| // SPDX-License-Identifier: GPL-2.0 |
| /* Copyright (c) 2019, Intel Corporation. */ |
| |
| #include "ice_common.h" |
| #include "ice_flex_pipe.h" |
| #include "ice_flow.h" |
| |
| /* To support tunneling entries by PF, the package will append the PF number to |
| * the label; for example TNL_VXLAN_PF0, TNL_VXLAN_PF1, TNL_VXLAN_PF2, etc. |
| */ |
| static const struct ice_tunnel_type_scan tnls[] = { |
| { TNL_VXLAN, "TNL_VXLAN_PF" }, |
| { TNL_GENEVE, "TNL_GENEVE_PF" }, |
| { TNL_LAST, "" } |
| }; |
| |
| static const u32 ice_sect_lkup[ICE_BLK_COUNT][ICE_SECT_COUNT] = { |
| /* SWITCH */ |
| { |
| ICE_SID_XLT0_SW, |
| ICE_SID_XLT_KEY_BUILDER_SW, |
| ICE_SID_XLT1_SW, |
| ICE_SID_XLT2_SW, |
| ICE_SID_PROFID_TCAM_SW, |
| ICE_SID_PROFID_REDIR_SW, |
| ICE_SID_FLD_VEC_SW, |
| ICE_SID_CDID_KEY_BUILDER_SW, |
| ICE_SID_CDID_REDIR_SW |
| }, |
| |
| /* ACL */ |
| { |
| ICE_SID_XLT0_ACL, |
| ICE_SID_XLT_KEY_BUILDER_ACL, |
| ICE_SID_XLT1_ACL, |
| ICE_SID_XLT2_ACL, |
| ICE_SID_PROFID_TCAM_ACL, |
| ICE_SID_PROFID_REDIR_ACL, |
| ICE_SID_FLD_VEC_ACL, |
| ICE_SID_CDID_KEY_BUILDER_ACL, |
| ICE_SID_CDID_REDIR_ACL |
| }, |
| |
| /* FD */ |
| { |
| ICE_SID_XLT0_FD, |
| ICE_SID_XLT_KEY_BUILDER_FD, |
| ICE_SID_XLT1_FD, |
| ICE_SID_XLT2_FD, |
| ICE_SID_PROFID_TCAM_FD, |
| ICE_SID_PROFID_REDIR_FD, |
| ICE_SID_FLD_VEC_FD, |
| ICE_SID_CDID_KEY_BUILDER_FD, |
| ICE_SID_CDID_REDIR_FD |
| }, |
| |
| /* RSS */ |
| { |
| ICE_SID_XLT0_RSS, |
| ICE_SID_XLT_KEY_BUILDER_RSS, |
| ICE_SID_XLT1_RSS, |
| ICE_SID_XLT2_RSS, |
| ICE_SID_PROFID_TCAM_RSS, |
| ICE_SID_PROFID_REDIR_RSS, |
| ICE_SID_FLD_VEC_RSS, |
| ICE_SID_CDID_KEY_BUILDER_RSS, |
| ICE_SID_CDID_REDIR_RSS |
| }, |
| |
| /* PE */ |
| { |
| ICE_SID_XLT0_PE, |
| ICE_SID_XLT_KEY_BUILDER_PE, |
| ICE_SID_XLT1_PE, |
| ICE_SID_XLT2_PE, |
| ICE_SID_PROFID_TCAM_PE, |
| ICE_SID_PROFID_REDIR_PE, |
| ICE_SID_FLD_VEC_PE, |
| ICE_SID_CDID_KEY_BUILDER_PE, |
| ICE_SID_CDID_REDIR_PE |
| } |
| }; |
| |
| /** |
| * ice_sect_id - returns section ID |
| * @blk: block type |
| * @sect: section type |
| * |
| * This helper function returns the proper section ID given a block type and a |
| * section type. |
| */ |
| static u32 ice_sect_id(enum ice_block blk, enum ice_sect sect) |
| { |
| return ice_sect_lkup[blk][sect]; |
| } |
| |
| /** |
| * ice_pkg_val_buf |
| * @buf: pointer to the ice buffer |
| * |
| * This helper function validates a buffer's header. |
| */ |
| static struct ice_buf_hdr *ice_pkg_val_buf(struct ice_buf *buf) |
| { |
| struct ice_buf_hdr *hdr; |
| u16 section_count; |
| u16 data_end; |
| |
| hdr = (struct ice_buf_hdr *)buf->buf; |
| /* verify data */ |
| section_count = le16_to_cpu(hdr->section_count); |
| if (section_count < ICE_MIN_S_COUNT || section_count > ICE_MAX_S_COUNT) |
| return NULL; |
| |
| data_end = le16_to_cpu(hdr->data_end); |
| if (data_end < ICE_MIN_S_DATA_END || data_end > ICE_MAX_S_DATA_END) |
| return NULL; |
| |
| return hdr; |
| } |
| |
| /** |
| * ice_find_buf_table |
| * @ice_seg: pointer to the ice segment |
| * |
| * Returns the address of the buffer table within the ice segment. |
| */ |
| static struct ice_buf_table *ice_find_buf_table(struct ice_seg *ice_seg) |
| { |
| struct ice_nvm_table *nvms; |
| |
| nvms = (struct ice_nvm_table *) |
| (ice_seg->device_table + |
| le32_to_cpu(ice_seg->device_table_count)); |
| |
| return (__force struct ice_buf_table *) |
| (nvms->vers + le32_to_cpu(nvms->table_count)); |
| } |
| |
| /** |
| * ice_pkg_enum_buf |
| * @ice_seg: pointer to the ice segment (or NULL on subsequent calls) |
| * @state: pointer to the enum state |
| * |
| * This function will enumerate all the buffers in the ice segment. The first |
| * call is made with the ice_seg parameter non-NULL; on subsequent calls, |
| * ice_seg is set to NULL which continues the enumeration. When the function |
| * returns a NULL pointer, then the end of the buffers has been reached, or an |
| * unexpected value has been detected (for example an invalid section count or |
| * an invalid buffer end value). |
| */ |
| static struct ice_buf_hdr * |
| ice_pkg_enum_buf(struct ice_seg *ice_seg, struct ice_pkg_enum *state) |
| { |
| if (ice_seg) { |
| state->buf_table = ice_find_buf_table(ice_seg); |
| if (!state->buf_table) |
| return NULL; |
| |
| state->buf_idx = 0; |
| return ice_pkg_val_buf(state->buf_table->buf_array); |
| } |
| |
| if (++state->buf_idx < le32_to_cpu(state->buf_table->buf_count)) |
| return ice_pkg_val_buf(state->buf_table->buf_array + |
| state->buf_idx); |
| else |
| return NULL; |
| } |
| |
| /** |
| * ice_pkg_advance_sect |
| * @ice_seg: pointer to the ice segment (or NULL on subsequent calls) |
| * @state: pointer to the enum state |
| * |
| * This helper function will advance the section within the ice segment, |
| * also advancing the buffer if needed. |
| */ |
| static bool |
| ice_pkg_advance_sect(struct ice_seg *ice_seg, struct ice_pkg_enum *state) |
| { |
| if (!ice_seg && !state->buf) |
| return false; |
| |
| if (!ice_seg && state->buf) |
| if (++state->sect_idx < le16_to_cpu(state->buf->section_count)) |
| return true; |
| |
| state->buf = ice_pkg_enum_buf(ice_seg, state); |
| if (!state->buf) |
| return false; |
| |
| /* start of new buffer, reset section index */ |
| state->sect_idx = 0; |
| return true; |
| } |
| |
| /** |
| * ice_pkg_enum_section |
| * @ice_seg: pointer to the ice segment (or NULL on subsequent calls) |
| * @state: pointer to the enum state |
| * @sect_type: section type to enumerate |
| * |
| * This function will enumerate all the sections of a particular type in the |
| * ice segment. The first call is made with the ice_seg parameter non-NULL; |
| * on subsequent calls, ice_seg is set to NULL which continues the enumeration. |
| * When the function returns a NULL pointer, then the end of the matching |
| * sections has been reached. |
| */ |
| static void * |
| ice_pkg_enum_section(struct ice_seg *ice_seg, struct ice_pkg_enum *state, |
| u32 sect_type) |
| { |
| u16 offset, size; |
| |
| if (ice_seg) |
| state->type = sect_type; |
| |
| if (!ice_pkg_advance_sect(ice_seg, state)) |
| return NULL; |
| |
| /* scan for next matching section */ |
| while (state->buf->section_entry[state->sect_idx].type != |
| cpu_to_le32(state->type)) |
| if (!ice_pkg_advance_sect(NULL, state)) |
| return NULL; |
| |
| /* validate section */ |
| offset = le16_to_cpu(state->buf->section_entry[state->sect_idx].offset); |
| if (offset < ICE_MIN_S_OFF || offset > ICE_MAX_S_OFF) |
| return NULL; |
| |
| size = le16_to_cpu(state->buf->section_entry[state->sect_idx].size); |
| if (size < ICE_MIN_S_SZ || size > ICE_MAX_S_SZ) |
| return NULL; |
| |
| /* make sure the section fits in the buffer */ |
| if (offset + size > ICE_PKG_BUF_SIZE) |
| return NULL; |
| |
| state->sect_type = |
| le32_to_cpu(state->buf->section_entry[state->sect_idx].type); |
| |
| /* calc pointer to this section */ |
| state->sect = ((u8 *)state->buf) + |
| le16_to_cpu(state->buf->section_entry[state->sect_idx].offset); |
| |
| return state->sect; |
| } |
| |
| /** |
| * ice_pkg_enum_entry |
| * @ice_seg: pointer to the ice segment (or NULL on subsequent calls) |
| * @state: pointer to the enum state |
| * @sect_type: section type to enumerate |
| * @offset: pointer to variable that receives the offset in the table (optional) |
| * @handler: function that handles access to the entries into the section type |
| * |
| * This function will enumerate all the entries in particular section type in |
| * the ice segment. The first call is made with the ice_seg parameter non-NULL; |
| * on subsequent calls, ice_seg is set to NULL which continues the enumeration. |
| * When the function returns a NULL pointer, then the end of the entries has |
| * been reached. |
| * |
| * Since each section may have a different header and entry size, the handler |
| * function is needed to determine the number and location entries in each |
| * section. |
| * |
| * The offset parameter is optional, but should be used for sections that |
| * contain an offset for each section table. For such cases, the section handler |
| * function must return the appropriate offset + index to give the absolution |
| * offset for each entry. For example, if the base for a section's header |
| * indicates a base offset of 10, and the index for the entry is 2, then |
| * section handler function should set the offset to 10 + 2 = 12. |
| */ |
| static void * |
| ice_pkg_enum_entry(struct ice_seg *ice_seg, struct ice_pkg_enum *state, |
| u32 sect_type, u32 *offset, |
| void *(*handler)(u32 sect_type, void *section, |
| u32 index, u32 *offset)) |
| { |
| void *entry; |
| |
| if (ice_seg) { |
| if (!handler) |
| return NULL; |
| |
| if (!ice_pkg_enum_section(ice_seg, state, sect_type)) |
| return NULL; |
| |
| state->entry_idx = 0; |
| state->handler = handler; |
| } else { |
| state->entry_idx++; |
| } |
| |
| if (!state->handler) |
| return NULL; |
| |
| /* get entry */ |
| entry = state->handler(state->sect_type, state->sect, state->entry_idx, |
| offset); |
| if (!entry) { |
| /* end of a section, look for another section of this type */ |
| if (!ice_pkg_enum_section(NULL, state, 0)) |
| return NULL; |
| |
| state->entry_idx = 0; |
| entry = state->handler(state->sect_type, state->sect, |
| state->entry_idx, offset); |
| } |
| |
| return entry; |
| } |
| |
| /** |
| * ice_boost_tcam_handler |
| * @sect_type: section type |
| * @section: pointer to section |
| * @index: index of the boost TCAM entry to be returned |
| * @offset: pointer to receive absolute offset, always 0 for boost TCAM sections |
| * |
| * This is a callback function that can be passed to ice_pkg_enum_entry. |
| * Handles enumeration of individual boost TCAM entries. |
| */ |
| static void * |
| ice_boost_tcam_handler(u32 sect_type, void *section, u32 index, u32 *offset) |
| { |
| struct ice_boost_tcam_section *boost; |
| |
| if (!section) |
| return NULL; |
| |
| if (sect_type != ICE_SID_RXPARSER_BOOST_TCAM) |
| return NULL; |
| |
| /* cppcheck-suppress nullPointer */ |
| if (index > ICE_MAX_BST_TCAMS_IN_BUF) |
| return NULL; |
| |
| if (offset) |
| *offset = 0; |
| |
| boost = section; |
| if (index >= le16_to_cpu(boost->count)) |
| return NULL; |
| |
| return boost->tcam + index; |
| } |
| |
| /** |
| * ice_find_boost_entry |
| * @ice_seg: pointer to the ice segment (non-NULL) |
| * @addr: Boost TCAM address of entry to search for |
| * @entry: returns pointer to the entry |
| * |
| * Finds a particular Boost TCAM entry and returns a pointer to that entry |
| * if it is found. The ice_seg parameter must not be NULL since the first call |
| * to ice_pkg_enum_entry requires a pointer to an actual ice_segment structure. |
| */ |
| static enum ice_status |
| ice_find_boost_entry(struct ice_seg *ice_seg, u16 addr, |
| struct ice_boost_tcam_entry **entry) |
| { |
| struct ice_boost_tcam_entry *tcam; |
| struct ice_pkg_enum state; |
| |
| memset(&state, 0, sizeof(state)); |
| |
| if (!ice_seg) |
| return ICE_ERR_PARAM; |
| |
| do { |
| tcam = ice_pkg_enum_entry(ice_seg, &state, |
| ICE_SID_RXPARSER_BOOST_TCAM, NULL, |
| ice_boost_tcam_handler); |
| if (tcam && le16_to_cpu(tcam->addr) == addr) { |
| *entry = tcam; |
| return 0; |
| } |
| |
| ice_seg = NULL; |
| } while (tcam); |
| |
| *entry = NULL; |
| return ICE_ERR_CFG; |
| } |
| |
| /** |
| * ice_label_enum_handler |
| * @sect_type: section type |
| * @section: pointer to section |
| * @index: index of the label entry to be returned |
| * @offset: pointer to receive absolute offset, always zero for label sections |
| * |
| * This is a callback function that can be passed to ice_pkg_enum_entry. |
| * Handles enumeration of individual label entries. |
| */ |
| static void * |
| ice_label_enum_handler(u32 __always_unused sect_type, void *section, u32 index, |
| u32 *offset) |
| { |
| struct ice_label_section *labels; |
| |
| if (!section) |
| return NULL; |
| |
| /* cppcheck-suppress nullPointer */ |
| if (index > ICE_MAX_LABELS_IN_BUF) |
| return NULL; |
| |
| if (offset) |
| *offset = 0; |
| |
| labels = section; |
| if (index >= le16_to_cpu(labels->count)) |
| return NULL; |
| |
| return labels->label + index; |
| } |
| |
| /** |
| * ice_enum_labels |
| * @ice_seg: pointer to the ice segment (NULL on subsequent calls) |
| * @type: the section type that will contain the label (0 on subsequent calls) |
| * @state: ice_pkg_enum structure that will hold the state of the enumeration |
| * @value: pointer to a value that will return the label's value if found |
| * |
| * Enumerates a list of labels in the package. The caller will call |
| * ice_enum_labels(ice_seg, type, ...) to start the enumeration, then call |
| * ice_enum_labels(NULL, 0, ...) to continue. When the function returns a NULL |
| * the end of the list has been reached. |
| */ |
| static char * |
| ice_enum_labels(struct ice_seg *ice_seg, u32 type, struct ice_pkg_enum *state, |
| u16 *value) |
| { |
| struct ice_label *label; |
| |
| /* Check for valid label section on first call */ |
| if (type && !(type >= ICE_SID_LBL_FIRST && type <= ICE_SID_LBL_LAST)) |
| return NULL; |
| |
| label = ice_pkg_enum_entry(ice_seg, state, type, NULL, |
| ice_label_enum_handler); |
| if (!label) |
| return NULL; |
| |
| *value = le16_to_cpu(label->value); |
| return label->name; |
| } |
| |
| /** |
| * ice_init_pkg_hints |
| * @hw: pointer to the HW structure |
| * @ice_seg: pointer to the segment of the package scan (non-NULL) |
| * |
| * This function will scan the package and save off relevant information |
| * (hints or metadata) for driver use. The ice_seg parameter must not be NULL |
| * since the first call to ice_enum_labels requires a pointer to an actual |
| * ice_seg structure. |
| */ |
| static void ice_init_pkg_hints(struct ice_hw *hw, struct ice_seg *ice_seg) |
| { |
| struct ice_pkg_enum state; |
| char *label_name; |
| u16 val; |
| int i; |
| |
| memset(&hw->tnl, 0, sizeof(hw->tnl)); |
| memset(&state, 0, sizeof(state)); |
| |
| if (!ice_seg) |
| return; |
| |
| label_name = ice_enum_labels(ice_seg, ICE_SID_LBL_RXPARSER_TMEM, &state, |
| &val); |
| |
| while (label_name && hw->tnl.count < ICE_TUNNEL_MAX_ENTRIES) { |
| for (i = 0; tnls[i].type != TNL_LAST; i++) { |
| size_t len = strlen(tnls[i].label_prefix); |
| |
| /* Look for matching label start, before continuing */ |
| if (strncmp(label_name, tnls[i].label_prefix, len)) |
| continue; |
| |
| /* Make sure this label matches our PF. Note that the PF |
| * character ('0' - '7') will be located where our |
| * prefix string's null terminator is located. |
| */ |
| if ((label_name[len] - '0') == hw->pf_id) { |
| hw->tnl.tbl[hw->tnl.count].type = tnls[i].type; |
| hw->tnl.tbl[hw->tnl.count].valid = false; |
| hw->tnl.tbl[hw->tnl.count].boost_addr = val; |
| hw->tnl.tbl[hw->tnl.count].port = 0; |
| hw->tnl.count++; |
| break; |
| } |
| } |
| |
| label_name = ice_enum_labels(NULL, 0, &state, &val); |
| } |
| |
| /* Cache the appropriate boost TCAM entry pointers */ |
| for (i = 0; i < hw->tnl.count; i++) { |
| ice_find_boost_entry(ice_seg, hw->tnl.tbl[i].boost_addr, |
| &hw->tnl.tbl[i].boost_entry); |
| if (hw->tnl.tbl[i].boost_entry) { |
| hw->tnl.tbl[i].valid = true; |
| if (hw->tnl.tbl[i].type < __TNL_TYPE_CNT) |
| hw->tnl.valid_count[hw->tnl.tbl[i].type]++; |
| } |
| } |
| } |
| |
| /* Key creation */ |
| |
| #define ICE_DC_KEY 0x1 /* don't care */ |
| #define ICE_DC_KEYINV 0x1 |
| #define ICE_NM_KEY 0x0 /* never match */ |
| #define ICE_NM_KEYINV 0x0 |
| #define ICE_0_KEY 0x1 /* match 0 */ |
| #define ICE_0_KEYINV 0x0 |
| #define ICE_1_KEY 0x0 /* match 1 */ |
| #define ICE_1_KEYINV 0x1 |
| |
| /** |
| * ice_gen_key_word - generate 16-bits of a key/mask word |
| * @val: the value |
| * @valid: valid bits mask (change only the valid bits) |
| * @dont_care: don't care mask |
| * @nvr_mtch: never match mask |
| * @key: pointer to an array of where the resulting key portion |
| * @key_inv: pointer to an array of where the resulting key invert portion |
| * |
| * This function generates 16-bits from a 8-bit value, an 8-bit don't care mask |
| * and an 8-bit never match mask. The 16-bits of output are divided into 8 bits |
| * of key and 8 bits of key invert. |
| * |
| * '0' = b01, always match a 0 bit |
| * '1' = b10, always match a 1 bit |
| * '?' = b11, don't care bit (always matches) |
| * '~' = b00, never match bit |
| * |
| * Input: |
| * val: b0 1 0 1 0 1 |
| * dont_care: b0 0 1 1 0 0 |
| * never_mtch: b0 0 0 0 1 1 |
| * ------------------------------ |
| * Result: key: b01 10 11 11 00 00 |
| */ |
| static enum ice_status |
| ice_gen_key_word(u8 val, u8 valid, u8 dont_care, u8 nvr_mtch, u8 *key, |
| u8 *key_inv) |
| { |
| u8 in_key = *key, in_key_inv = *key_inv; |
| u8 i; |
| |
| /* 'dont_care' and 'nvr_mtch' masks cannot overlap */ |
| if ((dont_care ^ nvr_mtch) != (dont_care | nvr_mtch)) |
| return ICE_ERR_CFG; |
| |
| *key = 0; |
| *key_inv = 0; |
| |
| /* encode the 8 bits into 8-bit key and 8-bit key invert */ |
| for (i = 0; i < 8; i++) { |
| *key >>= 1; |
| *key_inv >>= 1; |
| |
| if (!(valid & 0x1)) { /* change only valid bits */ |
| *key |= (in_key & 0x1) << 7; |
| *key_inv |= (in_key_inv & 0x1) << 7; |
| } else if (dont_care & 0x1) { /* don't care bit */ |
| *key |= ICE_DC_KEY << 7; |
| *key_inv |= ICE_DC_KEYINV << 7; |
| } else if (nvr_mtch & 0x1) { /* never match bit */ |
| *key |= ICE_NM_KEY << 7; |
| *key_inv |= ICE_NM_KEYINV << 7; |
| } else if (val & 0x01) { /* exact 1 match */ |
| *key |= ICE_1_KEY << 7; |
| *key_inv |= ICE_1_KEYINV << 7; |
| } else { /* exact 0 match */ |
| *key |= ICE_0_KEY << 7; |
| *key_inv |= ICE_0_KEYINV << 7; |
| } |
| |
| dont_care >>= 1; |
| nvr_mtch >>= 1; |
| valid >>= 1; |
| val >>= 1; |
| in_key >>= 1; |
| in_key_inv >>= 1; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * ice_bits_max_set - determine if the number of bits set is within a maximum |
| * @mask: pointer to the byte array which is the mask |
| * @size: the number of bytes in the mask |
| * @max: the max number of set bits |
| * |
| * This function determines if there are at most 'max' number of bits set in an |
| * array. Returns true if the number for bits set is <= max or will return false |
| * otherwise. |
| */ |
| static bool ice_bits_max_set(const u8 *mask, u16 size, u16 max) |
| { |
| u16 count = 0; |
| u16 i; |
| |
| /* check each byte */ |
| for (i = 0; i < size; i++) { |
| /* if 0, go to next byte */ |
| if (!mask[i]) |
| continue; |
| |
| /* We know there is at least one set bit in this byte because of |
| * the above check; if we already have found 'max' number of |
| * bits set, then we can return failure now. |
| */ |
| if (count == max) |
| return false; |
| |
| /* count the bits in this byte, checking threshold */ |
| count += hweight8(mask[i]); |
| if (count > max) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /** |
| * ice_set_key - generate a variable sized key with multiples of 16-bits |
| * @key: pointer to where the key will be stored |
| * @size: the size of the complete key in bytes (must be even) |
| * @val: array of 8-bit values that makes up the value portion of the key |
| * @upd: array of 8-bit masks that determine what key portion to update |
| * @dc: array of 8-bit masks that make up the don't care mask |
| * @nm: array of 8-bit masks that make up the never match mask |
| * @off: the offset of the first byte in the key to update |
| * @len: the number of bytes in the key update |
| * |
| * This function generates a key from a value, a don't care mask and a never |
| * match mask. |
| * upd, dc, and nm are optional parameters, and can be NULL: |
| * upd == NULL --> upd mask is all 1's (update all bits) |
| * dc == NULL --> dc mask is all 0's (no don't care bits) |
| * nm == NULL --> nm mask is all 0's (no never match bits) |
| */ |
| static enum ice_status |
| ice_set_key(u8 *key, u16 size, u8 *val, u8 *upd, u8 *dc, u8 *nm, u16 off, |
| u16 len) |
| { |
| u16 half_size; |
| u16 i; |
| |
| /* size must be a multiple of 2 bytes. */ |
| if (size % 2) |
| return ICE_ERR_CFG; |
| |
| half_size = size / 2; |
| if (off + len > half_size) |
| return ICE_ERR_CFG; |
| |
| /* Make sure at most one bit is set in the never match mask. Having more |
| * than one never match mask bit set will cause HW to consume excessive |
| * power otherwise; this is a power management efficiency check. |
| */ |
| #define ICE_NVR_MTCH_BITS_MAX 1 |
| if (nm && !ice_bits_max_set(nm, len, ICE_NVR_MTCH_BITS_MAX)) |
| return ICE_ERR_CFG; |
| |
| for (i = 0; i < len; i++) |
| if (ice_gen_key_word(val[i], upd ? upd[i] : 0xff, |
| dc ? dc[i] : 0, nm ? nm[i] : 0, |
| key + off + i, key + half_size + off + i)) |
| return ICE_ERR_CFG; |
| |
| return 0; |
| } |
| |
| /** |
| * ice_acquire_global_cfg_lock |
| * @hw: pointer to the HW structure |
| * @access: access type (read or write) |
| * |
| * This function will request ownership of the global config lock for reading |
| * or writing of the package. When attempting to obtain write access, the |
| * caller must check for the following two return values: |
| * |
| * ICE_SUCCESS - Means the caller has acquired the global config lock |
| * and can perform writing of the package. |
| * ICE_ERR_AQ_NO_WORK - Indicates another driver has already written the |
| * package or has found that no update was necessary; in |
| * this case, the caller can just skip performing any |
| * update of the package. |
| */ |
| static enum ice_status |
| ice_acquire_global_cfg_lock(struct ice_hw *hw, |
| enum ice_aq_res_access_type access) |
| { |
| enum ice_status status; |
| |
| status = ice_acquire_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID, access, |
| ICE_GLOBAL_CFG_LOCK_TIMEOUT); |
| |
| if (!status) |
| mutex_lock(&ice_global_cfg_lock_sw); |
| else if (status == ICE_ERR_AQ_NO_WORK) |
| ice_debug(hw, ICE_DBG_PKG, "Global config lock: No work to do\n"); |
| |
| return status; |
| } |
| |
| /** |
| * ice_release_global_cfg_lock |
| * @hw: pointer to the HW structure |
| * |
| * This function will release the global config lock. |
| */ |
| static void ice_release_global_cfg_lock(struct ice_hw *hw) |
| { |
| mutex_unlock(&ice_global_cfg_lock_sw); |
| ice_release_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID); |
| } |
| |
| /** |
| * ice_acquire_change_lock |
| * @hw: pointer to the HW structure |
| * @access: access type (read or write) |
| * |
| * This function will request ownership of the change lock. |
| */ |
| static enum ice_status |
| ice_acquire_change_lock(struct ice_hw *hw, enum ice_aq_res_access_type access) |
| { |
| return ice_acquire_res(hw, ICE_CHANGE_LOCK_RES_ID, access, |
| ICE_CHANGE_LOCK_TIMEOUT); |
| } |
| |
| /** |
| * ice_release_change_lock |
| * @hw: pointer to the HW structure |
| * |
| * This function will release the change lock using the proper Admin Command. |
| */ |
| static void ice_release_change_lock(struct ice_hw *hw) |
| { |
| ice_release_res(hw, ICE_CHANGE_LOCK_RES_ID); |
| } |
| |
| /** |
| * ice_aq_download_pkg |
| * @hw: pointer to the hardware structure |
| * @pkg_buf: the package buffer to transfer |
| * @buf_size: the size of the package buffer |
| * @last_buf: last buffer indicator |
| * @error_offset: returns error offset |
| * @error_info: returns error information |
| * @cd: pointer to command details structure or NULL |
| * |
| * Download Package (0x0C40) |
| */ |
| static enum ice_status |
| ice_aq_download_pkg(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf, |
| u16 buf_size, bool last_buf, u32 *error_offset, |
| u32 *error_info, struct ice_sq_cd *cd) |
| { |
| struct ice_aqc_download_pkg *cmd; |
| struct ice_aq_desc desc; |
| enum ice_status status; |
| |
| if (error_offset) |
| *error_offset = 0; |
| if (error_info) |
| *error_info = 0; |
| |
| cmd = &desc.params.download_pkg; |
| ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_download_pkg); |
| desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); |
| |
| if (last_buf) |
| cmd->flags |= ICE_AQC_DOWNLOAD_PKG_LAST_BUF; |
| |
| status = ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd); |
| if (status == ICE_ERR_AQ_ERROR) { |
| /* Read error from buffer only when the FW returned an error */ |
| struct ice_aqc_download_pkg_resp *resp; |
| |
| resp = (struct ice_aqc_download_pkg_resp *)pkg_buf; |
| if (error_offset) |
| *error_offset = le32_to_cpu(resp->error_offset); |
| if (error_info) |
| *error_info = le32_to_cpu(resp->error_info); |
| } |
| |
| return status; |
| } |
| |
| /** |
| * ice_aq_update_pkg |
| * @hw: pointer to the hardware structure |
| * @pkg_buf: the package cmd buffer |
| * @buf_size: the size of the package cmd buffer |
| * @last_buf: last buffer indicator |
| * @error_offset: returns error offset |
| * @error_info: returns error information |
| * @cd: pointer to command details structure or NULL |
| * |
| * Update Package (0x0C42) |
| */ |
| static enum ice_status |
| ice_aq_update_pkg(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf, u16 buf_size, |
| bool last_buf, u32 *error_offset, u32 *error_info, |
| struct ice_sq_cd *cd) |
| { |
| struct ice_aqc_download_pkg *cmd; |
| struct ice_aq_desc desc; |
| enum ice_status status; |
| |
| if (error_offset) |
| *error_offset = 0; |
| if (error_info) |
| *error_info = 0; |
| |
| cmd = &desc.params.download_pkg; |
| ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_update_pkg); |
| desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); |
| |
| if (last_buf) |
| cmd->flags |= ICE_AQC_DOWNLOAD_PKG_LAST_BUF; |
| |
| status = ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd); |
| if (status == ICE_ERR_AQ_ERROR) { |
| /* Read error from buffer only when the FW returned an error */ |
| struct ice_aqc_download_pkg_resp *resp; |
| |
| resp = (struct ice_aqc_download_pkg_resp *)pkg_buf; |
| if (error_offset) |
| *error_offset = le32_to_cpu(resp->error_offset); |
| if (error_info) |
| *error_info = le32_to_cpu(resp->error_info); |
| } |
| |
| return status; |
| } |
| |
| /** |
| * ice_find_seg_in_pkg |
| * @hw: pointer to the hardware structure |
| * @seg_type: the segment type to search for (i.e., SEGMENT_TYPE_CPK) |
| * @pkg_hdr: pointer to the package header to be searched |
| * |
| * This function searches a package file for a particular segment type. On |
| * success it returns a pointer to the segment header, otherwise it will |
| * return NULL. |
| */ |
| static struct ice_generic_seg_hdr * |
| ice_find_seg_in_pkg(struct ice_hw *hw, u32 seg_type, |
| struct ice_pkg_hdr *pkg_hdr) |
| { |
| u32 i; |
| |
| ice_debug(hw, ICE_DBG_PKG, "Package format version: %d.%d.%d.%d\n", |
| pkg_hdr->pkg_format_ver.major, pkg_hdr->pkg_format_ver.minor, |
| pkg_hdr->pkg_format_ver.update, |
| pkg_hdr->pkg_format_ver.draft); |
| |
| /* Search all package segments for the requested segment type */ |
| for (i = 0; i < le32_to_cpu(pkg_hdr->seg_count); i++) { |
| struct ice_generic_seg_hdr *seg; |
| |
| seg = (struct ice_generic_seg_hdr *) |
| ((u8 *)pkg_hdr + le32_to_cpu(pkg_hdr->seg_offset[i])); |
| |
| if (le32_to_cpu(seg->seg_type) == seg_type) |
| return seg; |
| } |
| |
| return NULL; |
| } |
| |
| /** |
| * ice_update_pkg |
| * @hw: pointer to the hardware structure |
| * @bufs: pointer to an array of buffers |
| * @count: the number of buffers in the array |
| * |
| * Obtains change lock and updates package. |
| */ |
| static enum ice_status |
| ice_update_pkg(struct ice_hw *hw, struct ice_buf *bufs, u32 count) |
| { |
| enum ice_status status; |
| u32 offset, info, i; |
| |
| status = ice_acquire_change_lock(hw, ICE_RES_WRITE); |
| if (status) |
| return status; |
| |
| for (i = 0; i < count; i++) { |
| struct ice_buf_hdr *bh = (struct ice_buf_hdr *)(bufs + i); |
| bool last = ((i + 1) == count); |
| |
| status = ice_aq_update_pkg(hw, bh, le16_to_cpu(bh->data_end), |
| last, &offset, &info, NULL); |
| |
| if (status) { |
| ice_debug(hw, ICE_DBG_PKG, "Update pkg failed: err %d off %d inf %d\n", |
| status, offset, info); |
| break; |
| } |
| } |
| |
| ice_release_change_lock(hw); |
| |
| return status; |
| } |
| |
| /** |
| * ice_dwnld_cfg_bufs |
| * @hw: pointer to the hardware structure |
| * @bufs: pointer to an array of buffers |
| * @count: the number of buffers in the array |
| * |
| * Obtains global config lock and downloads the package configuration buffers |
| * to the firmware. Metadata buffers are skipped, and the first metadata buffer |
| * found indicates that the rest of the buffers are all metadata buffers. |
| */ |
| static enum ice_status |
| ice_dwnld_cfg_bufs(struct ice_hw *hw, struct ice_buf *bufs, u32 count) |
| { |
| enum ice_status status; |
| struct ice_buf_hdr *bh; |
| u32 offset, info, i; |
| |
| if (!bufs || !count) |
| return ICE_ERR_PARAM; |
| |
| /* If the first buffer's first section has its metadata bit set |
| * then there are no buffers to be downloaded, and the operation is |
| * considered a success. |
| */ |
| bh = (struct ice_buf_hdr *)bufs; |
| if (le32_to_cpu(bh->section_entry[0].type) & ICE_METADATA_BUF) |
| return 0; |
| |
| /* reset pkg_dwnld_status in case this function is called in the |
| * reset/rebuild flow |
| */ |
| hw->pkg_dwnld_status = ICE_AQ_RC_OK; |
| |
| status = ice_acquire_global_cfg_lock(hw, ICE_RES_WRITE); |
| if (status) { |
| if (status == ICE_ERR_AQ_NO_WORK) |
| hw->pkg_dwnld_status = ICE_AQ_RC_EEXIST; |
| else |
| hw->pkg_dwnld_status = hw->adminq.sq_last_status; |
| return status; |
| } |
| |
| for (i = 0; i < count; i++) { |
| bool last = ((i + 1) == count); |
| |
| if (!last) { |
| /* check next buffer for metadata flag */ |
| bh = (struct ice_buf_hdr *)(bufs + i + 1); |
| |
| /* A set metadata flag in the next buffer will signal |
| * that the current buffer will be the last buffer |
| * downloaded |
| */ |
| if (le16_to_cpu(bh->section_count)) |
| if (le32_to_cpu(bh->section_entry[0].type) & |
| ICE_METADATA_BUF) |
| last = true; |
| } |
| |
| bh = (struct ice_buf_hdr *)(bufs + i); |
| |
| status = ice_aq_download_pkg(hw, bh, ICE_PKG_BUF_SIZE, last, |
| &offset, &info, NULL); |
| |
| /* Save AQ status from download package */ |
| hw->pkg_dwnld_status = hw->adminq.sq_last_status; |
| if (status) { |
| ice_debug(hw, ICE_DBG_PKG, "Pkg download failed: err %d off %d inf %d\n", |
| status, offset, info); |
| |
| break; |
| } |
| |
| if (last) |
| break; |
| } |
| |
| ice_release_global_cfg_lock(hw); |
| |
| return status; |
| } |
| |
| /** |
| * ice_aq_get_pkg_info_list |
| * @hw: pointer to the hardware structure |
| * @pkg_info: the buffer which will receive the information list |
| * @buf_size: the size of the pkg_info information buffer |
| * @cd: pointer to command details structure or NULL |
| * |
| * Get Package Info List (0x0C43) |
| */ |
| static enum ice_status |
| ice_aq_get_pkg_info_list(struct ice_hw *hw, |
| struct ice_aqc_get_pkg_info_resp *pkg_info, |
| u16 buf_size, struct ice_sq_cd *cd) |
| { |
| struct ice_aq_desc desc; |
| |
| ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_pkg_info_list); |
| |
| return ice_aq_send_cmd(hw, &desc, pkg_info, buf_size, cd); |
| } |
| |
| /** |
| * ice_download_pkg |
| * @hw: pointer to the hardware structure |
| * @ice_seg: pointer to the segment of the package to be downloaded |
| * |
| * Handles the download of a complete package. |
| */ |
| static enum ice_status |
| ice_download_pkg(struct ice_hw *hw, struct ice_seg *ice_seg) |
| { |
| struct ice_buf_table *ice_buf_tbl; |
| |
| ice_debug(hw, ICE_DBG_PKG, "Segment format version: %d.%d.%d.%d\n", |
| ice_seg->hdr.seg_format_ver.major, |
| ice_seg->hdr.seg_format_ver.minor, |
| ice_seg->hdr.seg_format_ver.update, |
| ice_seg->hdr.seg_format_ver.draft); |
| |
| ice_debug(hw, ICE_DBG_PKG, "Seg: type 0x%X, size %d, name %s\n", |
| le32_to_cpu(ice_seg->hdr.seg_type), |
| le32_to_cpu(ice_seg->hdr.seg_size), ice_seg->hdr.seg_id); |
| |
| ice_buf_tbl = ice_find_buf_table(ice_seg); |
| |
| ice_debug(hw, ICE_DBG_PKG, "Seg buf count: %d\n", |
| le32_to_cpu(ice_buf_tbl->buf_count)); |
| |
| return ice_dwnld_cfg_bufs(hw, ice_buf_tbl->buf_array, |
| le32_to_cpu(ice_buf_tbl->buf_count)); |
| } |
| |
| /** |
| * ice_init_pkg_info |
| * @hw: pointer to the hardware structure |
| * @pkg_hdr: pointer to the driver's package hdr |
| * |
| * Saves off the package details into the HW structure. |
| */ |
| static enum ice_status |
| ice_init_pkg_info(struct ice_hw *hw, struct ice_pkg_hdr *pkg_hdr) |
| { |
| struct ice_generic_seg_hdr *seg_hdr; |
| |
| if (!pkg_hdr) |
| return ICE_ERR_PARAM; |
| |
| seg_hdr = ice_find_seg_in_pkg(hw, SEGMENT_TYPE_ICE, pkg_hdr); |
| if (seg_hdr) { |
| struct ice_meta_sect *meta; |
| struct ice_pkg_enum state; |
| |
| memset(&state, 0, sizeof(state)); |
| |
| /* Get package information from the Metadata Section */ |
| meta = ice_pkg_enum_section((struct ice_seg *)seg_hdr, &state, |
| ICE_SID_METADATA); |
| if (!meta) { |
| ice_debug(hw, ICE_DBG_INIT, "Did not find ice metadata section in package\n"); |
| return ICE_ERR_CFG; |
| } |
| |
| hw->pkg_ver = meta->ver; |
| memcpy(hw->pkg_name, meta->name, sizeof(meta->name)); |
| |
| ice_debug(hw, ICE_DBG_PKG, "Pkg: %d.%d.%d.%d, %s\n", |
| meta->ver.major, meta->ver.minor, meta->ver.update, |
| meta->ver.draft, meta->name); |
| |
| hw->ice_seg_fmt_ver = seg_hdr->seg_format_ver; |
| memcpy(hw->ice_seg_id, seg_hdr->seg_id, |
| sizeof(hw->ice_seg_id)); |
| |
| ice_debug(hw, ICE_DBG_PKG, "Ice Seg: %d.%d.%d.%d, %s\n", |
| seg_hdr->seg_format_ver.major, |
| seg_hdr->seg_format_ver.minor, |
| seg_hdr->seg_format_ver.update, |
| seg_hdr->seg_format_ver.draft, |
| seg_hdr->seg_id); |
| } else { |
| ice_debug(hw, ICE_DBG_INIT, "Did not find ice segment in driver package\n"); |
| return ICE_ERR_CFG; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * ice_get_pkg_info |
| * @hw: pointer to the hardware structure |
| * |
| * Store details of the package currently loaded in HW into the HW structure. |
| */ |
| static enum ice_status ice_get_pkg_info(struct ice_hw *hw) |
| { |
| struct ice_aqc_get_pkg_info_resp *pkg_info; |
| enum ice_status status; |
| u16 size; |
| u32 i; |
| |
| size = struct_size(pkg_info, pkg_info, ICE_PKG_CNT); |
| pkg_info = kzalloc(size, GFP_KERNEL); |
| if (!pkg_info) |
| return ICE_ERR_NO_MEMORY; |
| |
| status = ice_aq_get_pkg_info_list(hw, pkg_info, size, NULL); |
| if (status) |
| goto init_pkg_free_alloc; |
| |
| for (i = 0; i < le32_to_cpu(pkg_info->count); i++) { |
| #define ICE_PKG_FLAG_COUNT 4 |
| char flags[ICE_PKG_FLAG_COUNT + 1] = { 0 }; |
| u8 place = 0; |
| |
| if (pkg_info->pkg_info[i].is_active) { |
| flags[place++] = 'A'; |
| hw->active_pkg_ver = pkg_info->pkg_info[i].ver; |
| hw->active_track_id = |
| le32_to_cpu(pkg_info->pkg_info[i].track_id); |
| memcpy(hw->active_pkg_name, |
| pkg_info->pkg_info[i].name, |
| sizeof(pkg_info->pkg_info[i].name)); |
| hw->active_pkg_in_nvm = pkg_info->pkg_info[i].is_in_nvm; |
| } |
| if (pkg_info->pkg_info[i].is_active_at_boot) |
| flags[place++] = 'B'; |
| if (pkg_info->pkg_info[i].is_modified) |
| flags[place++] = 'M'; |
| if (pkg_info->pkg_info[i].is_in_nvm) |
| flags[place++] = 'N'; |
| |
| ice_debug(hw, ICE_DBG_PKG, "Pkg[%d]: %d.%d.%d.%d,%s,%s\n", |
| i, pkg_info->pkg_info[i].ver.major, |
| pkg_info->pkg_info[i].ver.minor, |
| pkg_info->pkg_info[i].ver.update, |
| pkg_info->pkg_info[i].ver.draft, |
| pkg_info->pkg_info[i].name, flags); |
| } |
| |
| init_pkg_free_alloc: |
| kfree(pkg_info); |
| |
| return status; |
| } |
| |
| /** |
| * ice_verify_pkg - verify package |
| * @pkg: pointer to the package buffer |
| * @len: size of the package buffer |
| * |
| * Verifies various attributes of the package file, including length, format |
| * version, and the requirement of at least one segment. |
| */ |
| static enum ice_status ice_verify_pkg(struct ice_pkg_hdr *pkg, u32 len) |
| { |
| u32 seg_count; |
| u32 i; |
| |
| if (len < struct_size(pkg, seg_offset, 1)) |
| return ICE_ERR_BUF_TOO_SHORT; |
| |
| if (pkg->pkg_format_ver.major != ICE_PKG_FMT_VER_MAJ || |
| pkg->pkg_format_ver.minor != ICE_PKG_FMT_VER_MNR || |
| pkg->pkg_format_ver.update != ICE_PKG_FMT_VER_UPD || |
| pkg->pkg_format_ver.draft != ICE_PKG_FMT_VER_DFT) |
| return ICE_ERR_CFG; |
| |
| /* pkg must have at least one segment */ |
| seg_count = le32_to_cpu(pkg->seg_count); |
| if (seg_count < 1) |
| return ICE_ERR_CFG; |
| |
| /* make sure segment array fits in package length */ |
| if (len < struct_size(pkg, seg_offset, seg_count)) |
| return ICE_ERR_BUF_TOO_SHORT; |
| |
| /* all segments must fit within length */ |
| for (i = 0; i < seg_count; i++) { |
| u32 off = le32_to_cpu(pkg->seg_offset[i]); |
| struct ice_generic_seg_hdr *seg; |
| |
| /* segment header must fit */ |
| if (len < off + sizeof(*seg)) |
| return ICE_ERR_BUF_TOO_SHORT; |
| |
| seg = (struct ice_generic_seg_hdr *)((u8 *)pkg + off); |
| |
| /* segment body must fit */ |
| if (len < off + le32_to_cpu(seg->seg_size)) |
| return ICE_ERR_BUF_TOO_SHORT; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * ice_free_seg - free package segment pointer |
| * @hw: pointer to the hardware structure |
| * |
| * Frees the package segment pointer in the proper manner, depending on if the |
| * segment was allocated or just the passed in pointer was stored. |
| */ |
| void ice_free_seg(struct ice_hw *hw) |
| { |
| if (hw->pkg_copy) { |
| devm_kfree(ice_hw_to_dev(hw), hw->pkg_copy); |
| hw->pkg_copy = NULL; |
| hw->pkg_size = 0; |
| } |
| hw->seg = NULL; |
| } |
| |
| /** |
| * ice_init_pkg_regs - initialize additional package registers |
| * @hw: pointer to the hardware structure |
| */ |
| static void ice_init_pkg_regs(struct ice_hw *hw) |
| { |
| #define ICE_SW_BLK_INP_MASK_L 0xFFFFFFFF |
| #define ICE_SW_BLK_INP_MASK_H 0x0000FFFF |
| #define ICE_SW_BLK_IDX 0 |
| |
| /* setup Switch block input mask, which is 48-bits in two parts */ |
| wr32(hw, GL_PREEXT_L2_PMASK0(ICE_SW_BLK_IDX), ICE_SW_BLK_INP_MASK_L); |
| wr32(hw, GL_PREEXT_L2_PMASK1(ICE_SW_BLK_IDX), ICE_SW_BLK_INP_MASK_H); |
| } |
| |
| /** |
| * ice_chk_pkg_version - check package version for compatibility with driver |
| * @pkg_ver: pointer to a version structure to check |
| * |
| * Check to make sure that the package about to be downloaded is compatible with |
| * the driver. To be compatible, the major and minor components of the package |
| * version must match our ICE_PKG_SUPP_VER_MAJ and ICE_PKG_SUPP_VER_MNR |
| * definitions. |
| */ |
| static enum ice_status ice_chk_pkg_version(struct ice_pkg_ver *pkg_ver) |
| { |
| if (pkg_ver->major != ICE_PKG_SUPP_VER_MAJ || |
| pkg_ver->minor != ICE_PKG_SUPP_VER_MNR) |
| return ICE_ERR_NOT_SUPPORTED; |
| |
| return 0; |
| } |
| |
| /** |
| * ice_chk_pkg_compat |
| * @hw: pointer to the hardware structure |
| * @ospkg: pointer to the package hdr |
| * @seg: pointer to the package segment hdr |
| * |
| * This function checks the package version compatibility with driver and NVM |
| */ |
| static enum ice_status |
| ice_chk_pkg_compat(struct ice_hw *hw, struct ice_pkg_hdr *ospkg, |
| struct ice_seg **seg) |
| { |
| struct ice_aqc_get_pkg_info_resp *pkg; |
| enum ice_status status; |
| u16 size; |
| u32 i; |
| |
| /* Check package version compatibility */ |
| status = ice_chk_pkg_version(&hw->pkg_ver); |
| if (status) { |
| ice_debug(hw, ICE_DBG_INIT, "Package version check failed.\n"); |
| return status; |
| } |
| |
| /* find ICE segment in given package */ |
| *seg = (struct ice_seg *)ice_find_seg_in_pkg(hw, SEGMENT_TYPE_ICE, |
| ospkg); |
| if (!*seg) { |
| ice_debug(hw, ICE_DBG_INIT, "no ice segment in package.\n"); |
| return ICE_ERR_CFG; |
| } |
| |
| /* Check if FW is compatible with the OS package */ |
| size = struct_size(pkg, pkg_info, ICE_PKG_CNT); |
| pkg = kzalloc(size, GFP_KERNEL); |
| if (!pkg) |
| return ICE_ERR_NO_MEMORY; |
| |
| status = ice_aq_get_pkg_info_list(hw, pkg, size, NULL); |
| if (status) |
| goto fw_ddp_compat_free_alloc; |
| |
| for (i = 0; i < le32_to_cpu(pkg->count); i++) { |
| /* loop till we find the NVM package */ |
| if (!pkg->pkg_info[i].is_in_nvm) |
| continue; |
| if ((*seg)->hdr.seg_format_ver.major != |
| pkg->pkg_info[i].ver.major || |
| (*seg)->hdr.seg_format_ver.minor > |
| pkg->pkg_info[i].ver.minor) { |
| status = ICE_ERR_FW_DDP_MISMATCH; |
| ice_debug(hw, ICE_DBG_INIT, "OS package is not compatible with NVM.\n"); |
| } |
| /* done processing NVM package so break */ |
| break; |
| } |
| fw_ddp_compat_free_alloc: |
| kfree(pkg); |
| return status; |
| } |
| |
| /** |
| * ice_init_pkg - initialize/download package |
| * @hw: pointer to the hardware structure |
| * @buf: pointer to the package buffer |
| * @len: size of the package buffer |
| * |
| * This function initializes a package. The package contains HW tables |
| * required to do packet processing. First, the function extracts package |
| * information such as version. Then it finds the ice configuration segment |
| * within the package; this function then saves a copy of the segment pointer |
| * within the supplied package buffer. Next, the function will cache any hints |
| * from the package, followed by downloading the package itself. Note, that if |
| * a previous PF driver has already downloaded the package successfully, then |
| * the current driver will not have to download the package again. |
| * |
| * The local package contents will be used to query default behavior and to |
| * update specific sections of the HW's version of the package (e.g. to update |
| * the parse graph to understand new protocols). |
| * |
| * This function stores a pointer to the package buffer memory, and it is |
| * expected that the supplied buffer will not be freed immediately. If the |
| * package buffer needs to be freed, such as when read from a file, use |
| * ice_copy_and_init_pkg() instead of directly calling ice_init_pkg() in this |
| * case. |
| */ |
| enum ice_status ice_init_pkg(struct ice_hw *hw, u8 *buf, u32 len) |
| { |
| struct ice_pkg_hdr *pkg; |
| enum ice_status status; |
| struct ice_seg *seg; |
| |
| if (!buf || !len) |
| return ICE_ERR_PARAM; |
| |
| pkg = (struct ice_pkg_hdr *)buf; |
| status = ice_verify_pkg(pkg, len); |
| if (status) { |
| ice_debug(hw, ICE_DBG_INIT, "failed to verify pkg (err: %d)\n", |
| status); |
| return status; |
| } |
| |
| /* initialize package info */ |
| status = ice_init_pkg_info(hw, pkg); |
| if (status) |
| return status; |
| |
| /* before downloading the package, check package version for |
| * compatibility with driver |
| */ |
| status = ice_chk_pkg_compat(hw, pkg, &seg); |
| if (status) |
| return status; |
| |
| /* initialize package hints and then download package */ |
| ice_init_pkg_hints(hw, seg); |
| status = ice_download_pkg(hw, seg); |
| if (status == ICE_ERR_AQ_NO_WORK) { |
| ice_debug(hw, ICE_DBG_INIT, "package previously loaded - no work.\n"); |
| status = 0; |
| } |
| |
| /* Get information on the package currently loaded in HW, then make sure |
| * the driver is compatible with this version. |
| */ |
| if (!status) { |
| status = ice_get_pkg_info(hw); |
| if (!status) |
| status = ice_chk_pkg_version(&hw->active_pkg_ver); |
| } |
| |
| if (!status) { |
| hw->seg = seg; |
| /* on successful package download update other required |
| * registers to support the package and fill HW tables |
| * with package content. |
| */ |
| ice_init_pkg_regs(hw); |
| ice_fill_blk_tbls(hw); |
| } else { |
| ice_debug(hw, ICE_DBG_INIT, "package load failed, %d\n", |
| status); |
| } |
| |
| return status; |
| } |
| |
| /** |
| * ice_copy_and_init_pkg - initialize/download a copy of the package |
| * @hw: pointer to the hardware structure |
| * @buf: pointer to the package buffer |
| * @len: size of the package buffer |
| * |
| * This function copies the package buffer, and then calls ice_init_pkg() to |
| * initialize the copied package contents. |
| * |
| * The copying is necessary if the package buffer supplied is constant, or if |
| * the memory may disappear shortly after calling this function. |
| * |
| * If the package buffer resides in the data segment and can be modified, the |
| * caller is free to use ice_init_pkg() instead of ice_copy_and_init_pkg(). |
| * |
| * However, if the package buffer needs to be copied first, such as when being |
| * read from a file, the caller should use ice_copy_and_init_pkg(). |
| * |
| * This function will first copy the package buffer, before calling |
| * ice_init_pkg(). The caller is free to immediately destroy the original |
| * package buffer, as the new copy will be managed by this function and |
| * related routines. |
| */ |
| enum ice_status ice_copy_and_init_pkg(struct ice_hw *hw, const u8 *buf, u32 len) |
| { |
| enum ice_status status; |
| u8 *buf_copy; |
| |
| if (!buf || !len) |
| return ICE_ERR_PARAM; |
| |
| buf_copy = devm_kmemdup(ice_hw_to_dev(hw), buf, len, GFP_KERNEL); |
| |
| status = ice_init_pkg(hw, buf_copy, len); |
| if (status) { |
| /* Free the copy, since we failed to initialize the package */ |
| devm_kfree(ice_hw_to_dev(hw), buf_copy); |
| } else { |
| /* Track the copied pkg so we can free it later */ |
| hw->pkg_copy = buf_copy; |
| hw->pkg_size = len; |
| } |
| |
| return status; |
| } |
| |
| /** |
| * ice_pkg_buf_alloc |
| * @hw: pointer to the HW structure |
| * |
| * Allocates a package buffer and returns a pointer to the buffer header. |
| * Note: all package contents must be in Little Endian form. |
| */ |
| static struct ice_buf_build *ice_pkg_buf_alloc(struct ice_hw *hw) |
| { |
| struct ice_buf_build *bld; |
| struct ice_buf_hdr *buf; |
| |
| bld = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*bld), GFP_KERNEL); |
| if (!bld) |
| return NULL; |
| |
| buf = (struct ice_buf_hdr *)bld; |
| buf->data_end = cpu_to_le16(offsetof(struct ice_buf_hdr, |
| section_entry)); |
| return bld; |
| } |
| |
| /** |
| * ice_pkg_buf_free |
| * @hw: pointer to the HW structure |
| * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) |
| * |
| * Frees a package buffer |
| */ |
| static void ice_pkg_buf_free(struct ice_hw *hw, struct ice_buf_build *bld) |
| { |
| devm_kfree(ice_hw_to_dev(hw), bld); |
| } |
| |
| /** |
| * ice_pkg_buf_reserve_section |
| * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) |
| * @count: the number of sections to reserve |
| * |
| * Reserves one or more section table entries in a package buffer. This routine |
| * can be called multiple times as long as they are made before calling |
| * ice_pkg_buf_alloc_section(). Once ice_pkg_buf_alloc_section() |
| * is called once, the number of sections that can be allocated will not be able |
| * to be increased; not using all reserved sections is fine, but this will |
| * result in some wasted space in the buffer. |
| * Note: all package contents must be in Little Endian form. |
| */ |
| static enum ice_status |
| ice_pkg_buf_reserve_section(struct ice_buf_build *bld, u16 count) |
| { |
| struct ice_buf_hdr *buf; |
| u16 section_count; |
| u16 data_end; |
| |
| if (!bld) |
| return ICE_ERR_PARAM; |
| |
| buf = (struct ice_buf_hdr *)&bld->buf; |
| |
| /* already an active section, can't increase table size */ |
| section_count = le16_to_cpu(buf->section_count); |
| if (section_count > 0) |
| return ICE_ERR_CFG; |
| |
| if (bld->reserved_section_table_entries + count > ICE_MAX_S_COUNT) |
| return ICE_ERR_CFG; |
| bld->reserved_section_table_entries += count; |
| |
| data_end = le16_to_cpu(buf->data_end) + |
| flex_array_size(buf, section_entry, count); |
| buf->data_end = cpu_to_le16(data_end); |
| |
| return 0; |
| } |
| |
| /** |
| * ice_pkg_buf_alloc_section |
| * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) |
| * @type: the section type value |
| * @size: the size of the section to reserve (in bytes) |
| * |
| * Reserves memory in the buffer for a section's content and updates the |
| * buffers' status accordingly. This routine returns a pointer to the first |
| * byte of the section start within the buffer, which is used to fill in the |
| * section contents. |
| * Note: all package contents must be in Little Endian form. |
| */ |
| static void * |
| ice_pkg_buf_alloc_section(struct ice_buf_build *bld, u32 type, u16 size) |
| { |
| struct ice_buf_hdr *buf; |
| u16 sect_count; |
| u16 data_end; |
| |
| if (!bld || !type || !size) |
| return NULL; |
| |
| buf = (struct ice_buf_hdr *)&bld->buf; |
| |
| /* check for enough space left in buffer */ |
| data_end = le16_to_cpu(buf->data_end); |
| |
| /* section start must align on 4 byte boundary */ |
| data_end = ALIGN(data_end, 4); |
| |
| if ((data_end + size) > ICE_MAX_S_DATA_END) |
| return NULL; |
| |
| /* check for more available section table entries */ |
| sect_count = le16_to_cpu(buf->section_count); |
| if (sect_count < bld->reserved_section_table_entries) { |
| void *section_ptr = ((u8 *)buf) + data_end; |
| |
| buf->section_entry[sect_count].offset = cpu_to_le16(data_end); |
| buf->section_entry[sect_count].size = cpu_to_le16(size); |
| buf->section_entry[sect_count].type = cpu_to_le32(type); |
| |
| data_end += size; |
| buf->data_end = cpu_to_le16(data_end); |
| |
| buf->section_count = cpu_to_le16(sect_count + 1); |
| return section_ptr; |
| } |
| |
| /* no free section table entries */ |
| return NULL; |
| } |
| |
| /** |
| * ice_pkg_buf_get_active_sections |
| * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) |
| * |
| * Returns the number of active sections. Before using the package buffer |
| * in an update package command, the caller should make sure that there is at |
| * least one active section - otherwise, the buffer is not legal and should |
| * not be used. |
| * Note: all package contents must be in Little Endian form. |
| */ |
| static u16 ice_pkg_buf_get_active_sections(struct ice_buf_build *bld) |
| { |
| struct ice_buf_hdr *buf; |
| |
| if (!bld) |
| return 0; |
| |
| buf = (struct ice_buf_hdr *)&bld->buf; |
| return le16_to_cpu(buf->section_count); |
| } |
| |
| /** |
| * ice_pkg_buf |
| * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) |
| * |
| * Return a pointer to the buffer's header |
| */ |
| static struct ice_buf *ice_pkg_buf(struct ice_buf_build *bld) |
| { |
| if (!bld) |
| return NULL; |
| |
| return &bld->buf; |
| } |
| |
| /** |
| * ice_get_open_tunnel_port - retrieve an open tunnel port |
| * @hw: pointer to the HW structure |
| * @port: returns open port |
| */ |
| bool |
| ice_get_open_tunnel_port(struct ice_hw *hw, u16 *port) |
| { |
| bool res = false; |
| u16 i; |
| |
| mutex_lock(&hw->tnl_lock); |
| |
| for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++) |
| if (hw->tnl.tbl[i].valid && hw->tnl.tbl[i].port) { |
| *port = hw->tnl.tbl[i].port; |
| res = true; |
| break; |
| } |
| |
| mutex_unlock(&hw->tnl_lock); |
| |
| return res; |
| } |
| |
| /** |
| * ice_tunnel_idx_to_entry - convert linear index to the sparse one |
| * @hw: pointer to the HW structure |
| * @type: type of tunnel |
| * @idx: linear index |
| * |
| * Stack assumes we have 2 linear tables with indexes [0, count_valid), |
| * but really the port table may be sprase, and types are mixed, so convert |
| * the stack index into the device index. |
| */ |
| static u16 ice_tunnel_idx_to_entry(struct ice_hw *hw, enum ice_tunnel_type type, |
| u16 idx) |
| { |
| u16 i; |
| |
| for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++) |
| if (hw->tnl.tbl[i].valid && |
| hw->tnl.tbl[i].type == type && |
| idx-- == 0) |
| return i; |
| |
| WARN_ON_ONCE(1); |
| return 0; |
| } |
| |
| /** |
| * ice_create_tunnel |
| * @hw: pointer to the HW structure |
| * @index: device table entry |
| * @type: type of tunnel |
| * @port: port of tunnel to create |
| * |
| * Create a tunnel by updating the parse graph in the parser. We do that by |
| * creating a package buffer with the tunnel info and issuing an update package |
| * command. |
| */ |
| static enum ice_status |
| ice_create_tunnel(struct ice_hw *hw, u16 index, |
| enum ice_tunnel_type type, u16 port) |
| { |
| struct ice_boost_tcam_section *sect_rx, *sect_tx; |
| enum ice_status status = ICE_ERR_MAX_LIMIT; |
| struct ice_buf_build *bld; |
| |
| mutex_lock(&hw->tnl_lock); |
| |
| bld = ice_pkg_buf_alloc(hw); |
| if (!bld) { |
| status = ICE_ERR_NO_MEMORY; |
| goto ice_create_tunnel_end; |
| } |
| |
| /* allocate 2 sections, one for Rx parser, one for Tx parser */ |
| if (ice_pkg_buf_reserve_section(bld, 2)) |
| goto ice_create_tunnel_err; |
| |
| sect_rx = ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM, |
| struct_size(sect_rx, tcam, 1)); |
| if (!sect_rx) |
| goto ice_create_tunnel_err; |
| sect_rx->count = cpu_to_le16(1); |
| |
| sect_tx = ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM, |
| struct_size(sect_tx, tcam, 1)); |
| if (!sect_tx) |
| goto ice_create_tunnel_err; |
| sect_tx->count = cpu_to_le16(1); |
| |
| /* copy original boost entry to update package buffer */ |
| memcpy(sect_rx->tcam, hw->tnl.tbl[index].boost_entry, |
| sizeof(*sect_rx->tcam)); |
| |
| /* over-write the never-match dest port key bits with the encoded port |
| * bits |
| */ |
| ice_set_key((u8 *)§_rx->tcam[0].key, sizeof(sect_rx->tcam[0].key), |
| (u8 *)&port, NULL, NULL, NULL, |
| (u16)offsetof(struct ice_boost_key_value, hv_dst_port_key), |
| sizeof(sect_rx->tcam[0].key.key.hv_dst_port_key)); |
| |
| /* exact copy of entry to Tx section entry */ |
| memcpy(sect_tx->tcam, sect_rx->tcam, sizeof(*sect_tx->tcam)); |
| |
| status = ice_update_pkg(hw, ice_pkg_buf(bld), 1); |
| if (!status) |
| hw->tnl.tbl[index].port = port; |
| |
| ice_create_tunnel_err: |
| ice_pkg_buf_free(hw, bld); |
| |
| ice_create_tunnel_end: |
| mutex_unlock(&hw->tnl_lock); |
| |
| return status; |
| } |
| |
| /** |
| * ice_destroy_tunnel |
| * @hw: pointer to the HW structure |
| * @index: device table entry |
| * @type: type of tunnel |
| * @port: port of tunnel to destroy (ignored if the all parameter is true) |
| * |
| * Destroys a tunnel or all tunnels by creating an update package buffer |
| * targeting the specific updates requested and then performing an update |
| * package. |
| */ |
| static enum ice_status |
| ice_destroy_tunnel(struct ice_hw *hw, u16 index, enum ice_tunnel_type type, |
| u16 port) |
| { |
| struct ice_boost_tcam_section *sect_rx, *sect_tx; |
| enum ice_status status = ICE_ERR_MAX_LIMIT; |
| struct ice_buf_build *bld; |
| |
| mutex_lock(&hw->tnl_lock); |
| |
| if (WARN_ON(!hw->tnl.tbl[index].valid || |
| hw->tnl.tbl[index].type != type || |
| hw->tnl.tbl[index].port != port)) { |
| status = ICE_ERR_OUT_OF_RANGE; |
| goto ice_destroy_tunnel_end; |
| } |
| |
| bld = ice_pkg_buf_alloc(hw); |
| if (!bld) { |
| status = ICE_ERR_NO_MEMORY; |
| goto ice_destroy_tunnel_end; |
| } |
| |
| /* allocate 2 sections, one for Rx parser, one for Tx parser */ |
| if (ice_pkg_buf_reserve_section(bld, 2)) |
| goto ice_destroy_tunnel_err; |
| |
| sect_rx = ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM, |
| struct_size(sect_rx, tcam, 1)); |
| if (!sect_rx) |
| goto ice_destroy_tunnel_err; |
| sect_rx->count = cpu_to_le16(1); |
| |
| sect_tx = ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM, |
| struct_size(sect_tx, tcam, 1)); |
| if (!sect_tx) |
| goto ice_destroy_tunnel_err; |
| sect_tx->count = cpu_to_le16(1); |
| |
| /* copy original boost entry to update package buffer, one copy to Rx |
| * section, another copy to the Tx section |
| */ |
| memcpy(sect_rx->tcam, hw->tnl.tbl[index].boost_entry, |
| sizeof(*sect_rx->tcam)); |
| memcpy(sect_tx->tcam, hw->tnl.tbl[index].boost_entry, |
| sizeof(*sect_tx->tcam)); |
| |
| status = ice_update_pkg(hw, ice_pkg_buf(bld), 1); |
| if (!status) |
| hw->tnl.tbl[index].port = 0; |
| |
| ice_destroy_tunnel_err: |
| ice_pkg_buf_free(hw, bld); |
| |
| ice_destroy_tunnel_end: |
| mutex_unlock(&hw->tnl_lock); |
| |
| return status; |
| } |
| |
| int ice_udp_tunnel_set_port(struct net_device *netdev, unsigned int table, |
| unsigned int idx, struct udp_tunnel_info *ti) |
| { |
| struct ice_netdev_priv *np = netdev_priv(netdev); |
| struct ice_vsi *vsi = np->vsi; |
| struct ice_pf *pf = vsi->back; |
| enum ice_tunnel_type tnl_type; |
| enum ice_status status; |
| u16 index; |
| |
| tnl_type = ti->type == UDP_TUNNEL_TYPE_VXLAN ? TNL_VXLAN : TNL_GENEVE; |
| index = ice_tunnel_idx_to_entry(&pf->hw, tnl_type, idx); |
| |
| status = ice_create_tunnel(&pf->hw, index, tnl_type, ntohs(ti->port)); |
| if (status) { |
| netdev_err(netdev, "Error adding UDP tunnel - %s\n", |
| ice_stat_str(status)); |
| return -EIO; |
| } |
| |
| udp_tunnel_nic_set_port_priv(netdev, table, idx, index); |
| return 0; |
| } |
| |
| int ice_udp_tunnel_unset_port(struct net_device *netdev, unsigned int table, |
| unsigned int idx, struct udp_tunnel_info *ti) |
| { |
| struct ice_netdev_priv *np = netdev_priv(netdev); |
| struct ice_vsi *vsi = np->vsi; |
| struct ice_pf *pf = vsi->back; |
| enum ice_tunnel_type tnl_type; |
| enum ice_status status; |
| |
| tnl_type = ti->type == UDP_TUNNEL_TYPE_VXLAN ? TNL_VXLAN : TNL_GENEVE; |
| |
| status = ice_destroy_tunnel(&pf->hw, ti->hw_priv, tnl_type, |
| ntohs(ti->port)); |
| if (status) { |
| netdev_err(netdev, "Error removing UDP tunnel - %s\n", |
| ice_stat_str(status)); |
| return -EIO; |
| } |
| |
| return 0; |
| } |
| |
| /* PTG Management */ |
| |
| /** |
| * ice_ptg_find_ptype - Search for packet type group using packet type (ptype) |
| * @hw: pointer to the hardware structure |
| * @blk: HW block |
| * @ptype: the ptype to search for |
| * @ptg: pointer to variable that receives the PTG |
| * |
| * This function will search the PTGs for a particular ptype, returning the |
| * PTG ID that contains it through the PTG parameter, with the value of |
| * ICE_DEFAULT_PTG (0) meaning it is part the default PTG. |
| */ |
| static enum ice_status |
| ice_ptg_find_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 *ptg) |
| { |
| if (ptype >= ICE_XLT1_CNT || !ptg) |
| return ICE_ERR_PARAM; |
| |
| *ptg = hw->blk[blk].xlt1.ptypes[ptype].ptg; |
| return 0; |
| } |
| |
| /** |
| * ice_ptg_alloc_val - Allocates a new packet type group ID by value |
| * @hw: pointer to the hardware structure |
| * @blk: HW block |
| * @ptg: the PTG to allocate |
| * |
| * This function allocates a given packet type group ID specified by the PTG |
| * parameter. |
| */ |
| static void ice_ptg_alloc_val(struct ice_hw *hw, enum ice_block blk, u8 ptg) |
| { |
| hw->blk[blk].xlt1.ptg_tbl[ptg].in_use = true; |
| } |
| |
| /** |
| * ice_ptg_remove_ptype - Removes ptype from a particular packet type group |
| * @hw: pointer to the hardware structure |
| * @blk: HW block |
| * @ptype: the ptype to remove |
| * @ptg: the PTG to remove the ptype from |
| * |
| * This function will remove the ptype from the specific PTG, and move it to |
| * the default PTG (ICE_DEFAULT_PTG). |
| */ |
| static enum ice_status |
| ice_ptg_remove_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg) |
| { |
| struct ice_ptg_ptype **ch; |
| struct ice_ptg_ptype *p; |
| |
| if (ptype > ICE_XLT1_CNT - 1) |
| return ICE_ERR_PARAM; |
| |
| if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use) |
| return ICE_ERR_DOES_NOT_EXIST; |
| |
| /* Should not happen if .in_use is set, bad config */ |
| if (!hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype) |
| return ICE_ERR_CFG; |
| |
| /* find the ptype within this PTG, and bypass the link over it */ |
| p = hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype; |
| ch = &hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype; |
| while (p) { |
| if (ptype == (p - hw->blk[blk].xlt1.ptypes)) { |
| *ch = p->next_ptype; |
| break; |
| } |
| |
| ch = &p->next_ptype; |
| p = p->next_ptype; |
| } |
| |
| hw->blk[blk].xlt1.ptypes[ptype].ptg = ICE_DEFAULT_PTG; |
| hw->blk[blk].xlt1.ptypes[ptype].next_ptype = NULL; |
| |
| return 0; |
| } |
| |
| /** |
| * ice_ptg_add_mv_ptype - Adds/moves ptype to a particular packet type group |
| * @hw: pointer to the hardware structure |
| * @blk: HW block |
| * @ptype: the ptype to add or move |
| * @ptg: the PTG to add or move the ptype to |
| * |
| * This function will either add or move a ptype to a particular PTG depending |
| * on if the ptype is already part of another group. Note that using a |
| * a destination PTG ID of ICE_DEFAULT_PTG (0) will move the ptype to the |
| * default PTG. |
| */ |
| static enum ice_status |
| ice_ptg_add_mv_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg) |
| { |
| enum ice_status status; |
| u8 original_ptg; |
| |
| if (ptype > ICE_XLT1_CNT - 1) |
| return ICE_ERR_PARAM; |
| |
| if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use && ptg != ICE_DEFAULT_PTG) |
| return ICE_ERR_DOES_NOT_EXIST; |
| |
| status = ice_ptg_find_ptype(hw, blk, ptype, &original_ptg); |
| if (status) |
| return status; |
| |
| /* Is ptype already in the correct PTG? */ |
| if (original_ptg == ptg) |
| return 0; |
| |
| /* Remove from original PTG and move back to the default PTG */ |
| if (original_ptg != ICE_DEFAULT_PTG) |
| ice_ptg_remove_ptype(hw, blk, ptype, original_ptg); |
| |
| /* Moving to default PTG? Then we're done with this request */ |
| if (ptg == ICE_DEFAULT_PTG) |
| return 0; |
| |
| /* Add ptype to PTG at beginning of list */ |
| hw->blk[blk].xlt1.ptypes[ptype].next_ptype = |
| hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype; |
| hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype = |
| &hw->blk[blk].xlt1.ptypes[ptype]; |
| |
| hw->blk[blk].xlt1.ptypes[ptype].ptg = ptg; |
| hw->blk[blk].xlt1.t[ptype] = ptg; |
| |
| return 0; |
| } |
| |
| /* Block / table size info */ |
| struct ice_blk_size_details { |
| u16 xlt1; /* # XLT1 entries */ |
| u16 xlt2; /* # XLT2 entries */ |
| u16 prof_tcam; /* # profile ID TCAM entries */ |
| u16 prof_id; /* # profile IDs */ |
| u8 prof_cdid_bits; /* # CDID one-hot bits used in key */ |
| u16 prof_redir; /* # profile redirection entries */ |
| u16 es; /* # extraction sequence entries */ |
| u16 fvw; /* # field vector words */ |
| u8 overwrite; /* overwrite existing entries allowed */ |
| u8 reverse; /* reverse FV order */ |
| }; |
| |
| static const struct ice_blk_size_details blk_sizes[ICE_BLK_COUNT] = { |
| /** |
| * Table Definitions |
| * XLT1 - Number of entries in XLT1 table |
| * XLT2 - Number of entries in XLT2 table |
| * TCAM - Number of entries Profile ID TCAM table |
| * CDID - Control Domain ID of the hardware block |
| * PRED - Number of entries in the Profile Redirection Table |
| * FV - Number of entries in the Field Vector |
| * FVW - Width (in WORDs) of the Field Vector |
| * OVR - Overwrite existing table entries |
| * REV - Reverse FV |
| */ |
| /* XLT1 , XLT2 ,TCAM, PID,CDID,PRED, FV, FVW */ |
| /* Overwrite , Reverse FV */ |
| /* SW */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 256, 0, 256, 256, 48, |
| false, false }, |
| /* ACL */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 32, |
| false, false }, |
| /* FD */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 24, |
| false, true }, |
| /* RSS */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 24, |
| true, true }, |
| /* PE */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 64, 32, 0, 32, 32, 24, |
| false, false }, |
| }; |
| |
| enum ice_sid_all { |
| ICE_SID_XLT1_OFF = 0, |
| ICE_SID_XLT2_OFF, |
| ICE_SID_PR_OFF, |
| ICE_SID_PR_REDIR_OFF, |
| ICE_SID_ES_OFF, |
| ICE_SID_OFF_COUNT, |
| }; |
| |
| /* Characteristic handling */ |
| |
| /** |
| * ice_match_prop_lst - determine if properties of two lists match |
| * @list1: first properties list |
| * @list2: second properties list |
| * |
| * Count, cookies and the order must match in order to be considered equivalent. |
| */ |
| static bool |
| ice_match_prop_lst(struct list_head *list1, struct list_head *list2) |
| { |
| struct ice_vsig_prof *tmp1; |
| struct ice_vsig_prof *tmp2; |
| u16 chk_count = 0; |
| u16 count = 0; |
| |
| /* compare counts */ |
| list_for_each_entry(tmp1, list1, list) |
| count++; |
| list_for_each_entry(tmp2, list2, list) |
| chk_count++; |
| /* cppcheck-suppress knownConditionTrueFalse */ |
| if (!count || count != chk_count) |
| return false; |
| |
| tmp1 = list_first_entry(list1, struct ice_vsig_prof, list); |
| tmp2 = list_first_entry(list2, struct ice_vsig_prof, list); |
| |
| /* profile cookies must compare, and in the exact same order to take |
| * into account priority |
| */ |
| while (count--) { |
| if (tmp2->profile_cookie != tmp1->profile_cookie) |
| return false; |
| |
| tmp1 = list_next_entry(tmp1, list); |
| tmp2 = list_next_entry(tmp2, list); |
| } |
| |
| return true; |
| } |
| |
| /* VSIG Management */ |
| |
| /** |
| * ice_vsig_find_vsi - find a VSIG that contains a specified VSI |
| * @hw: pointer to the hardware structure |
| * @blk: HW block |
| * @vsi: VSI of interest |
| * @vsig: pointer to receive the VSI group |
| * |
| * This function will lookup the VSI entry in the XLT2 list and return |
| * the VSI group its associated with. |
| */ |
| static enum ice_status |
| ice_vsig_find_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 *vsig) |
| { |
| if (!vsig || vsi >= ICE_MAX_VSI) |
| return ICE_ERR_PARAM; |
| |
| /* As long as there's a default or valid VSIG associated with the input |
| * VSI, the functions returns a success. Any handling of VSIG will be |
| * done by the following add, update or remove functions. |
| */ |
| *vsig = hw->blk[blk].xlt2.vsis[vsi].vsig; |
| |
| return 0; |
| } |
| |
| /** |
| * ice_vsig_alloc_val - allocate a new VSIG by value |
| * @hw: pointer to the hardware structure |
| * @blk: HW block |
| * @vsig: the VSIG to allocate |
| * |
| * This function will allocate a given VSIG specified by the VSIG parameter. |
| */ |
| static u16 ice_vsig_alloc_val(struct ice_hw *hw, enum ice_block blk, u16 vsig) |
| { |
| u16 idx = vsig & ICE_VSIG_IDX_M; |
| |
| if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) { |
| INIT_LIST_HEAD(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst); |
| hw->blk[blk].xlt2.vsig_tbl[idx].in_use = true; |
| } |
| |
| return ICE_VSIG_VALUE(idx, hw->pf_id); |
| } |
| |
| /** |
| * ice_vsig_alloc - Finds a free entry and allocates a new VSIG |
| * @hw: pointer to the hardware structure |
| * @blk: HW block |
| * |
| * This function will iterate through the VSIG list and mark the first |
| * unused entry for the new VSIG entry as used and return that value. |
| */ |
| static u16 ice_vsig_alloc(struct ice_hw *hw, enum ice_block blk) |
| { |
| u16 i; |
| |
| for (i = 1; i < ICE_MAX_VSIGS; i++) |
| if (!hw->blk[blk].xlt2.vsig_tbl[i].in_use) |
| return ice_vsig_alloc_val(hw, blk, i); |
| |
| return ICE_DEFAULT_VSIG; |
| } |
| |
| /** |
| * ice_find_dup_props_vsig - find VSI group with a specified set of properties |
| * @hw: pointer to the hardware structure |
| * @blk: HW block |
| * @chs: characteristic list |
| * @vsig: returns the VSIG with the matching profiles, if found |
| * |
| * Each VSIG is associated with a characteristic set; i.e. all VSIs under |
| * a group have the same characteristic set. To check if there exists a VSIG |
| * which has the same characteristics as the input characteristics; this |
| * function will iterate through the XLT2 list and return the VSIG that has a |
| * matching configuration. In order to make sure that priorities are accounted |
| * for, the list must match exactly, including the order in which the |
| * characteristics are listed. |
| */ |
| static enum ice_status |
| ice_find_dup_props_vsig(struct ice_hw *hw, enum ice_block blk, |
| struct list_head *chs, u16 *vsig) |
| { |
| struct ice_xlt2 *xlt2 = &hw->blk[blk].xlt2; |
| u16 i; |
| |
| for (i = 0; i < xlt2->count; i++) |
| if (xlt2->vsig_tbl[i].in_use && |
| ice_match_prop_lst(chs, &xlt2->vsig_tbl[i].prop_lst)) { |
| *vsig = ICE_VSIG_VALUE(i, hw->pf_id); |
| return 0; |
| } |
| |
| return ICE_ERR_DOES_NOT_EXIST; |
| } |
| |
| /** |
| * ice_vsig_free - free VSI group |
| * @hw: pointer to the hardware structure |
| * @blk: HW block |
| * @vsig: VSIG to remove |
| * |
| * The function will remove all VSIs associated with the input VSIG and move |
| * them to the DEFAULT_VSIG and mark the VSIG available. |
| */ |
| static enum ice_status |
| ice_vsig_free(struct ice_hw *hw, enum ice_block blk, u16 vsig) |
| { |
| struct ice_vsig_prof *dtmp, *del; |
| struct ice_vsig_vsi *vsi_cur; |
| u16 idx; |
| |
| idx = vsig & ICE_VSIG_IDX_M; |
| if (idx >= ICE_MAX_VSIGS) |
| return ICE_ERR_PARAM; |
| |
| if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) |
| return ICE_ERR_DOES_NOT_EXIST; |
| |
| hw->blk[blk].xlt2.vsig_tbl[idx].in_use = false; |
| |
| vsi_cur = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi; |
| /* If the VSIG has at least 1 VSI then iterate through the |
| * list and remove the VSIs before deleting the group. |
| */ |
| if (vsi_cur) { |
| /* remove all vsis associated with this VSIG XLT2 entry */ |
| do { |
| struct ice_vsig_vsi *tmp = vsi_cur->next_vsi; |
| |
| vsi_cur->vsig = ICE_DEFAULT_VSIG; |
| vsi_cur->changed = 1; |
| vsi_cur->next_vsi = NULL; |
| vsi_cur = tmp; |
| } while (vsi_cur); |
| |
| /* NULL terminate head of VSI list */ |
| hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi = NULL; |
| } |
| |
| /* free characteristic list */ |
| list_for_each_entry_safe(del, dtmp, |
| &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, |
| list) { |
| list_del(&del->list); |
| devm_kfree(ice_hw_to_dev(hw), del); |
| } |
| |
| /* if VSIG characteristic list was cleared for reset |
| * re-initialize the list head |
| */ |
| INIT_LIST_HEAD(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst); |
| |
| return 0; |
| } |
| |
| /** |
| * ice_vsig_remove_vsi - remove VSI from VSIG |
| * @hw: pointer to the hardware structure |
| * @blk: HW block |
| * @vsi: VSI to remove |
| * @vsig: VSI group to remove from |
| * |
| * The function will remove the input VSI from its VSI group and move it |
| * to the DEFAULT_VSIG. |
| */ |
| static enum ice_status |
| ice_vsig_remove_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig) |
| { |
| struct ice_vsig_vsi **vsi_head, *vsi_cur, *vsi_tgt; |
| u16 idx; |
| |
| idx = vsig & ICE_VSIG_IDX_M; |
| |
| if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS) |
| return ICE_ERR_PARAM; |
| |
| if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) |
| return ICE_ERR_DOES_NOT_EXIST; |
| |
| /* entry already in default VSIG, don't have to remove */ |
| if (idx == ICE_DEFAULT_VSIG) |
| return 0; |
| |
| vsi_head = &hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi; |
| if (!(*vsi_head)) |
| return ICE_ERR_CFG; |
| |
| vsi_tgt = &hw->blk[blk].xlt2.vsis[vsi]; |
| vsi_cur = (*vsi_head); |
| |
| /* iterate the VSI list, skip over the entry to be removed */ |
| while (vsi_cur) { |
| if (vsi_tgt == vsi_cur) { |
| (*vsi_head) = vsi_cur->next_vsi; |
| break; |
| } |
| vsi_head = &vsi_cur->next_vsi; |
| vsi_cur = vsi_cur->next_vsi; |
| } |
| |
| /* verify if VSI was removed from group list */ |
| if (!vsi_cur) |
| return ICE_ERR_DOES_NOT_EXIST; |
| |
| vsi_cur->vsig = ICE_DEFAULT_VSIG; |
| vsi_cur->changed = 1; |
| vsi_cur->next_vsi = NULL; |
| |
| return 0; |
| } |
| |
| /** |
| * ice_vsig_add_mv_vsi - add or move a VSI to a VSI group |
| * @hw: pointer to the hardware structure |
| * @blk: HW block |
| * @vsi: VSI to move |
| * @vsig: destination VSI group |
| * |
| * This function will move or add the input VSI to the target VSIG. |
| * The function will find the original VSIG the VSI belongs to and |
| * move the entry to the DEFAULT_VSIG, update the original VSIG and |
| * then move entry to the new VSIG. |
| */ |
| static enum ice_status |
| ice_vsig_add_mv_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig) |
| { |
| struct ice_vsig_vsi *tmp; |
| enum ice_status status; |
| u16 orig_vsig, idx; |
| |
| idx = vsig & ICE_VSIG_IDX_M; |
| |
| if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS) |
| return ICE_ERR_PARAM; |
| |
| /* if VSIG not in use and VSIG is not default type this VSIG |
| * doesn't exist. |
| */ |
| if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use && |
| vsig != ICE_DEFAULT_VSIG) |
| return ICE_ERR_DOES_NOT_EXIST; |
| |
| status = ice_vsig_find_vsi(hw, blk, vsi, &orig_vsig); |
| if (status) |
| return status; |
| |
| /* no update required if vsigs match */ |
| if (orig_vsig == vsig) |
| return 0; |
| |
| if (orig_vsig != ICE_DEFAULT_VSIG) { |
| /* remove entry from orig_vsig and add to default VSIG */ |
| status = ice_vsig_remove_vsi(hw, blk, vsi, orig_vsig); |
| if (status) |
| return status; |
| } |
| |
| if (idx == ICE_DEFAULT_VSIG) |
| return 0; |
| |
| /* Create VSI entry and add VSIG and prop_mask values */ |
| hw->blk[blk].xlt2.vsis[vsi].vsig = vsig; |
| hw->blk[blk].xlt2.vsis[vsi].changed = 1; |
| |
| /* Add new entry to the head of the VSIG list */ |
| tmp = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi; |
| hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi = |
| &hw->blk[blk].xlt2.vsis[vsi]; |
| hw->blk[blk].xlt2.vsis[vsi].next_vsi = tmp; |
| hw->blk[blk].xlt2.t[vsi] = vsig; |
| |
| return 0; |
| } |
| |
| /** |
| * ice_prof_has_mask_idx - determine if profile index masking is identical |
| * @hw: pointer to the hardware structure |
| * @blk: HW block |
| * @prof: profile to check |
| * @idx: profile index to check |
| * @mask: mask to match |
| */ |
| static bool |
| ice_prof_has_mask_idx(struct ice_hw *hw, enum ice_block blk, u8 prof, u16 idx, |
| u16 mask) |
| { |
| bool expect_no_mask = false; |
| bool found = false; |
| bool match = false; |
| u16 i; |
| |
| /* If mask is 0x0000 or 0xffff, then there is no masking */ |
| if (mask == 0 || mask == 0xffff) |
| expect_no_mask = true; |
| |
| /* Scan the enabled masks on this profile, for the specified idx */ |
| for (i = hw->blk[blk].masks.first; i < hw->blk[blk].masks.first + |
| hw->blk[blk].masks.count; i++) |
| if (hw->blk[blk].es.mask_ena[prof] & BIT(i)) |
| if (hw->blk[blk].masks.masks[i].in_use && |
| hw->blk[blk].masks.masks[i].idx == idx) { |
| found = true; |
| if (hw->blk[blk].masks.masks[i].mask == mask) |
| match = true; |
| break; |
| } |
| |
| if (expect_no_mask) { |
| if (found) |
| return false; |
| } else { |
| if (!match) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /** |
| * ice_prof_has_mask - determine if profile masking is identical |
| * @hw: pointer to the hardware structure |
| * @blk: HW block |
| * @prof: profile to check |
| * @masks: masks to match |
| */ |
| static bool |
| ice_prof_has_mask(struct ice_hw *hw, enum ice_block blk, u8 prof, u16 *masks) |
| { |
| u16 i; |
| |
| /* es->mask_ena[prof] will have the mask */ |
| for (i = 0; i < hw->blk[blk].es.fvw; i++) |
| if (!ice_prof_has_mask_idx(hw, blk, prof, i, masks[i])) |
| return false; |
| |
| return true; |
| } |
| |
| /** |
| * ice_find_prof_id_with_mask - find profile ID for a given field vector |
| * @hw: pointer to the hardware structure |
| * @blk: HW block |
| * @fv: field vector to search for |
| * @masks: masks for FV |
| * @prof_id: receives the profile ID |
| */ |
| static enum ice_status |
| ice_find_prof_id_with_mask(struct ice_hw *hw, enum ice_block blk, |
| struct ice_fv_word *fv, u16 *masks, u8 *prof_id) |
| { |
| struct ice_es *es = &hw->blk[blk].es; |
| u8 i; |
| |
| /* For FD, we don't want to re-use a existed profile with the same |
| * field vector and mask. This will cause rule interference. |
| */ |
| if (blk == ICE_BLK_FD) |
| return ICE_ERR_DOES_NOT_EXIST; |
| |
| for (i = 0; i < (u8)es->count; i++) { |
| u16 off = i * es->fvw; |
| |
| if (memcmp(&es->t[off], fv, es->fvw * sizeof(*fv))) |
| continue; |
| |
| /* check if masks settings are the same for this profile */ |
| if (masks && !ice_prof_has_mask(hw, blk, i, masks)) |
| continue; |
| |
| *prof_id = i; |
| return 0; |
| } |
| |
| return ICE_ERR_DOES_NOT_EXIST; |
| } |
| |
| /** |
| * ice_prof_id_rsrc_type - get profile ID resource type for a block type |
| * @blk: the block type |
| * @rsrc_type: pointer to variable to receive the resource type |
| */ |
| static bool ice_prof_id_rsrc_type(enum ice_block blk, u16 *rsrc_type) |
| { |
| switch (blk) { |
| case ICE_BLK_FD: |
| *rsrc_type = ICE_AQC_RES_TYPE_FD_PROF_BLDR_PROFID; |
| break; |
| case ICE_BLK_RSS: |
| *rsrc_type = ICE_AQC_RES_TYPE_HASH_PROF_BLDR_PROFID; |
| break; |
| default: |
| return false; |
| } |
| return true; |
| } |
| |
| /** |
| * ice_tcam_ent_rsrc_type - get TCAM entry resource type for a block type |
| * @blk: the block type |
| * @rsrc_type: pointer to variable to receive the resource type |
| */ |
| static bool ice_tcam_ent_rsrc_type(enum ice_block blk, u16 *rsrc_type) |
| { |
| switch (blk) { |
| case ICE_BLK_FD: |
| *rsrc_type = ICE_AQC_RES_TYPE_FD_PROF_BLDR_TCAM; |
| break; |
| case ICE_BLK_RSS: |
| *rsrc_type = ICE_AQC_RES_TYPE_HASH_PROF_BLDR_TCAM; |
| break; |
| default: |
| return false; |
| } |
| return true; |
| } |
| |
| /** |
| * ice_alloc_tcam_ent - allocate hardware TCAM entry |
| * @hw: pointer to the HW struct |
| * @blk: the block to allocate the TCAM for |
| * @btm: true to allocate from bottom of table, false to allocate from top |
| * @tcam_idx: pointer to variable to receive the TCAM entry |
| * |
| * This function allocates a new entry in a Profile ID TCAM for a specific |
| * block. |
| */ |
| static enum ice_status |
| ice_alloc_tcam_ent(struct ice_hw *hw, enum ice_block blk, bool btm, |
| u16 *tcam_idx) |
| { |
| u16 res_type; |
| |
| if (!ice_tcam_ent_rsrc_type(blk, &res_type)) |
| return ICE_ERR_PARAM; |
| |
| return ice_alloc_hw_res(hw, res_type, 1, btm, tcam_idx); |
| } |
| |
| /** |
| * ice_free_tcam_ent - free hardware TCAM entry |
| * @hw: pointer to the HW struct |
| * @blk: the block from which to free the TCAM entry |
| * @tcam_idx: the TCAM entry to free |
| * |
| * This function frees an entry in a Profile ID TCAM for a specific block. |
| */ |
| static enum ice_status |
| ice_free_tcam_ent(struct ice_hw *hw, enum ice_block blk, u16 tcam_idx) |
| { |
| u16 res_type; |
| |
| if (!ice_tcam_ent_rsrc_type(blk, &res_type)) |
| return ICE_ERR_PARAM; |
| |
| return ice_free_hw_res(hw, res_type, 1, &tcam_idx); |
| } |
| |
| /** |
| * ice_alloc_prof_id - allocate profile ID |
| * @hw: pointer to the HW struct |
| * @blk: the block to allocate the profile ID for |
| * @prof_id: pointer to variable to receive the profile ID |
| * |
| * This function allocates a new profile ID, which also corresponds to a Field |
| * Vector (Extraction Sequence) entry. |
| */ |
| static enum ice_status |
| ice_alloc_prof_id(struct ice_hw *hw, enum ice_block blk, u8 *prof_id) |
| { |
| enum ice_status status; |
| u16 res_type; |
| u16 get_prof; |
| |
| if (!ice_prof_id_rsrc_type(blk, &res_type)) |
| return ICE_ERR_PARAM; |
| |
| status = ice_alloc_hw_res(hw, res_type, 1, false, &get_prof); |
| if (!status) |
| *prof_id = (u8)get_prof; |
| |
| return status; |
| } |
| |
| /** |
| * ice_free_prof_id - free profile ID |
| * @hw: pointer to the HW struct |
| * @blk: the block from which to free the profile ID |
| * @prof_id: the profile ID to free |
| * |
| * This function frees a profile ID, which also corresponds to a Field Vector. |
| */ |
| static enum ice_status |
| ice_free_prof_id(struct ice_hw *hw, enum ice_block blk, u8 prof_id) |
| { |
| u16 tmp_prof_id = (u16)prof_id; |
| u16 res_type; |
| |
| if (!ice_prof_id_rsrc_type(blk, &res_type)) |
| return ICE_ERR_PARAM; |
| |
| return ice_free_hw_res(hw, res_type, 1, &tmp_prof_id); |
| } |
| |
| /** |
| * ice_prof_inc_ref - increment reference count for profile |
| * @hw: pointer to the HW struct |
| * @blk: the block from which to free the profile ID |
| * @prof_id: the profile ID for which to increment the reference count |
| */ |
| static enum ice_status |
| ice_prof_inc_ref(struct ice_hw *hw, enum ice_block blk, u8 prof_id) |
| { |
| if (prof_id > hw->blk[blk].es.count) |
| return ICE_ERR_PARAM; |
| |
| hw->blk[blk].es.ref_count[prof_id]++; |
| |
| return 0; |
| } |
| |
| /** |
| * ice_write_prof_mask_reg - write profile mask register |
| * @hw: pointer to the HW struct |
| * @blk: hardware block |
| * @mask_idx: mask index |
| * @idx: index of the FV which will use the mask |
| * @mask: the 16-bit mask |
| */ |
| static void |
| ice_write_prof_mask_reg(struct ice_hw *hw, enum ice_block blk, u16 mask_idx, |
| u16 idx, u16 mask) |
| { |
| u32 offset; |
| u32 val; |
| |
| switch (blk) { |
| case ICE_BLK_RSS: |
| offset = GLQF_HMASK(mask_idx); |
| val = (idx << GLQF_HMASK_MSK_INDEX_S) & GLQF_HMASK_MSK_INDEX_M; |
| val |= (mask << GLQF_HMASK_MASK_S) & GLQF_HMASK_MASK_M; |
| break; |
| case ICE_BLK_FD: |
| offset = GLQF_FDMASK(mask_idx); |
| val = (idx << GLQF_FDMASK_MSK_INDEX_S) & GLQF_FDMASK_MSK_INDEX_M; |
| val |= (mask << GLQF_FDMASK_MASK_S) & GLQF_FDMASK_MASK_M; |
| break; |
| default: |
| ice_debug(hw, ICE_DBG_PKG, "No profile masks for block %d\n", |
| blk); |
| return; |
| } |
| |
| wr32(hw, offset, val); |
| ice_debug(hw, ICE_DBG_PKG, "write mask, blk %d (%d): %x = %x\n", |
| blk, idx, offset, val); |
| } |
| |
| /** |
| * ice_write_prof_mask_enable_res - write profile mask enable register |
| * @hw: pointer to the HW struct |
| * @blk: hardware block |
| * @prof_id: profile ID |
| * @enable_mask: enable mask |
| */ |
| static void |
| ice_write_prof_mask_enable_res(struct ice_hw *hw, enum ice_block blk, |
| u16 prof_id, u32 enable_mask) |
| { |
| u32 offset; |
| |
| switch (blk) { |
| case ICE_BLK_RSS: |
| offset = GLQF_HMASK_SEL(prof_id); |
| break; |
| case ICE_BLK_FD: |
| offset = GLQF_FDMASK_SEL(prof_id); |
| break; |
| default: |
| ice_debug(hw, ICE_DBG_PKG, "No profile masks for block %d\n", |
| blk); |
| return; |
| } |
| |
| wr32(hw, offset, enable_mask); |
| ice_debug(hw, ICE_DBG_PKG, "write mask enable, blk %d (%d): %x = %x\n", |
| blk, prof_id, offset, enable_mask); |
| } |
| |
| /** |
| * ice_init_prof_masks - initial prof masks |
| * @hw: pointer to the HW struct |
| * @blk: hardware block |
| */ |
| static void ice_init_prof_masks(struct ice_hw *hw, enum ice_block blk) |
| { |
| u16 per_pf; |
| u16 i; |
| |
| mutex_init(&hw->blk[blk].masks.lock); |
| |
| per_pf = ICE_PROF_MASK_COUNT / hw->dev_caps.num_funcs; |
| |
| hw->blk[blk].masks.count = per_pf; |
| hw->blk[blk].masks.first = hw->pf_id * per_pf; |
| |
| memset(hw->blk[blk].masks.masks, 0, sizeof(hw->blk[blk].masks.masks)); |
| |
| for (i = hw->blk[blk].masks.first; |
| i < hw->blk[blk].masks.first + hw->blk[blk].masks.count; i++) |
| ice_write_prof_mask_reg(hw, blk, i, 0, 0); |
| } |
| |
| /** |
| * ice_init_all_prof_masks - initialize all prof masks |
| * @hw: pointer to the HW struct |
| */ |
| static void ice_init_all_prof_masks(struct ice_hw *hw) |
| { |
| ice_init_prof_masks(hw, ICE_BLK_RSS); |
| ice_init_prof_masks(hw, ICE_BLK_FD); |
| } |
| |
| /** |
| * ice_alloc_prof_mask - allocate profile mask |
| * @hw: pointer to the HW struct |
| * @blk: hardware block |
| * @idx: index of FV which will use the mask |
| * @mask: the 16-bit mask |
| * @mask_idx: variable to receive the mask index |
| */ |
| static enum ice_status |
| ice_alloc_prof_mask(struct ice_hw *hw, enum ice_block blk, u16 idx, u16 mask, |
| u16 *mask_idx) |
| { |
| bool found_unused = false, found_copy = false; |
| enum ice_status status = ICE_ERR_MAX_LIMIT; |
| u16 unused_idx = 0, copy_idx = 0; |
| u16 i; |
| |
| if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD) |
| return ICE_ERR_PARAM; |
| |
| mutex_lock(&hw->blk[blk].masks.lock); |
| |
| for (i = hw->blk[blk].masks.first; |
| i < hw->blk[blk].masks.first + hw->blk[blk].masks.count; i++) |
| if (hw->blk[blk].masks.masks[i].in_use) { |
| /* if mask is in use and it exactly duplicates the |
| * desired mask and index, then in can be reused |
| */ |
| if (hw->blk[blk].masks.masks[i].mask == mask && |
| hw->blk[blk].masks.masks[i].idx == idx) { |
| found_copy = true; |
| copy_idx = i; |
| break; |
| } |
| } else { |
| /* save off unused index, but keep searching in case |
| * there is an exact match later on |
| */ |
| if (!found_unused) { |
| found_unused = true; |
| unused_idx = i; |
| } |
| } |
| |
| if (found_copy) |
| i = copy_idx; |
| else if (found_unused) |
| i = unused_idx; |
| else |
| goto err_ice_alloc_prof_mask; |
| |
| /* update mask for a new entry */ |
| if (found_unused) { |
| hw->blk[blk].masks.masks[i].in_use = true; |
| hw->blk[blk].masks.masks[i].mask = mask; |
| hw->blk[blk].masks.masks[i].idx = idx; |
| hw->blk[blk].masks.masks[i].ref = 0; |
| ice_write_prof_mask_reg(hw, blk, i, idx, mask); |
| } |
| |
| hw->blk[blk].masks.masks[i].ref++; |
| *mask_idx = i; |
| status = 0; |
| |
| err_ice_alloc_prof_mask: |
| mutex_unlock(&hw->blk[blk].masks.lock); |
| |
| return status; |
| } |
| |
| /** |
| * ice_free_prof_mask - free profile mask |
| * @hw: pointer to the HW struct |
| * @blk: hardware block |
| * @mask_idx: index of mask |
| */ |
| static enum ice_status |
| ice_free_prof_mask(struct ice_hw *hw, enum ice_block blk, u16 mask_idx) |
| { |
| if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD) |
| return ICE_ERR_PARAM; |
| |
| if (!(mask_idx >= hw->blk[blk].masks.first && |
| mask_idx < hw->blk[blk].masks.first + hw->blk[blk].masks.count)) |
| return ICE_ERR_DOES_NOT_EXIST; |
| |
| mutex_lock(&hw->blk[blk].masks.lock); |
| |
| if (!hw->blk[blk].masks.masks[mask_idx].in_use) |
| goto exit_ice_free_prof_mask; |
| |
| if (hw->blk[blk].masks.masks[mask_idx].ref > 1) { |
| hw->blk[blk].masks.masks[mask_idx].ref--; |
| goto exit_ice_free_prof_mask; |
| } |
| |
| /* remove mask */ |
| hw->blk[blk].masks.masks[mask_idx].in_use = false; |
| hw->blk[blk].masks.masks[mask_idx].mask = 0; |
| hw->blk[blk].masks.masks[mask_idx].idx = 0; |
| |
| /* update mask as unused entry */ |
| ice_debug(hw, ICE_DBG_PKG, "Free mask, blk %d, mask %d\n", blk, |
| mask_idx); |
| ice_write_prof_mask_reg(hw, blk, mask_idx, 0, 0); |
| |
| exit_ice_free_prof_mask: |
| mutex_unlock(&hw->blk[blk].masks.lock); |
| |
| return 0; |
| } |
| |
| /** |
| * ice_free_prof_masks - free all profile masks for a profile |
| * @hw: pointer to the HW struct |
| * @blk: hardware block |
| * @prof_id: profile ID |
| */ |
| static enum ice_status |
| ice_free_prof_masks(struct ice_hw *hw, enum ice_block blk, u16 prof_id) |
| { |
| u32 mask_bm; |
| u16 i; |
| |
| if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD) |
| return ICE_ERR_PARAM; |
| |
| mask_bm = hw->blk[blk].es.mask_ena[prof_id]; |
| for (i = 0; i < BITS_PER_BYTE * sizeof(mask_bm); i++) |
| if (mask_bm & BIT(i)) |
| ice_free_prof_mask(hw, blk, i); |
| |
| return 0; |
| } |
| |
| /** |
| * ice_shutdown_prof_masks - releases lock for masking |
| * @hw: pointer to the HW struct |
| * @blk: hardware block |
| * |
| * This should be called before unloading the driver |
| */ |
| static void ice_shutdown_prof_masks(struct ice_hw *hw, enum ice_block blk) |
| { |
| u16 i; |
| |
| mutex_lock(&hw->blk[blk].masks.lock); |
| |
| for (i = hw->blk[blk].masks.first; |
| i < hw->blk[blk].masks.first + hw->blk[blk].masks.count; i++) { |
| ice_write_prof_mask_reg(hw, blk, i, 0, 0); |
| |
| hw->blk[blk].masks.masks[i].in_use = false; |
| hw->blk[blk].masks.masks[i].idx = 0; |
| hw->blk[blk].masks.masks[i].mask = 0; |
| } |
| |
| mutex_unlock(&hw->blk[blk].masks.lock); |
| mutex_destroy(&hw->blk[blk].masks.lock); |
| } |
| |
| /** |
| * ice_shutdown_all_prof_masks - releases all locks for masking |
| * @hw: pointer to the HW struct |
| * |
| * This should be called before unloading the driver |
| */ |
| static void ice_shutdown_all_prof_masks(struct ice_hw *hw) |
| { |
| ice_shutdown_prof_masks(hw, ICE_BLK_RSS); |
| ice_shutdown_prof_masks(hw, ICE_BLK_FD); |
| } |
| |
| /** |
| * ice_update_prof_masking - set registers according to masking |
| * @hw: pointer to the HW struct |
| * @blk: hardware block |
| * @prof_id: profile ID |
| * @masks: masks |
| */ |
| static enum ice_status |
| ice_update_prof_masking(struct ice_hw *hw, enum ice_block blk, u16 prof_id, |
| u16 *masks) |
| { |
| bool err = false; |
| u32 ena_mask = 0; |
| u16 idx; |
| u16 i; |
| |
| /* Only support FD and RSS masking, otherwise nothing to be done */ |
| if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD) |
| return 0; |
| |
| for (i = 0; i < hw->blk[blk].es.fvw; i++) |
| if (masks[i] && masks[i] != 0xFFFF) { |
| if (!ice_alloc_prof_mask(hw, blk, i, masks[i], &idx)) { |
| ena_mask |= BIT(idx); |
| } else { |
| /* not enough bitmaps */ |
| err = true; |
| break; |
| } |
| } |
| |
| if (err) { |
| /* free any bitmaps we have allocated */ |
| for (i = 0; i < BITS_PER_BYTE * sizeof(ena_mask); i++) |
| if (ena_mask & BIT(i)) |
| ice_free_prof_mask(hw, blk, i); |
| |
| return ICE_ERR_OUT_OF_RANGE; |
| } |
| |
| /* enable the masks for this profile */ |
| ice_write_prof_mask_enable_res(hw, blk, prof_id, ena_mask); |
| |
| /* store enabled masks with profile so that they can be freed later */ |
| hw->blk[blk].es.mask_ena[prof_id] = ena_mask; |
| |
| return 0; |
| } |
| |
| /** |
| * ice_write_es - write an extraction sequence to hardware |
| * @hw: pointer to the HW struct |
| * @blk: the block in which to write the extraction sequence |
| * @prof_id: the profile ID to write |
| * @fv: pointer to the extraction sequence to write - NULL to clear extraction |
| */ |
| static void |
| ice_write_es(struct ice_hw *hw, enum ice_block blk, u8 prof_id, |
| struct ice_fv_word *fv) |
| { |
| u16 off; |
| |
| off = prof_id * hw->blk[blk].es.fvw; |
| if (!fv) { |
| memset(&hw->blk[blk].es.t[off], 0, |
| hw->blk[blk].es.fvw * sizeof(*fv)); |
| hw->blk[blk].es.written[prof_id] = false; |
| } else { |
| memcpy(&hw->blk[blk].es.t[off], fv, |
| hw->blk[blk].es.fvw * sizeof(*fv)); |
| } |
| } |
| |
| /** |
| * ice_prof_dec_ref - decrement reference count for profile |
| * @hw: pointer to the HW struct |
| * @blk: the block from which to free the profile ID |
| * @prof_id: the profile ID for which to decrement the reference count |
| */ |
| static enum ice_status |
| ice_prof_dec_ref(struct ice_hw *hw, enum ice_block blk, u8 prof_id) |
| { |
| if (prof_id > hw->blk[blk].es.count) |
| return ICE_ERR_PARAM; |
| |
| if (hw->blk[blk].es.ref_count[prof_id] > 0) { |
| if (!--hw->blk[blk].es.ref_count[prof_id]) { |
| ice_write_es(hw, blk, prof_id, NULL); |
| ice_free_prof_masks(hw, blk, prof_id); |
| return ice_free_prof_id(hw, blk, prof_id); |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* Block / table section IDs */ |
| static const u32 ice_blk_sids[ICE_BLK_COUNT][ICE_SID_OFF_COUNT] = { |
| /* SWITCH */ |
| { ICE_SID_XLT1_SW, |
| ICE_SID_XLT2_SW, |
| ICE_SID_PROFID_TCAM_SW, |
| ICE_SID_PROFID_REDIR_SW, |
| ICE_SID_FLD_VEC_SW |
| }, |
| |
| /* ACL */ |
| { ICE_SID_XLT1_ACL, |
| ICE_SID_XLT2_ACL, |
| ICE_SID_PROFID_TCAM_ACL, |
| ICE_SID_PROFID_REDIR_ACL, |
| ICE_SID_FLD_VEC_ACL |
| }, |
| |
| /* FD */ |
| { ICE_SID_XLT1_FD, |
| ICE_SID_XLT2_FD, |
| ICE_SID_PROFID_TCAM_FD, |
| ICE_SID_PROFID_REDIR_FD, |
| ICE_SID_FLD_VEC_FD |
| }, |
| |
| /* RSS */ |
| { ICE_SID_XLT1_RSS, |
| ICE_SID_XLT2_RSS, |
| ICE_SID_PROFID_TCAM_RSS, |
| ICE_SID_PROFID_REDIR_RSS, |
| ICE_SID_FLD_VEC_RSS |
| }, |
| |
| /* PE */ |
| { ICE_SID_XLT1_PE, |
| ICE_SID_XLT2_PE, |
| ICE_SID_PROFID_TCAM_PE, |
| ICE_SID_PROFID_REDIR_PE, |
| ICE_SID_FLD_VEC_PE |
| } |
| }; |
| |
| /** |
| * ice_init_sw_xlt1_db - init software XLT1 database from HW tables |
| * @hw: pointer to the hardware structure |
| * @blk: the HW block to initialize |
| */ |
| static void ice_init_sw_xlt1_db(struct ice_hw *hw, enum ice_block blk) |
| { |
| u16 pt; |
| |
| for (pt = 0; pt < hw->blk[blk].xlt1.count; pt++) { |
| u8 ptg; |
| |
| ptg = hw->blk[blk].xlt1.t[pt]; |
| if (ptg != ICE_DEFAULT_PTG) { |
| ice_ptg_alloc_val(hw, blk, ptg); |
| ice_ptg_add_mv_ptype(hw, blk, pt, ptg); |
| } |
| } |
| } |
| |
| /** |
| * ice_init_sw_xlt2_db - init software XLT2 database from HW tables |
| * @hw: pointer to the hardware structure |
| * @blk: the HW block to initialize |
| */ |
| static void ice_init_sw_xlt2_db(struct ice_hw *hw, enum ice_block blk) |
| { |
| u16 vsi; |
| |
| for (vsi = 0; vsi < hw->blk[blk].xlt2.count; vsi++) { |
| u16 vsig; |
| |
| vsig = hw->blk[blk].xlt2.t[vsi]; |
| if (vsig) { |
| ice_vsig_alloc_val(hw, blk, vsig); |
| ice_vsig_add_mv_vsi(hw, blk, vsi, vsig); |
| /* no changes at this time, since this has been |
| * initialized from the original package |
| */ |
| hw->blk[blk].xlt2.vsis[vsi].changed = 0; |
| } |
| } |
| } |
| |
| /** |
| * ice_init_sw_db - init software database from HW tables |
| * @hw: pointer to the hardware structure |
| */ |
| static void ice_init_sw_db(struct ice_hw *hw) |
| { |
| u16 i; |
| |
| for (i = 0; i < ICE_BLK_COUNT; i++) { |
| ice_init_sw_xlt1_db(hw, (enum ice_block)i); |
| ice_init_sw_xlt2_db(hw, (enum ice_block)i); |
| } |
| } |
| |
| /** |
| * ice_fill_tbl - Reads content of a single table type into database |
| * @hw: pointer to the hardware structure |
| * @block_id: Block ID of the table to copy |
| * @sid: Section ID of the table to copy |
| * |
| * Will attempt to read the entire content of a given table of a single block |
| * into the driver database. We assume that the buffer will always |
| * be as large or larger than the data contained in the package. If |
| * this condition is not met, there is most likely an error in the package |
| * contents. |
| */ |
| static void ice_fill_tbl(struct ice_hw *hw, enum ice_block block_id, u32 sid) |
| { |
| u32 dst_len, sect_len, offset = 0; |
| struct ice_prof_redir_section *pr; |
| struct ice_prof_id_section *pid; |
| struct ice_xlt1_section *xlt1; |
| struct ice_xlt2_section *xlt2; |
| struct ice_sw_fv_section *es; |
| struct ice_pkg_enum state; |
| u8 *src, *dst; |
| void *sect; |
| |
| /* if the HW segment pointer is null then the first iteration of |
| * ice_pkg_enum_section() will fail. In this case the HW tables will |
| * not be filled and return success. |
| */ |
| if (!hw->seg) { |
| ice_debug(hw, ICE_DBG_PKG, "hw->seg is NULL, tables are not filled\n"); |
| return; |
| } |
| |
| memset(&state, 0, sizeof(state)); |
| |
| sect = ice_pkg_enum_section(hw->seg, &state, sid); |
| |
| while (sect) { |
| switch (sid) { |
| case ICE_SID_XLT1_SW: |
| case ICE_SID_XLT1_FD: |
| case ICE_SID_XLT1_RSS: |
| case ICE_SID_XLT1_ACL: |
| case ICE_SID_XLT1_PE: |
| xlt1 = sect; |
| src = xlt1->value; |
| sect_len = le16_to_cpu(xlt1->count) * |
| sizeof(*hw->blk[block_id].xlt1.t); |
| dst = hw->blk[block_id].xlt1.t; |
| dst_len = hw->blk[block_id].xlt1.count * |
| sizeof(*hw->blk[block_id].xlt1.t); |
| break; |
| case ICE_SID_XLT2_SW: |
| case ICE_SID_XLT2_FD: |
| case ICE_SID_XLT2_RSS: |
| case ICE_SID_XLT2_ACL: |
| case ICE_SID_XLT2_PE: |
| xlt2 = sect; |
| src = (__force u8 *)xlt2->value; |
| sect_len = le16_to_cpu(xlt2->count) * |
| sizeof(*hw->blk[block_id].xlt2.t); |
| dst = (u8 *)hw->blk[block_id].xlt2.t; |
| dst_len = hw->blk[block_id].xlt2.count * |
| sizeof(*hw->blk[block_id].xlt2.t); |
| break; |
| case ICE_SID_PROFID_TCAM_SW: |
| case ICE_SID_PROFID_TCAM_FD: |
| case ICE_SID_PROFID_TCAM_RSS: |
| case ICE_SID_PROFID_TCAM_ACL: |
| case ICE_SID_PROFID_TCAM_PE: |
| pid = sect; |
| src = (u8 *)pid->entry; |
| sect_len = le16_to_cpu(pid->count) * |
| sizeof(*hw->blk[block_id].prof.t); |
| dst = (u8 *)hw->blk[block_id].prof.t; |
| dst_len = hw->blk[block_id].prof.count * |
| sizeof(*hw->blk[block_id].prof.t); |
| break; |
| case ICE_SID_PROFID_REDIR_SW: |
| case ICE_SID_PROFID_REDIR_FD: |
| case ICE_SID_PROFID_REDIR_RSS: |
| case ICE_SID_PROFID_REDIR_ACL: |
| case ICE_SID_PROFID_REDIR_PE: |
| pr = sect; |
| src = pr->redir_value; |
| sect_len = le16_to_cpu(pr->count) * |
| sizeof(*hw->blk[block_id].prof_redir.t); |
| dst = hw->blk[block_id].prof_redir.t; |
| dst_len = hw->blk[block_id].prof_redir.count * |
| sizeof(*hw->blk[block_id].prof_redir.t); |
| break; |
| case ICE_SID_FLD_VEC_SW: |
| case ICE_SID_FLD_VEC_FD: |
| case ICE_SID_FLD_VEC_RSS: |
| case ICE_SID_FLD_VEC_ACL: |
| case ICE_SID_FLD_VEC_PE: |
| es = sect; |
| src = (u8 *)es->fv; |
| sect_len = (u32)(le16_to_cpu(es->count) * |
| hw->blk[block_id].es.fvw) * |
| sizeof(*hw->blk[block_id].es.t); |
| dst = (u8 *)hw->blk[block_id].es.t; |
| dst_len = (u32)(hw->blk[block_id].es.count * |
| hw->blk[block_id].es.fvw) * |
| sizeof(*hw->blk[block_id].es.t); |
| break; |
| default: |
| return; |
| } |
| |
| /* if the section offset exceeds destination length, terminate |
| * table fill. |
| */ |
| if (offset > dst_len) |
| return; |
| |
| /* if the sum of section size and offset exceed destination size |
| * then we are out of bounds of the HW table size for that PF. |
| * Changing section length to fill the remaining table space |
| * of that PF. |
| */ |
| if ((offset + sect_len) > dst_len) |
| sect_len = dst_len - offset; |
| |
| memcpy(dst + offset, src, sect_len); |
| offset += sect_len; |
| sect = ice_pkg_enum_section(NULL, &state, sid); |
| } |
| } |
| |
| /** |
| * ice_fill_blk_tbls - Read package context for tables |
| * @hw: pointer to the hardware structure |
| * |
| * Reads the current package contents and populates the driver |
| * database with the data iteratively for all advanced feature |
| * blocks. Assume that the HW tables have been allocated. |
| */ |
| void ice_fill_blk_tbls(struct ice_hw *hw) |
| { |
| u8 i; |
| |
| for (i = 0; i < ICE_BLK_COUNT; i++) { |
| enum ice_block blk_id = (enum ice_block)i; |
| |
| ice_fill_tbl(hw, blk_id, hw->blk[blk_id].xlt1.sid); |
| ice_fill_tbl(hw, blk_id, hw->blk[blk_id].xlt2.sid); |
| ice_fill_tbl(hw, blk_id, hw->blk[blk_id].prof.sid); |
| ice_fill_tbl(hw, blk_id, hw->blk[blk_id].prof_redir.sid); |
| ice_fill_tbl(hw, blk_id, hw->blk[blk_id].es.sid); |
| } |
| |
| ice_init_sw_db(hw); |
| } |
| |
| /** |
| * ice_free_prof_map - free profile map |
|