blob: 91199262aacafd2ea0b39322740c813f1a622cbf [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/* Copyright(c) 2009-2012 Realtek Corporation.*/
#include "../wifi.h"
#include "../efuse.h"
#include "../base.h"
#include "../regd.h"
#include "../cam.h"
#include "../ps.h"
#include "../pci.h"
#include "reg.h"
#include "def.h"
#include "phy.h"
#include "dm.h"
#include "fw.h"
#include "led.h"
#include "hw.h"
void rtl92se_get_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
switch (variable) {
case HW_VAR_RCR: {
*((u32 *) (val)) = rtlpci->receive_config;
break;
}
case HW_VAR_RF_STATE: {
*((enum rf_pwrstate *)(val)) = ppsc->rfpwr_state;
break;
}
case HW_VAR_FW_PSMODE_STATUS: {
*((bool *) (val)) = ppsc->fw_current_inpsmode;
break;
}
case HW_VAR_CORRECT_TSF: {
u64 tsf;
u32 *ptsf_low = (u32 *)&tsf;
u32 *ptsf_high = ((u32 *)&tsf) + 1;
*ptsf_high = rtl_read_dword(rtlpriv, (TSFR + 4));
*ptsf_low = rtl_read_dword(rtlpriv, TSFR);
*((u64 *) (val)) = tsf;
break;
}
case HW_VAR_MRC: {
*((bool *)(val)) = rtlpriv->dm.current_mrc_switch;
break;
}
case HAL_DEF_WOWLAN:
break;
default:
pr_err("switch case %#x not processed\n", variable);
break;
}
}
void rtl92se_set_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
switch (variable) {
case HW_VAR_ETHER_ADDR:{
rtl_write_dword(rtlpriv, IDR0, ((u32 *)(val))[0]);
rtl_write_word(rtlpriv, IDR4, ((u16 *)(val + 4))[0]);
break;
}
case HW_VAR_BASIC_RATE:{
u16 rate_cfg = ((u16 *) val)[0];
u8 rate_index = 0;
if (rtlhal->version == VERSION_8192S_ACUT)
rate_cfg = rate_cfg & 0x150;
else
rate_cfg = rate_cfg & 0x15f;
rate_cfg |= 0x01;
rtl_write_byte(rtlpriv, RRSR, rate_cfg & 0xff);
rtl_write_byte(rtlpriv, RRSR + 1,
(rate_cfg >> 8) & 0xff);
while (rate_cfg > 0x1) {
rate_cfg = (rate_cfg >> 1);
rate_index++;
}
rtl_write_byte(rtlpriv, INIRTSMCS_SEL, rate_index);
break;
}
case HW_VAR_BSSID:{
rtl_write_dword(rtlpriv, BSSIDR, ((u32 *)(val))[0]);
rtl_write_word(rtlpriv, BSSIDR + 4,
((u16 *)(val + 4))[0]);
break;
}
case HW_VAR_SIFS:{
rtl_write_byte(rtlpriv, SIFS_OFDM, val[0]);
rtl_write_byte(rtlpriv, SIFS_OFDM + 1, val[1]);
break;
}
case HW_VAR_SLOT_TIME:{
u8 e_aci;
rtl_dbg(rtlpriv, COMP_MLME, DBG_LOUD,
"HW_VAR_SLOT_TIME %x\n", val[0]);
rtl_write_byte(rtlpriv, SLOT_TIME, val[0]);
for (e_aci = 0; e_aci < AC_MAX; e_aci++) {
rtlpriv->cfg->ops->set_hw_reg(hw,
HW_VAR_AC_PARAM,
(&e_aci));
}
break;
}
case HW_VAR_ACK_PREAMBLE:{
u8 reg_tmp;
u8 short_preamble = (bool) (*val);
reg_tmp = (mac->cur_40_prime_sc) << 5;
if (short_preamble)
reg_tmp |= 0x80;
rtl_write_byte(rtlpriv, RRSR + 2, reg_tmp);
break;
}
case HW_VAR_AMPDU_MIN_SPACE:{
u8 min_spacing_to_set;
u8 sec_min_space;
min_spacing_to_set = *val;
if (min_spacing_to_set <= 7) {
if (rtlpriv->sec.pairwise_enc_algorithm ==
NO_ENCRYPTION)
sec_min_space = 0;
else
sec_min_space = 1;
if (min_spacing_to_set < sec_min_space)
min_spacing_to_set = sec_min_space;
if (min_spacing_to_set > 5)
min_spacing_to_set = 5;
mac->min_space_cfg =
((mac->min_space_cfg & 0xf8) |
min_spacing_to_set);
*val = min_spacing_to_set;
rtl_dbg(rtlpriv, COMP_MLME, DBG_LOUD,
"Set HW_VAR_AMPDU_MIN_SPACE: %#x\n",
mac->min_space_cfg);
rtl_write_byte(rtlpriv, AMPDU_MIN_SPACE,
mac->min_space_cfg);
}
break;
}
case HW_VAR_SHORTGI_DENSITY:{
u8 density_to_set;
density_to_set = *val;
mac->min_space_cfg = rtlpriv->rtlhal.minspace_cfg;
mac->min_space_cfg |= (density_to_set << 3);
rtl_dbg(rtlpriv, COMP_MLME, DBG_LOUD,
"Set HW_VAR_SHORTGI_DENSITY: %#x\n",
mac->min_space_cfg);
rtl_write_byte(rtlpriv, AMPDU_MIN_SPACE,
mac->min_space_cfg);
break;
}
case HW_VAR_AMPDU_FACTOR:{
u8 factor_toset;
u8 regtoset;
u8 factorlevel[18] = {
2, 4, 4, 7, 7, 13, 13,
13, 2, 7, 7, 13, 13,
15, 15, 15, 15, 0};
u8 index = 0;
factor_toset = *val;
if (factor_toset <= 3) {
factor_toset = (1 << (factor_toset + 2));
if (factor_toset > 0xf)
factor_toset = 0xf;
for (index = 0; index < 17; index++) {
if (factorlevel[index] > factor_toset)
factorlevel[index] =
factor_toset;
}
for (index = 0; index < 8; index++) {
regtoset = ((factorlevel[index * 2]) |
(factorlevel[index *
2 + 1] << 4));
rtl_write_byte(rtlpriv,
AGGLEN_LMT_L + index,
regtoset);
}
regtoset = ((factorlevel[16]) |
(factorlevel[17] << 4));
rtl_write_byte(rtlpriv, AGGLEN_LMT_H, regtoset);
rtl_dbg(rtlpriv, COMP_MLME, DBG_LOUD,
"Set HW_VAR_AMPDU_FACTOR: %#x\n",
factor_toset);
}
break;
}
case HW_VAR_AC_PARAM:{
u8 e_aci = *val;
rtl92s_dm_init_edca_turbo(hw);
if (rtlpci->acm_method != EACMWAY2_SW)
rtlpriv->cfg->ops->set_hw_reg(hw,
HW_VAR_ACM_CTRL,
&e_aci);
break;
}
case HW_VAR_ACM_CTRL:{
u8 e_aci = *val;
union aci_aifsn *p_aci_aifsn = (union aci_aifsn *)(&(
mac->ac[0].aifs));
u8 acm = p_aci_aifsn->f.acm;
u8 acm_ctrl = rtl_read_byte(rtlpriv, ACMHWCTRL);
acm_ctrl = acm_ctrl | ((rtlpci->acm_method == 2) ?
0x0 : 0x1);
if (acm) {
switch (e_aci) {
case AC0_BE:
acm_ctrl |= ACMHW_BEQEN;
break;
case AC2_VI:
acm_ctrl |= ACMHW_VIQEN;
break;
case AC3_VO:
acm_ctrl |= ACMHW_VOQEN;
break;
default:
rtl_dbg(rtlpriv, COMP_ERR, DBG_WARNING,
"HW_VAR_ACM_CTRL acm set failed: eACI is %d\n",
acm);
break;
}
} else {
switch (e_aci) {
case AC0_BE:
acm_ctrl &= (~ACMHW_BEQEN);
break;
case AC2_VI:
acm_ctrl &= (~ACMHW_VIQEN);
break;
case AC3_VO:
acm_ctrl &= (~ACMHW_VOQEN);
break;
default:
pr_err("switch case %#x not processed\n",
e_aci);
break;
}
}
rtl_dbg(rtlpriv, COMP_QOS, DBG_TRACE,
"HW_VAR_ACM_CTRL Write 0x%X\n", acm_ctrl);
rtl_write_byte(rtlpriv, ACMHWCTRL, acm_ctrl);
break;
}
case HW_VAR_RCR:{
rtl_write_dword(rtlpriv, RCR, ((u32 *) (val))[0]);
rtlpci->receive_config = ((u32 *) (val))[0];
break;
}
case HW_VAR_RETRY_LIMIT:{
u8 retry_limit = val[0];
rtl_write_word(rtlpriv, RETRY_LIMIT,
retry_limit << RETRY_LIMIT_SHORT_SHIFT |
retry_limit << RETRY_LIMIT_LONG_SHIFT);
break;
}
case HW_VAR_DUAL_TSF_RST: {
break;
}
case HW_VAR_EFUSE_BYTES: {
rtlefuse->efuse_usedbytes = *((u16 *) val);
break;
}
case HW_VAR_EFUSE_USAGE: {
rtlefuse->efuse_usedpercentage = *val;
break;
}
case HW_VAR_IO_CMD: {
break;
}
case HW_VAR_WPA_CONFIG: {
rtl_write_byte(rtlpriv, REG_SECR, *val);
break;
}
case HW_VAR_SET_RPWM:{
break;
}
case HW_VAR_H2C_FW_PWRMODE:{
break;
}
case HW_VAR_FW_PSMODE_STATUS: {
ppsc->fw_current_inpsmode = *((bool *) val);
break;
}
case HW_VAR_H2C_FW_JOINBSSRPT:{
break;
}
case HW_VAR_AID:{
break;
}
case HW_VAR_CORRECT_TSF:{
break;
}
case HW_VAR_MRC: {
bool bmrc_toset = *((bool *)val);
u8 u1bdata = 0;
if (bmrc_toset) {
rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE,
MASKBYTE0, 0x33);
u1bdata = (u8)rtl_get_bbreg(hw,
ROFDM1_TRXPATHENABLE,
MASKBYTE0);
rtl_set_bbreg(hw, ROFDM1_TRXPATHENABLE,
MASKBYTE0,
((u1bdata & 0xf0) | 0x03));
u1bdata = (u8)rtl_get_bbreg(hw,
ROFDM0_TRXPATHENABLE,
MASKBYTE1);
rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE,
MASKBYTE1,
(u1bdata | 0x04));
/* Update current settings. */
rtlpriv->dm.current_mrc_switch = bmrc_toset;
} else {
rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE,
MASKBYTE0, 0x13);
u1bdata = (u8)rtl_get_bbreg(hw,
ROFDM1_TRXPATHENABLE,
MASKBYTE0);
rtl_set_bbreg(hw, ROFDM1_TRXPATHENABLE,
MASKBYTE0,
((u1bdata & 0xf0) | 0x01));
u1bdata = (u8)rtl_get_bbreg(hw,
ROFDM0_TRXPATHENABLE,
MASKBYTE1);
rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE,
MASKBYTE1, (u1bdata & 0xfb));
/* Update current settings. */
rtlpriv->dm.current_mrc_switch = bmrc_toset;
}
break;
}
case HW_VAR_FW_LPS_ACTION: {
bool enter_fwlps = *((bool *)val);
u8 rpwm_val, fw_pwrmode;
bool fw_current_inps;
if (enter_fwlps) {
rpwm_val = 0x02; /* RF off */
fw_current_inps = true;
rtlpriv->cfg->ops->set_hw_reg(hw,
HW_VAR_FW_PSMODE_STATUS,
(u8 *)(&fw_current_inps));
rtlpriv->cfg->ops->set_hw_reg(hw,
HW_VAR_H2C_FW_PWRMODE,
&ppsc->fwctrl_psmode);
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SET_RPWM,
&rpwm_val);
} else {
rpwm_val = 0x0C; /* RF on */
fw_pwrmode = FW_PS_ACTIVE_MODE;
fw_current_inps = false;
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SET_RPWM,
&rpwm_val);
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_H2C_FW_PWRMODE,
&fw_pwrmode);
rtlpriv->cfg->ops->set_hw_reg(hw,
HW_VAR_FW_PSMODE_STATUS,
(u8 *)(&fw_current_inps));
}
break; }
default:
pr_err("switch case %#x not processed\n", variable);
break;
}
}
void rtl92se_enable_hw_security_config(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u8 sec_reg_value = 0x0;
rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
"PairwiseEncAlgorithm = %d GroupEncAlgorithm = %d\n",
rtlpriv->sec.pairwise_enc_algorithm,
rtlpriv->sec.group_enc_algorithm);
if (rtlpriv->cfg->mod_params->sw_crypto || rtlpriv->sec.use_sw_sec) {
rtl_dbg(rtlpriv, COMP_SEC, DBG_DMESG,
"not open hw encryption\n");
return;
}
sec_reg_value = SCR_TXENCENABLE | SCR_RXENCENABLE;
if (rtlpriv->sec.use_defaultkey) {
sec_reg_value |= SCR_TXUSEDK;
sec_reg_value |= SCR_RXUSEDK;
}
rtl_dbg(rtlpriv, COMP_SEC, DBG_LOUD, "The SECR-value %x\n",
sec_reg_value);
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_WPA_CONFIG, &sec_reg_value);
}
static u8 _rtl92se_halset_sysclk(struct ieee80211_hw *hw, u8 data)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u8 waitcount = 100;
bool bresult = false;
u8 tmpvalue;
rtl_write_byte(rtlpriv, SYS_CLKR + 1, data);
/* Wait the MAC synchronized. */
udelay(400);
/* Check if it is set ready. */
tmpvalue = rtl_read_byte(rtlpriv, SYS_CLKR + 1);
bresult = ((tmpvalue & BIT(7)) == (data & BIT(7)));
if (!(data & (BIT(6) | BIT(7)))) {
waitcount = 100;
tmpvalue = 0;
while (1) {
waitcount--;
tmpvalue = rtl_read_byte(rtlpriv, SYS_CLKR + 1);
if ((tmpvalue & BIT(6)))
break;
pr_err("wait for BIT(6) return value %x\n", tmpvalue);
if (waitcount == 0)
break;
udelay(10);
}
if (waitcount == 0)
bresult = false;
else
bresult = true;
}
return bresult;
}
void rtl8192se_gpiobit3_cfg_inputmode(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u8 u1tmp;
/* The following config GPIO function */
rtl_write_byte(rtlpriv, MAC_PINMUX_CFG, (GPIOMUX_EN | GPIOSEL_GPIO));
u1tmp = rtl_read_byte(rtlpriv, GPIO_IO_SEL);
/* config GPIO3 to input */
u1tmp &= HAL_8192S_HW_GPIO_OFF_MASK;
rtl_write_byte(rtlpriv, GPIO_IO_SEL, u1tmp);
}
static u8 _rtl92se_rf_onoff_detect(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u8 u1tmp;
u8 retval = ERFON;
/* The following config GPIO function */
rtl_write_byte(rtlpriv, MAC_PINMUX_CFG, (GPIOMUX_EN | GPIOSEL_GPIO));
u1tmp = rtl_read_byte(rtlpriv, GPIO_IO_SEL);
/* config GPIO3 to input */
u1tmp &= HAL_8192S_HW_GPIO_OFF_MASK;
rtl_write_byte(rtlpriv, GPIO_IO_SEL, u1tmp);
/* On some of the platform, driver cannot read correct
* value without delay between Write_GPIO_SEL and Read_GPIO_IN */
mdelay(10);
/* check GPIO3 */
u1tmp = rtl_read_byte(rtlpriv, GPIO_IN_SE);
retval = (u1tmp & HAL_8192S_HW_GPIO_OFF_BIT) ? ERFON : ERFOFF;
return retval;
}
static void _rtl92se_macconfig_before_fwdownload(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
u8 i;
u8 tmpu1b;
u16 tmpu2b;
u8 pollingcnt = 20;
if (rtlpci->first_init) {
/* Reset PCIE Digital */
tmpu1b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1);
tmpu1b &= 0xFE;
rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b);
udelay(1);
rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b | BIT(0));
}
/* Switch to SW IO control */
tmpu1b = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
if (tmpu1b & BIT(7)) {
tmpu1b &= ~(BIT(6) | BIT(7));
/* Set failed, return to prevent hang. */
if (!_rtl92se_halset_sysclk(hw, tmpu1b))
return;
}
rtl_write_byte(rtlpriv, AFE_PLL_CTRL, 0x0);
udelay(50);
rtl_write_byte(rtlpriv, LDOA15_CTRL, 0x34);
udelay(50);
/* Clear FW RPWM for FW control LPS.*/
rtl_write_byte(rtlpriv, RPWM, 0x0);
/* Reset MAC-IO and CPU and Core Digital BIT(10)/11/15 */
tmpu1b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1);
tmpu1b &= 0x73;
rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b);
/* wait for BIT 10/11/15 to pull high automatically!! */
mdelay(1);
rtl_write_byte(rtlpriv, CMDR, 0);
rtl_write_byte(rtlpriv, TCR, 0);
/* Data sheet not define 0x562!!! Copy from WMAC!!!!! */
tmpu1b = rtl_read_byte(rtlpriv, 0x562);
tmpu1b |= 0x08;
rtl_write_byte(rtlpriv, 0x562, tmpu1b);
tmpu1b &= ~(BIT(3));
rtl_write_byte(rtlpriv, 0x562, tmpu1b);
/* Enable AFE clock source */
tmpu1b = rtl_read_byte(rtlpriv, AFE_XTAL_CTRL);
rtl_write_byte(rtlpriv, AFE_XTAL_CTRL, (tmpu1b | 0x01));
/* Delay 1.5ms */
mdelay(2);
tmpu1b = rtl_read_byte(rtlpriv, AFE_XTAL_CTRL + 1);
rtl_write_byte(rtlpriv, AFE_XTAL_CTRL + 1, (tmpu1b & 0xfb));
/* Enable AFE Macro Block's Bandgap */
tmpu1b = rtl_read_byte(rtlpriv, AFE_MISC);
rtl_write_byte(rtlpriv, AFE_MISC, (tmpu1b | BIT(0)));
mdelay(1);
/* Enable AFE Mbias */
tmpu1b = rtl_read_byte(rtlpriv, AFE_MISC);
rtl_write_byte(rtlpriv, AFE_MISC, (tmpu1b | 0x02));
mdelay(1);
/* Enable LDOA15 block */
tmpu1b = rtl_read_byte(rtlpriv, LDOA15_CTRL);
rtl_write_byte(rtlpriv, LDOA15_CTRL, (tmpu1b | BIT(0)));
/* Set Digital Vdd to Retention isolation Path. */
tmpu2b = rtl_read_word(rtlpriv, REG_SYS_ISO_CTRL);
rtl_write_word(rtlpriv, REG_SYS_ISO_CTRL, (tmpu2b | BIT(11)));
/* For warm reboot NIC disappera bug. */
tmpu2b = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(13)));
rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL + 1, 0x68);
/* Enable AFE PLL Macro Block */
/* We need to delay 100u before enabling PLL. */
udelay(200);
tmpu1b = rtl_read_byte(rtlpriv, AFE_PLL_CTRL);
rtl_write_byte(rtlpriv, AFE_PLL_CTRL, (tmpu1b | BIT(0) | BIT(4)));
/* for divider reset */
udelay(100);
rtl_write_byte(rtlpriv, AFE_PLL_CTRL, (tmpu1b | BIT(0) |
BIT(4) | BIT(6)));
udelay(10);
rtl_write_byte(rtlpriv, AFE_PLL_CTRL, (tmpu1b | BIT(0) | BIT(4)));
udelay(10);
/* Enable MAC 80MHZ clock */
tmpu1b = rtl_read_byte(rtlpriv, AFE_PLL_CTRL + 1);
rtl_write_byte(rtlpriv, AFE_PLL_CTRL + 1, (tmpu1b | BIT(0)));
mdelay(1);
/* Release isolation AFE PLL & MD */
rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL, 0xA6);
/* Enable MAC clock */
tmpu2b = rtl_read_word(rtlpriv, SYS_CLKR);
rtl_write_word(rtlpriv, SYS_CLKR, (tmpu2b | BIT(12) | BIT(11)));
/* Enable Core digital and enable IOREG R/W */
tmpu2b = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(11)));
tmpu1b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1);
rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b & ~(BIT(7)));
/* enable REG_EN */
rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(11) | BIT(15)));
/* Switch the control path. */
tmpu2b = rtl_read_word(rtlpriv, SYS_CLKR);
rtl_write_word(rtlpriv, SYS_CLKR, (tmpu2b & (~BIT(2))));
tmpu1b = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
tmpu1b = ((tmpu1b | BIT(7)) & (~BIT(6)));
if (!_rtl92se_halset_sysclk(hw, tmpu1b))
return; /* Set failed, return to prevent hang. */
rtl_write_word(rtlpriv, CMDR, 0x07FC);
/* MH We must enable the section of code to prevent load IMEM fail. */
/* Load MAC register from WMAc temporarily We simulate macreg. */
/* txt HW will provide MAC txt later */
rtl_write_byte(rtlpriv, 0x6, 0x30);
rtl_write_byte(rtlpriv, 0x49, 0xf0);
rtl_write_byte(rtlpriv, 0x4b, 0x81);
rtl_write_byte(rtlpriv, 0xb5, 0x21);
rtl_write_byte(rtlpriv, 0xdc, 0xff);
rtl_write_byte(rtlpriv, 0xdd, 0xff);
rtl_write_byte(rtlpriv, 0xde, 0xff);
rtl_write_byte(rtlpriv, 0xdf, 0xff);
rtl_write_byte(rtlpriv, 0x11a, 0x00);
rtl_write_byte(rtlpriv, 0x11b, 0x00);
for (i = 0; i < 32; i++)
rtl_write_byte(rtlpriv, INIMCS_SEL + i, 0x1b);
rtl_write_byte(rtlpriv, 0x236, 0xff);
rtl_write_byte(rtlpriv, 0x503, 0x22);
if (ppsc->support_aspm && !ppsc->support_backdoor)
rtl_write_byte(rtlpriv, 0x560, 0x40);
else
rtl_write_byte(rtlpriv, 0x560, 0x00);
rtl_write_byte(rtlpriv, DBG_PORT, 0x91);
/* Set RX Desc Address */
rtl_write_dword(rtlpriv, RDQDA, rtlpci->rx_ring[RX_MPDU_QUEUE].dma);
rtl_write_dword(rtlpriv, RCDA, rtlpci->rx_ring[RX_CMD_QUEUE].dma);
/* Set TX Desc Address */
rtl_write_dword(rtlpriv, TBKDA, rtlpci->tx_ring[BK_QUEUE].dma);
rtl_write_dword(rtlpriv, TBEDA, rtlpci->tx_ring[BE_QUEUE].dma);
rtl_write_dword(rtlpriv, TVIDA, rtlpci->tx_ring[VI_QUEUE].dma);
rtl_write_dword(rtlpriv, TVODA, rtlpci->tx_ring[VO_QUEUE].dma);
rtl_write_dword(rtlpriv, TBDA, rtlpci->tx_ring[BEACON_QUEUE].dma);
rtl_write_dword(rtlpriv, TCDA, rtlpci->tx_ring[TXCMD_QUEUE].dma);
rtl_write_dword(rtlpriv, TMDA, rtlpci->tx_ring[MGNT_QUEUE].dma);
rtl_write_dword(rtlpriv, THPDA, rtlpci->tx_ring[HIGH_QUEUE].dma);
rtl_write_dword(rtlpriv, HDA, rtlpci->tx_ring[HCCA_QUEUE].dma);
rtl_write_word(rtlpriv, CMDR, 0x37FC);
/* To make sure that TxDMA can ready to download FW. */
/* We should reset TxDMA if IMEM RPT was not ready. */
do {
tmpu1b = rtl_read_byte(rtlpriv, TCR);
if ((tmpu1b & TXDMA_INIT_VALUE) == TXDMA_INIT_VALUE)
break;
udelay(5);
} while (pollingcnt--);
if (pollingcnt <= 0) {
pr_err("Polling TXDMA_INIT_VALUE timeout!! Current TCR(%#x)\n",
tmpu1b);
tmpu1b = rtl_read_byte(rtlpriv, CMDR);
rtl_write_byte(rtlpriv, CMDR, tmpu1b & (~TXDMA_EN));
udelay(2);
/* Reset TxDMA */
rtl_write_byte(rtlpriv, CMDR, tmpu1b | TXDMA_EN);
}
/* After MACIO reset,we must refresh LED state. */
if ((ppsc->rfoff_reason == RF_CHANGE_BY_IPS) ||
(ppsc->rfoff_reason == 0)) {
struct rtl_led *pled0 = &rtlpriv->ledctl.sw_led0;
enum rf_pwrstate rfpwr_state_toset;
rfpwr_state_toset = _rtl92se_rf_onoff_detect(hw);
if (rfpwr_state_toset == ERFON)
rtl92se_sw_led_on(hw, pled0);
}
}
static void _rtl92se_macconfig_after_fwdownload(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
u8 i;
u16 tmpu2b;
/* 1. System Configure Register (Offset: 0x0000 - 0x003F) */
/* 2. Command Control Register (Offset: 0x0040 - 0x004F) */
/* Turn on 0x40 Command register */
rtl_write_word(rtlpriv, CMDR, (BBRSTN | BB_GLB_RSTN |
SCHEDULE_EN | MACRXEN | MACTXEN | DDMA_EN | FW2HW_EN |
RXDMA_EN | TXDMA_EN | HCI_RXDMA_EN | HCI_TXDMA_EN));
/* Set TCR TX DMA pre 2 FULL enable bit */
rtl_write_dword(rtlpriv, TCR, rtl_read_dword(rtlpriv, TCR) |
TXDMAPRE2FULL);
/* Set RCR */
rtl_write_dword(rtlpriv, RCR, rtlpci->receive_config);
/* 3. MACID Setting Register (Offset: 0x0050 - 0x007F) */
/* 4. Timing Control Register (Offset: 0x0080 - 0x009F) */
/* Set CCK/OFDM SIFS */
/* CCK SIFS shall always be 10us. */
rtl_write_word(rtlpriv, SIFS_CCK, 0x0a0a);
rtl_write_word(rtlpriv, SIFS_OFDM, 0x1010);
/* Set AckTimeout */
rtl_write_byte(rtlpriv, ACK_TIMEOUT, 0x40);
/* Beacon related */
rtl_write_word(rtlpriv, BCN_INTERVAL, 100);
rtl_write_word(rtlpriv, ATIMWND, 2);
/* 5. FIFO Control Register (Offset: 0x00A0 - 0x015F) */
/* 5.1 Initialize Number of Reserved Pages in Firmware Queue */
/* Firmware allocate now, associate with FW internal setting.!!! */
/* 5.2 Setting TX/RX page size 0/1/2/3/4=64/128/256/512/1024 */
/* 5.3 Set driver info, we only accept PHY status now. */
/* 5.4 Set RXDMA arbitration to control RXDMA/MAC/FW R/W for RXFIFO */
rtl_write_byte(rtlpriv, RXDMA, rtl_read_byte(rtlpriv, RXDMA) | BIT(6));
/* 6. Adaptive Control Register (Offset: 0x0160 - 0x01CF) */
/* Set RRSR to all legacy rate and HT rate
* CCK rate is supported by default.
* CCK rate will be filtered out only when associated
* AP does not support it.
* Only enable ACK rate to OFDM 24M
* Disable RRSR for CCK rate in A-Cut */
if (rtlhal->version == VERSION_8192S_ACUT)
rtl_write_byte(rtlpriv, RRSR, 0xf0);
else if (rtlhal->version == VERSION_8192S_BCUT)
rtl_write_byte(rtlpriv, RRSR, 0xff);
rtl_write_byte(rtlpriv, RRSR + 1, 0x01);
rtl_write_byte(rtlpriv, RRSR + 2, 0x00);
/* A-Cut IC do not support CCK rate. We forbid ARFR to */
/* fallback to CCK rate */
for (i = 0; i < 8; i++) {
/*Disable RRSR for CCK rate in A-Cut */
if (rtlhal->version == VERSION_8192S_ACUT)
rtl_write_dword(rtlpriv, ARFR0 + i * 4, 0x1f0ff0f0);
}
/* Different rate use different AMPDU size */
/* MCS32/ MCS15_SG use max AMPDU size 15*2=30K */
rtl_write_byte(rtlpriv, AGGLEN_LMT_H, 0x0f);
/* MCS0/1/2/3 use max AMPDU size 4*2=8K */
rtl_write_word(rtlpriv, AGGLEN_LMT_L, 0x7442);
/* MCS4/5 use max AMPDU size 8*2=16K 6/7 use 10*2=20K */
rtl_write_word(rtlpriv, AGGLEN_LMT_L + 2, 0xddd7);
/* MCS8/9 use max AMPDU size 8*2=16K 10/11 use 10*2=20K */
rtl_write_word(rtlpriv, AGGLEN_LMT_L + 4, 0xd772);
/* MCS12/13/14/15 use max AMPDU size 15*2=30K */
rtl_write_word(rtlpriv, AGGLEN_LMT_L + 6, 0xfffd);
/* Set Data / Response auto rate fallack retry count */
rtl_write_dword(rtlpriv, DARFRC, 0x04010000);
rtl_write_dword(rtlpriv, DARFRC + 4, 0x09070605);
rtl_write_dword(rtlpriv, RARFRC, 0x04010000);
rtl_write_dword(rtlpriv, RARFRC + 4, 0x09070605);
/* 7. EDCA Setting Register (Offset: 0x01D0 - 0x01FF) */
/* Set all rate to support SG */
rtl_write_word(rtlpriv, SG_RATE, 0xFFFF);
/* 8. WMAC, BA, and CCX related Register (Offset: 0x0200 - 0x023F) */
/* Set NAV protection length */
rtl_write_word(rtlpriv, NAV_PROT_LEN, 0x0080);
/* CF-END Threshold */
rtl_write_byte(rtlpriv, CFEND_TH, 0xFF);
/* Set AMPDU minimum space */
rtl_write_byte(rtlpriv, AMPDU_MIN_SPACE, 0x07);
/* Set TXOP stall control for several queue/HI/BCN/MGT/ */
rtl_write_byte(rtlpriv, TXOP_STALL_CTRL, 0x00);
/* 9. Security Control Register (Offset: 0x0240 - 0x025F) */
/* 10. Power Save Control Register (Offset: 0x0260 - 0x02DF) */
/* 11. General Purpose Register (Offset: 0x02E0 - 0x02FF) */
/* 12. Host Interrupt Status Register (Offset: 0x0300 - 0x030F) */
/* 13. Test mode and Debug Control Register (Offset: 0x0310 - 0x034F) */
/* 14. Set driver info, we only accept PHY status now. */
rtl_write_byte(rtlpriv, RXDRVINFO_SZ, 4);
/* 15. For EEPROM R/W Workaround */
/* 16. For EFUSE to share REG_SYS_FUNC_EN with EEPROM!!! */
tmpu2b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN);
rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, tmpu2b | BIT(13));
tmpu2b = rtl_read_byte(rtlpriv, REG_SYS_ISO_CTRL);
rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL, tmpu2b & (~BIT(8)));
/* 17. For EFUSE */
/* We may R/W EFUSE in EEPROM mode */
if (rtlefuse->epromtype == EEPROM_BOOT_EFUSE) {
u8 tempval;
tempval = rtl_read_byte(rtlpriv, REG_SYS_ISO_CTRL + 1);
tempval &= 0xFE;
rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL + 1, tempval);
/* Change Program timing */
rtl_write_byte(rtlpriv, REG_EFUSE_CTRL + 3, 0x72);
rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG, "EFUSE CONFIG OK\n");
}
rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG, "OK\n");
}
static void _rtl92se_hw_configure(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
struct rtl_phy *rtlphy = &(rtlpriv->phy);
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
u8 reg_bw_opmode = 0;
u32 reg_rrsr = 0;
u8 regtmp = 0;
reg_bw_opmode = BW_OPMODE_20MHZ;
reg_rrsr = RATE_ALL_CCK | RATE_ALL_OFDM_AG;
regtmp = rtl_read_byte(rtlpriv, INIRTSMCS_SEL);
reg_rrsr = ((reg_rrsr & 0x000fffff) << 8) | regtmp;
rtl_write_dword(rtlpriv, INIRTSMCS_SEL, reg_rrsr);
rtl_write_byte(rtlpriv, BW_OPMODE, reg_bw_opmode);
/* Set Retry Limit here */
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RETRY_LIMIT,
(u8 *)(&rtlpci->shortretry_limit));
rtl_write_byte(rtlpriv, MLT, 0x8f);
/* For Min Spacing configuration. */
switch (rtlphy->rf_type) {
case RF_1T2R:
case RF_1T1R:
rtlhal->minspace_cfg = (MAX_MSS_DENSITY_1T << 3);
break;
case RF_2T2R:
case RF_2T2R_GREEN:
rtlhal->minspace_cfg = (MAX_MSS_DENSITY_2T << 3);
break;
}
rtl_write_byte(rtlpriv, AMPDU_MIN_SPACE, rtlhal->minspace_cfg);
}
int rtl92se_hw_init(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
struct rtl_phy *rtlphy = &(rtlpriv->phy);
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
u8 tmp_byte = 0;
unsigned long flags;
bool rtstatus = true;
u8 tmp_u1b;
int err = false;
u8 i;
int wdcapra_add[] = {
EDCAPARA_BE, EDCAPARA_BK,
EDCAPARA_VI, EDCAPARA_VO};
u8 secr_value = 0x0;
rtlpci->being_init_adapter = true;
/* As this function can take a very long time (up to 350 ms)
* and can be called with irqs disabled, reenable the irqs
* to let the other devices continue being serviced.
*
* It is safe doing so since our own interrupts will only be enabled
* in a subsequent step.
*/
local_save_flags(flags);
local_irq_enable();
rtlpriv->intf_ops->disable_aspm(hw);
/* 1. MAC Initialize */
/* Before FW download, we have to set some MAC register */
_rtl92se_macconfig_before_fwdownload(hw);
rtlhal->version = (enum version_8192s)((rtl_read_dword(rtlpriv,
PMC_FSM) >> 16) & 0xF);
rtl8192se_gpiobit3_cfg_inputmode(hw);
/* 2. download firmware */
rtstatus = rtl92s_download_fw(hw);
if (!rtstatus) {
rtl_dbg(rtlpriv, COMP_ERR, DBG_WARNING,
"Failed to download FW. Init HW without FW now... Please copy FW into /lib/firmware/rtlwifi\n");
err = 1;
goto exit;
}
/* After FW download, we have to reset MAC register */
_rtl92se_macconfig_after_fwdownload(hw);
/*Retrieve default FW Cmd IO map. */
rtlhal->fwcmd_iomap = rtl_read_word(rtlpriv, LBUS_MON_ADDR);
rtlhal->fwcmd_ioparam = rtl_read_dword(rtlpriv, LBUS_ADDR_MASK);
/* 3. Initialize MAC/PHY Config by MACPHY_reg.txt */
if (!rtl92s_phy_mac_config(hw)) {
pr_err("MAC Config failed\n");
err = rtstatus;
goto exit;
}
/* because last function modify RCR, so we update
* rcr var here, or TP will unstable for receive_config
* is wrong, RX RCR_ACRC32 will cause TP unstabel & Rx
* RCR_APP_ICV will cause mac80211 unassoc for cisco 1252
*/
rtlpci->receive_config = rtl_read_dword(rtlpriv, RCR);
rtlpci->receive_config &= ~(RCR_ACRC32 | RCR_AICV);
rtl_write_dword(rtlpriv, RCR, rtlpci->receive_config);
/* Make sure BB/RF write OK. We should prevent enter IPS. radio off. */
/* We must set flag avoid BB/RF config period later!! */
rtl_write_dword(rtlpriv, CMDR, 0x37FC);
/* 4. Initialize BB After MAC Config PHY_reg.txt, AGC_Tab.txt */
if (!rtl92s_phy_bb_config(hw)) {
pr_err("BB Config failed\n");
err = rtstatus;
goto exit;
}
/* 5. Initiailze RF RAIO_A.txt RF RAIO_B.txt */
/* Before initalizing RF. We can not use FW to do RF-R/W. */
rtlphy->rf_mode = RF_OP_BY_SW_3WIRE;
/* Before RF-R/W we must execute the IO from Scott's suggestion. */
rtl_write_byte(rtlpriv, AFE_XTAL_CTRL + 1, 0xDB);
if (rtlhal->version == VERSION_8192S_ACUT)
rtl_write_byte(rtlpriv, SPS1_CTRL + 3, 0x07);
else
rtl_write_byte(rtlpriv, RF_CTRL, 0x07);
if (!rtl92s_phy_rf_config(hw)) {
rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG, "RF Config failed\n");
err = rtstatus;
goto exit;
}
/* After read predefined TXT, we must set BB/MAC/RF
* register as our requirement */
rtlphy->rfreg_chnlval[0] = rtl92s_phy_query_rf_reg(hw,
(enum radio_path)0,
RF_CHNLBW,
RFREG_OFFSET_MASK);
rtlphy->rfreg_chnlval[1] = rtl92s_phy_query_rf_reg(hw,
(enum radio_path)1,
RF_CHNLBW,
RFREG_OFFSET_MASK);
/*---- Set CCK and OFDM Block "ON"----*/
rtl_set_bbreg(hw, RFPGA0_RFMOD, BCCKEN, 0x1);
rtl_set_bbreg(hw, RFPGA0_RFMOD, BOFDMEN, 0x1);
/*3 Set Hardware(Do nothing now) */
_rtl92se_hw_configure(hw);
/* Read EEPROM TX power index and PHY_REG_PG.txt to capture correct */
/* TX power index for different rate set. */
/* Get original hw reg values */
rtl92s_phy_get_hw_reg_originalvalue(hw);
/* Write correct tx power index */
rtl92s_phy_set_txpower(hw, rtlphy->current_channel);
/* We must set MAC address after firmware download. */
for (i = 0; i < 6; i++)
rtl_write_byte(rtlpriv, MACIDR0 + i, rtlefuse->dev_addr[i]);
/* EEPROM R/W workaround */
tmp_u1b = rtl_read_byte(rtlpriv, MAC_PINMUX_CFG);
rtl_write_byte(rtlpriv, MAC_PINMUX_CFG, tmp_u1b & (~BIT(3)));
rtl_write_byte(rtlpriv, 0x4d, 0x0);
if (hal_get_firmwareversion(rtlpriv) >= 0x49) {
tmp_byte = rtl_read_byte(rtlpriv, FW_RSVD_PG_CRTL) & (~BIT(4));
tmp_byte = tmp_byte | BIT(5);
rtl_write_byte(rtlpriv, FW_RSVD_PG_CRTL, tmp_byte);
rtl_write_dword(rtlpriv, TXDESC_MSK, 0xFFFFCFFF);
}
/* We enable high power and RA related mechanism after NIC
* initialized. */
if (hal_get_firmwareversion(rtlpriv) >= 0x35) {
/* Fw v.53 and later. */
rtl92s_phy_set_fw_cmd(hw, FW_CMD_RA_INIT);
} else if (hal_get_firmwareversion(rtlpriv) == 0x34) {
/* Fw v.52. */
rtl_write_dword(rtlpriv, WFM5, FW_RA_INIT);
rtl92s_phy_chk_fwcmd_iodone(hw);
} else {
/* Compatible earlier FW version. */
rtl_write_dword(rtlpriv, WFM5, FW_RA_RESET);
rtl92s_phy_chk_fwcmd_iodone(hw);
rtl_write_dword(rtlpriv, WFM5, FW_RA_ACTIVE);
rtl92s_phy_chk_fwcmd_iodone(hw);
rtl_write_dword(rtlpriv, WFM5, FW_RA_REFRESH);
rtl92s_phy_chk_fwcmd_iodone(hw);
}
/* Add to prevent ASPM bug. */
/* Always enable hst and NIC clock request. */
rtl92s_phy_switch_ephy_parameter(hw);
/* Security related
* 1. Clear all H/W keys.
* 2. Enable H/W encryption/decryption. */
rtl_cam_reset_all_entry(hw);
secr_value |= SCR_TXENCENABLE;
secr_value |= SCR_RXENCENABLE;
secr_value |= SCR_NOSKMC;
rtl_write_byte(rtlpriv, REG_SECR, secr_value);
for (i = 0; i < 4; i++)
rtl_write_dword(rtlpriv, wdcapra_add[i], 0x5e4322);
if (rtlphy->rf_type == RF_1T2R) {
bool mrc2set = true;
/* Turn on B-Path */
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_MRC, (u8 *)&mrc2set);
}
rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_ON);
rtl92s_dm_init(hw);
exit:
local_irq_restore(flags);
rtlpci->being_init_adapter = false;
return err;
}
void rtl92se_set_mac_addr(struct rtl_io *io, const u8 *addr)
{
/* This is a stub. */
}
void rtl92se_set_check_bssid(struct ieee80211_hw *hw, bool check_bssid)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u32 reg_rcr;
if (rtlpriv->psc.rfpwr_state != ERFON)
return;
rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RCR, (u8 *)(&reg_rcr));
if (check_bssid) {
reg_rcr |= (RCR_CBSSID);
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, (u8 *)(&reg_rcr));
} else if (!check_bssid) {
reg_rcr &= (~RCR_CBSSID);
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, (u8 *)(&reg_rcr));
}
}
static int _rtl92se_set_media_status(struct ieee80211_hw *hw,
enum nl80211_iftype type)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u8 bt_msr = rtl_read_byte(rtlpriv, MSR);
u32 temp;
bt_msr &= ~MSR_LINK_MASK;
switch (type) {
case NL80211_IFTYPE_UNSPECIFIED:
bt_msr |= (MSR_LINK_NONE << MSR_LINK_SHIFT);
rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
"Set Network type to NO LINK!\n");
break;
case NL80211_IFTYPE_ADHOC:
bt_msr |= (MSR_LINK_ADHOC << MSR_LINK_SHIFT);
rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
"Set Network type to Ad Hoc!\n");
break;
case NL80211_IFTYPE_STATION:
bt_msr |= (MSR_LINK_MANAGED << MSR_LINK_SHIFT);
rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
"Set Network type to STA!\n");
break;
case NL80211_IFTYPE_AP:
bt_msr |= (MSR_LINK_MASTER << MSR_LINK_SHIFT);
rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
"Set Network type to AP!\n");
break;
default:
pr_err("Network type %d not supported!\n", type);
return 1;
}
if (type != NL80211_IFTYPE_AP &&
rtlpriv->mac80211.link_state < MAC80211_LINKED)
bt_msr = rtl_read_byte(rtlpriv, MSR) & ~MSR_LINK_MASK;
rtl_write_byte(rtlpriv, MSR, bt_msr);
temp = rtl_read_dword(rtlpriv, TCR);
rtl_write_dword(rtlpriv, TCR, temp & (~BIT(8)));
rtl_write_dword(rtlpriv, TCR, temp | BIT(8));
return 0;
}
/* HW_VAR_MEDIA_STATUS & HW_VAR_CECHK_BSSID */
int rtl92se_set_network_type(struct ieee80211_hw *hw, enum nl80211_iftype type)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
if (_rtl92se_set_media_status(hw, type))
return -EOPNOTSUPP;
if (rtlpriv->mac80211.link_state == MAC80211_LINKED) {
if (type != NL80211_IFTYPE_AP)
rtl92se_set_check_bssid(hw, true);
} else {
rtl92se_set_check_bssid(hw, false);
}
return 0;
}
/* don't set REG_EDCA_BE_PARAM here because mac80211 will send pkt when scan */
void rtl92se_set_qos(struct ieee80211_hw *hw, int aci)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
rtl92s_dm_init_edca_turbo(hw);
switch (aci) {
case AC1_BK:
rtl_write_dword(rtlpriv, EDCAPARA_BK, 0xa44f);
break;
case AC0_BE:
/* rtl_write_dword(rtlpriv, EDCAPARA_BE, u4b_ac_param); */
break;
case AC2_VI:
rtl_write_dword(rtlpriv, EDCAPARA_VI, 0x5e4322);
break;
case AC3_VO:
rtl_write_dword(rtlpriv, EDCAPARA_VO, 0x2f3222);
break;
default:
WARN_ONCE(true, "rtl8192se: invalid aci: %d !\n", aci);
break;
}
}
void rtl92se_enable_interrupt(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
rtl_write_dword(rtlpriv, INTA_MASK, rtlpci->irq_mask[0]);
/* Support Bit 32-37(Assign as Bit 0-5) interrupt setting now */
rtl_write_dword(rtlpriv, INTA_MASK + 4, rtlpci->irq_mask[1] & 0x3F);
rtlpci->irq_enabled = true;
}
void rtl92se_disable_interrupt(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv;
struct rtl_pci *rtlpci;
rtlpriv = rtl_priv(hw);
/* if firmware not available, no interrupts */
if (!rtlpriv || !rtlpriv->max_fw_size)
return;
rtlpci = rtl_pcidev(rtl_pcipriv(hw));
rtl_write_dword(rtlpriv, INTA_MASK, 0);
rtl_write_dword(rtlpriv, INTA_MASK + 4, 0);
rtlpci->irq_enabled = false;
}
static u8 _rtl92s_set_sysclk(struct ieee80211_hw *hw, u8 data)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u8 waitcnt = 100;
bool result = false;
u8 tmp;
rtl_write_byte(rtlpriv, SYS_CLKR + 1, data);
/* Wait the MAC synchronized. */
udelay(400);
/* Check if it is set ready. */
tmp = rtl_read_byte(rtlpriv, SYS_CLKR + 1);
result = ((tmp & BIT(7)) == (data & BIT(7)));
if (!(data & (BIT(6) | BIT(7)))) {
waitcnt = 100;
tmp = 0;
while (1) {
waitcnt--;
tmp = rtl_read_byte(rtlpriv, SYS_CLKR + 1);
if ((tmp & BIT(6)))
break;
pr_err("wait for BIT(6) return value %x\n", tmp);
if (waitcnt == 0)
break;
udelay(10);
}
if (waitcnt == 0)
result = false;
else
result = true;
}
return result;
}
static void _rtl92s_phy_set_rfhalt(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
u8 u1btmp;
if (rtlhal->driver_going2unload)
rtl_write_byte(rtlpriv, 0x560, 0x0);
/* Power save for BB/RF */
u1btmp = rtl_read_byte(rtlpriv, LDOV12D_CTRL);
u1btmp |= BIT(0);
rtl_write_byte(rtlpriv, LDOV12D_CTRL, u1btmp);
rtl_write_byte(rtlpriv, SPS1_CTRL, 0x0);
rtl_write_byte(rtlpriv, TXPAUSE, 0xFF);
rtl_write_word(rtlpriv, CMDR, 0x57FC);
udelay(100);
rtl_write_word(rtlpriv, CMDR, 0x77FC);
rtl_write_byte(rtlpriv, PHY_CCA, 0x0);
udelay(10);
rtl_write_word(rtlpriv, CMDR, 0x37FC);
udelay(10);
rtl_write_word(rtlpriv, CMDR, 0x77FC);
udelay(10);
rtl_write_word(rtlpriv, CMDR, 0x57FC);
rtl_write_word(rtlpriv, CMDR, 0x0000);
if (rtlhal->driver_going2unload) {
u1btmp = rtl_read_byte(rtlpriv, (REG_SYS_FUNC_EN + 1));
u1btmp &= ~(BIT(0));
rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, u1btmp);
}
u1btmp = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
/* Add description. After switch control path. register
* after page1 will be invisible. We can not do any IO
* for register>0x40. After resume&MACIO reset, we need
* to remember previous reg content. */
if (u1btmp & BIT(7)) {
u1btmp &= ~(BIT(6) | BIT(7));
if (!_rtl92s_set_sysclk(hw, u1btmp)) {
pr_err("Switch ctrl path fail\n");
return;
}
}
/* Power save for MAC */
if (ppsc->rfoff_reason == RF_CHANGE_BY_IPS &&
!rtlhal->driver_going2unload) {
/* enable LED function */
rtl_write_byte(rtlpriv, 0x03, 0xF9);
/* SW/HW radio off or halt adapter!! For example S3/S4 */
} else {
/* LED function disable. Power range is about 8mA now. */
/* if write 0xF1 disconnect_pci power
* ifconfig wlan0 down power are both high 35:70 */
/* if write oxF9 disconnect_pci power
* ifconfig wlan0 down power are both low 12:45*/
rtl_write_byte(rtlpriv, 0x03, 0xF9);
}
rtl_write_byte(rtlpriv, SYS_CLKR + 1, 0x70);
rtl_write_byte(rtlpriv, AFE_PLL_CTRL + 1, 0x68);
rtl_write_byte(rtlpriv, AFE_PLL_CTRL, 0x00);
rtl_write_byte(rtlpriv, LDOA15_CTRL, 0x34);
rtl_write_byte(rtlpriv, AFE_XTAL_CTRL, 0x0E);
RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
}
static void _rtl92se_gen_refreshledstate(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
struct rtl_led *pled0 = &rtlpriv->ledctl.sw_led0;
if (rtlpci->up_first_time)
return;
if (rtlpriv->psc.rfoff_reason == RF_CHANGE_BY_IPS)
rtl92se_sw_led_on(hw, pled0);
else
rtl92se_sw_led_off(hw, pled0);
}
static void _rtl92se_power_domain_init(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u16 tmpu2b;
u8 tmpu1b;
rtlpriv->psc.pwrdomain_protect = true;
tmpu1b = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
if (tmpu1b & BIT(7)) {
tmpu1b &= ~(BIT(6) | BIT(7));
if (!_rtl92s_set_sysclk(hw, tmpu1b)) {
rtlpriv->psc.pwrdomain_protect = false;
return;
}
}
rtl_write_byte(rtlpriv, AFE_PLL_CTRL, 0x0);
rtl_write_byte(rtlpriv, LDOA15_CTRL, 0x34);
/* Reset MAC-IO and CPU and Core Digital BIT10/11/15 */
tmpu1b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1);
/* If IPS we need to turn LED on. So we not
* not disable BIT 3/7 of reg3. */
if (rtlpriv->psc.rfoff_reason & (RF_CHANGE_BY_IPS | RF_CHANGE_BY_HW))
tmpu1b &= 0xFB;
else
tmpu1b &= 0x73;
rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b);
/* wait for BIT 10/11/15 to pull high automatically!! */
mdelay(1);
rtl_write_byte(rtlpriv, CMDR, 0);
rtl_write_byte(rtlpriv, TCR, 0);
/* Data sheet not define 0x562!!! Copy from WMAC!!!!! */
tmpu1b = rtl_read_byte(rtlpriv, 0x562);
tmpu1b |= 0x08;
rtl_write_byte(rtlpriv, 0x562, tmpu1b);
tmpu1b &= ~(BIT(3));
rtl_write_byte(rtlpriv, 0x562, tmpu1b);
/* Enable AFE clock source */
tmpu1b = rtl_read_byte(rtlpriv, AFE_XTAL_CTRL);
rtl_write_byte(rtlpriv, AFE_XTAL_CTRL, (tmpu1b | 0x01));
/* Delay 1.5ms */
udelay(1500);
tmpu1b = rtl_read_byte(rtlpriv, AFE_XTAL_CTRL + 1);
rtl_write_byte(rtlpriv, AFE_XTAL_CTRL + 1, (tmpu1b & 0xfb));
/* Enable AFE Macro Block's Bandgap */
tmpu1b = rtl_read_byte(rtlpriv, AFE_MISC);
rtl_write_byte(rtlpriv, AFE_MISC, (tmpu1b | BIT(0)));
mdelay(1);
/* Enable AFE Mbias */
tmpu1b = rtl_read_byte(rtlpriv, AFE_MISC);
rtl_write_byte(rtlpriv, AFE_MISC, (tmpu1b | 0x02));
mdelay(1);
/* Enable LDOA15 block */
tmpu1b = rtl_read_byte(rtlpriv, LDOA15_CTRL);
rtl_write_byte(rtlpriv, LDOA15_CTRL, (tmpu1b | BIT(0)));
/* Set Digital Vdd to Retention isolation Path. */
tmpu2b = rtl_read_word(rtlpriv, REG_SYS_ISO_CTRL);
rtl_write_word(rtlpriv, REG_SYS_ISO_CTRL, (tmpu2b | BIT(11)));
/* For warm reboot NIC disappera bug. */
tmpu2b = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(13)));
rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL + 1, 0x68);
/* Enable AFE PLL Macro Block */
tmpu1b = rtl_read_byte(rtlpriv, AFE_PLL_CTRL);
rtl_write_byte(rtlpriv, AFE_PLL_CTRL, (tmpu1b | BIT(0) | BIT(4)));
/* Enable MAC 80MHZ clock */
tmpu1b = rtl_read_byte(rtlpriv, AFE_PLL_CTRL + 1);
rtl_write_byte(rtlpriv, AFE_PLL_CTRL + 1, (tmpu1b | BIT(0)));
mdelay(1);
/* Release isolation AFE PLL & MD */
rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL, 0xA6);
/* Enable MAC clock */
tmpu2b = rtl_read_word(rtlpriv, SYS_CLKR);
rtl_write_word(rtlpriv, SYS_CLKR, (tmpu2b | BIT(12) | BIT(11)));
/* Enable Core digital and enable IOREG R/W */
tmpu2b = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(11)));
/* enable REG_EN */
rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(11) | BIT(15)));
/* Switch the control path. */
tmpu2b = rtl_read_word(rtlpriv, SYS_CLKR);
rtl_write_word(rtlpriv, SYS_CLKR, (tmpu2b & (~BIT(2))));
tmpu1b = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
tmpu1b = ((tmpu1b | BIT(7)) & (~BIT(6)));
if (!_rtl92s_set_sysclk(hw, tmpu1b)) {
rtlpriv->psc.pwrdomain_protect = false;
return;
}
rtl_write_word(rtlpriv, CMDR, 0x37FC);
/* After MACIO reset,we must refresh LED state. */
_rtl92se_gen_refreshledstate(hw);
rtlpriv->psc.pwrdomain_protect = false;
}
void rtl92se_card_disable(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
enum nl80211_iftype opmode;
u8 wait = 30;
rtlpriv->intf_ops->enable_aspm(hw);
if (rtlpci->driver_is_goingto_unload ||
ppsc->rfoff_reason > RF_CHANGE_BY_PS)
rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_OFF);
/* we should chnge GPIO to input mode
* this will drop away current about 25mA*/
rtl8192se_gpiobit3_cfg_inputmode(hw);
/* this is very important for ips power save */
while (wait-- >= 10 && rtlpriv->psc.pwrdomain_protect) {
if (rtlpriv->psc.pwrdomain_protect)
mdelay(20);
else
break;
}
mac->link_state = MAC80211_NOLINK;
opmode = NL80211_IFTYPE_UNSPECIFIED;
_rtl92se_set_media_status(hw, opmode);
_rtl92s_phy_set_rfhalt(hw);
udelay(100);
}
void rtl92se_interrupt_recognized(struct ieee80211_hw *hw,
struct rtl_int *intvec)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
intvec->inta = rtl_read_dword(rtlpriv, ISR) & rtlpci->irq_mask[0];
rtl_write_dword(rtlpriv, ISR, intvec->inta);
intvec->intb = rtl_read_dword(rtlpriv, ISR + 4) & rtlpci->irq_mask[1];
rtl_write_dword(rtlpriv, ISR + 4, intvec->intb);
}
void rtl92se_set_beacon_related_registers(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
u16 bcntime_cfg = 0;
u16 bcn_cw = 6, bcn_ifs = 0xf;
u16 atim_window = 2;
/* ATIM Window (in unit of TU). */
rtl_write_word(rtlpriv, ATIMWND, atim_window);
/* Beacon interval (in unit of TU). */
rtl_write_word(rtlpriv, BCN_INTERVAL, mac->beacon_interval);
/* DrvErlyInt (in unit of TU). (Time to send
* interrupt to notify driver to change
* beacon content) */
rtl_write_word(rtlpriv, BCN_DRV_EARLY_INT, 10 << 4);
/* BcnDMATIM(in unit of us). Indicates the
* time before TBTT to perform beacon queue DMA */
rtl_write_word(rtlpriv, BCN_DMATIME, 256);
/* Force beacon frame transmission even
* after receiving beacon frame from
* other ad hoc STA */
rtl_write_byte(rtlpriv, BCN_ERR_THRESH, 100);
/* Beacon Time Configuration */
if (mac->opmode == NL80211_IFTYPE_ADHOC)
bcntime_cfg |= (bcn_cw << BCN_TCFG_CW_SHIFT);
/* TODO: bcn_ifs may required to be changed on ASIC */
bcntime_cfg |= bcn_ifs << BCN_TCFG_IFS;
/*for beacon changed */
rtl92s_phy_set_beacon_hwreg(hw, mac->beacon_interval);
}
void rtl92se_set_beacon_interval(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
u16 bcn_interval = mac->beacon_interval;
/* Beacon interval (in unit of TU). */
rtl_write_word(rtlpriv, BCN_INTERVAL, bcn_interval);
/* 2008.10.24 added by tynli for beacon changed. */
rtl92s_phy_set_beacon_hwreg(hw, bcn_interval);
}
void rtl92se_update_interrupt_mask(struct ieee80211_hw *hw,
u32 add_msr, u32 rm_msr)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
rtl_dbg(rtlpriv, COMP_INTR, DBG_LOUD, "add_msr:%x, rm_msr:%x\n",
add_msr, rm_msr);
if (add_msr)
rtlpci->irq_mask[0] |= add_msr;
if (rm_msr)
rtlpci->irq_mask[0] &= (~rm_msr);
rtl92se_disable_interrupt(hw);
rtl92se_enable_interrupt(hw);
}
static void _rtl8192se_get_ic_inferiority(struct ieee80211_hw *hw)
{
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
u8 efuse_id;
rtlhal->ic_class = IC_INFERIORITY_A;
/* Only retrieving while using EFUSE. */
if ((rtlefuse->epromtype == EEPROM_BOOT_EFUSE) &&
!rtlefuse->autoload_failflag) {
efuse_id = efuse_read_1byte(hw, EFUSE_IC_ID_OFFSET);
if (efuse_id == 0xfe)
rtlhal->ic_class = IC_INFERIORITY_B;
}
}
static void _rtl92se_read_adapter_info(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
struct rtl_phy *rtlphy = &(rtlpriv->phy);
struct device *dev = &rtl_pcipriv(hw)->dev.pdev->dev;
u16 i, usvalue;
u16 eeprom_id;
u8 tempval;
u8 hwinfo[HWSET_MAX_SIZE_92S];
u8 rf_path, index;
switch (rtlefuse->epromtype) {
case EEPROM_BOOT_EFUSE:
rtl_efuse_shadow_map_update(hw);
break;
case EEPROM_93C46:
pr_err("RTL819X Not boot from eeprom, check it !!\n");
return;
default:
dev_warn(dev, "no efuse data\n");
return;
}
memcpy(hwinfo, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
HWSET_MAX_SIZE_92S);
RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_DMESG, "MAP",
hwinfo, HWSET_MAX_SIZE_92S);
eeprom_id = *((u16 *)&hwinfo[0]);
if (eeprom_id != RTL8190_EEPROM_ID) {
rtl_dbg(rtlpriv, COMP_ERR, DBG_WARNING,
"EEPROM ID(%#x) is invalid!!\n", eeprom_id);
rtlefuse->autoload_failflag = true;
} else {
rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
rtlefuse->autoload_failflag = false;
}
if (rtlefuse->autoload_failflag)
return;
_rtl8192se_get_ic_inferiority(hw);
/* Read IC Version && Channel Plan */
/* VID, DID SE 0xA-D */
rtlefuse->eeprom_vid = *(u16 *)&hwinfo[EEPROM_VID];
rtlefuse->eeprom_did = *(u16 *)&hwinfo[EEPROM_DID];
rtlefuse->eeprom_svid = *(u16 *)&hwinfo[EEPROM_SVID];
rtlefuse->eeprom_smid = *(u16 *)&hwinfo[EEPROM_SMID];
rtlefuse->eeprom_version = *(u16 *)&hwinfo[EEPROM_VERSION];
rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
"EEPROMId = 0x%4x\n", eeprom_id);
rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
"EEPROM VID = 0x%4x\n", rtlefuse->eeprom_vid);
rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
"EEPROM DID = 0x%4x\n", rtlefuse->eeprom_did);
rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
"EEPROM SVID = 0x%4x\n", rtlefuse->eeprom_svid);
rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
"EEPROM SMID = 0x%4x\n", rtlefuse->eeprom_smid);
for (i = 0; i < 6; i += 2) {
usvalue = *(u16 *)&hwinfo[EEPROM_MAC_ADDR + i];
*((u16 *) (&rtlefuse->dev_addr[i])) = usvalue;
}
for (i = 0; i < 6; i++)
rtl_write_byte(rtlpriv, MACIDR0 + i, rtlefuse->dev_addr[i]);
rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG, "%pM\n", rtlefuse->dev_addr);
/* Get Tx Power Level by Channel */
/* Read Tx power of Channel 1 ~ 14 from EEPROM. */
/* 92S suupport RF A & B */
for (rf_path = 0; rf_path < 2; rf_path++) {
for (i = 0; i < 3; i++) {
/* Read CCK RF A & B Tx power */
rtlefuse->eeprom_chnlarea_txpwr_cck[rf_path][i] =
hwinfo[EEPROM_TXPOWERBASE + rf_path * 3 + i];
/* Read OFDM RF A & B Tx power for 1T */
rtlefuse->eeprom_chnlarea_txpwr_ht40_1s[rf_path][i] =
hwinfo[EEPROM_TXPOWERBASE + 6 + rf_path * 3 + i];
/* Read OFDM RF A & B Tx power for 2T */
rtlefuse->eprom_chnl_txpwr_ht40_2sdf[rf_path][i]
= hwinfo[EEPROM_TXPOWERBASE + 12 +
rf_path * 3 + i];
}
}
for (rf_path = 0; rf_path < 2; rf_path++)
for (i = 0; i < 3; i++)
RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
"RF(%d) EEPROM CCK Area(%d) = 0x%x\n",
rf_path, i,
rtlefuse->eeprom_chnlarea_txpwr_cck
[rf_path][i]);
for (rf_path = 0; rf_path < 2; rf_path++)
for (i = 0; i < 3; i++)
RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
"RF(%d) EEPROM HT40 1S Area(%d) = 0x%x\n",
rf_path, i,
rtlefuse->eeprom_chnlarea_txpwr_ht40_1s
[rf_path][i]);
for (rf_path = 0; rf_path < 2; rf_path++)
for (i = 0; i < 3; i++)
RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
"RF(%d) EEPROM HT40 2S Diff Area(%d) = 0x%x\n",
rf_path, i,
rtlefuse->eprom_chnl_txpwr_ht40_2sdf
[rf_path][i]);
for (rf_path = 0; rf_path < 2; rf_path++) {
/* Assign dedicated channel tx power */
for (i = 0; i < 14; i++) {
/* channel 1~3 use the same Tx Power Level. */
if (i < 3)
index = 0;
/* Channel 4-8 */
else if (i < 8)
index = 1;
/* Channel 9-14 */
else
index = 2;
/* Record A & B CCK /OFDM - 1T/2T Channel area
* tx power */
rtlefuse->txpwrlevel_cck[rf_path][i] =
rtlefuse->eeprom_chnlarea_txpwr_cck
[rf_path][index];
rtlefuse->txpwrlevel_ht40_1s[rf_path][i] =
rtlefuse->eeprom_chnlarea_txpwr_ht40_1s
[rf_path][index];
rtlefuse->txpwrlevel_ht40_2s[rf_path][i] =
rtlefuse->eprom_chnl_txpwr_ht40_2sdf
[rf_path][index];
}
for (i = 0; i < 14; i++) {
RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
"RF(%d)-Ch(%d) [CCK / HT40_1S / HT40_2S] = [0x%x / 0x%x / 0x%x]\n",
rf_path, i,
rtlefuse->txpwrlevel_cck[rf_path][i],
rtlefuse->txpwrlevel_ht40_1s[rf_path][i],
rtlefuse->txpwrlevel_ht40_2s[rf_path][i]);
}
}
for (rf_path = 0; rf_path < 2; rf_path++) {
for (i = 0; i < 3; i++) {
/* Read Power diff limit. */
rtlefuse->eeprom_pwrgroup[rf_path][i] =
hwinfo[EEPROM_TXPWRGROUP + rf_path * 3 + i];
}
}
for (rf_path = 0; rf_path < 2; rf_path++) {
/* Fill Pwr group */
for (i = 0; i < 14; i++) {
/* Chanel 1-3 */
if (i < 3)
index = 0;
/* Channel 4-8 */
else if (i < 8)
index = 1;
/* Channel 9-13 */
else
index = 2;
rtlefuse->pwrgroup_ht20[rf_path][i] =
(rtlefuse->eeprom_pwrgroup[rf_path][index] &
0xf);
rtlefuse->pwrgroup_ht40[rf_path][i] =
((rtlefuse->eeprom_pwrgroup[rf_path][index] &
0xf0) >> 4);
RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
"RF-%d pwrgroup_ht20[%d] = 0x%x\n",
rf_path, i,
rtlefuse->pwrgroup_ht20[rf_path][i]);
RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
"RF-%d pwrgroup_ht40[%d] = 0x%x\n",
rf_path, i,
rtlefuse->pwrgroup_ht40[rf_path][i]);
}
}
for (i = 0; i < 14; i++) {
/* Read tx power difference between HT OFDM 20/40 MHZ */
/* channel 1-3 */
if (i < 3)
index = 0;
/* Channel 4-8 */
else if (i < 8)
index = 1;
/* Channel 9-14 */
else
index = 2;
tempval = hwinfo[EEPROM_TX_PWR_HT20_DIFF + index] & 0xff;
rtlefuse->txpwr_ht20diff[RF90_PATH_A][i] = (tempval & 0xF);
rtlefuse->txpwr_ht20diff[RF90_PATH_B][i] =
((tempval >> 4) & 0xF);
/* Read OFDM<->HT tx power diff */
/* Channel 1-3 */
if (i < 3)
index = 0;
/* Channel 4-8 */
else if (i < 8)
index = 0x11;
/* Channel 9-14 */
else
index = 1;
tempval = hwinfo[EEPROM_TX_PWR_OFDM_DIFF + index] & 0xff;
rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][i] =
(tempval & 0xF);
rtlefuse->txpwr_legacyhtdiff[RF90_PATH_B][i] =
((tempval >> 4) & 0xF);
tempval = hwinfo[TX_PWR_SAFETY_CHK];
rtlefuse->txpwr_safetyflag = (tempval & 0x01);
}
rtlefuse->eeprom_regulatory = 0;
if (rtlefuse->eeprom_version >= 2) {
/* BIT(0)~2 */
if (rtlefuse->eeprom_version >= 4)
rtlefuse->eeprom_regulatory =
(hwinfo[EEPROM_REGULATORY] & 0x7);
else /* BIT(0) */
rtlefuse->eeprom_regulatory =
(hwinfo[EEPROM_REGULATORY] & 0x1);
}
RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
"eeprom_regulatory = 0x%x\n", rtlefuse->eeprom_regulatory);
for (i = 0; i < 14; i++)
RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
"RF-A Ht20 to HT40 Diff[%d] = 0x%x\n",
i, rtlefuse->txpwr_ht20diff[RF90_PATH_A][i]);
for (i = 0; i < 14; i++)
RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
"RF-A Legacy to Ht40 Diff[%d] = 0x%x\n",
i, rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][i]);
for (i = 0; i < 14; i++)
RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
"RF-B Ht20 to HT40 Diff[%d] = 0x%x\n",
i, rtlefuse->txpwr_ht20diff[RF90_PATH_B][i]);
for (i = 0; i < 14; i++)
RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
"RF-B Legacy to HT40 Diff[%d] = 0x%x\n",
i, rtlefuse->txpwr_legacyhtdiff[RF90_PATH_B][i]);
RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
"TxPwrSafetyFlag = %d\n", rtlefuse->txpwr_safetyflag);
/* Read RF-indication and Tx Power gain
* index diff of legacy to HT OFDM rate. */
tempval = hwinfo[EEPROM_RFIND_POWERDIFF] & 0xff;
rtlefuse->eeprom_txpowerdiff = tempval;
rtlefuse->legacy_ht_txpowerdiff =
rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][0];
RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
"TxPowerDiff = %#x\n", rtlefuse->eeprom_txpowerdiff);
/* Get TSSI value for each path. */
usvalue = *(u16 *)&hwinfo[EEPROM_TSSI_A];
rtlefuse->eeprom_tssi[RF90_PATH_A] = (u8)((usvalue & 0xff00) >> 8);
usvalue = hwinfo[EEPROM_TSSI_B];
rtlefuse->eeprom_tssi[RF90_PATH_B] = (u8)(usvalue & 0xff);
RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, "TSSI_A = 0x%x, TSSI_B = 0x%x\n",
rtlefuse->eeprom_tssi[RF90_PATH_A],
rtlefuse->eeprom_tssi[RF90_PATH_B]);
/* Read antenna tx power offset of B/C/D to A from EEPROM */
/* and read ThermalMeter from EEPROM */
tempval = hwinfo[EEPROM_THERMALMETER];
rtlefuse->eeprom_thermalmeter = tempval;
RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
"thermalmeter = 0x%x\n", rtlefuse->eeprom_thermalmeter);
/* ThermalMeter, BIT(0)~3 for RFIC1, BIT(4)~7 for RFIC2 */
rtlefuse->thermalmeter[0] = (rtlefuse->eeprom_thermalmeter & 0x1f);
rtlefuse->tssi_13dbm = rtlefuse->eeprom_thermalmeter * 100;
/* Read CrystalCap from EEPROM */
tempval = hwinfo[EEPROM_CRYSTALCAP] >> 4;
rtlefuse->eeprom_crystalcap = tempval;
/* CrystalCap, BIT(12)~15 */
rtlefuse->crystalcap = rtlefuse->eeprom_crystalcap;
/* Read IC Version && Channel Plan */
/* Version ID, Channel plan */
rtlefuse->eeprom_channelplan = hwinfo[EEPROM_CHANNELPLAN];
rtlefuse->txpwr_fromeprom = true;
RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
"EEPROM ChannelPlan = 0x%4x\n", rtlefuse->eeprom_channelplan);
/* Read Customer ID or Board Type!!! */
tempval = hwinfo[EEPROM_BOARDTYPE];
/* Change RF type definition */
if (tempval == 0)
rtlphy->rf_type = RF_2T2R;
else if (tempval == 1)
rtlphy->rf_type = RF_1T2R;
else if (tempval == 2)
rtlphy->rf_type = RF_1T2R;
else if (tempval == 3)
rtlphy->rf_type = RF_1T1R;
/* 1T2R but 1SS (1x1 receive combining) */
rtlefuse->b1x1_recvcombine = false;
if (rtlphy->rf_type == RF_1T2R) {
tempval = rtl_read_byte(rtlpriv, 0x07);
if (!(tempval & BIT(0))) {
rtlefuse->b1x1_recvcombine = true;
rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
"RF_TYPE=1T2R but only 1SS\n");
}
}
rtlefuse->b1ss_support = rtlefuse->b1x1_recvcombine;
rtlefuse->eeprom_oemid = *&hwinfo[EEPROM_CUSTOMID];
rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "EEPROM Customer ID: 0x%2x\n",
rtlefuse->eeprom_oemid);
/* set channel paln to world wide 13 */
rtlefuse->channel_plan = COUNTRY_CODE_WORLD_WIDE_13;
}
void rtl92se_read_eeprom_info(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
u8 tmp_u1b = 0;
tmp_u1b = rtl_read_byte(rtlpriv, EPROM_CMD);
if (tmp_u1b & BIT(4)) {
rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EEPROM\n");
rtlefuse->epromtype = EEPROM_93C46;
} else {
rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EFUSE\n");
rtlefuse->epromtype = EEPROM_BOOT_EFUSE;
}
if (tmp_u1b & BIT(5)) {
rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
rtlefuse->autoload_failflag = false;
_rtl92se_read_adapter_info(hw);
} else {
pr_err("Autoload ERR!!\n");
rtlefuse->autoload_failflag = true;
}
}
static void rtl92se_update_hal_rate_table(struct ieee80211_hw *hw,
struct ieee80211_sta *sta)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &(rtlpriv->phy);
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
u32 ratr_value;
u8 ratr_index = 0;
u8 nmode = mac->ht_enable;
u8 mimo_ps = IEEE80211_SMPS_OFF;
u16 shortgi_rate = 0;
u32 tmp_ratr_value = 0;
u8 curtxbw_40mhz = mac->bw_40;
u8 curshortgi_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
1 : 0;
u8 curshortgi_20mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ?
1 : 0;
enum wireless_mode wirelessmode = mac->mode;
if (rtlhal->current_bandtype == BAND_ON_5G)
ratr_value = sta->supp_rates[1] << 4;
else
ratr_value = sta->supp_rates[0];
if (mac->opmode == NL80211_IFTYPE_ADHOC)
ratr_value = 0xfff;
ratr_value |= (sta->ht_cap.mcs.rx_mask[1] << 20 |
sta->ht_cap.mcs.rx_mask[0] << 12);
switch (wirelessmode) {
case WIRELESS_MODE_B:
ratr_value &= 0x0000000D;
break;
case WIRELESS_MODE_G:
ratr_value &= 0x00000FF5;
break;
case WIRELESS_MODE_N_24G:
case WIRELESS_MODE_N_5G:
nmode = 1;
if (mimo_ps == IEEE80211_SMPS_STATIC) {
ratr_value &= 0x0007F005;
} else {
u32 ratr_mask;
if (get_rf_type(rtlphy) == RF_1T2R ||
get_rf_type(rtlphy) == RF_1T1R) {
if (curtxbw_40mhz)
ratr_mask = 0x000ff015;
else
ratr_mask = 0x000ff005;
} else {
if (curtxbw_40mhz)
ratr_mask = 0x0f0ff015;
else
ratr_mask = 0x0f0ff005;
}
ratr_value &= ratr_mask;
}
break;
default:
if (rtlphy->rf_type == RF_1T2R)
ratr_value &= 0x000ff0ff;
else
ratr_value &= 0x0f0ff0ff;
break;
}
if (rtlpriv->rtlhal.version >= VERSION_8192S_BCUT)
ratr_value &= 0x0FFFFFFF;
else if (rtlpriv->rtlhal.version == VERSION_8192S_ACUT)
ratr_value &= 0x0FFFFFF0;
if (nmode && ((curtxbw_40mhz &&
curshortgi_40mhz) || (!curtxbw_40mhz &&
curshortgi_20mhz))) {
ratr_value |= 0x10000000;
tmp_ratr_value = (ratr_value >> 12);
for (shortgi_rate = 15; shortgi_rate > 0; shortgi_rate--) {
if ((1 << shortgi_rate) & tmp_ratr_value)
break;
}
shortgi_rate = (shortgi_rate << 12) | (shortgi_rate << 8) |
(shortgi_rate << 4) | (shortgi_rate);
rtl_write_byte(rtlpriv, SG_RATE, shortgi_rate);
}
rtl_write_dword(rtlpriv, ARFR0 + ratr_index * 4, ratr_value);
if (ratr_value & 0xfffff000)
rtl92s_phy_set_fw_cmd(hw, FW_CMD_RA_REFRESH_N);
else
rtl92s_phy_set_fw_cmd(hw, FW_CMD_RA_REFRESH_BG);
rtl_dbg(rtlpriv, COMP_RATR, DBG_DMESG, "%x\n",
rtl_read_dword(rtlpriv, ARFR0));
}
static void rtl92se_update_hal_rate_mask(struct ieee80211_hw *hw,
struct ieee80211_sta *sta,
u8 rssi_level, bool update_bw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &(rtlpriv->phy);
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
struct rtl_sta_info *sta_entry = NULL;
u32 ratr_bitmap;
u8 ratr_index = 0;
u8 curtxbw_40mhz = (sta->bandwidth >= IEEE80211_STA_RX_BW_40) ? 1 : 0;
u8 curshortgi_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
1 : 0;
u8 curshortgi_20mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ?
1 : 0;
enum wireless_mode wirelessmode = 0;
bool shortgi = false;
u32 ratr_value = 0;
u8 shortgi_rate = 0;
u32 mask = 0;
u32 band = 0;
bool bmulticast = false;
u8 macid = 0;
u8 mimo_ps = IEEE80211_SMPS_OFF;
sta_entry = (struct rtl_sta_info *) sta->drv_priv;
wirelessmode = sta_entry->wireless_mode;
if (mac->opmode == NL80211_IFTYPE_STATION)
curtxbw_40mhz = mac->bw_40;
else if (mac->opmode == NL80211_IFTYPE_AP ||
mac->opmode == NL80211_IFTYPE_ADHOC)
macid = sta->aid + 1;
if (rtlhal->current_bandtype == BAND_ON_5G)
ratr_bitmap = sta->supp_rates[1] << 4;
else
ratr_bitmap = sta->supp_rates[0];
if (mac->opmode == NL80211_IFTYPE_ADHOC)
ratr_bitmap = 0xfff;
ratr_bitmap |= (sta->ht_cap.mcs.rx_mask[1] << 20 |
sta->ht_cap.mcs.rx_mask[0] << 12);
switch (wirelessmode) {
case WIRELESS_MODE_B:
band |= WIRELESS_11B;
ratr_index = RATR_INX_WIRELESS_B;
if (ratr_bitmap & 0x0000000c)
ratr_bitmap &= 0x0000000d;
else
ratr_bitmap &= 0x0000000f;
break;
case WIRELESS_MODE_G:
band |= (WIRELESS_11G | WIRELESS_11B);
ratr_index = RATR_INX_WIRELESS_GB;
if (rssi_level == 1)
ratr_bitmap &= 0x00000f00;
else if (rssi_level == 2)
ratr_bitmap &= 0x00000ff0;
else
ratr_bitmap &= 0x00000ff5;
break;
case WIRELESS_MODE_A:
band |= WIRELESS_11A;
ratr_index = RATR_INX_WIRELESS_A;
ratr_bitmap &= 0x00000ff0;
break;
case WIRELESS_MODE_N_24G:
case WIRELESS_MODE_N_5G:
band |= (WIRELESS_11N | WIRELESS_11G | WIRELESS_11B);
ratr_index = RATR_INX_WIRELESS_NGB;
if (mimo_ps == IEEE80211_SMPS_STATIC) {
if (rssi_level == 1)
ratr_bitmap &= 0x00070000;
else if (rssi_level == 2)
ratr_bitmap &= 0x0007f000;
else
ratr_bitmap &= 0x0007f005;
} else {
if (rtlphy->rf_type == RF_1T2R ||
rtlphy->rf_type == RF_1T1R) {
if (rssi_level == 1) {
ratr_bitmap &= 0x000f0000;
} else if (rssi_level == 3) {
ratr_bitmap &= 0x000fc000;
} else if (rssi_level == 5) {
ratr_bitmap &= 0x000ff000;
} else {
if (curtxbw_40mhz)
ratr_bitmap &= 0x000ff015;
else
ratr_bitmap &= 0x000ff005;
}
} else {
if (rssi_level == 1) {
ratr_bitmap &= 0x0f8f0000;
} else if (rssi_level == 3) {
ratr_bitmap &= 0x0f8fc000;
} else if (rssi_level == 5) {
ratr_bitmap &= 0x0f8ff000;
} else {
if (curtxbw_40mhz)
ratr_bitmap &= 0x0f8ff015;
else
ratr_bitmap &= 0x0f8ff005;
}
}
}
if ((curtxbw_40mhz && curshortgi_40mhz) ||
(!curtxbw_40mhz && curshortgi_20mhz)) {
if (macid == 0)
shortgi = true;
else if (macid == 1)
shortgi = false;
}
break;
default:
band |= (WIRELESS_11N | WIRELESS_11G | WIRELESS_11B);
ratr_index = RATR_INX_WIRELESS_NGB;
if (rtlphy->rf_type == RF_1T2R)
ratr_bitmap &= 0x000ff0ff;
else
ratr_bitmap &= 0x0f8ff0ff;
break;
}
sta_entry->ratr_index = ratr_index;
if (rtlpriv->rtlhal.version >= VERSION_8192S_BCUT)
ratr_bitmap &= 0x0FFFFFFF;
else if (rtlpriv->rtlhal.version == VERSION_8192S_ACUT)
ratr_bitmap &= 0x0FFFFFF0;
if (shortgi) {
ratr_bitmap |= 0x10000000;
/* Get MAX MCS available. */
ratr_value = (ratr_bitmap >> 12);
for (shortgi_rate = 15; shortgi_rate > 0; shortgi_rate--) {
if ((1 << shortgi_rate) & ratr_value)
break;
}
shortgi_rate = (shortgi_rate << 12) | (shortgi_rate << 8) |
(shortgi_rate << 4) | (shortgi_rate);
rtl_write_byte(rtlpriv, SG_RATE, shortgi_rate);
}
mask |= (bmulticast ? 1 : 0) << 9 | (macid & 0x1f) << 4 | (band & 0xf);
rtl_dbg(rtlpriv, COMP_RATR, DBG_TRACE, "mask = %x, bitmap = %x\n",
mask, ratr_bitmap);
rtl_write_dword(rtlpriv, 0x2c4, ratr_bitmap);
rtl_write_dword(rtlpriv, WFM5, (FW_RA_UPDATE_MASK | (mask << 8)));
if (macid != 0)
sta_entry->ratr_index = ratr_index;
}
void rtl92se_update_hal_rate_tbl(struct ieee80211_hw *hw,
struct ieee80211_sta *sta, u8 rssi_level, bool update_bw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
if (rtlpriv->dm.useramask)
rtl92se_update_hal_rate_mask(hw, sta, rssi_level, update_bw);
else
rtl92se_update_hal_rate_table(hw, sta);
}
void rtl92se_update_channel_access_setting(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
u16 sifs_timer;
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SLOT_TIME,
&mac->slot_time);
sifs_timer = 0x0e0e;
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SIFS, (u8 *)&sifs_timer);
}
/* this ifunction is for RFKILL, it's different with windows,
* because UI will disable wireless when GPIO Radio Off.
* And here we not check or Disable/Enable ASPM like windows*/
bool rtl92se_gpio_radio_on_off_checking(struct ieee80211_hw *hw, u8 *valid)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
enum rf_pwrstate rfpwr_toset /*, cur_rfstate */;
unsigned long flag = 0;
bool actuallyset = false;
bool turnonbypowerdomain = false;
/* just 8191se can check gpio before firstup, 92c/92d have fixed it */
if (rtlpci->up_first_time || rtlpci->being_init_adapter)
return false;
if (ppsc->swrf_processing)
return false;
spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
if (ppsc->rfchange_inprogress) {
spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
return false;
} else {
ppsc->rfchange_inprogress = true;
spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
}
/* cur_rfstate = ppsc->rfpwr_state;*/
/* because after _rtl92s_phy_set_rfhalt, all power
* closed, so we must open some power for GPIO check,
* or we will always check GPIO RFOFF here,
* And we should close power after GPIO check */
if (RT_IN_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC)) {
_rtl92se_power_domain_init(hw);
turnonbypowerdomain = true;
}
rfpwr_toset = _rtl92se_rf_onoff_detect(hw);
if ((ppsc->hwradiooff) && (rfpwr_toset == ERFON)) {
rtl_dbg(rtlpriv, COMP_RF, DBG_DMESG,
"RFKILL-HW Radio ON, RF ON\n");
rfpwr_toset = ERFON;
ppsc->hwradiooff = false;
actuallyset = true;
} else if ((!ppsc->hwradiooff) && (rfpwr_toset == ERFOFF)) {
rtl_dbg(rtlpriv, COMP_RF,
DBG_DMESG, "RFKILL-HW Radio OFF, RF OFF\n");
rfpwr_toset = ERFOFF;
ppsc->hwradiooff = true;
actuallyset = true;
}
if (actuallyset) {
spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
ppsc->rfchange_inprogress = false;
spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
/* this not include ifconfig wlan0 down case */
/* } else if (rfpwr_toset == ERFOFF || cur_rfstate == ERFOFF) { */
} else {
/* because power_domain_init may be happen when
* _rtl92s_phy_set_rfhalt, this will open some powers
* and cause current increasing about 40 mA for ips,
* rfoff and ifconfig down, so we set
* _rtl92s_phy_set_rfhalt again here */
if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_HALT_NIC &&
turnonbypowerdomain) {
_rtl92s_phy_set_rfhalt(hw);
RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
}
spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
ppsc->rfchange_inprogress = false;
spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
}
*valid = 1;
return !ppsc->hwradiooff;
}
/* Is_wepkey just used for WEP used as group & pairwise key
* if pairwise is AES ang group is WEP Is_wepkey == false.*/
void rtl92se_set_key(struct ieee80211_hw *hw, u32 key_index, u8 *p_macaddr,
bool is_group, u8 enc_algo, bool is_wepkey, bool clear_all)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
u8 *macaddr = p_macaddr;
u32 entry_id = 0;
bool is_pairwise = false;
static u8 cam_const_addr[4][6] = {
{0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
{0x00, 0x00, 0x00, 0x00, 0x00, 0x01},
{0x00, 0x00, 0x00, 0x00, 0x00, 0x02},
{0x00, 0x00, 0x00, 0x00, 0x00, 0x03}
};
static u8 cam_const_broad[] = {
0xff, 0xff, 0xff, 0xff, 0xff, 0xff
};
if (clear_all) {
u8 idx = 0;
u8 cam_offset = 0;
u8 clear_number = 5;
rtl_dbg(rtlpriv, COMP_SEC, DBG_DMESG, "clear_all\n");
for (idx = 0; idx < clear_number; idx++) {
rtl_cam_mark_invalid(hw, cam_offset + idx);
rtl_cam_empty_entry(hw, cam_offset + idx);
if (idx < 5) {
memset(rtlpriv->sec.key_buf[idx], 0,
MAX_KEY_LEN);
rtlpriv->sec.key_len[idx] = 0;
}
}
} else {
switch (enc_algo) {
case WEP40_ENCRYPTION:
enc_algo = CAM_WEP40;
break;
case WEP104_ENCRYPTION:
enc_algo = CAM_WEP104;
break;
case TKIP_ENCRYPTION:
enc_algo = CAM_TKIP;
break;
case AESCCMP_ENCRYPTION:
enc_algo = CAM_AES;
break;
default:
pr_err("switch case %#x not processed\n",
enc_algo);
enc_algo = CAM_TKIP;
break;
}
if (is_wepkey || rtlpriv->sec.use_defaultkey) {
macaddr = cam_const_addr[key_index];
entry_id = key_index;
} else {
if (is_group) {
macaddr = cam_const_broad;
entry_id = key_index;
} else {
if (mac->opmode == NL80211_IFTYPE_AP) {
entry_id = rtl_cam_get_free_entry(hw,
p_macaddr);
if (entry_id >= TOTAL_CAM_ENTRY) {
pr_err("Can not find free hw security cam entry\n");
return;
}
} else {
entry_id = CAM_PAIRWISE_KEY_POSITION;
}
key_index = PAIRWISE_KEYIDX;
is_pairwise = true;
}
}
if (rtlpriv->sec.key_len[key_index] == 0) {
rtl_dbg(rtlpriv, COMP_SEC, DBG_DMESG,
"delete one entry, entry_id is %d\n",
entry_id);
if (mac->opmode == NL80211_IFTYPE_AP)
rtl_cam_del_entry(hw, p_macaddr);
rtl_cam_delete_one_entry(hw, p_macaddr, entry_id);
} else {
rtl_dbg(rtlpriv, COMP_SEC, DBG_DMESG,
"add one entry\n");
if (is_pairwise) {
rtl_dbg(rtlpriv, COMP_SEC, DBG_DMESG,
"set Pairwise key\n");
rtl_cam_add_one_entry(hw, macaddr, key_index,
entry_id, enc_algo,
CAM_CONFIG_NO_USEDK,
rtlpriv->sec.key_buf[key_index]);
} else {
rtl_dbg(rtlpriv, COMP_SEC, DBG_DMESG,
"set group key\n");
if (mac->opmode == NL80211_IFTYPE_ADHOC) {
rtl_cam_add_one_entry(hw,
rtlefuse->dev_addr,
PAIRWISE_KEYIDX,
CAM_PAIRWISE_KEY_POSITION,
enc_algo, CAM_CONFIG_NO_USEDK,
rtlpriv->sec.key_buf[entry_id]);
}
rtl_cam_add_one_entry(hw, macaddr, key_index,
entry_id, enc_algo,
CAM_CONFIG_NO_USEDK,
rtlpriv->sec.key_buf[entry_id]);
}
}
}
}
void rtl92se_suspend(struct ieee80211_hw *hw)
{
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
rtlpci->up_first_time = true;
}
void rtl92se_resume(struct ieee80211_hw *hw)
{
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
u32 val;
pci_read_config_dword(rtlpci->pdev, 0x40, &val);
if ((val & 0x0000ff00) != 0)
pci_write_config_dword(rtlpci->pdev, 0x40,
val & 0xffff00ff);
}