| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * multiorder.c: Multi-order radix tree entry testing |
| * Copyright (c) 2016 Intel Corporation |
| * Author: Ross Zwisler <ross.zwisler@linux.intel.com> |
| * Author: Matthew Wilcox <matthew.r.wilcox@intel.com> |
| */ |
| #include <linux/radix-tree.h> |
| #include <linux/slab.h> |
| #include <linux/errno.h> |
| #include <pthread.h> |
| |
| #include "test.h" |
| |
| static int item_insert_order(struct xarray *xa, unsigned long index, |
| unsigned order) |
| { |
| XA_STATE_ORDER(xas, xa, index, order); |
| struct item *item = item_create(index, order); |
| |
| do { |
| xas_lock(&xas); |
| xas_store(&xas, item); |
| xas_unlock(&xas); |
| } while (xas_nomem(&xas, GFP_KERNEL)); |
| |
| if (!xas_error(&xas)) |
| return 0; |
| |
| free(item); |
| return xas_error(&xas); |
| } |
| |
| void multiorder_iteration(struct xarray *xa) |
| { |
| XA_STATE(xas, xa, 0); |
| struct item *item; |
| int i, j, err; |
| |
| #define NUM_ENTRIES 11 |
| int index[NUM_ENTRIES] = {0, 2, 4, 8, 16, 32, 34, 36, 64, 72, 128}; |
| int order[NUM_ENTRIES] = {1, 1, 2, 3, 4, 1, 0, 1, 3, 0, 7}; |
| |
| printv(1, "Multiorder iteration test\n"); |
| |
| for (i = 0; i < NUM_ENTRIES; i++) { |
| err = item_insert_order(xa, index[i], order[i]); |
| assert(!err); |
| } |
| |
| for (j = 0; j < 256; j++) { |
| for (i = 0; i < NUM_ENTRIES; i++) |
| if (j <= (index[i] | ((1 << order[i]) - 1))) |
| break; |
| |
| xas_set(&xas, j); |
| xas_for_each(&xas, item, ULONG_MAX) { |
| int height = order[i] / XA_CHUNK_SHIFT; |
| int shift = height * XA_CHUNK_SHIFT; |
| unsigned long mask = (1UL << order[i]) - 1; |
| |
| assert((xas.xa_index | mask) == (index[i] | mask)); |
| assert(xas.xa_node->shift == shift); |
| assert(!radix_tree_is_internal_node(item)); |
| assert((item->index | mask) == (index[i] | mask)); |
| assert(item->order == order[i]); |
| i++; |
| } |
| } |
| |
| item_kill_tree(xa); |
| } |
| |
| void multiorder_tagged_iteration(struct xarray *xa) |
| { |
| XA_STATE(xas, xa, 0); |
| struct item *item; |
| int i, j; |
| |
| #define MT_NUM_ENTRIES 9 |
| int index[MT_NUM_ENTRIES] = {0, 2, 4, 16, 32, 40, 64, 72, 128}; |
| int order[MT_NUM_ENTRIES] = {1, 0, 2, 4, 3, 1, 3, 0, 7}; |
| |
| #define TAG_ENTRIES 7 |
| int tag_index[TAG_ENTRIES] = {0, 4, 16, 40, 64, 72, 128}; |
| |
| printv(1, "Multiorder tagged iteration test\n"); |
| |
| for (i = 0; i < MT_NUM_ENTRIES; i++) |
| assert(!item_insert_order(xa, index[i], order[i])); |
| |
| assert(!xa_marked(xa, XA_MARK_1)); |
| |
| for (i = 0; i < TAG_ENTRIES; i++) |
| xa_set_mark(xa, tag_index[i], XA_MARK_1); |
| |
| for (j = 0; j < 256; j++) { |
| int k; |
| |
| for (i = 0; i < TAG_ENTRIES; i++) { |
| for (k = i; index[k] < tag_index[i]; k++) |
| ; |
| if (j <= (index[k] | ((1 << order[k]) - 1))) |
| break; |
| } |
| |
| xas_set(&xas, j); |
| xas_for_each_marked(&xas, item, ULONG_MAX, XA_MARK_1) { |
| unsigned long mask; |
| for (k = i; index[k] < tag_index[i]; k++) |
| ; |
| mask = (1UL << order[k]) - 1; |
| |
| assert((xas.xa_index | mask) == (tag_index[i] | mask)); |
| assert(!xa_is_internal(item)); |
| assert((item->index | mask) == (tag_index[i] | mask)); |
| assert(item->order == order[k]); |
| i++; |
| } |
| } |
| |
| assert(tag_tagged_items(xa, 0, ULONG_MAX, TAG_ENTRIES, XA_MARK_1, |
| XA_MARK_2) == TAG_ENTRIES); |
| |
| for (j = 0; j < 256; j++) { |
| int mask, k; |
| |
| for (i = 0; i < TAG_ENTRIES; i++) { |
| for (k = i; index[k] < tag_index[i]; k++) |
| ; |
| if (j <= (index[k] | ((1 << order[k]) - 1))) |
| break; |
| } |
| |
| xas_set(&xas, j); |
| xas_for_each_marked(&xas, item, ULONG_MAX, XA_MARK_2) { |
| for (k = i; index[k] < tag_index[i]; k++) |
| ; |
| mask = (1 << order[k]) - 1; |
| |
| assert((xas.xa_index | mask) == (tag_index[i] | mask)); |
| assert(!xa_is_internal(item)); |
| assert((item->index | mask) == (tag_index[i] | mask)); |
| assert(item->order == order[k]); |
| i++; |
| } |
| } |
| |
| assert(tag_tagged_items(xa, 1, ULONG_MAX, MT_NUM_ENTRIES * 2, XA_MARK_1, |
| XA_MARK_0) == TAG_ENTRIES); |
| i = 0; |
| xas_set(&xas, 0); |
| xas_for_each_marked(&xas, item, ULONG_MAX, XA_MARK_0) { |
| assert(xas.xa_index == tag_index[i]); |
| i++; |
| } |
| assert(i == TAG_ENTRIES); |
| |
| item_kill_tree(xa); |
| } |
| |
| bool stop_iteration = false; |
| |
| static void *creator_func(void *ptr) |
| { |
| /* 'order' is set up to ensure we have sibling entries */ |
| unsigned int order = RADIX_TREE_MAP_SHIFT - 1; |
| struct radix_tree_root *tree = ptr; |
| int i; |
| |
| for (i = 0; i < 10000; i++) { |
| item_insert_order(tree, 0, order); |
| item_delete_rcu(tree, 0); |
| } |
| |
| stop_iteration = true; |
| return NULL; |
| } |
| |
| static void *iterator_func(void *ptr) |
| { |
| XA_STATE(xas, ptr, 0); |
| struct item *item; |
| |
| while (!stop_iteration) { |
| rcu_read_lock(); |
| xas_for_each(&xas, item, ULONG_MAX) { |
| if (xas_retry(&xas, item)) |
| continue; |
| |
| item_sanity(item, xas.xa_index); |
| } |
| rcu_read_unlock(); |
| } |
| return NULL; |
| } |
| |
| static void multiorder_iteration_race(struct xarray *xa) |
| { |
| const int num_threads = sysconf(_SC_NPROCESSORS_ONLN); |
| pthread_t worker_thread[num_threads]; |
| int i; |
| |
| pthread_create(&worker_thread[0], NULL, &creator_func, xa); |
| for (i = 1; i < num_threads; i++) |
| pthread_create(&worker_thread[i], NULL, &iterator_func, xa); |
| |
| for (i = 0; i < num_threads; i++) |
| pthread_join(worker_thread[i], NULL); |
| |
| item_kill_tree(xa); |
| } |
| |
| static DEFINE_XARRAY(array); |
| |
| void multiorder_checks(void) |
| { |
| multiorder_iteration(&array); |
| multiorder_tagged_iteration(&array); |
| multiorder_iteration_race(&array); |
| |
| radix_tree_cpu_dead(0); |
| } |
| |
| int __weak main(void) |
| { |
| rcu_register_thread(); |
| radix_tree_init(); |
| multiorder_checks(); |
| rcu_unregister_thread(); |
| return 0; |
| } |