| /* |
| * Copyright 2016 Advanced Micro Devices, Inc. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR |
| * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
| * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
| * OTHER DEALINGS IN THE SOFTWARE. |
| * |
| */ |
| |
| #include <drm/amdgpu_drm.h> |
| #include "amdgpu.h" |
| #include "atomfirmware.h" |
| #include "amdgpu_atomfirmware.h" |
| #include "atom.h" |
| #include "atombios.h" |
| #include "soc15_hw_ip.h" |
| |
| union firmware_info { |
| struct atom_firmware_info_v3_1 v31; |
| struct atom_firmware_info_v3_2 v32; |
| struct atom_firmware_info_v3_3 v33; |
| struct atom_firmware_info_v3_4 v34; |
| }; |
| |
| /* |
| * Helper function to query firmware capability |
| * |
| * @adev: amdgpu_device pointer |
| * |
| * Return firmware_capability in firmwareinfo table on success or 0 if not |
| */ |
| uint32_t amdgpu_atomfirmware_query_firmware_capability(struct amdgpu_device *adev) |
| { |
| struct amdgpu_mode_info *mode_info = &adev->mode_info; |
| int index; |
| u16 data_offset, size; |
| union firmware_info *firmware_info; |
| u8 frev, crev; |
| u32 fw_cap = 0; |
| |
| index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1, |
| firmwareinfo); |
| |
| if (amdgpu_atom_parse_data_header(adev->mode_info.atom_context, |
| index, &size, &frev, &crev, &data_offset)) { |
| /* support firmware_info 3.1 + */ |
| if ((frev == 3 && crev >=1) || (frev > 3)) { |
| firmware_info = (union firmware_info *) |
| (mode_info->atom_context->bios + data_offset); |
| fw_cap = le32_to_cpu(firmware_info->v31.firmware_capability); |
| } |
| } |
| |
| return fw_cap; |
| } |
| |
| /* |
| * Helper function to query gpu virtualizaiton capability |
| * |
| * @adev: amdgpu_device pointer |
| * |
| * Return true if gpu virtualization is supported or false if not |
| */ |
| bool amdgpu_atomfirmware_gpu_virtualization_supported(struct amdgpu_device *adev) |
| { |
| u32 fw_cap; |
| |
| fw_cap = adev->mode_info.firmware_flags; |
| |
| return (fw_cap & ATOM_FIRMWARE_CAP_GPU_VIRTUALIZATION) ? true : false; |
| } |
| |
| void amdgpu_atomfirmware_scratch_regs_init(struct amdgpu_device *adev) |
| { |
| int index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1, |
| firmwareinfo); |
| uint16_t data_offset; |
| |
| if (amdgpu_atom_parse_data_header(adev->mode_info.atom_context, index, NULL, |
| NULL, NULL, &data_offset)) { |
| struct atom_firmware_info_v3_1 *firmware_info = |
| (struct atom_firmware_info_v3_1 *)(adev->mode_info.atom_context->bios + |
| data_offset); |
| |
| adev->bios_scratch_reg_offset = |
| le32_to_cpu(firmware_info->bios_scratch_reg_startaddr); |
| } |
| } |
| |
| int amdgpu_atomfirmware_allocate_fb_scratch(struct amdgpu_device *adev) |
| { |
| struct atom_context *ctx = adev->mode_info.atom_context; |
| int index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1, |
| vram_usagebyfirmware); |
| struct vram_usagebyfirmware_v2_1 *firmware_usage; |
| uint32_t start_addr, size; |
| uint16_t data_offset; |
| int usage_bytes = 0; |
| |
| if (amdgpu_atom_parse_data_header(ctx, index, NULL, NULL, NULL, &data_offset)) { |
| firmware_usage = (struct vram_usagebyfirmware_v2_1 *)(ctx->bios + data_offset); |
| DRM_DEBUG("atom firmware requested %08x %dkb fw %dkb drv\n", |
| le32_to_cpu(firmware_usage->start_address_in_kb), |
| le16_to_cpu(firmware_usage->used_by_firmware_in_kb), |
| le16_to_cpu(firmware_usage->used_by_driver_in_kb)); |
| |
| start_addr = le32_to_cpu(firmware_usage->start_address_in_kb); |
| size = le16_to_cpu(firmware_usage->used_by_firmware_in_kb); |
| |
| if ((uint32_t)(start_addr & ATOM_VRAM_OPERATION_FLAGS_MASK) == |
| (uint32_t)(ATOM_VRAM_BLOCK_SRIOV_MSG_SHARE_RESERVATION << |
| ATOM_VRAM_OPERATION_FLAGS_SHIFT)) { |
| /* Firmware request VRAM reservation for SR-IOV */ |
| adev->mman.fw_vram_usage_start_offset = (start_addr & |
| (~ATOM_VRAM_OPERATION_FLAGS_MASK)) << 10; |
| adev->mman.fw_vram_usage_size = size << 10; |
| /* Use the default scratch size */ |
| usage_bytes = 0; |
| } else { |
| usage_bytes = le16_to_cpu(firmware_usage->used_by_driver_in_kb) << 10; |
| } |
| } |
| ctx->scratch_size_bytes = 0; |
| if (usage_bytes == 0) |
| usage_bytes = 20 * 1024; |
| /* allocate some scratch memory */ |
| ctx->scratch = kzalloc(usage_bytes, GFP_KERNEL); |
| if (!ctx->scratch) |
| return -ENOMEM; |
| ctx->scratch_size_bytes = usage_bytes; |
| return 0; |
| } |
| |
| union igp_info { |
| struct atom_integrated_system_info_v1_11 v11; |
| struct atom_integrated_system_info_v1_12 v12; |
| struct atom_integrated_system_info_v2_1 v21; |
| }; |
| |
| union umc_info { |
| struct atom_umc_info_v3_1 v31; |
| struct atom_umc_info_v3_2 v32; |
| struct atom_umc_info_v3_3 v33; |
| }; |
| |
| union vram_info { |
| struct atom_vram_info_header_v2_3 v23; |
| struct atom_vram_info_header_v2_4 v24; |
| struct atom_vram_info_header_v2_5 v25; |
| struct atom_vram_info_header_v2_6 v26; |
| }; |
| |
| union vram_module { |
| struct atom_vram_module_v9 v9; |
| struct atom_vram_module_v10 v10; |
| struct atom_vram_module_v11 v11; |
| }; |
| |
| static int convert_atom_mem_type_to_vram_type(struct amdgpu_device *adev, |
| int atom_mem_type) |
| { |
| int vram_type; |
| |
| if (adev->flags & AMD_IS_APU) { |
| switch (atom_mem_type) { |
| case Ddr2MemType: |
| case LpDdr2MemType: |
| vram_type = AMDGPU_VRAM_TYPE_DDR2; |
| break; |
| case Ddr3MemType: |
| case LpDdr3MemType: |
| vram_type = AMDGPU_VRAM_TYPE_DDR3; |
| break; |
| case Ddr4MemType: |
| case LpDdr4MemType: |
| vram_type = AMDGPU_VRAM_TYPE_DDR4; |
| break; |
| case Ddr5MemType: |
| case LpDdr5MemType: |
| vram_type = AMDGPU_VRAM_TYPE_DDR5; |
| break; |
| default: |
| vram_type = AMDGPU_VRAM_TYPE_UNKNOWN; |
| break; |
| } |
| } else { |
| switch (atom_mem_type) { |
| case ATOM_DGPU_VRAM_TYPE_GDDR5: |
| vram_type = AMDGPU_VRAM_TYPE_GDDR5; |
| break; |
| case ATOM_DGPU_VRAM_TYPE_HBM2: |
| case ATOM_DGPU_VRAM_TYPE_HBM2E: |
| vram_type = AMDGPU_VRAM_TYPE_HBM; |
| break; |
| case ATOM_DGPU_VRAM_TYPE_GDDR6: |
| vram_type = AMDGPU_VRAM_TYPE_GDDR6; |
| break; |
| default: |
| vram_type = AMDGPU_VRAM_TYPE_UNKNOWN; |
| break; |
| } |
| } |
| |
| return vram_type; |
| } |
| |
| |
| int |
| amdgpu_atomfirmware_get_vram_info(struct amdgpu_device *adev, |
| int *vram_width, int *vram_type, |
| int *vram_vendor) |
| { |
| struct amdgpu_mode_info *mode_info = &adev->mode_info; |
| int index, i = 0; |
| u16 data_offset, size; |
| union igp_info *igp_info; |
| union vram_info *vram_info; |
| union vram_module *vram_module; |
| u8 frev, crev; |
| u8 mem_type; |
| u8 mem_vendor; |
| u32 mem_channel_number; |
| u32 mem_channel_width; |
| u32 module_id; |
| |
| if (adev->flags & AMD_IS_APU) |
| index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1, |
| integratedsysteminfo); |
| else |
| index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1, |
| vram_info); |
| |
| if (amdgpu_atom_parse_data_header(mode_info->atom_context, |
| index, &size, |
| &frev, &crev, &data_offset)) { |
| if (adev->flags & AMD_IS_APU) { |
| igp_info = (union igp_info *) |
| (mode_info->atom_context->bios + data_offset); |
| switch (frev) { |
| case 1: |
| switch (crev) { |
| case 11: |
| case 12: |
| mem_channel_number = igp_info->v11.umachannelnumber; |
| if (!mem_channel_number) |
| mem_channel_number = 1; |
| /* channel width is 64 */ |
| if (vram_width) |
| *vram_width = mem_channel_number * 64; |
| mem_type = igp_info->v11.memorytype; |
| if (vram_type) |
| *vram_type = convert_atom_mem_type_to_vram_type(adev, mem_type); |
| break; |
| default: |
| return -EINVAL; |
| } |
| break; |
| case 2: |
| switch (crev) { |
| case 1: |
| case 2: |
| mem_channel_number = igp_info->v21.umachannelnumber; |
| if (!mem_channel_number) |
| mem_channel_number = 1; |
| /* channel width is 64 */ |
| if (vram_width) |
| *vram_width = mem_channel_number * 64; |
| mem_type = igp_info->v21.memorytype; |
| if (vram_type) |
| *vram_type = convert_atom_mem_type_to_vram_type(adev, mem_type); |
| break; |
| default: |
| return -EINVAL; |
| } |
| break; |
| default: |
| return -EINVAL; |
| } |
| } else { |
| vram_info = (union vram_info *) |
| (mode_info->atom_context->bios + data_offset); |
| module_id = (RREG32(adev->bios_scratch_reg_offset + 4) & 0x00ff0000) >> 16; |
| switch (crev) { |
| case 3: |
| if (module_id > vram_info->v23.vram_module_num) |
| module_id = 0; |
| vram_module = (union vram_module *)vram_info->v23.vram_module; |
| while (i < module_id) { |
| vram_module = (union vram_module *) |
| ((u8 *)vram_module + vram_module->v9.vram_module_size); |
| i++; |
| } |
| mem_type = vram_module->v9.memory_type; |
| if (vram_type) |
| *vram_type = convert_atom_mem_type_to_vram_type(adev, mem_type); |
| mem_channel_number = vram_module->v9.channel_num; |
| mem_channel_width = vram_module->v9.channel_width; |
| if (vram_width) |
| *vram_width = mem_channel_number * (1 << mem_channel_width); |
| mem_vendor = (vram_module->v9.vender_rev_id) & 0xF; |
| if (vram_vendor) |
| *vram_vendor = mem_vendor; |
| break; |
| case 4: |
| if (module_id > vram_info->v24.vram_module_num) |
| module_id = 0; |
| vram_module = (union vram_module *)vram_info->v24.vram_module; |
| while (i < module_id) { |
| vram_module = (union vram_module *) |
| ((u8 *)vram_module + vram_module->v10.vram_module_size); |
| i++; |
| } |
| mem_type = vram_module->v10.memory_type; |
| if (vram_type) |
| *vram_type = convert_atom_mem_type_to_vram_type(adev, mem_type); |
| mem_channel_number = vram_module->v10.channel_num; |
| mem_channel_width = vram_module->v10.channel_width; |
| if (vram_width) |
| *vram_width = mem_channel_number * (1 << mem_channel_width); |
| mem_vendor = (vram_module->v10.vender_rev_id) & 0xF; |
| if (vram_vendor) |
| *vram_vendor = mem_vendor; |
| break; |
| case 5: |
| if (module_id > vram_info->v25.vram_module_num) |
| module_id = 0; |
| vram_module = (union vram_module *)vram_info->v25.vram_module; |
| while (i < module_id) { |
| vram_module = (union vram_module *) |
| ((u8 *)vram_module + vram_module->v11.vram_module_size); |
| i++; |
| } |
| mem_type = vram_module->v11.memory_type; |
| if (vram_type) |
| *vram_type = convert_atom_mem_type_to_vram_type(adev, mem_type); |
| mem_channel_number = vram_module->v11.channel_num; |
| mem_channel_width = vram_module->v11.channel_width; |
| if (vram_width) |
| *vram_width = mem_channel_number * (1 << mem_channel_width); |
| mem_vendor = (vram_module->v11.vender_rev_id) & 0xF; |
| if (vram_vendor) |
| *vram_vendor = mem_vendor; |
| break; |
| case 6: |
| if (module_id > vram_info->v26.vram_module_num) |
| module_id = 0; |
| vram_module = (union vram_module *)vram_info->v26.vram_module; |
| while (i < module_id) { |
| vram_module = (union vram_module *) |
| ((u8 *)vram_module + vram_module->v9.vram_module_size); |
| i++; |
| } |
| mem_type = vram_module->v9.memory_type; |
| if (vram_type) |
| *vram_type = convert_atom_mem_type_to_vram_type(adev, mem_type); |
| mem_channel_number = vram_module->v9.channel_num; |
| mem_channel_width = vram_module->v9.channel_width; |
| if (vram_width) |
| *vram_width = mem_channel_number * (1 << mem_channel_width); |
| mem_vendor = (vram_module->v9.vender_rev_id) & 0xF; |
| if (vram_vendor) |
| *vram_vendor = mem_vendor; |
| break; |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Return true if vbios enabled ecc by default, if umc info table is available |
| * or false if ecc is not enabled or umc info table is not available |
| */ |
| bool amdgpu_atomfirmware_mem_ecc_supported(struct amdgpu_device *adev) |
| { |
| struct amdgpu_mode_info *mode_info = &adev->mode_info; |
| int index; |
| u16 data_offset, size; |
| union umc_info *umc_info; |
| u8 frev, crev; |
| bool ecc_default_enabled = false; |
| u8 umc_config; |
| u32 umc_config1; |
| |
| index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1, |
| umc_info); |
| |
| if (amdgpu_atom_parse_data_header(mode_info->atom_context, |
| index, &size, &frev, &crev, &data_offset)) { |
| if (frev == 3) { |
| umc_info = (union umc_info *) |
| (mode_info->atom_context->bios + data_offset); |
| switch (crev) { |
| case 1: |
| umc_config = le32_to_cpu(umc_info->v31.umc_config); |
| ecc_default_enabled = |
| (umc_config & UMC_CONFIG__DEFAULT_MEM_ECC_ENABLE) ? true : false; |
| break; |
| case 2: |
| umc_config = le32_to_cpu(umc_info->v32.umc_config); |
| ecc_default_enabled = |
| (umc_config & UMC_CONFIG__DEFAULT_MEM_ECC_ENABLE) ? true : false; |
| break; |
| case 3: |
| umc_config = le32_to_cpu(umc_info->v33.umc_config); |
| umc_config1 = le32_to_cpu(umc_info->v33.umc_config1); |
| ecc_default_enabled = |
| ((umc_config & UMC_CONFIG__DEFAULT_MEM_ECC_ENABLE) || |
| (umc_config1 & UMC_CONFIG1__ENABLE_ECC_CAPABLE)) ? true : false; |
| break; |
| default: |
| /* unsupported crev */ |
| return false; |
| } |
| } |
| } |
| |
| return ecc_default_enabled; |
| } |
| |
| /* |
| * Helper function to query sram ecc capablity |
| * |
| * @adev: amdgpu_device pointer |
| * |
| * Return true if vbios supports sram ecc or false if not |
| */ |
| bool amdgpu_atomfirmware_sram_ecc_supported(struct amdgpu_device *adev) |
| { |
| u32 fw_cap; |
| |
| fw_cap = adev->mode_info.firmware_flags; |
| |
| return (fw_cap & ATOM_FIRMWARE_CAP_SRAM_ECC) ? true : false; |
| } |
| |
| /* |
| * Helper function to query dynamic boot config capability |
| * |
| * @adev: amdgpu_device pointer |
| * |
| * Return true if vbios supports dynamic boot config or false if not |
| */ |
| bool amdgpu_atomfirmware_dynamic_boot_config_supported(struct amdgpu_device *adev) |
| { |
| u32 fw_cap; |
| |
| fw_cap = adev->mode_info.firmware_flags; |
| |
| return (fw_cap & ATOM_FIRMWARE_CAP_DYNAMIC_BOOT_CFG_ENABLE) ? true : false; |
| } |
| |
| /** |
| * amdgpu_atomfirmware_ras_rom_addr -- Get the RAS EEPROM addr from VBIOS |
| * adev: amdgpu_device pointer |
| * i2c_address: pointer to u8; if not NULL, will contain |
| * the RAS EEPROM address if the function returns true |
| * |
| * Return true if VBIOS supports RAS EEPROM address reporting, |
| * else return false. If true and @i2c_address is not NULL, |
| * will contain the RAS ROM address. |
| */ |
| bool amdgpu_atomfirmware_ras_rom_addr(struct amdgpu_device *adev, |
| u8 *i2c_address) |
| { |
| struct amdgpu_mode_info *mode_info = &adev->mode_info; |
| int index; |
| u16 data_offset, size; |
| union firmware_info *firmware_info; |
| u8 frev, crev; |
| |
| index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1, |
| firmwareinfo); |
| |
| if (amdgpu_atom_parse_data_header(adev->mode_info.atom_context, |
| index, &size, &frev, &crev, |
| &data_offset)) { |
| /* support firmware_info 3.4 + */ |
| if ((frev == 3 && crev >=4) || (frev > 3)) { |
| firmware_info = (union firmware_info *) |
| (mode_info->atom_context->bios + data_offset); |
| /* The ras_rom_i2c_slave_addr should ideally |
| * be a 19-bit EEPROM address, which would be |
| * used as is by the driver; see top of |
| * amdgpu_eeprom.c. |
| * |
| * When this is the case, 0 is of course a |
| * valid RAS EEPROM address, in which case, |
| * we'll drop the first "if (firm...)" and only |
| * leave the check for the pointer. |
| * |
| * The reason this works right now is because |
| * ras_rom_i2c_slave_addr contains the EEPROM |
| * device type qualifier 1010b in the top 4 |
| * bits. |
| */ |
| if (firmware_info->v34.ras_rom_i2c_slave_addr) { |
| if (i2c_address) |
| *i2c_address = firmware_info->v34.ras_rom_i2c_slave_addr; |
| return true; |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| |
| union smu_info { |
| struct atom_smu_info_v3_1 v31; |
| }; |
| |
| int amdgpu_atomfirmware_get_clock_info(struct amdgpu_device *adev) |
| { |
| struct amdgpu_mode_info *mode_info = &adev->mode_info; |
| struct amdgpu_pll *spll = &adev->clock.spll; |
| struct amdgpu_pll *mpll = &adev->clock.mpll; |
| uint8_t frev, crev; |
| uint16_t data_offset; |
| int ret = -EINVAL, index; |
| |
| index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1, |
| firmwareinfo); |
| if (amdgpu_atom_parse_data_header(mode_info->atom_context, index, NULL, |
| &frev, &crev, &data_offset)) { |
| union firmware_info *firmware_info = |
| (union firmware_info *)(mode_info->atom_context->bios + |
| data_offset); |
| |
| adev->clock.default_sclk = |
| le32_to_cpu(firmware_info->v31.bootup_sclk_in10khz); |
| adev->clock.default_mclk = |
| le32_to_cpu(firmware_info->v31.bootup_mclk_in10khz); |
| |
| adev->pm.current_sclk = adev->clock.default_sclk; |
| adev->pm.current_mclk = adev->clock.default_mclk; |
| |
| ret = 0; |
| } |
| |
| index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1, |
| smu_info); |
| if (amdgpu_atom_parse_data_header(mode_info->atom_context, index, NULL, |
| &frev, &crev, &data_offset)) { |
| union smu_info *smu_info = |
| (union smu_info *)(mode_info->atom_context->bios + |
| data_offset); |
| |
| /* system clock */ |
| spll->reference_freq = le32_to_cpu(smu_info->v31.core_refclk_10khz); |
| |
| spll->reference_div = 0; |
| spll->min_post_div = 1; |
| spll->max_post_div = 1; |
| spll->min_ref_div = 2; |
| spll->max_ref_div = 0xff; |
| spll->min_feedback_div = 4; |
| spll->max_feedback_div = 0xff; |
| spll->best_vco = 0; |
| |
| ret = 0; |
| } |
| |
| index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1, |
| umc_info); |
| if (amdgpu_atom_parse_data_header(mode_info->atom_context, index, NULL, |
| &frev, &crev, &data_offset)) { |
| union umc_info *umc_info = |
| (union umc_info *)(mode_info->atom_context->bios + |
| data_offset); |
| |
| /* memory clock */ |
| mpll->reference_freq = le32_to_cpu(umc_info->v31.mem_refclk_10khz); |
| |
| mpll->reference_div = 0; |
| mpll->min_post_div = 1; |
| mpll->max_post_div = 1; |
| mpll->min_ref_div = 2; |
| mpll->max_ref_div = 0xff; |
| mpll->min_feedback_div = 4; |
| mpll->max_feedback_div = 0xff; |
| mpll->best_vco = 0; |
| |
| ret = 0; |
| } |
| |
| /* if asic is Navi+, the rlc reference clock is used for system clock |
| * from vbios gfx_info table */ |
| if (adev->asic_type >= CHIP_NAVI10) { |
| index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1, |
| gfx_info); |
| if (amdgpu_atom_parse_data_header(mode_info->atom_context, index, NULL, |
| &frev, &crev, &data_offset)) { |
| struct atom_gfx_info_v2_2 *gfx_info = (struct atom_gfx_info_v2_2*) |
| (mode_info->atom_context->bios + data_offset); |
| if ((frev == 2) && (crev >= 2)) |
| spll->reference_freq = le32_to_cpu(gfx_info->rlc_gpu_timer_refclk); |
| ret = 0; |
| } |
| } |
| |
| return ret; |
| } |
| |
| union gfx_info { |
| struct atom_gfx_info_v2_4 v24; |
| struct atom_gfx_info_v2_7 v27; |
| }; |
| |
| int amdgpu_atomfirmware_get_gfx_info(struct amdgpu_device *adev) |
| { |
| struct amdgpu_mode_info *mode_info = &adev->mode_info; |
| int index; |
| uint8_t frev, crev; |
| uint16_t data_offset; |
| |
| index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1, |
| gfx_info); |
| if (amdgpu_atom_parse_data_header(mode_info->atom_context, index, NULL, |
| &frev, &crev, &data_offset)) { |
| union gfx_info *gfx_info = (union gfx_info *) |
| (mode_info->atom_context->bios + data_offset); |
| switch (crev) { |
| case 4: |
| adev->gfx.config.max_shader_engines = gfx_info->v24.max_shader_engines; |
| adev->gfx.config.max_cu_per_sh = gfx_info->v24.max_cu_per_sh; |
| adev->gfx.config.max_sh_per_se = gfx_info->v24.max_sh_per_se; |
| adev->gfx.config.max_backends_per_se = gfx_info->v24.max_backends_per_se; |
| adev->gfx.config.max_texture_channel_caches = gfx_info->v24.max_texture_channel_caches; |
| adev->gfx.config.max_gprs = le16_to_cpu(gfx_info->v24.gc_num_gprs); |
| adev->gfx.config.max_gs_threads = gfx_info->v24.gc_num_max_gs_thds; |
| adev->gfx.config.gs_vgt_table_depth = gfx_info->v24.gc_gs_table_depth; |
| adev->gfx.config.gs_prim_buffer_depth = |
| le16_to_cpu(gfx_info->v24.gc_gsprim_buff_depth); |
| adev->gfx.config.double_offchip_lds_buf = |
| gfx_info->v24.gc_double_offchip_lds_buffer; |
| adev->gfx.cu_info.wave_front_size = le16_to_cpu(gfx_info->v24.gc_wave_size); |
| adev->gfx.cu_info.max_waves_per_simd = le16_to_cpu(gfx_info->v24.gc_max_waves_per_simd); |
| adev->gfx.cu_info.max_scratch_slots_per_cu = gfx_info->v24.gc_max_scratch_slots_per_cu; |
| adev->gfx.cu_info.lds_size = le16_to_cpu(gfx_info->v24.gc_lds_size); |
| return 0; |
| case 7: |
| adev->gfx.config.max_shader_engines = gfx_info->v27.max_shader_engines; |
| adev->gfx.config.max_cu_per_sh = gfx_info->v27.max_cu_per_sh; |
| adev->gfx.config.max_sh_per_se = gfx_info->v27.max_sh_per_se; |
| adev->gfx.config.max_backends_per_se = gfx_info->v27.max_backends_per_se; |
| adev->gfx.config.max_texture_channel_caches = gfx_info->v27.max_texture_channel_caches; |
| adev->gfx.config.max_gprs = le16_to_cpu(gfx_info->v27.gc_num_gprs); |
| adev->gfx.config.max_gs_threads = gfx_info->v27.gc_num_max_gs_thds; |
| adev->gfx.config.gs_vgt_table_depth = gfx_info->v27.gc_gs_table_depth; |
| adev->gfx.config.gs_prim_buffer_depth = le16_to_cpu(gfx_info->v27.gc_gsprim_buff_depth); |
| adev->gfx.config.double_offchip_lds_buf = gfx_info->v27.gc_double_offchip_lds_buffer; |
| adev->gfx.cu_info.wave_front_size = le16_to_cpu(gfx_info->v27.gc_wave_size); |
| adev->gfx.cu_info.max_waves_per_simd = le16_to_cpu(gfx_info->v27.gc_max_waves_per_simd); |
| adev->gfx.cu_info.max_scratch_slots_per_cu = gfx_info->v27.gc_max_scratch_slots_per_cu; |
| adev->gfx.cu_info.lds_size = le16_to_cpu(gfx_info->v27.gc_lds_size); |
| return 0; |
| default: |
| return -EINVAL; |
| } |
| |
| } |
| return -EINVAL; |
| } |
| |
| /* |
| * Helper function to query two stage mem training capability |
| * |
| * @adev: amdgpu_device pointer |
| * |
| * Return true if two stage mem training is supported or false if not |
| */ |
| bool amdgpu_atomfirmware_mem_training_supported(struct amdgpu_device *adev) |
| { |
| u32 fw_cap; |
| |
| fw_cap = adev->mode_info.firmware_flags; |
| |
| return (fw_cap & ATOM_FIRMWARE_CAP_ENABLE_2STAGE_BIST_TRAINING) ? true : false; |
| } |
| |
| int amdgpu_atomfirmware_get_fw_reserved_fb_size(struct amdgpu_device *adev) |
| { |
| struct atom_context *ctx = adev->mode_info.atom_context; |
| union firmware_info *firmware_info; |
| int index; |
| u16 data_offset, size; |
| u8 frev, crev; |
| int fw_reserved_fb_size; |
| |
| index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1, |
| firmwareinfo); |
| |
| if (!amdgpu_atom_parse_data_header(ctx, index, &size, |
| &frev, &crev, &data_offset)) |
| /* fail to parse data_header */ |
| return 0; |
| |
| firmware_info = (union firmware_info *)(ctx->bios + data_offset); |
| |
| if (frev !=3) |
| return -EINVAL; |
| |
| switch (crev) { |
| case 4: |
| fw_reserved_fb_size = |
| (firmware_info->v34.fw_reserved_size_in_kb << 10); |
| break; |
| default: |
| fw_reserved_fb_size = 0; |
| break; |
| } |
| |
| return fw_reserved_fb_size; |
| } |