will be between 11K and 116K closer to 11K. |
| * bpf progs can and should share bpf_mem_cache when possible. |
| * |
| * Percpu allocation is typically rare. To avoid potential unnecessary large |
| * memory consumption, set low_mark = 1 and high_mark = 3, resulting in c->batch = 1. |
| */ |
| static void init_refill_work(struct bpf_mem_cache *c) |
| { |
| init_irq_work(&c->refill_work, bpf_mem_refill); |
| if (c->percpu_size) { |
| c->low_watermark = 1; |
| c->high_watermark = 3; |
| } else if (c->unit_size <= 256) { |
| c->low_watermark = 32; |
| c->high_watermark = 96; |
| } else { |
| /* When page_size == 4k, order-0 cache will have low_mark == 2 |
| * and high_mark == 6 with batch alloc of 3 individual pages at |
| * a time. |
| * 8k allocs and above low == 1, high == 3, batch == 1. |
| */ |
| c->low_watermark = max(32 * 256 / c->unit_size, 1); |
| c->high_watermark = max(96 * 256 / c->unit_size, 3); |
| } |
| c->batch = max((c->high_watermark - c->low_watermark) / 4 * 3, 1); |
| } |
| |
| static void prefill_mem_cache(struct bpf_mem_cache *c, int cpu) |
| { |
| int cnt = 1; |
| |
| /* To avoid consuming memory, for non-percpu allocation, assume that |
| * 1st run of bpf prog won't be doing more than 4 map_update_elem from |
| * irq disabled region if unit size is less than or equal to 256. |
| * For all other cases, let us just do one allocation. |
| */ |
| if (!c->percpu_size && c->unit_size <= 256) |
| cnt = 4; |
| alloc_bulk(c, cnt, cpu_to_node(cpu), false); |
| } |
| |
| /* When size != 0 bpf_mem_cache for each cpu. |
| * This is typical bpf hash map use case when all elements have equal size. |
| * |
| * When size == 0 allocate 11 bpf_mem_cache-s for each cpu, then rely on |
| * kmalloc/kfree. Max allocation size is 4096 in this case. |
| * This is bpf_dynptr and bpf_kptr use case. |
| */ |
| int bpf_mem_alloc_init(struct bpf_mem_alloc *ma, int size, bool percpu) |
| { |
| struct bpf_mem_caches *cc, __percpu *pcc; |
| struct bpf_mem_cache *c, __percpu *pc; |
| struct obj_cgroup *objcg = NULL; |
| int cpu, i, unit_size, percpu_size = 0; |
| |
| if (percpu && size == 0) |
| return -EINVAL; |
| |
| /* room for llist_node and per-cpu pointer */ |
| if (percpu) |
| percpu_size = LLIST_NODE_SZ + sizeof(void *); |
| ma->percpu = percpu; |
| |
| if (size) { |
| pc = __alloc_percpu_gfp(sizeof(*pc), 8, GFP_KERNEL); |
| if (!pc) |
| return -ENOMEM; |
| |
| if (!percpu) |
| size += LLIST_NODE_SZ; /* room for llist_node */ |
| unit_size = size; |
| |
| #ifdef CONFIG_MEMCG_KMEM |
| if (memcg_bpf_enabled()) |
| objcg = get_obj_cgroup_from_current(); |
| #endif |
| ma->objcg = objcg; |
| |
| for_each_possible_cpu(cpu) { |
| c = per_cpu_ptr(pc, cpu); |
| c->unit_size = unit_size; |
| c->objcg = objcg; |
| c->percpu_size = percpu_size; |
| c->tgt = c; |
| init_refill_work(c); |
| prefill_mem_cache(c, cpu); |
| } |
| ma->cache = pc; |
| return 0; |
| } |
| |
| pcc = __alloc_percpu_gfp(sizeof(*cc), 8, GFP_KERNEL); |
| if (!pcc) |
| return -ENOMEM; |
| #ifdef CONFIG_MEMCG_KMEM |
| objcg = get_obj_cgroup_from_current(); |
| #endif |
| ma->objcg = objcg; |
| for_each_possible_cpu(cpu) { |
| cc = per_cpu_ptr(pcc, cpu); |
| for (i = 0; i < NUM_CACHES; i++) { |
| c = &cc->cache[i]; |
| c->unit_size = sizes[i]; |
| c->objcg = objcg; |
| c->percpu_size = percpu_size; |
| c->tgt = c; |
| |
| init_refill_work(c); |
| prefill_mem_cache(c, cpu); |
| } |
| } |
| |
| ma->caches = pcc; |
| return 0; |
| } |
| |
| int bpf_mem_alloc_percpu_init(struct bpf_mem_alloc *ma, struct obj_cgroup *objcg) |
| { |
| struct bpf_mem_caches __percpu *pcc; |
| |
| pcc = __alloc_percpu_gfp(sizeof(struct bpf_mem_caches), 8, GFP_KERNEL); |
| if (!pcc) |
| return -ENOMEM; |
| |
| ma->caches = pcc; |
| ma->objcg = objcg; |
| ma->percpu = true; |
| return 0; |
| } |
| |
| int bpf_mem_alloc_percpu_unit_init(struct bpf_mem_alloc *ma, int size) |
| { |
| struct bpf_mem_caches *cc, __percpu *pcc; |
| int cpu, i, unit_size, percpu_size; |
| struct obj_cgroup *objcg; |
| struct bpf_mem_cache *c; |
| |
| i = bpf_mem_cache_idx(size); |
| if (i < 0) |
| return -EINVAL; |
| |
| /* room for llist_node and per-cpu pointer */ |
| percpu_size = LLIST_NODE_SZ + sizeof(void *); |
| |
| unit_size = sizes[i]; |
| objcg = ma->objcg; |
| pcc = ma->caches; |
| |
| for_each_possible_cpu(cpu) { |
| cc = per_cpu_ptr(pcc, cpu); |
| c = &cc->cache[i]; |
| if (c->unit_size) |
| break; |
| |
| c->unit_size = unit_size; |
| c->objcg = objcg; |
| c->percpu_size = percpu_size; |
| c->tgt = c; |
| |
| init_refill_work(c); |
| prefill_mem_cache(c, cpu); |
| } |
| |
| return 0; |
| } |
| |
| static void drain_mem_cache(struct bpf_mem_cache *c) |
| { |
| bool percpu = !!c->percpu_size; |
| |
| /* No progs are using this bpf_mem_cache, but htab_map_free() called |
| * bpf_mem_cache_free() for all remaining elements and they can be in |
| * free_by_rcu_ttrace or in waiting_for_gp_ttrace lists, so drain those lists now. |
| * |
| * Except for waiting_for_gp_ttrace list, there are no concurrent operations |
| * on these lists, so it is safe to use __llist_del_all(). |
| */ |
| free_all(llist_del_all(&c->free_by_rcu_ttrace), percpu); |
| free_all(llist_del_all(&c->waiting_for_gp_ttrace), percpu); |
| free_all(__llist_del_all(&c->free_llist), percpu); |
| free_all(__llist_del_all(&c->free_llist_extra), percpu); |
| free_all(__llist_del_all(&c->free_by_rcu), percpu); |
| free_all(__llist_del_all(&c->free_llist_extra_rcu), percpu); |
| free_all(llist_del_all(&c->waiting_for_gp), percpu); |
| } |
| |
| static void check_mem_cache(struct bpf_mem_cache *c) |
| { |
| WARN_ON_ONCE(!llist_empty(&c->free_by_rcu_ttrace)); |
| WARN_ON_ONCE(!llist_empty(&c->waiting_for_gp_ttrace)); |
| WARN_ON_ONCE(!llist_empty(&c->free_llist)); |
| WARN_ON_ONCE(!llist_empty(&c->free_llist_extra)); |
| WARN_ON_ONCE(!llist_empty(&c->free_by_rcu)); |
| WARN_ON_ONCE(!llist_empty(&c->free_llist_extra_rcu)); |
| WARN_ON_ONCE(!llist_empty(&c->waiting_for_gp)); |
| } |
| |
| static void check_leaked_objs(struct bpf_mem_alloc *ma) |
| { |
| struct bpf_mem_caches *cc; |
| struct bpf_mem_cache *c; |
| int cpu, i; |
| |
| if (ma->cache) { |
| for_each_possible_cpu(cpu) { |
| c = per_cpu_ptr(ma->cache, cpu); |
| check_mem_cache(c); |
| } |
| } |
| if (ma->caches) { |
| for_each_possible_cpu(cpu) { |
| cc = per_cpu_ptr(ma->caches, cpu); |
| for (i = 0; i < NUM_CACHES; i++) { |
| c = &cc->cache[i]; |
| check_mem_cache(c); |
| } |
| } |
| } |
| } |
| |
| static void free_mem_alloc_no_barrier(struct bpf_mem_alloc *ma) |
| { |
| check_leaked_objs(ma); |
| free_percpu(ma->cache); |
| free_percpu(ma->caches); |
| ma->cache = NULL; |
| ma->caches = NULL; |
| } |
| |
| static void free_mem_alloc(struct bpf_mem_alloc *ma) |
| { |
| /* waiting_for_gp[_ttrace] lists were drained, but RCU callbacks |
| * might still execute. Wait for them. |
| * |
| * rcu_barrier_tasks_trace() doesn't imply synchronize_rcu_tasks_trace(), |
| * but rcu_barrier_tasks_trace() and rcu_barrier() below are only used |
| * to wait for the pending __free_rcu_tasks_trace() and __free_rcu(), |
| * so if call_rcu(head, __free_rcu) is skipped due to |
| * rcu_trace_implies_rcu_gp(), it will be OK to skip rcu_barrier() by |
| * using rcu_trace_implies_rcu_gp() as well. |
| */ |
| rcu_barrier(); /* wait for __free_by_rcu */ |
| rcu_barrier_tasks_trace(); /* wait for __free_rcu */ |
| if (!rcu_trace_implies_rcu_gp()) |
| rcu_barrier(); |
| free_mem_alloc_no_barrier(ma); |
| } |
| |
| static void free_mem_alloc_deferred(struct work_struct *work) |
| { |
| struct bpf_mem_alloc *ma = container_of(work, struct bpf_mem_alloc, work); |
| |
| free_mem_alloc(ma); |
| kfree(ma); |
| } |
| |
| static void destroy_mem_alloc(struct bpf_mem_alloc *ma, int rcu_in_progress) |
| { |
| struct bpf_mem_alloc *copy; |
| |
| if (!rcu_in_progress) { |
| /* Fast path. No callbacks are pending, hence no need to do |
| * rcu_barrier-s. |
| */ |
| free_mem_alloc_no_barrier(ma); |
| return; |
| } |
| |
| copy = kmemdup(ma, sizeof(*ma), GFP_KERNEL); |
| if (!copy) { |
| /* Slow path with inline barrier-s */ |
| free_mem_alloc(ma); |
| return; |
| } |
| |
| /* Defer barriers into worker to let the rest of map memory to be freed */ |
| memset(ma, 0, sizeof(*ma)); |
| INIT_WORK(©->work, free_mem_alloc_deferred); |
| queue_work(system_unbound_wq, ©->work); |
| } |
| |
| void bpf_mem_alloc_destroy(struct bpf_mem_alloc *ma) |
| { |
| struct bpf_mem_caches *cc; |
| struct bpf_mem_cache *c; |
| int cpu, i, rcu_in_progress; |
| |
| if (ma->cache) { |
| rcu_in_progress = 0; |
| for_each_possible_cpu(cpu) { |
| c = per_cpu_ptr(ma->cache, cpu); |
| WRITE_ONCE(c->draining, true); |
| irq_work_sync(&c->refill_work); |
| drain_mem_cache(c); |
| rcu_in_progress += atomic_read(&c->call_rcu_ttrace_in_progress); |
| rcu_in_progress += atomic_read(&c->call_rcu_in_progress); |
| } |
| obj_cgroup_put(ma->objcg); |
| destroy_mem_alloc(ma, rcu_in_progress); |
| } |
| if (ma->caches) { |
| rcu_in_progress = 0; |
| for_each_possible_cpu(cpu) { |
| cc = per_cpu_ptr(ma->caches, cpu); |
| for (i = 0; i < NUM_CACHES; i++) { |
| c = &cc->cache[i]; |
| WRITE_ONCE(c->draining, true); |
| irq_work_sync(&c->refill_work); |
| drain_mem_cache(c); |
| rcu_in_progress += atomic_read(&c->call_rcu_ttrace_in_progress); |
| rcu_in_progress += atomic_read(&c->call_rcu_in_progress); |
| } |
| } |
| obj_cgroup_put(ma->objcg); |
| destroy_mem_alloc(ma, rcu_in_progress); |
| } |
| } |
| |
| /* notrace is necessary here and in other functions to make sure |
| * bpf programs cannot attach to them and cause llist corruptions. |
| */ |
| static void notrace *unit_alloc(struct bpf_mem_cache *c) |
| { |
| struct llist_node *llnode = NULL; |
| unsigned long flags; |
| int cnt = 0; |
| |
| /* Disable irqs to prevent the following race for majority of prog types: |
| * prog_A |
| * bpf_mem_alloc |
| * preemption or irq -> prog_B |
| * bpf_mem_alloc |
| * |
| * but prog_B could be a perf_event NMI prog. |
| * Use per-cpu 'active' counter to order free_list access between |
| * unit_alloc/unit_free/bpf_mem_refill. |
| */ |
| local_irq_save(flags); |
| if (local_inc_return(&c->active) == 1) { |
| llnode = __llist_del_first(&c->free_llist); |
| if (llnode) { |
| cnt = --c->free_cnt; |
| *(struct bpf_mem_cache **)llnode = c; |
| } |
| } |
| local_dec(&c->active); |
| |
| WARN_ON(cnt < 0); |
| |
| if (cnt < c->low_watermark) |
| irq_work_raise(c); |
| /* Enable IRQ after the enqueue of irq work completes, so irq work |
| * will run after IRQ is enabled and free_llist may be refilled by |
| * irq work before other task preempts current task. |
| */ |
| local_irq_restore(flags); |
| |
| return llnode; |
| } |
| |
| /* Though 'ptr' object could have been allocated on a different cpu |
| * add it to the free_llist of the current cpu. |
| * Let kfree() logic deal with it when it's later called from irq_work. |
| */ |
| static void notrace unit_free(struct bpf_mem_cache *c, void *ptr) |
| { |
| struct llist_node *llnode = ptr - LLIST_NODE_SZ; |
| unsigned long flags; |
| int cnt = 0; |
| |
| BUILD_BUG_ON(LLIST_NODE_SZ > 8); |
| |
| /* |
| * Remember bpf_mem_cache that allocated this object. |
| * The hint is not accurate. |
| */ |
| c->tgt = *(struct bpf_mem_cache **)llnode; |
| |
| local_irq_save(flags); |
| if (local_inc_return(&c->active) == 1) { |
| __llist_add(llnode, &c->free_llist); |
| cnt = ++c->free_cnt; |
| } else { |
| /* unit_free() cannot fail. Therefore add an object to atomic |
| * llist. free_bulk() will drain it. Though free_llist_extra is |
| * a per-cpu list we have to use atomic llist_add here, since |
| * it also can be interrupted by bpf nmi prog that does another |
| * unit_free() into the same free_llist_extra. |
| */ |
| llist_add(llnode, &c->free_llist_extra); |
| } |
| local_dec(&c->active); |
| |
| if (cnt > c->high_watermark) |
| /* free few objects from current cpu into global kmalloc pool */ |
| irq_work_raise(c); |
| /* Enable IRQ after irq_work_raise() completes, otherwise when current |
| * task is preempted by task which does unit_alloc(), unit_alloc() may |
| * return NULL unexpectedly because irq work is already pending but can |
| * not been triggered and free_llist can not be refilled timely. |
| */ |
| local_irq_restore(flags); |
| } |
| |
| static void notrace unit_free_rcu(struct bpf_mem_cache *c, void *ptr) |
| { |
| struct llist_node *llnode = ptr - LLIST_NODE_SZ; |
| unsigned long flags; |
| |
| c->tgt = *(struct bpf_mem_cache **)llnode; |
| |
| local_irq_save(flags); |
| if (local_inc_return(&c->active) == 1) { |
| if (__llist_add(llnode, &c->free_by_rcu)) |
| c->free_by_rcu_tail = llnode; |
| } else { |
| llist_add(llnode, &c->free_llist_extra_rcu); |
| } |
| local_dec(&c->active); |
| |
| if (!atomic_read(&c->call_rcu_in_progress)) |
| irq_work_raise(c); |
| local_irq_restore(flags); |
| } |
| |
| /* Called from BPF program or from sys_bpf syscall. |
| * In both cases migration is disabled. |
| */ |
| void notrace *bpf_mem_alloc(struct bpf_mem_alloc *ma, size_t size) |
| { |
| int idx; |
| void *ret; |
| |
| if (!size) |
| return NULL; |
| |
| if (!ma->percpu) |
| size += LLIST_NODE_SZ; |
| idx = bpf_mem_cache_idx(size); |
| if (idx < 0) |
| return NULL; |
| |
| ret = unit_alloc(this_cpu_ptr(ma->caches)->cache + idx); |
| return !ret ? NULL : ret + LLIST_NODE_SZ; |
| } |
| |
| void notrace bpf_mem_free(struct bpf_mem_alloc *ma, void *ptr) |
| { |
| struct bpf_mem_cache *c; |
| int idx; |
| |
| if (!ptr) |
| return; |
| |
| c = *(void **)(ptr - LLIST_NODE_SZ); |
| idx = bpf_mem_cache_idx(c->unit_size); |
| if (WARN_ON_ONCE(idx < 0)) |
| return; |
| |
| unit_free(this_cpu_ptr(ma->caches)->cache + idx, ptr); |
| } |
| |
| void notrace bpf_mem_free_rcu(struct bpf_mem_alloc *ma, void *ptr) |
| { |
| struct bpf_mem_cache *c; |
| int idx; |
| |
| if (!ptr) |
| return; |
| |
| c = *(void **)(ptr - LLIST_NODE_SZ); |
| idx = bpf_mem_cache_idx(c->unit_size); |
| if (WARN_ON_ONCE(idx < 0)) |
| return; |
| |
| unit_free_rcu(this_cpu_ptr(ma->caches)->cache + idx, ptr); |
| } |
| |
| void notrace *bpf_mem_cache_alloc(struct bpf_mem_alloc *ma) |
| { |
| void *ret; |
| |
| ret = unit_alloc(this_cpu_ptr(ma->cache)); |
| return !ret ? NULL : ret + LLIST_NODE_SZ; |
| } |
| |
| void notrace bpf_mem_cache_free(struct bpf_mem_alloc *ma, void *ptr) |
| { |
| if (!ptr) |
| return; |
| |
| unit_free(this_cpu_ptr(ma->cache), ptr); |
| } |
| |
| void notrace bpf_mem_cache_free_rcu(struct bpf_mem_alloc *ma, void *ptr) |
| { |
| if (!ptr) |
| return; |
| |
| unit_free_rcu(this_cpu_ptr(ma->cache), ptr); |
| } |
| |
| /* Directly does a kfree() without putting 'ptr' back to the free_llist |
| * for reuse and without waiting for a rcu_tasks_trace gp. |
| * The caller must first go through the rcu_tasks_trace gp for 'ptr' |
| * before calling bpf_mem_cache_raw_free(). |
| * It could be used when the rcu_tasks_trace callback does not have |
| * a hold on the original bpf_mem_alloc object that allocated the |
| * 'ptr'. This should only be used in the uncommon code path. |
| * Otherwise, the bpf_mem_alloc's free_llist cannot be refilled |
| * and may affect performance. |
| */ |
| void bpf_mem_cache_raw_free(void *ptr) |
| { |
| if (!ptr) |
| return; |
| |
| kfree(ptr - LLIST_NODE_SZ); |
| } |
| |
| /* When flags == GFP_KERNEL, it signals that the caller will not cause |
| * deadlock when using kmalloc. bpf_mem_cache_alloc_flags() will use |
| * kmalloc if the free_llist is empty. |
| */ |
| void notrace *bpf_mem_cache_alloc_flags(struct bpf_mem_alloc *ma, gfp_t flags) |
| { |
| struct bpf_mem_cache *c; |
| void *ret; |
| |
| c = this_cpu_ptr(ma->cache); |
| |
| ret = unit_alloc(c); |
| if (!ret && flags == GFP_KERNEL) { |
| struct mem_cgroup *memcg, *old_memcg; |
| |
| memcg = get_memcg(c); |
| old_memcg = set_active_memcg(memcg); |
| ret = __alloc(c, NUMA_NO_NODE, GFP_KERNEL | __GFP_NOWARN | __GFP_ACCOUNT); |
| if (ret) |
| *(struct bpf_mem_cache **)ret = c; |
| set_active_memcg(old_memcg); |
| mem_cgroup_put(memcg); |
| } |
| |
| return !ret ? NULL : ret + LLIST_NODE_SZ; |
| } |