blob: 5900b06fd0364c76bcca9a37e9ad9e76082b8560 [file] [log] [blame] [edit]
/* SPDX-License-Identifier: GPL-2.0 */
/*
* BPF extensible scheduler class: Documentation/scheduler/sched-ext.rst
*
* Copyright (c) 2022 Meta Platforms, Inc. and affiliates.
* Copyright (c) 2022 Tejun Heo <tj@kernel.org>
* Copyright (c) 2022 David Vernet <dvernet@meta.com>
*/
#define SCX_OP_IDX(op) (offsetof(struct sched_ext_ops, op) / sizeof(void (*)(void)))
enum scx_consts {
SCX_DSP_DFL_MAX_BATCH = 32,
SCX_DSP_MAX_LOOPS = 32,
SCX_WATCHDOG_MAX_TIMEOUT = 30 * HZ,
SCX_EXIT_BT_LEN = 64,
SCX_EXIT_MSG_LEN = 1024,
SCX_EXIT_DUMP_DFL_LEN = 32768,
SCX_CPUPERF_ONE = SCHED_CAPACITY_SCALE,
/*
* Iterating all tasks may take a while. Periodically drop
* scx_tasks_lock to avoid causing e.g. CSD and RCU stalls.
*/
SCX_OPS_TASK_ITER_BATCH = 32,
};
enum scx_exit_kind {
SCX_EXIT_NONE,
SCX_EXIT_DONE,
SCX_EXIT_UNREG = 64, /* user-space initiated unregistration */
SCX_EXIT_UNREG_BPF, /* BPF-initiated unregistration */
SCX_EXIT_UNREG_KERN, /* kernel-initiated unregistration */
SCX_EXIT_SYSRQ, /* requested by 'S' sysrq */
SCX_EXIT_ERROR = 1024, /* runtime error, error msg contains details */
SCX_EXIT_ERROR_BPF, /* ERROR but triggered through scx_bpf_error() */
SCX_EXIT_ERROR_STALL, /* watchdog detected stalled runnable tasks */
};
/*
* An exit code can be specified when exiting with scx_bpf_exit() or
* scx_ops_exit(), corresponding to exit_kind UNREG_BPF and UNREG_KERN
* respectively. The codes are 64bit of the format:
*
* Bits: [63 .. 48 47 .. 32 31 .. 0]
* [ SYS ACT ] [ SYS RSN ] [ USR ]
*
* SYS ACT: System-defined exit actions
* SYS RSN: System-defined exit reasons
* USR : User-defined exit codes and reasons
*
* Using the above, users may communicate intention and context by ORing system
* actions and/or system reasons with a user-defined exit code.
*/
enum scx_exit_code {
/* Reasons */
SCX_ECODE_RSN_HOTPLUG = 1LLU << 32,
/* Actions */
SCX_ECODE_ACT_RESTART = 1LLU << 48,
};
/*
* scx_exit_info is passed to ops.exit() to describe why the BPF scheduler is
* being disabled.
*/
struct scx_exit_info {
/* %SCX_EXIT_* - broad category of the exit reason */
enum scx_exit_kind kind;
/* exit code if gracefully exiting */
s64 exit_code;
/* textual representation of the above */
const char *reason;
/* backtrace if exiting due to an error */
unsigned long *bt;
u32 bt_len;
/* informational message */
char *msg;
/* debug dump */
char *dump;
};
/* sched_ext_ops.flags */
enum scx_ops_flags {
/*
* Keep built-in idle tracking even if ops.update_idle() is implemented.
*/
SCX_OPS_KEEP_BUILTIN_IDLE = 1LLU << 0,
/*
* By default, if there are no other task to run on the CPU, ext core
* keeps running the current task even after its slice expires. If this
* flag is specified, such tasks are passed to ops.enqueue() with
* %SCX_ENQ_LAST. See the comment above %SCX_ENQ_LAST for more info.
*/
SCX_OPS_ENQ_LAST = 1LLU << 1,
/*
* An exiting task may schedule after PF_EXITING is set. In such cases,
* bpf_task_from_pid() may not be able to find the task and if the BPF
* scheduler depends on pid lookup for dispatching, the task will be
* lost leading to various issues including RCU grace period stalls.
*
* To mask this problem, by default, unhashed tasks are automatically
* dispatched to the local DSQ on enqueue. If the BPF scheduler doesn't
* depend on pid lookups and wants to handle these tasks directly, the
* following flag can be used.
*/
SCX_OPS_ENQ_EXITING = 1LLU << 2,
/*
* If set, only tasks with policy set to SCHED_EXT are attached to
* sched_ext. If clear, SCHED_NORMAL tasks are also included.
*/
SCX_OPS_SWITCH_PARTIAL = 1LLU << 3,
/*
* CPU cgroup support flags
*/
SCX_OPS_HAS_CGROUP_WEIGHT = 1LLU << 16, /* cpu.weight */
SCX_OPS_ALL_FLAGS = SCX_OPS_KEEP_BUILTIN_IDLE |
SCX_OPS_ENQ_LAST |
SCX_OPS_ENQ_EXITING |
SCX_OPS_SWITCH_PARTIAL |
SCX_OPS_HAS_CGROUP_WEIGHT,
};
/* argument container for ops.init_task() */
struct scx_init_task_args {
/*
* Set if ops.init_task() is being invoked on the fork path, as opposed
* to the scheduler transition path.
*/
bool fork;
#ifdef CONFIG_EXT_GROUP_SCHED
/* the cgroup the task is joining */
struct cgroup *cgroup;
#endif
};
/* argument container for ops.exit_task() */
struct scx_exit_task_args {
/* Whether the task exited before running on sched_ext. */
bool cancelled;
};
/* argument container for ops->cgroup_init() */
struct scx_cgroup_init_args {
/* the weight of the cgroup [1..10000] */
u32 weight;
};
enum scx_cpu_preempt_reason {
/* next task is being scheduled by &sched_class_rt */
SCX_CPU_PREEMPT_RT,
/* next task is being scheduled by &sched_class_dl */
SCX_CPU_PREEMPT_DL,
/* next task is being scheduled by &sched_class_stop */
SCX_CPU_PREEMPT_STOP,
/* unknown reason for SCX being preempted */
SCX_CPU_PREEMPT_UNKNOWN,
};
/*
* Argument container for ops->cpu_acquire(). Currently empty, but may be
* expanded in the future.
*/
struct scx_cpu_acquire_args {};
/* argument container for ops->cpu_release() */
struct scx_cpu_release_args {
/* the reason the CPU was preempted */
enum scx_cpu_preempt_reason reason;
/* the task that's going to be scheduled on the CPU */
struct task_struct *task;
};
/*
* Informational context provided to dump operations.
*/
struct scx_dump_ctx {
enum scx_exit_kind kind;
s64 exit_code;
const char *reason;
u64 at_ns;
u64 at_jiffies;
};
/**
* struct sched_ext_ops - Operation table for BPF scheduler implementation
*
* Userland can implement an arbitrary scheduling policy by implementing and
* loading operations in this table.
*/
struct sched_ext_ops {
/**
* select_cpu - Pick the target CPU for a task which is being woken up
* @p: task being woken up
* @prev_cpu: the cpu @p was on before sleeping
* @wake_flags: SCX_WAKE_*
*
* Decision made here isn't final. @p may be moved to any CPU while it
* is getting dispatched for execution later. However, as @p is not on
* the rq at this point, getting the eventual execution CPU right here
* saves a small bit of overhead down the line.
*
* If an idle CPU is returned, the CPU is kicked and will try to
* dispatch. While an explicit custom mechanism can be added,
* select_cpu() serves as the default way to wake up idle CPUs.
*
* @p may be dispatched directly by calling scx_bpf_dispatch(). If @p
* is dispatched, the ops.enqueue() callback will be skipped. Finally,
* if @p is dispatched to SCX_DSQ_LOCAL, it will be dispatched to the
* local DSQ of whatever CPU is returned by this callback.
*/
s32 (*select_cpu)(struct task_struct *p, s32 prev_cpu, u64 wake_flags);
/**
* enqueue - Enqueue a task on the BPF scheduler
* @p: task being enqueued
* @enq_flags: %SCX_ENQ_*
*
* @p is ready to run. Dispatch directly by calling scx_bpf_dispatch()
* or enqueue on the BPF scheduler. If not directly dispatched, the bpf
* scheduler owns @p and if it fails to dispatch @p, the task will
* stall.
*
* If @p was dispatched from ops.select_cpu(), this callback is
* skipped.
*/
void (*enqueue)(struct task_struct *p, u64 enq_flags);
/**
* dequeue - Remove a task from the BPF scheduler
* @p: task being dequeued
* @deq_flags: %SCX_DEQ_*
*
* Remove @p from the BPF scheduler. This is usually called to isolate
* the task while updating its scheduling properties (e.g. priority).
*
* The ext core keeps track of whether the BPF side owns a given task or
* not and can gracefully ignore spurious dispatches from BPF side,
* which makes it safe to not implement this method. However, depending
* on the scheduling logic, this can lead to confusing behaviors - e.g.
* scheduling position not being updated across a priority change.
*/
void (*dequeue)(struct task_struct *p, u64 deq_flags);
/**
* dispatch - Dispatch tasks from the BPF scheduler and/or consume DSQs
* @cpu: CPU to dispatch tasks for
* @prev: previous task being switched out
*
* Called when a CPU's local dsq is empty. The operation should dispatch
* one or more tasks from the BPF scheduler into the DSQs using
* scx_bpf_dispatch() and/or consume user DSQs into the local DSQ using
* scx_bpf_consume().
*
* The maximum number of times scx_bpf_dispatch() can be called without
* an intervening scx_bpf_consume() is specified by
* ops.dispatch_max_batch. See the comments on top of the two functions
* for more details.
*
* When not %NULL, @prev is an SCX task with its slice depleted. If
* @prev is still runnable as indicated by set %SCX_TASK_QUEUED in
* @prev->scx.flags, it is not enqueued yet and will be enqueued after
* ops.dispatch() returns. To keep executing @prev, return without
* dispatching or consuming any tasks. Also see %SCX_OPS_ENQ_LAST.
*/
void (*dispatch)(s32 cpu, struct task_struct *prev);
/**
* tick - Periodic tick
* @p: task running currently
*
* This operation is called every 1/HZ seconds on CPUs which are
* executing an SCX task. Setting @p->scx.slice to 0 will trigger an
* immediate dispatch cycle on the CPU.
*/
void (*tick)(struct task_struct *p);
/**
* runnable - A task is becoming runnable on its associated CPU
* @p: task becoming runnable
* @enq_flags: %SCX_ENQ_*
*
* This and the following three functions can be used to track a task's
* execution state transitions. A task becomes ->runnable() on a CPU,
* and then goes through one or more ->running() and ->stopping() pairs
* as it runs on the CPU, and eventually becomes ->quiescent() when it's
* done running on the CPU.
*
* @p is becoming runnable on the CPU because it's
*
* - waking up (%SCX_ENQ_WAKEUP)
* - being moved from another CPU
* - being restored after temporarily taken off the queue for an
* attribute change.
*
* This and ->enqueue() are related but not coupled. This operation
* notifies @p's state transition and may not be followed by ->enqueue()
* e.g. when @p is being dispatched to a remote CPU, or when @p is
* being enqueued on a CPU experiencing a hotplug event. Likewise, a
* task may be ->enqueue()'d without being preceded by this operation
* e.g. after exhausting its slice.
*/
void (*runnable)(struct task_struct *p, u64 enq_flags);
/**
* running - A task is starting to run on its associated CPU
* @p: task starting to run
*
* See ->runnable() for explanation on the task state notifiers.
*/
void (*running)(struct task_struct *p);
/**
* stopping - A task is stopping execution
* @p: task stopping to run
* @runnable: is task @p still runnable?
*
* See ->runnable() for explanation on the task state notifiers. If
* !@runnable, ->quiescent() will be invoked after this operation
* returns.
*/
void (*stopping)(struct task_struct *p, bool runnable);
/**
* quiescent - A task is becoming not runnable on its associated CPU
* @p: task becoming not runnable
* @deq_flags: %SCX_DEQ_*
*
* See ->runnable() for explanation on the task state notifiers.
*
* @p is becoming quiescent on the CPU because it's
*
* - sleeping (%SCX_DEQ_SLEEP)
* - being moved to another CPU
* - being temporarily taken off the queue for an attribute change
* (%SCX_DEQ_SAVE)
*
* This and ->dequeue() are related but not coupled. This operation
* notifies @p's state transition and may not be preceded by ->dequeue()
* e.g. when @p is being dispatched to a remote CPU.
*/
void (*quiescent)(struct task_struct *p, u64 deq_flags);
/**
* yield - Yield CPU
* @from: yielding task
* @to: optional yield target task
*
* If @to is NULL, @from is yielding the CPU to other runnable tasks.
* The BPF scheduler should ensure that other available tasks are
* dispatched before the yielding task. Return value is ignored in this
* case.
*
* If @to is not-NULL, @from wants to yield the CPU to @to. If the bpf
* scheduler can implement the request, return %true; otherwise, %false.
*/
bool (*yield)(struct task_struct *from, struct task_struct *to);
/**
* core_sched_before - Task ordering for core-sched
* @a: task A
* @b: task B
*
* Used by core-sched to determine the ordering between two tasks. See
* Documentation/admin-guide/hw-vuln/core-scheduling.rst for details on
* core-sched.
*
* Both @a and @b are runnable and may or may not currently be queued on
* the BPF scheduler. Should return %true if @a should run before @b.
* %false if there's no required ordering or @b should run before @a.
*
* If not specified, the default is ordering them according to when they
* became runnable.
*/
bool (*core_sched_before)(struct task_struct *a, struct task_struct *b);
/**
* set_weight - Set task weight
* @p: task to set weight for
* @weight: new weight [1..10000]
*
* Update @p's weight to @weight.
*/
void (*set_weight)(struct task_struct *p, u32 weight);
/**
* set_cpumask - Set CPU affinity
* @p: task to set CPU affinity for
* @cpumask: cpumask of cpus that @p can run on
*
* Update @p's CPU affinity to @cpumask.
*/
void (*set_cpumask)(struct task_struct *p,
const struct cpumask *cpumask);
/**
* update_idle - Update the idle state of a CPU
* @cpu: CPU to udpate the idle state for
* @idle: whether entering or exiting the idle state
*
* This operation is called when @rq's CPU goes or leaves the idle
* state. By default, implementing this operation disables the built-in
* idle CPU tracking and the following helpers become unavailable:
*
* - scx_bpf_select_cpu_dfl()
* - scx_bpf_test_and_clear_cpu_idle()
* - scx_bpf_pick_idle_cpu()
*
* The user also must implement ops.select_cpu() as the default
* implementation relies on scx_bpf_select_cpu_dfl().
*
* Specify the %SCX_OPS_KEEP_BUILTIN_IDLE flag to keep the built-in idle
* tracking.
*/
void (*update_idle)(s32 cpu, bool idle);
/**
* cpu_acquire - A CPU is becoming available to the BPF scheduler
* @cpu: The CPU being acquired by the BPF scheduler.
* @args: Acquire arguments, see the struct definition.
*
* A CPU that was previously released from the BPF scheduler is now once
* again under its control.
*/
void (*cpu_acquire)(s32 cpu, struct scx_cpu_acquire_args *args);
/**
* cpu_release - A CPU is taken away from the BPF scheduler
* @cpu: The CPU being released by the BPF scheduler.
* @args: Release arguments, see the struct definition.
*
* The specified CPU is no longer under the control of the BPF
* scheduler. This could be because it was preempted by a higher
* priority sched_class, though there may be other reasons as well. The
* caller should consult @args->reason to determine the cause.
*/
void (*cpu_release)(s32 cpu, struct scx_cpu_release_args *args);
/**
* init_task - Initialize a task to run in a BPF scheduler
* @p: task to initialize for BPF scheduling
* @args: init arguments, see the struct definition
*
* Either we're loading a BPF scheduler or a new task is being forked.
* Initialize @p for BPF scheduling. This operation may block and can
* be used for allocations, and is called exactly once for a task.
*
* Return 0 for success, -errno for failure. An error return while
* loading will abort loading of the BPF scheduler. During a fork, it
* will abort that specific fork.
*/
s32 (*init_task)(struct task_struct *p, struct scx_init_task_args *args);
/**
* exit_task - Exit a previously-running task from the system
* @p: task to exit
*
* @p is exiting or the BPF scheduler is being unloaded. Perform any
* necessary cleanup for @p.
*/
void (*exit_task)(struct task_struct *p, struct scx_exit_task_args *args);
/**
* enable - Enable BPF scheduling for a task
* @p: task to enable BPF scheduling for
*
* Enable @p for BPF scheduling. enable() is called on @p any time it
* enters SCX, and is always paired with a matching disable().
*/
void (*enable)(struct task_struct *p);
/**
* disable - Disable BPF scheduling for a task
* @p: task to disable BPF scheduling for
*
* @p is exiting, leaving SCX or the BPF scheduler is being unloaded.
* Disable BPF scheduling for @p. A disable() call is always matched
* with a prior enable() call.
*/
void (*disable)(struct task_struct *p);
/**
* dump - Dump BPF scheduler state on error
* @ctx: debug dump context
*
* Use scx_bpf_dump() to generate BPF scheduler specific debug dump.
*/
void (*dump)(struct scx_dump_ctx *ctx);
/**
* dump_cpu - Dump BPF scheduler state for a CPU on error
* @ctx: debug dump context
* @cpu: CPU to generate debug dump for
* @idle: @cpu is currently idle without any runnable tasks
*
* Use scx_bpf_dump() to generate BPF scheduler specific debug dump for
* @cpu. If @idle is %true and this operation doesn't produce any
* output, @cpu is skipped for dump.
*/
void (*dump_cpu)(struct scx_dump_ctx *ctx, s32 cpu, bool idle);
/**
* dump_task - Dump BPF scheduler state for a runnable task on error
* @ctx: debug dump context
* @p: runnable task to generate debug dump for
*
* Use scx_bpf_dump() to generate BPF scheduler specific debug dump for
* @p.
*/
void (*dump_task)(struct scx_dump_ctx *ctx, struct task_struct *p);
#ifdef CONFIG_EXT_GROUP_SCHED
/**
* cgroup_init - Initialize a cgroup
* @cgrp: cgroup being initialized
* @args: init arguments, see the struct definition
*
* Either the BPF scheduler is being loaded or @cgrp created, initialize
* @cgrp for sched_ext. This operation may block.
*
* Return 0 for success, -errno for failure. An error return while
* loading will abort loading of the BPF scheduler. During cgroup
* creation, it will abort the specific cgroup creation.
*/
s32 (*cgroup_init)(struct cgroup *cgrp,
struct scx_cgroup_init_args *args);
/**
* cgroup_exit - Exit a cgroup
* @cgrp: cgroup being exited
*
* Either the BPF scheduler is being unloaded or @cgrp destroyed, exit
* @cgrp for sched_ext. This operation my block.
*/
void (*cgroup_exit)(struct cgroup *cgrp);
/**
* cgroup_prep_move - Prepare a task to be moved to a different cgroup
* @p: task being moved
* @from: cgroup @p is being moved from
* @to: cgroup @p is being moved to
*
* Prepare @p for move from cgroup @from to @to. This operation may
* block and can be used for allocations.
*
* Return 0 for success, -errno for failure. An error return aborts the
* migration.
*/
s32 (*cgroup_prep_move)(struct task_struct *p,
struct cgroup *from, struct cgroup *to);
/**
* cgroup_move - Commit cgroup move
* @p: task being moved
* @from: cgroup @p is being moved from
* @to: cgroup @p is being moved to
*
* Commit the move. @p is dequeued during this operation.
*/
void (*cgroup_move)(struct task_struct *p,
struct cgroup *from, struct cgroup *to);
/**
* cgroup_cancel_move - Cancel cgroup move
* @p: task whose cgroup move is being canceled
* @from: cgroup @p was being moved from
* @to: cgroup @p was being moved to
*
* @p was cgroup_prep_move()'d but failed before reaching cgroup_move().
* Undo the preparation.
*/
void (*cgroup_cancel_move)(struct task_struct *p,
struct cgroup *from, struct cgroup *to);
/**
* cgroup_set_weight - A cgroup's weight is being changed
* @cgrp: cgroup whose weight is being updated
* @weight: new weight [1..10000]
*
* Update @tg's weight to @weight.
*/
void (*cgroup_set_weight)(struct cgroup *cgrp, u32 weight);
#endif /* CONFIG_CGROUPS */
/*
* All online ops must come before ops.cpu_online().
*/
/**
* cpu_online - A CPU became online
* @cpu: CPU which just came up
*
* @cpu just came online. @cpu will not call ops.enqueue() or
* ops.dispatch(), nor run tasks associated with other CPUs beforehand.
*/
void (*cpu_online)(s32 cpu);
/**
* cpu_offline - A CPU is going offline
* @cpu: CPU which is going offline
*
* @cpu is going offline. @cpu will not call ops.enqueue() or
* ops.dispatch(), nor run tasks associated with other CPUs afterwards.
*/
void (*cpu_offline)(s32 cpu);
/*
* All CPU hotplug ops must come before ops.init().
*/
/**
* init - Initialize the BPF scheduler
*/
s32 (*init)(void);
/**
* exit - Clean up after the BPF scheduler
* @info: Exit info
*
* ops.exit() is also called on ops.init() failure, which is a bit
* unusual. This is to allow rich reporting through @info on how
* ops.init() failed.
*/
void (*exit)(struct scx_exit_info *info);
/**
* dispatch_max_batch - Max nr of tasks that dispatch() can dispatch
*/
u32 dispatch_max_batch;
/**
* flags - %SCX_OPS_* flags
*/
u64 flags;
/**
* timeout_ms - The maximum amount of time, in milliseconds, that a
* runnable task should be able to wait before being scheduled. The
* maximum timeout may not exceed the default timeout of 30 seconds.
*
* Defaults to the maximum allowed timeout value of 30 seconds.
*/
u32 timeout_ms;
/**
* exit_dump_len - scx_exit_info.dump buffer length. If 0, the default
* value of 32768 is used.
*/
u32 exit_dump_len;
/**
* hotplug_seq - A sequence number that may be set by the scheduler to
* detect when a hotplug event has occurred during the loading process.
* If 0, no detection occurs. Otherwise, the scheduler will fail to
* load if the sequence number does not match @scx_hotplug_seq on the
* enable path.
*/
u64 hotplug_seq;
/**
* name - BPF scheduler's name
*
* Must be a non-zero valid BPF object name including only isalnum(),
* '_' and '.' chars. Shows up in kernel.sched_ext_ops sysctl while the
* BPF scheduler is enabled.
*/
char name[SCX_OPS_NAME_LEN];
};
enum scx_opi {
SCX_OPI_BEGIN = 0,
SCX_OPI_NORMAL_BEGIN = 0,
SCX_OPI_NORMAL_END = SCX_OP_IDX(cpu_online),
SCX_OPI_CPU_HOTPLUG_BEGIN = SCX_OP_IDX(cpu_online),
SCX_OPI_CPU_HOTPLUG_END = SCX_OP_IDX(init),
SCX_OPI_END = SCX_OP_IDX(init),
};
enum scx_wake_flags {
/* expose select WF_* flags as enums */
SCX_WAKE_FORK = WF_FORK,
SCX_WAKE_TTWU = WF_TTWU,
SCX_WAKE_SYNC = WF_SYNC,
};
enum scx_enq_flags {
/* expose select ENQUEUE_* flags as enums */
SCX_ENQ_WAKEUP = ENQUEUE_WAKEUP,
SCX_ENQ_HEAD = ENQUEUE_HEAD,
SCX_ENQ_CPU_SELECTED = ENQUEUE_RQ_SELECTED,
/* high 32bits are SCX specific */
/*
* Set the following to trigger preemption when calling
* scx_bpf_dispatch() with a local dsq as the target. The slice of the
* current task is cleared to zero and the CPU is kicked into the
* scheduling path. Implies %SCX_ENQ_HEAD.
*/
SCX_ENQ_PREEMPT = 1LLU << 32,
/*
* The task being enqueued was previously enqueued on the current CPU's
* %SCX_DSQ_LOCAL, but was removed from it in a call to the
* bpf_scx_reenqueue_local() kfunc. If bpf_scx_reenqueue_local() was
* invoked in a ->cpu_release() callback, and the task is again
* dispatched back to %SCX_LOCAL_DSQ by this current ->enqueue(), the
* task will not be scheduled on the CPU until at least the next invocation
* of the ->cpu_acquire() callback.
*/
SCX_ENQ_REENQ = 1LLU << 40,
/*
* The task being enqueued is the only task available for the cpu. By
* default, ext core keeps executing such tasks but when
* %SCX_OPS_ENQ_LAST is specified, they're ops.enqueue()'d with the
* %SCX_ENQ_LAST flag set.
*
* The BPF scheduler is responsible for triggering a follow-up
* scheduling event. Otherwise, Execution may stall.
*/
SCX_ENQ_LAST = 1LLU << 41,
/* high 8 bits are internal */
__SCX_ENQ_INTERNAL_MASK = 0xffLLU << 56,
SCX_ENQ_CLEAR_OPSS = 1LLU << 56,
SCX_ENQ_DSQ_PRIQ = 1LLU << 57,
};
enum scx_deq_flags {
/* expose select DEQUEUE_* flags as enums */
SCX_DEQ_SLEEP = DEQUEUE_SLEEP,
/* high 32bits are SCX specific */
/*
* The generic core-sched layer decided to execute the task even though
* it hasn't been dispatched yet. Dequeue from the BPF side.
*/
SCX_DEQ_CORE_SCHED_EXEC = 1LLU << 32,
};
enum scx_pick_idle_cpu_flags {
SCX_PICK_IDLE_CORE = 1LLU << 0, /* pick a CPU whose SMT siblings are also idle */
};
enum scx_kick_flags {
/*
* Kick the target CPU if idle. Guarantees that the target CPU goes
* through at least one full scheduling cycle before going idle. If the
* target CPU can be determined to be currently not idle and going to go
* through a scheduling cycle before going idle, noop.
*/
SCX_KICK_IDLE = 1LLU << 0,
/*
* Preempt the current task and execute the dispatch path. If the
* current task of the target CPU is an SCX task, its ->scx.slice is
* cleared to zero before the scheduling path is invoked so that the
* task expires and the dispatch path is invoked.
*/
SCX_KICK_PREEMPT = 1LLU << 1,
/*
* Wait for the CPU to be rescheduled. The scx_bpf_kick_cpu() call will
* return after the target CPU finishes picking the next task.
*/
SCX_KICK_WAIT = 1LLU << 2,
};
enum scx_tg_flags {
SCX_TG_ONLINE = 1U << 0,
SCX_TG_INITED = 1U << 1,
};
enum scx_ops_enable_state {
SCX_OPS_ENABLING,
SCX_OPS_ENABLED,
SCX_OPS_DISABLING,
SCX_OPS_DISABLED,
};
static const char *scx_ops_enable_state_str[] = {
[SCX_OPS_ENABLING] = "enabling",
[SCX_OPS_ENABLED] = "enabled",
[SCX_OPS_DISABLING] = "disabling",
[SCX_OPS_DISABLED] = "disabled",
};
/*
* sched_ext_entity->ops_state
*
* Used to track the task ownership between the SCX core and the BPF scheduler.
* State transitions look as follows:
*
* NONE -> QUEUEING -> QUEUED -> DISPATCHING
* ^ | |
* | v v
* \-------------------------------/
*
* QUEUEING and DISPATCHING states can be waited upon. See wait_ops_state() call
* sites for explanations on the conditions being waited upon and why they are
* safe. Transitions out of them into NONE or QUEUED must store_release and the
* waiters should load_acquire.
*
* Tracking scx_ops_state enables sched_ext core to reliably determine whether
* any given task can be dispatched by the BPF scheduler at all times and thus
* relaxes the requirements on the BPF scheduler. This allows the BPF scheduler
* to try to dispatch any task anytime regardless of its state as the SCX core
* can safely reject invalid dispatches.
*/
enum scx_ops_state {
SCX_OPSS_NONE, /* owned by the SCX core */
SCX_OPSS_QUEUEING, /* in transit to the BPF scheduler */
SCX_OPSS_QUEUED, /* owned by the BPF scheduler */
SCX_OPSS_DISPATCHING, /* in transit back to the SCX core */
/*
* QSEQ brands each QUEUED instance so that, when dispatch races
* dequeue/requeue, the dispatcher can tell whether it still has a claim
* on the task being dispatched.
*
* As some 32bit archs can't do 64bit store_release/load_acquire,
* p->scx.ops_state is atomic_long_t which leaves 30 bits for QSEQ on
* 32bit machines. The dispatch race window QSEQ protects is very narrow
* and runs with IRQ disabled. 30 bits should be sufficient.
*/
SCX_OPSS_QSEQ_SHIFT = 2,
};
/* Use macros to ensure that the type is unsigned long for the masks */
#define SCX_OPSS_STATE_MASK ((1LU << SCX_OPSS_QSEQ_SHIFT) - 1)
#define SCX_OPSS_QSEQ_MASK (~SCX_OPSS_STATE_MASK)
/*
* During exit, a task may schedule after losing its PIDs. When disabling the
* BPF scheduler, we need to be able to iterate tasks in every state to
* guarantee system safety. Maintain a dedicated task list which contains every
* task between its fork and eventual free.
*/
static DEFINE_SPINLOCK(scx_tasks_lock);
static LIST_HEAD(scx_tasks);
/* ops enable/disable */
static struct kthread_worker *scx_ops_helper;
static DEFINE_MUTEX(scx_ops_enable_mutex);
DEFINE_STATIC_KEY_FALSE(__scx_ops_enabled);
DEFINE_STATIC_PERCPU_RWSEM(scx_fork_rwsem);
static atomic_t scx_ops_enable_state_var = ATOMIC_INIT(SCX_OPS_DISABLED);
static atomic_t scx_ops_bypass_depth = ATOMIC_INIT(0);
static bool scx_ops_init_task_enabled;
static bool scx_switching_all;
DEFINE_STATIC_KEY_FALSE(__scx_switched_all);
static struct sched_ext_ops scx_ops;
static bool scx_warned_zero_slice;
static DEFINE_STATIC_KEY_FALSE(scx_ops_enq_last);
static DEFINE_STATIC_KEY_FALSE(scx_ops_enq_exiting);
static DEFINE_STATIC_KEY_FALSE(scx_ops_cpu_preempt);
static DEFINE_STATIC_KEY_FALSE(scx_builtin_idle_enabled);
static struct static_key_false scx_has_op[SCX_OPI_END] =
{ [0 ... SCX_OPI_END-1] = STATIC_KEY_FALSE_INIT };
static atomic_t scx_exit_kind = ATOMIC_INIT(SCX_EXIT_DONE);
static struct scx_exit_info *scx_exit_info;
static atomic_long_t scx_nr_rejected = ATOMIC_LONG_INIT(0);
static atomic_long_t scx_hotplug_seq = ATOMIC_LONG_INIT(0);
/*
* A monotically increasing sequence number that is incremented every time a
* scheduler is enabled. This can be used by to check if any custom sched_ext
* scheduler has ever been used in the system.
*/
static atomic_long_t scx_enable_seq = ATOMIC_LONG_INIT(0);
/*
* The maximum amount of time in jiffies that a task may be runnable without
* being scheduled on a CPU. If this timeout is exceeded, it will trigger
* scx_ops_error().
*/
static unsigned long scx_watchdog_timeout;
/*
* The last time the delayed work was run. This delayed work relies on
* ksoftirqd being able to run to service timer interrupts, so it's possible
* that this work itself could get wedged. To account for this, we check that
* it's not stalled in the timer tick, and trigger an error if it is.
*/
static unsigned long scx_watchdog_timestamp = INITIAL_JIFFIES;
static struct delayed_work scx_watchdog_work;
/* idle tracking */
#ifdef CONFIG_SMP
#ifdef CONFIG_CPUMASK_OFFSTACK
#define CL_ALIGNED_IF_ONSTACK
#else
#define CL_ALIGNED_IF_ONSTACK __cacheline_aligned_in_smp
#endif
static struct {
cpumask_var_t cpu;
cpumask_var_t smt;
} idle_masks CL_ALIGNED_IF_ONSTACK;
#endif /* CONFIG_SMP */
/* for %SCX_KICK_WAIT */
static unsigned long __percpu *scx_kick_cpus_pnt_seqs;
/*
* Direct dispatch marker.
*
* Non-NULL values are used for direct dispatch from enqueue path. A valid
* pointer points to the task currently being enqueued. An ERR_PTR value is used
* to indicate that direct dispatch has already happened.
*/
static DEFINE_PER_CPU(struct task_struct *, direct_dispatch_task);
/*
* Dispatch queues.
*
* The global DSQ (%SCX_DSQ_GLOBAL) is split per-node for scalability. This is
* to avoid live-locking in bypass mode where all tasks are dispatched to
* %SCX_DSQ_GLOBAL and all CPUs consume from it. If per-node split isn't
* sufficient, it can be further split.
*/
static struct scx_dispatch_q **global_dsqs;
static const struct rhashtable_params dsq_hash_params = {
.key_len = 8,
.key_offset = offsetof(struct scx_dispatch_q, id),
.head_offset = offsetof(struct scx_dispatch_q, hash_node),
};
static struct rhashtable dsq_hash;
static LLIST_HEAD(dsqs_to_free);
/* dispatch buf */
struct scx_dsp_buf_ent {
struct task_struct *task;
unsigned long qseq;
u64 dsq_id;
u64 enq_flags;
};
static u32 scx_dsp_max_batch;
struct scx_dsp_ctx {
struct rq *rq;
u32 cursor;
u32 nr_tasks;
struct scx_dsp_buf_ent buf[];
};
static struct scx_dsp_ctx __percpu *scx_dsp_ctx;
/* string formatting from BPF */
struct scx_bstr_buf {
u64 data[MAX_BPRINTF_VARARGS];
char line[SCX_EXIT_MSG_LEN];
};
static DEFINE_RAW_SPINLOCK(scx_exit_bstr_buf_lock);
static struct scx_bstr_buf scx_exit_bstr_buf;
/* ops debug dump */
struct scx_dump_data {
s32 cpu;
bool first;
s32 cursor;
struct seq_buf *s;
const char *prefix;
struct scx_bstr_buf buf;
};
static struct scx_dump_data scx_dump_data = {
.cpu = -1,
};
/* /sys/kernel/sched_ext interface */
static struct kset *scx_kset;
static struct kobject *scx_root_kobj;
#define CREATE_TRACE_POINTS
#include <trace/events/sched_ext.h>
static void process_ddsp_deferred_locals(struct rq *rq);
static void scx_bpf_kick_cpu(s32 cpu, u64 flags);
static __printf(3, 4) void scx_ops_exit_kind(enum scx_exit_kind kind,
s64 exit_code,
const char *fmt, ...);
#define scx_ops_error_kind(err, fmt, args...) \
scx_ops_exit_kind((err), 0, fmt, ##args)
#define scx_ops_exit(code, fmt, args...) \
scx_ops_exit_kind(SCX_EXIT_UNREG_KERN, (code), fmt, ##args)
#define scx_ops_error(fmt, args...) \
scx_ops_error_kind(SCX_EXIT_ERROR, fmt, ##args)
#define SCX_HAS_OP(op) static_branch_likely(&scx_has_op[SCX_OP_IDX(op)])
static long jiffies_delta_msecs(unsigned long at, unsigned long now)
{
if (time_after(at, now))
return jiffies_to_msecs(at - now);
else
return -(long)jiffies_to_msecs(now - at);
}
/* if the highest set bit is N, return a mask with bits [N+1, 31] set */
static u32 higher_bits(u32 flags)
{
return ~((1 << fls(flags)) - 1);
}
/* return the mask with only the highest bit set */
static u32 highest_bit(u32 flags)
{
int bit = fls(flags);
return ((u64)1 << bit) >> 1;
}
static bool u32_before(u32 a, u32 b)
{
return (s32)(a - b) < 0;
}
static struct scx_dispatch_q *find_global_dsq(struct task_struct *p)
{
return global_dsqs[cpu_to_node(task_cpu(p))];
}
static struct scx_dispatch_q *find_user_dsq(u64 dsq_id)
{
return rhashtable_lookup_fast(&dsq_hash, &dsq_id, dsq_hash_params);
}
/*
* scx_kf_mask enforcement. Some kfuncs can only be called from specific SCX
* ops. When invoking SCX ops, SCX_CALL_OP[_RET]() should be used to indicate
* the allowed kfuncs and those kfuncs should use scx_kf_allowed() to check
* whether it's running from an allowed context.
*
* @mask is constant, always inline to cull the mask calculations.
*/
static __always_inline void scx_kf_allow(u32 mask)
{
/* nesting is allowed only in increasing scx_kf_mask order */
WARN_ONCE((mask | higher_bits(mask)) & current->scx.kf_mask,
"invalid nesting current->scx.kf_mask=0x%x mask=0x%x\n",
current->scx.kf_mask, mask);
current->scx.kf_mask |= mask;
barrier();
}
static void scx_kf_disallow(u32 mask)
{
barrier();
current->scx.kf_mask &= ~mask;
}
#define SCX_CALL_OP(mask, op, args...) \
do { \
if (mask) { \
scx_kf_allow(mask); \
scx_ops.op(args); \
scx_kf_disallow(mask); \
} else { \
scx_ops.op(args); \
} \
} while (0)
#define SCX_CALL_OP_RET(mask, op, args...) \
({ \
__typeof__(scx_ops.op(args)) __ret; \
if (mask) { \
scx_kf_allow(mask); \
__ret = scx_ops.op(args); \
scx_kf_disallow(mask); \
} else { \
__ret = scx_ops.op(args); \
} \
__ret; \
})
/*
* Some kfuncs are allowed only on the tasks that are subjects of the
* in-progress scx_ops operation for, e.g., locking guarantees. To enforce such
* restrictions, the following SCX_CALL_OP_*() variants should be used when
* invoking scx_ops operations that take task arguments. These can only be used
* for non-nesting operations due to the way the tasks are tracked.
*
* kfuncs which can only operate on such tasks can in turn use
* scx_kf_allowed_on_arg_tasks() to test whether the invocation is allowed on
* the specific task.
*/
#define SCX_CALL_OP_TASK(mask, op, task, args...) \
do { \
BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \
current->scx.kf_tasks[0] = task; \
SCX_CALL_OP(mask, op, task, ##args); \
current->scx.kf_tasks[0] = NULL; \
} while (0)
#define SCX_CALL_OP_TASK_RET(mask, op, task, args...) \
({ \
__typeof__(scx_ops.op(task, ##args)) __ret; \
BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \
current->scx.kf_tasks[0] = task; \
__ret = SCX_CALL_OP_RET(mask, op, task, ##args); \
current->scx.kf_tasks[0] = NULL; \
__ret; \
})
#define SCX_CALL_OP_2TASKS_RET(mask, op, task0, task1, args...) \
({ \
__typeof__(scx_ops.op(task0, task1, ##args)) __ret; \
BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \
current->scx.kf_tasks[0] = task0; \
current->scx.kf_tasks[1] = task1; \
__ret = SCX_CALL_OP_RET(mask, op, task0, task1, ##args); \
current->scx.kf_tasks[0] = NULL; \
current->scx.kf_tasks[1] = NULL; \
__ret; \
})
/* @mask is constant, always inline to cull unnecessary branches */
static __always_inline bool scx_kf_allowed(u32 mask)
{
if (unlikely(!(current->scx.kf_mask & mask))) {
scx_ops_error("kfunc with mask 0x%x called from an operation only allowing 0x%x",
mask, current->scx.kf_mask);
return false;
}
/*
* Enforce nesting boundaries. e.g. A kfunc which can be called from
* DISPATCH must not be called if we're running DEQUEUE which is nested
* inside ops.dispatch(). We don't need to check boundaries for any
* blocking kfuncs as the verifier ensures they're only called from
* sleepable progs.
*/
if (unlikely(highest_bit(mask) == SCX_KF_CPU_RELEASE &&
(current->scx.kf_mask & higher_bits(SCX_KF_CPU_RELEASE)))) {
scx_ops_error("cpu_release kfunc called from a nested operation");
return false;
}
if (unlikely(highest_bit(mask) == SCX_KF_DISPATCH &&
(current->scx.kf_mask & higher_bits(SCX_KF_DISPATCH)))) {
scx_ops_error("dispatch kfunc called from a nested operation");
return false;
}
return true;
}
/* see SCX_CALL_OP_TASK() */
static __always_inline bool scx_kf_allowed_on_arg_tasks(u32 mask,
struct task_struct *p)
{
if (!scx_kf_allowed(mask))
return false;
if (unlikely((p != current->scx.kf_tasks[0] &&
p != current->scx.kf_tasks[1]))) {
scx_ops_error("called on a task not being operated on");
return false;
}
return true;
}
static bool scx_kf_allowed_if_unlocked(void)
{
return !current->scx.kf_mask;
}
/**
* nldsq_next_task - Iterate to the next task in a non-local DSQ
* @dsq: user dsq being interated
* @cur: current position, %NULL to start iteration
* @rev: walk backwards
*
* Returns %NULL when iteration is finished.
*/
static struct task_struct *nldsq_next_task(struct scx_dispatch_q *dsq,
struct task_struct *cur, bool rev)
{
struct list_head *list_node;
struct scx_dsq_list_node *dsq_lnode;
lockdep_assert_held(&dsq->lock);
if (cur)
list_node = &cur->scx.dsq_list.node;
else
list_node = &dsq->list;
/* find the next task, need to skip BPF iteration cursors */
do {
if (rev)
list_node = list_node->prev;
else
list_node = list_node->next;
if (list_node == &dsq->list)
return NULL;
dsq_lnode = container_of(list_node, struct scx_dsq_list_node,
node);
} while (dsq_lnode->flags & SCX_DSQ_LNODE_ITER_CURSOR);
return container_of(dsq_lnode, struct task_struct, scx.dsq_list);
}
#define nldsq_for_each_task(p, dsq) \
for ((p) = nldsq_next_task((dsq), NULL, false); (p); \
(p) = nldsq_next_task((dsq), (p), false))
/*
* BPF DSQ iterator. Tasks in a non-local DSQ can be iterated in [reverse]
* dispatch order. BPF-visible iterator is opaque and larger to allow future
* changes without breaking backward compatibility. Can be used with
* bpf_for_each(). See bpf_iter_scx_dsq_*().
*/
enum scx_dsq_iter_flags {
/* iterate in the reverse dispatch order */
SCX_DSQ_ITER_REV = 1U << 16,
__SCX_DSQ_ITER_HAS_SLICE = 1U << 30,
__SCX_DSQ_ITER_HAS_VTIME = 1U << 31,
__SCX_DSQ_ITER_USER_FLAGS = SCX_DSQ_ITER_REV,
__SCX_DSQ_ITER_ALL_FLAGS = __SCX_DSQ_ITER_USER_FLAGS |
__SCX_DSQ_ITER_HAS_SLICE |
__SCX_DSQ_ITER_HAS_VTIME,
};
struct bpf_iter_scx_dsq_kern {
struct scx_dsq_list_node cursor;
struct scx_dispatch_q *dsq;
u64 slice;
u64 vtime;
} __attribute__((aligned(8)));
struct bpf_iter_scx_dsq {
u64 __opaque[6];
} __attribute__((aligned(8)));
/*
* SCX task iterator.
*/
struct scx_task_iter {
struct sched_ext_entity cursor;
struct task_struct *locked;
struct rq *rq;
struct rq_flags rf;
u32 cnt;
};
/**
* scx_task_iter_start - Lock scx_tasks_lock and start a task iteration
* @iter: iterator to init
*
* Initialize @iter and return with scx_tasks_lock held. Once initialized, @iter
* must eventually be stopped with scx_task_iter_stop().
*
* scx_tasks_lock and the rq lock may be released using scx_task_iter_unlock()
* between this and the first next() call or between any two next() calls. If
* the locks are released between two next() calls, the caller is responsible
* for ensuring that the task being iterated remains accessible either through
* RCU read lock or obtaining a reference count.
*
* All tasks which existed when the iteration started are guaranteed to be
* visited as long as they still exist.
*/
static void scx_task_iter_start(struct scx_task_iter *iter)
{
BUILD_BUG_ON(__SCX_DSQ_ITER_ALL_FLAGS &
((1U << __SCX_DSQ_LNODE_PRIV_SHIFT) - 1));
spin_lock_irq(&scx_tasks_lock);
iter->cursor = (struct sched_ext_entity){ .flags = SCX_TASK_CURSOR };
list_add(&iter->cursor.tasks_node, &scx_tasks);
iter->locked = NULL;
iter->cnt = 0;
}
static void __scx_task_iter_rq_unlock(struct scx_task_iter *iter)
{
if (iter->locked) {
task_rq_unlock(iter->rq, iter->locked, &iter->rf);
iter->locked = NULL;
}
}
/**
* scx_task_iter_unlock - Unlock rq and scx_tasks_lock held by a task iterator
* @iter: iterator to unlock
*
* If @iter is in the middle of a locked iteration, it may be locking the rq of
* the task currently being visited in addition to scx_tasks_lock. Unlock both.
* This function can be safely called anytime during an iteration.
*/
static void scx_task_iter_unlock(struct scx_task_iter *iter)
{
__scx_task_iter_rq_unlock(iter);
spin_unlock_irq(&scx_tasks_lock);
}
/**
* scx_task_iter_relock - Lock scx_tasks_lock released by scx_task_iter_unlock()
* @iter: iterator to re-lock
*
* Re-lock scx_tasks_lock unlocked by scx_task_iter_unlock(). Note that it
* doesn't re-lock the rq lock. Must be called before other iterator operations.
*/
static void scx_task_iter_relock(struct scx_task_iter *iter)
{
spin_lock_irq(&scx_tasks_lock);
}
/**
* scx_task_iter_stop - Stop a task iteration and unlock scx_tasks_lock
* @iter: iterator to exit
*
* Exit a previously initialized @iter. Must be called with scx_tasks_lock held
* which is released on return. If the iterator holds a task's rq lock, that rq
* lock is also released. See scx_task_iter_start() for details.
*/
static void scx_task_iter_stop(struct scx_task_iter *iter)
{
list_del_init(&iter->cursor.tasks_node);
scx_task_iter_unlock(iter);
}
/**
* scx_task_iter_next - Next task
* @iter: iterator to walk
*
* Visit the next task. See scx_task_iter_start() for details. Locks are dropped
* and re-acquired every %SCX_OPS_TASK_ITER_BATCH iterations to avoid causing
* stalls by holding scx_tasks_lock for too long.
*/
static struct task_struct *scx_task_iter_next(struct scx_task_iter *iter)
{
struct list_head *cursor = &iter->cursor.tasks_node;
struct sched_ext_entity *pos;
if (!(++iter->cnt % SCX_OPS_TASK_ITER_BATCH)) {
scx_task_iter_unlock(iter);
cond_resched();
scx_task_iter_relock(iter);
}
list_for_each_entry(pos, cursor, tasks_node) {
if (&pos->tasks_node == &scx_tasks)
return NULL;
if (!(pos->flags & SCX_TASK_CURSOR)) {
list_move(cursor, &pos->tasks_node);
return container_of(pos, struct task_struct, scx);
}
}
/* can't happen, should always terminate at scx_tasks above */
BUG();
}
/**
* scx_task_iter_next_locked - Next non-idle task with its rq locked
* @iter: iterator to walk
* @include_dead: Whether we should include dead tasks in the iteration
*
* Visit the non-idle task with its rq lock held. Allows callers to specify
* whether they would like to filter out dead tasks. See scx_task_iter_start()
* for details.
*/
static struct task_struct *scx_task_iter_next_locked(struct scx_task_iter *iter)
{
struct task_struct *p;
__scx_task_iter_rq_unlock(iter);
while ((p = scx_task_iter_next(iter))) {
/*
* scx_task_iter is used to prepare and move tasks into SCX
* while loading the BPF scheduler and vice-versa while
* unloading. The init_tasks ("swappers") should be excluded
* from the iteration because:
*
* - It's unsafe to use __setschduler_prio() on an init_task to
* determine the sched_class to use as it won't preserve its
* idle_sched_class.
*
* - ops.init/exit_task() can easily be confused if called with
* init_tasks as they, e.g., share PID 0.
*
* As init_tasks are never scheduled through SCX, they can be
* skipped safely. Note that is_idle_task() which tests %PF_IDLE
* doesn't work here:
*
* - %PF_IDLE may not be set for an init_task whose CPU hasn't
* yet been onlined.
*
* - %PF_IDLE can be set on tasks that are not init_tasks. See
* play_idle_precise() used by CONFIG_IDLE_INJECT.
*
* Test for idle_sched_class as only init_tasks are on it.
*/
if (p->sched_class != &idle_sched_class)
break;
}
if (!p)
return NULL;
iter->rq = task_rq_lock(p, &iter->rf);
iter->locked = p;
return p;
}
static enum scx_ops_enable_state scx_ops_enable_state(void)
{
return atomic_read(&scx_ops_enable_state_var);
}
static enum scx_ops_enable_state
scx_ops_set_enable_state(enum scx_ops_enable_state to)
{
return atomic_xchg(&scx_ops_enable_state_var, to);
}
static bool scx_ops_tryset_enable_state(enum scx_ops_enable_state to,
enum scx_ops_enable_state from)
{
int from_v = from;
return atomic_try_cmpxchg(&scx_ops_enable_state_var, &from_v, to);
}
static bool scx_rq_bypassing(struct rq *rq)
{
return unlikely(rq->scx.flags & SCX_RQ_BYPASSING);
}
/**
* wait_ops_state - Busy-wait the specified ops state to end
* @p: target task
* @opss: state to wait the end of
*
* Busy-wait for @p to transition out of @opss. This can only be used when the
* state part of @opss is %SCX_QUEUEING or %SCX_DISPATCHING. This function also
* has load_acquire semantics to ensure that the caller can see the updates made
* in the enqueueing and dispatching paths.
*/
static void wait_ops_state(struct task_struct *p, unsigned long opss)
{
do {
cpu_relax();
} while (atomic_long_read_acquire(&p->scx.ops_state) == opss);
}
/**
* ops_cpu_valid - Verify a cpu number
* @cpu: cpu number which came from a BPF ops
* @where: extra information reported on error
*
* @cpu is a cpu number which came from the BPF scheduler and can be any value.
* Verify that it is in range and one of the possible cpus. If invalid, trigger
* an ops error.
*/
static bool ops_cpu_valid(s32 cpu, const char *where)
{
if (likely(cpu >= 0 && cpu < nr_cpu_ids && cpu_possible(cpu))) {
return true;
} else {
scx_ops_error("invalid CPU %d%s%s", cpu,
where ? " " : "", where ?: "");
return false;
}
}
/**
* ops_sanitize_err - Sanitize a -errno value
* @ops_name: operation to blame on failure
* @err: -errno value to sanitize
*
* Verify @err is a valid -errno. If not, trigger scx_ops_error() and return
* -%EPROTO. This is necessary because returning a rogue -errno up the chain can
* cause misbehaviors. For an example, a large negative return from
* ops.init_task() triggers an oops when passed up the call chain because the
* value fails IS_ERR() test after being encoded with ERR_PTR() and then is
* handled as a pointer.
*/
static int ops_sanitize_err(const char *ops_name, s32 err)
{
if (err < 0 && err >= -MAX_ERRNO)
return err;
scx_ops_error("ops.%s() returned an invalid errno %d", ops_name, err);
return -EPROTO;
}
static void run_deferred(struct rq *rq)
{
process_ddsp_deferred_locals(rq);
}
#ifdef CONFIG_SMP
static void deferred_bal_cb_workfn(struct rq *rq)
{
run_deferred(rq);
}
#endif
static void deferred_irq_workfn(struct irq_work *irq_work)
{
struct rq *rq = container_of(irq_work, struct rq, scx.deferred_irq_work);
raw_spin_rq_lock(rq);
run_deferred(rq);
raw_spin_rq_unlock(rq);
}
/**
* schedule_deferred - Schedule execution of deferred actions on an rq
* @rq: target rq
*
* Schedule execution of deferred actions on @rq. Must be called with @rq
* locked. Deferred actions are executed with @rq locked but unpinned, and thus
* can unlock @rq to e.g. migrate tasks to other rqs.
*/
static void schedule_deferred(struct rq *rq)
{
lockdep_assert_rq_held(rq);
#ifdef CONFIG_SMP
/*
* If in the middle of waking up a task, task_woken_scx() will be called
* afterwards which will then run the deferred actions, no need to
* schedule anything.
*/
if (rq->scx.flags & SCX_RQ_IN_WAKEUP)
return;
/*
* If in balance, the balance callbacks will be called before rq lock is
* released. Schedule one.
*/
if (rq->scx.flags & SCX_RQ_IN_BALANCE) {
queue_balance_callback(rq, &rq->scx.deferred_bal_cb,
deferred_bal_cb_workfn);
return;
}
#endif
/*
* No scheduler hooks available. Queue an irq work. They are executed on
* IRQ re-enable which may take a bit longer than the scheduler hooks.
* The above WAKEUP and BALANCE paths should cover most of the cases and
* the time to IRQ re-enable shouldn't be long.
*/
irq_work_queue(&rq->scx.deferred_irq_work);
}
/**
* touch_core_sched - Update timestamp used for core-sched task ordering
* @rq: rq to read clock from, must be locked
* @p: task to update the timestamp for
*
* Update @p->scx.core_sched_at timestamp. This is used by scx_prio_less() to
* implement global or local-DSQ FIFO ordering for core-sched. Should be called
* when a task becomes runnable and its turn on the CPU ends (e.g. slice
* exhaustion).
*/
static void touch_core_sched(struct rq *rq, struct task_struct *p)
{
lockdep_assert_rq_held(rq);
#ifdef CONFIG_SCHED_CORE
/*
* It's okay to update the timestamp spuriously. Use
* sched_core_disabled() which is cheaper than enabled().
*
* As this is used to determine ordering between tasks of sibling CPUs,
* it may be better to use per-core dispatch sequence instead.
*/
if (!sched_core_disabled())
p->scx.core_sched_at = sched_clock_cpu(cpu_of(rq));
#endif
}
/**
* touch_core_sched_dispatch - Update core-sched timestamp on dispatch
* @rq: rq to read clock from, must be locked
* @p: task being dispatched
*
* If the BPF scheduler implements custom core-sched ordering via
* ops.core_sched_before(), @p->scx.core_sched_at is used to implement FIFO
* ordering within each local DSQ. This function is called from dispatch paths
* and updates @p->scx.core_sched_at if custom core-sched ordering is in effect.
*/
static void touch_core_sched_dispatch(struct rq *rq, struct task_struct *p)
{
lockdep_assert_rq_held(rq);
#ifdef CONFIG_SCHED_CORE
if (SCX_HAS_OP(core_sched_before))
touch_core_sched(rq, p);
#endif
}
static void update_curr_scx(struct rq *rq)
{
struct task_struct *curr = rq->curr;
s64 delta_exec;
delta_exec = update_curr_common(rq);
if (unlikely(delta_exec <= 0))
return;
if (curr->scx.slice != SCX_SLICE_INF) {
curr->scx.slice -= min_t(u64, curr->scx.slice, delta_exec);
if (!curr->scx.slice)
touch_core_sched(rq, curr);
}
}
static bool scx_dsq_priq_less(struct rb_node *node_a,
const struct rb_node *node_b)
{
const struct task_struct *a =
container_of(node_a, struct task_struct, scx.dsq_priq);
const struct task_struct *b =
container_of(node_b, struct task_struct, scx.dsq_priq);
return time_before64(a->scx.dsq_vtime, b->scx.dsq_vtime);
}
static void dsq_mod_nr(struct scx_dispatch_q *dsq, s32 delta)
{
/* scx_bpf_dsq_nr_queued() reads ->nr without locking, use WRITE_ONCE() */
WRITE_ONCE(dsq->nr, dsq->nr + delta);
}
static void dispatch_enqueue(struct scx_dispatch_q *dsq, struct task_struct *p,
u64 enq_flags)
{
bool is_local = dsq->id == SCX_DSQ_LOCAL;
WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_list.node));
WARN_ON_ONCE((p->scx.dsq_flags & SCX_TASK_DSQ_ON_PRIQ) ||
!RB_EMPTY_NODE(&p->scx.dsq_priq));
if (!is_local) {
raw_spin_lock(&dsq->lock);
if (unlikely(dsq->id == SCX_DSQ_INVALID)) {
scx_ops_error("attempting to dispatch to a destroyed dsq");
/* fall back to the global dsq */
raw_spin_unlock(&dsq->lock);
dsq = find_global_dsq(p);
raw_spin_lock(&dsq->lock);
}
}
if (unlikely((dsq->id & SCX_DSQ_FLAG_BUILTIN) &&
(enq_flags & SCX_ENQ_DSQ_PRIQ))) {
/*
* SCX_DSQ_LOCAL and SCX_DSQ_GLOBAL DSQs always consume from
* their FIFO queues. To avoid confusion and accidentally
* starving vtime-dispatched tasks by FIFO-dispatched tasks, we
* disallow any internal DSQ from doing vtime ordering of
* tasks.
*/
scx_ops_error("cannot use vtime ordering for built-in DSQs");
enq_flags &= ~SCX_ENQ_DSQ_PRIQ;
}
if (enq_flags & SCX_ENQ_DSQ_PRIQ) {
struct rb_node *rbp;
/*
* A PRIQ DSQ shouldn't be using FIFO enqueueing. As tasks are
* linked to both the rbtree and list on PRIQs, this can only be
* tested easily when adding the first task.
*/
if (unlikely(RB_EMPTY_ROOT(&dsq->priq) &&
nldsq_next_task(dsq, NULL, false)))
scx_ops_error("DSQ ID 0x%016llx already had FIFO-enqueued tasks",
dsq->id);
p->scx.dsq_flags |= SCX_TASK_DSQ_ON_PRIQ;
rb_add(&p->scx.dsq_priq, &dsq->priq, scx_dsq_priq_less);
/*
* Find the previous task and insert after it on the list so
* that @dsq->list is vtime ordered.
*/
rbp = rb_prev(&p->scx.dsq_priq);
if (rbp) {
struct task_struct *prev =
container_of(rbp, struct task_struct,
scx.dsq_priq);
list_add(&p->scx.dsq_list.node, &prev->scx.dsq_list.node);
} else {
list_add(&p->scx.dsq_list.node, &dsq->list);
}
} else {
/* a FIFO DSQ shouldn't be using PRIQ enqueuing */
if (unlikely(!RB_EMPTY_ROOT(&dsq->priq)))
scx_ops_error("DSQ ID 0x%016llx already had PRIQ-enqueued tasks",
dsq->id);
if (enq_flags & (SCX_ENQ_HEAD | SCX_ENQ_PREEMPT))
list_add(&p->scx.dsq_list.node, &dsq->list);
else
list_add_tail(&p->scx.dsq_list.node, &dsq->list);
}
/* seq records the order tasks are queued, used by BPF DSQ iterator */
dsq->seq++;
p->scx.dsq_seq = dsq->seq;
dsq_mod_nr(dsq, 1);
p->scx.dsq = dsq;
/*
* scx.ddsp_dsq_id and scx.ddsp_enq_flags are only relevant on the
* direct dispatch path, but we clear them here because the direct
* dispatch verdict may be overridden on the enqueue path during e.g.
* bypass.
*/
p->scx.ddsp_dsq_id = SCX_DSQ_INVALID;
p->scx.ddsp_enq_flags = 0;
/*
* We're transitioning out of QUEUEING or DISPATCHING. store_release to
* match waiters' load_acquire.
*/
if (enq_flags & SCX_ENQ_CLEAR_OPSS)
atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE);
if (is_local) {
struct rq *rq = container_of(dsq, struct rq, scx.local_dsq);
bool preempt = false;
if ((enq_flags & SCX_ENQ_PREEMPT) && p != rq->curr &&
rq->curr->sched_class == &ext_sched_class) {
rq->curr->scx.slice = 0;
preempt = true;
}
if (preempt || sched_class_above(&ext_sched_class,
rq->curr->sched_class))
resched_curr(rq);
} else {
raw_spin_unlock(&dsq->lock);
}
}
static void task_unlink_from_dsq(struct task_struct *p,
struct scx_dispatch_q *dsq)
{
WARN_ON_ONCE(list_empty(&p->scx.dsq_list.node));
if (p->scx.dsq_flags & SCX_TASK_DSQ_ON_PRIQ) {
rb_erase(&p->scx.dsq_priq, &dsq->priq);
RB_CLEAR_NODE(&p->scx.dsq_priq);
p->scx.dsq_flags &= ~SCX_TASK_DSQ_ON_PRIQ;
}
list_del_init(&p->scx.dsq_list.node);
dsq_mod_nr(dsq, -1);
}
static void dispatch_dequeue(struct rq *rq, struct task_struct *p)
{
struct scx_dispatch_q *dsq = p->scx.dsq;
bool is_local = dsq == &rq->scx.local_dsq;
if (!dsq) {
/*
* If !dsq && on-list, @p is on @rq's ddsp_deferred_locals.
* Unlinking is all that's needed to cancel.
*/
if (unlikely(!list_empty(&p->scx.dsq_list.node)))
list_del_init(&p->scx.dsq_list.node);
/*
* When dispatching directly from the BPF scheduler to a local
* DSQ, the task isn't associated with any DSQ but
* @p->scx.holding_cpu may be set under the protection of
* %SCX_OPSS_DISPATCHING.
*/
if (p->scx.holding_cpu >= 0)
p->scx.holding_cpu = -1;
return;
}
if (!is_local)
raw_spin_lock(&dsq->lock);
/*
* Now that we hold @dsq->lock, @p->holding_cpu and @p->scx.dsq_* can't
* change underneath us.
*/
if (p->scx.holding_cpu < 0) {
/* @p must still be on @dsq, dequeue */
task_unlink_from_dsq(p, dsq);
} else {
/*
* We're racing against dispatch_to_local_dsq() which already
* removed @p from @dsq and set @p->scx.holding_cpu. Clear the
* holding_cpu which tells dispatch_to_local_dsq() that it lost
* the race.
*/
WARN_ON_ONCE(!list_empty(&p->scx.dsq_list.node));
p->scx.holding_cpu = -1;
}
p->scx.dsq = NULL;
if (!is_local)
raw_spin_unlock(&dsq->lock);
}
static struct scx_dispatch_q *find_dsq_for_dispatch(struct rq *rq, u64 dsq_id,
struct task_struct *p)
{
struct scx_dispatch_q *dsq;
if (dsq_id == SCX_DSQ_LOCAL)
return &rq->scx.local_dsq;
if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) {
s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK;
if (!ops_cpu_valid(cpu, "in SCX_DSQ_LOCAL_ON dispatch verdict"))
return find_global_dsq(p);
return &cpu_rq(cpu)->scx.local_dsq;
}
if (dsq_id == SCX_DSQ_GLOBAL)
dsq = find_global_dsq(p);
else
dsq = find_user_dsq(dsq_id);
if (unlikely(!dsq)) {
scx_ops_error("non-existent DSQ 0x%llx for %s[%d]",
dsq_id, p->comm, p->pid);
return find_global_dsq(p);
}
return dsq;
}
static void mark_direct_dispatch(struct task_struct *ddsp_task,
struct task_struct *p, u64 dsq_id,
u64 enq_flags)
{
/*
* Mark that dispatch already happened from ops.select_cpu() or
* ops.enqueue() by spoiling direct_dispatch_task with a non-NULL value
* which can never match a valid task pointer.
*/
__this_cpu_write(direct_dispatch_task, ERR_PTR(-ESRCH));
/* @p must match the task on the enqueue path */
if (unlikely(p != ddsp_task)) {
if (IS_ERR(ddsp_task))
scx_ops_error("%s[%d] already direct-dispatched",
p->comm, p->pid);
else
scx_ops_error("scheduling for %s[%d] but trying to direct-dispatch %s[%d]",
ddsp_task->comm, ddsp_task->pid,
p->comm, p->pid);
return;
}
WARN_ON_ONCE(p->scx.ddsp_dsq_id != SCX_DSQ_INVALID);
WARN_ON_ONCE(p->scx.ddsp_enq_flags);
p->scx.ddsp_dsq_id = dsq_id;
p->scx.ddsp_enq_flags = enq_flags;
}
static void direct_dispatch(struct task_struct *p, u64 enq_flags)
{
struct rq *rq = task_rq(p);
struct scx_dispatch_q *dsq =
find_dsq_for_dispatch(rq, p->scx.ddsp_dsq_id, p);
touch_core_sched_dispatch(rq, p);
p->scx.ddsp_enq_flags |= enq_flags;
/*
* We are in the enqueue path with @rq locked and pinned, and thus can't
* double lock a remote rq and enqueue to its local DSQ. For
* DSQ_LOCAL_ON verdicts targeting the local DSQ of a remote CPU, defer
* the enqueue so that it's executed when @rq can be unlocked.
*/
if (dsq->id == SCX_DSQ_LOCAL && dsq != &rq->scx.local_dsq) {
unsigned long opss;
opss = atomic_long_read(&p->scx.ops_state) & SCX_OPSS_STATE_MASK;
switch (opss & SCX_OPSS_STATE_MASK) {
case SCX_OPSS_NONE:
break;
case SCX_OPSS_QUEUEING:
/*
* As @p was never passed to the BPF side, _release is
* not strictly necessary. Still do it for consistency.
*/
atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE);
break;
default:
WARN_ONCE(true, "sched_ext: %s[%d] has invalid ops state 0x%lx in direct_dispatch()",
p->comm, p->pid, opss);
atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE);
break;
}
WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_list.node));
list_add_tail(&p->scx.dsq_list.node,
&rq->scx.ddsp_deferred_locals);
schedule_deferred(rq);
return;
}
dispatch_enqueue(dsq, p, p->scx.ddsp_enq_flags | SCX_ENQ_CLEAR_OPSS);
}
static bool scx_rq_online(struct rq *rq)
{
/*
* Test both cpu_active() and %SCX_RQ_ONLINE. %SCX_RQ_ONLINE indicates
* the online state as seen from the BPF scheduler. cpu_active() test
* guarantees that, if this function returns %true, %SCX_RQ_ONLINE will
* stay set until the current scheduling operation is complete even if
* we aren't locking @rq.
*/
return likely((rq->scx.flags & SCX_RQ_ONLINE) && cpu_active(cpu_of(rq)));
}
static void do_enqueue_task(struct rq *rq, struct task_struct *p, u64 enq_flags,
int sticky_cpu)
{
struct task_struct **ddsp_taskp;
unsigned long qseq;
WARN_ON_ONCE(!(p->scx.flags & SCX_TASK_QUEUED));
/* rq migration */
if (sticky_cpu == cpu_of(rq))
goto local_norefill;
/*
* If !scx_rq_online(), we already told the BPF scheduler that the CPU
* is offline and are just running the hotplug path. Don't bother the
* BPF scheduler.
*/
if (!scx_rq_online(rq))
goto local;
if (scx_rq_bypassing(rq))
goto global;
if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID)
goto direct;
/* see %SCX_OPS_ENQ_EXITING */
if (!static_branch_unlikely(&scx_ops_enq_exiting) &&
unlikely(p->flags & PF_EXITING))
goto local;
if (!SCX_HAS_OP(enqueue))
goto global;
/* DSQ bypass didn't trigger, enqueue on the BPF scheduler */
qseq = rq->scx.ops_qseq++ << SCX_OPSS_QSEQ_SHIFT;
WARN_ON_ONCE(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE);
atomic_long_set(&p->scx.ops_state, SCX_OPSS_QUEUEING | qseq);
ddsp_taskp = this_cpu_ptr(&direct_dispatch_task);
WARN_ON_ONCE(*ddsp_taskp);
*ddsp_taskp = p;
SCX_CALL_OP_TASK(SCX_KF_ENQUEUE, enqueue, p, enq_flags);
*ddsp_taskp = NULL;
if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID)
goto direct;
/*
* If not directly dispatched, QUEUEING isn't clear yet and dispatch or
* dequeue may be waiting. The store_release matches their load_acquire.
*/
atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_QUEUED | qseq);
return;
direct:
direct_dispatch(p, enq_flags);
return;
local:
/*
* For task-ordering, slice refill must be treated as implying the end
* of the current slice. Otherwise, the longer @p stays on the CPU, the
* higher priority it becomes from scx_prio_less()'s POV.
*/
touch_core_sched(rq, p);
p->scx.slice = SCX_SLICE_DFL;
local_norefill:
dispatch_enqueue(&rq->scx.local_dsq, p, enq_flags);
return;
global:
touch_core_sched(rq, p); /* see the comment in local: */
p->scx.slice = SCX_SLICE_DFL;
dispatch_enqueue(find_global_dsq(p), p, enq_flags);
}
static bool task_runnable(const struct task_struct *p)
{
return !list_empty(&p->scx.runnable_node);
}
static void set_task_runnable(struct rq *rq, struct task_struct *p)
{
lockdep_assert_rq_held(rq);
if (p->scx.flags & SCX_TASK_RESET_RUNNABLE_AT) {
p->scx.runnable_at = jiffies;
p->scx.flags &= ~SCX_TASK_RESET_RUNNABLE_AT;
}
/*
* list_add_tail() must be used. scx_ops_bypass() depends on tasks being
* appened to the runnable_list.
*/
list_add_tail(&p->scx.runnable_node, &rq->scx.runnable_list);
}
static void clr_task_runnable(struct task_struct *p, bool reset_runnable_at)
{
list_del_init(&p->scx.runnable_node);
if (reset_runnable_at)
p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT;
}
static void enqueue_task_scx(struct rq *rq, struct task_struct *p, int enq_flags)
{
int sticky_cpu = p->scx.sticky_cpu;
if (enq_flags & ENQUEUE_WAKEUP)
rq->scx.flags |= SCX_RQ_IN_WAKEUP;
enq_flags |= rq->scx.extra_enq_flags;
if (sticky_cpu >= 0)
p->scx.sticky_cpu = -1;
/*
* Restoring a running task will be immediately followed by
* set_next_task_scx() which expects the task to not be on the BPF
* scheduler as tasks can only start running through local DSQs. Force
* direct-dispatch into the local DSQ by setting the sticky_cpu.
*/
if (unlikely(enq_flags & ENQUEUE_RESTORE) && task_current(rq, p))
sticky_cpu = cpu_of(rq);
if (p->scx.flags & SCX_TASK_QUEUED) {
WARN_ON_ONCE(!task_runnable(p));
goto out;
}
set_task_runnable(rq, p);
p->scx.flags |= SCX_TASK_QUEUED;
rq->scx.nr_running++;
add_nr_running(rq, 1);
if (SCX_HAS_OP(runnable) && !task_on_rq_migrating(p))
SCX_CALL_OP_TASK(SCX_KF_REST, runnable, p, enq_flags);
if (enq_flags & SCX_ENQ_WAKEUP)
touch_core_sched(rq, p);
do_enqueue_task(rq, p, enq_flags, sticky_cpu);
out:
rq->scx.flags &= ~SCX_RQ_IN_WAKEUP;
}
static void ops_dequeue(struct task_struct *p, u64 deq_flags)
{
unsigned long opss;
/* dequeue is always temporary, don't reset runnable_at */
clr_task_runnable(p, false);
/* acquire ensures that we see the preceding updates on QUEUED */
opss = atomic_long_read_acquire(&p->scx.ops_state);
switch (opss & SCX_OPSS_STATE_MASK) {
case SCX_OPSS_NONE:
break;
case SCX_OPSS_QUEUEING:
/*
* QUEUEING is started and finished while holding @p's rq lock.
* As we're holding the rq lock now, we shouldn't see QUEUEING.
*/
BUG();
case SCX_OPSS_QUEUED:
if (SCX_HAS_OP(dequeue))
SCX_CALL_OP_TASK(SCX_KF_REST, dequeue, p, deq_flags);
if (atomic_long_try_cmpxchg(&p->scx.ops_state, &opss,
SCX_OPSS_NONE))
break;
fallthrough;
case SCX_OPSS_DISPATCHING:
/*
* If @p is being dispatched from the BPF scheduler to a DSQ,
* wait for the transfer to complete so that @p doesn't get
* added to its DSQ after dequeueing is complete.
*
* As we're waiting on DISPATCHING with the rq locked, the
* dispatching side shouldn't try to lock the rq while
* DISPATCHING is set. See dispatch_to_local_dsq().
*
* DISPATCHING shouldn't have qseq set and control can reach
* here with NONE @opss from the above QUEUED case block.
* Explicitly wait on %SCX_OPSS_DISPATCHING instead of @opss.
*/
wait_ops_state(p, SCX_OPSS_DISPATCHING);
BUG_ON(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE);
break;
}
}
static bool dequeue_task_scx(struct rq *rq, struct task_struct *p, int deq_flags)
{
if (!(p->scx.flags & SCX_TASK_QUEUED)) {
WARN_ON_ONCE(task_runnable(p));
return true;
}
ops_dequeue(p, deq_flags);
/*
* A currently running task which is going off @rq first gets dequeued
* and then stops running. As we want running <-> stopping transitions
* to be contained within runnable <-> quiescent transitions, trigger
* ->stopping() early here instead of in put_prev_task_scx().
*
* @p may go through multiple stopping <-> running transitions between
* here and put_prev_task_scx() if task attribute changes occur while
* balance_scx() leaves @rq unlocked. However, they don't contain any
* information meaningful to the BPF scheduler and can be suppressed by
* skipping the callbacks if the task is !QUEUED.
*/
if (SCX_HAS_OP(stopping) && task_current(rq, p)) {
update_curr_scx(rq);
SCX_CALL_OP_TASK(SCX_KF_REST, stopping, p, false);
}
if (SCX_HAS_OP(quiescent) && !task_on_rq_migrating(p))
SCX_CALL_OP_TASK(SCX_KF_REST, quiescent, p, deq_flags);
if (deq_flags & SCX_DEQ_SLEEP)
p->scx.flags |= SCX_TASK_DEQD_FOR_SLEEP;
else
p->scx.flags &= ~SCX_TASK_DEQD_FOR_SLEEP;
p->scx.flags &= ~SCX_TASK_QUEUED;
rq->scx.nr_running--;
sub_nr_running(rq, 1);
dispatch_dequeue(rq, p);
return true;
}
static void yield_task_scx(struct rq *rq)
{
struct task_struct *p = rq->curr;
if (SCX_HAS_OP(yield))
SCX_CALL_OP_2TASKS_RET(SCX_KF_REST, yield, p, NULL);
else
p->scx.slice = 0;
}
static bool yield_to_task_scx(struct rq *rq, struct task_struct *to)
{
struct task_struct *from = rq->curr;
if (SCX_HAS_OP(yield))
return SCX_CALL_OP_2TASKS_RET(SCX_KF_REST, yield, from, to);
else
return false;
}
static void move_local_task_to_local_dsq(struct task_struct *p, u64 enq_flags,
struct scx_dispatch_q *src_dsq,
struct rq *dst_rq)
{
struct scx_dispatch_q *dst_dsq = &dst_rq->scx.local_dsq;
/* @dsq is locked and @p is on @dst_rq */
lockdep_assert_held(&src_dsq->lock);
lockdep_assert_rq_held(dst_rq);
WARN_ON_ONCE(p->scx.holding_cpu >= 0);
if (enq_flags & (SCX_ENQ_HEAD | SCX_ENQ_PREEMPT))
list_add(&p->scx.dsq_list.node, &dst_dsq->list);
else
list_add_tail(&p->scx.dsq_list.node, &dst_dsq->list);
dsq_mod_nr(dst_dsq, 1);
p->scx.dsq = dst_dsq;
}
#ifdef CONFIG_SMP
/**
* move_remote_task_to_local_dsq - Move a task from a foreign rq to a local DSQ
* @p: task to move
* @enq_flags: %SCX_ENQ_*
* @src_rq: rq to move the task from, locked on entry, released on return
* @dst_rq: rq to move the task into, locked on return
*
* Move @p which is currently on @src_rq to @dst_rq's local DSQ.
*/
static void move_remote_task_to_local_dsq(struct task_struct *p, u64 enq_flags,
struct rq *src_rq, struct rq *dst_rq)
{
lockdep_assert_rq_held(src_rq);
/* the following marks @p MIGRATING which excludes dequeue */
deactivate_task(src_rq, p, 0);
set_task_cpu(p, cpu_of(dst_rq));
p->scx.sticky_cpu = cpu_of(dst_rq);
raw_spin_rq_unlock(src_rq);
raw_spin_rq_lock(dst_rq);
/*
* We want to pass scx-specific enq_flags but activate_task() will
* truncate the upper 32 bit. As we own @rq, we can pass them through
* @rq->scx.extra_enq_flags instead.
*/
WARN_ON_ONCE(!cpumask_test_cpu(cpu_of(dst_rq), p->cpus_ptr));
WARN_ON_ONCE(dst_rq->scx.extra_enq_flags);
dst_rq->scx.extra_enq_flags = enq_flags;
activate_task(dst_rq, p, 0);
dst_rq->scx.extra_enq_flags = 0;
}
/*
* Similar to kernel/sched/core.c::is_cpu_allowed(). However, there are two
* differences:
*
* - is_cpu_allowed() asks "Can this task run on this CPU?" while
* task_can_run_on_remote_rq() asks "Can the BPF scheduler migrate the task to
* this CPU?".
*
* While migration is disabled, is_cpu_allowed() has to say "yes" as the task
* must be allowed to finish on the CPU that it's currently on regardless of
* the CPU state. However, task_can_run_on_remote_rq() must say "no" as the
* BPF scheduler shouldn't attempt to migrate a task which has migration
* disabled.
*
* - The BPF scheduler is bypassed while the rq is offline and we can always say
* no to the BPF scheduler initiated migrations while offline.
*/
static bool task_can_run_on_remote_rq(struct task_struct *p, struct rq *rq,
bool trigger_error)
{
int cpu = cpu_of(rq);
/*
* We don't require the BPF scheduler to avoid dispatching to offline
* CPUs mostly for convenience but also because CPUs can go offline
* between scx_bpf_dispatch() calls and here. Trigger error iff the
* picked CPU is outside the allowed mask.
*/
if (!task_allowed_on_cpu(p, cpu)) {
if (trigger_error)
scx_ops_error("SCX_DSQ_LOCAL[_ON] verdict target cpu %d not allowed for %s[%d]",
cpu_of(rq), p->comm, p->pid);
return false;
}
if (unlikely(is_migration_disabled(p)))
return false;
if (!scx_rq_online(rq))
return false;
return true;
}
/**
* unlink_dsq_and_lock_src_rq() - Unlink task from its DSQ and lock its task_rq
* @p: target task
* @dsq: locked DSQ @p is currently on
* @src_rq: rq @p is currently on, stable with @dsq locked
*
* Called with @dsq locked but no rq's locked. We want to move @p to a different
* DSQ, including any local DSQ, but are not locking @src_rq. Locking @src_rq is
* required when transferring into a local DSQ. Even when transferring into a
* non-local DSQ, it's better to use the same mechanism to protect against
* dequeues and maintain the invariant that @p->scx.dsq can only change while
* @src_rq is locked, which e.g. scx_dump_task() depends on.
*
* We want to grab @src_rq but that can deadlock if we try while locking @dsq,
* so we want to unlink @p from @dsq, drop its lock and then lock @src_rq. As
* this may race with dequeue, which can't drop the rq lock or fail, do a little
* dancing from our side.
*
* @p->scx.holding_cpu is set to this CPU before @dsq is unlocked. If @p gets
* dequeued after we unlock @dsq but before locking @src_rq, the holding_cpu
* would be cleared to -1. While other cpus may have updated it to different
* values afterwards, as this operation can't be preempted or recurse, the
* holding_cpu can never become this CPU again before we're done. Thus, we can
* tell whether we lost to dequeue by testing whether the holding_cpu still
* points to this CPU. See dispatch_dequeue() for the counterpart.
*
* On return, @dsq is unlocked and @src_rq is locked. Returns %true if @p is
* still valid. %false if lost to dequeue.
*/
static bool unlink_dsq_and_lock_src_rq(struct task_struct *p,
struct scx_dispatch_q *dsq,
struct rq *src_rq)
{
s32 cpu = raw_smp_processor_id();
lockdep_assert_held(&dsq->lock);
WARN_ON_ONCE(p->scx.holding_cpu >= 0);
task_unlink_from_dsq(p, dsq);
p->scx.holding_cpu = cpu;
raw_spin_unlock(&dsq->lock);
raw_spin_rq_lock(src_rq);
/* task_rq couldn't have changed if we're still the holding cpu */
return likely(p->scx.holding_cpu == cpu) &&
!WARN_ON_ONCE(src_rq != task_rq(p));
}
static bool consume_remote_task(struct rq *this_rq, struct task_struct *p,
struct scx_dispatch_q *dsq, struct rq *src_rq)
{
raw_spin_rq_unlock(this_rq);
if (unlink_dsq_and_lock_src_rq(p, dsq, src_rq)) {
move_remote_task_to_local_dsq(p, 0, src_rq, this_rq);
return true;
} else {
raw_spin_rq_unlock(src_rq);
raw_spin_rq_lock(this_rq);
return false;
}
}
#else /* CONFIG_SMP */
static inline void move_remote_task_to_local_dsq(struct task_struct *p, u64 enq_flags, struct rq *src_rq, struct rq *dst_rq) { WARN_ON_ONCE(1); }
static inline bool task_can_run_on_remote_rq(struct task_struct *p, struct rq *rq, bool trigger_error) { return false; }
static inline bool consume_remote_task(struct rq *this_rq, struct task_struct *p, struct scx_dispatch_q *dsq, struct rq *task_rq) { return false; }
#endif /* CONFIG_SMP */
static bool consume_dispatch_q(struct rq *rq, struct scx_dispatch_q *dsq)
{
struct task_struct *p;
retry:
/*
* The caller can't expect to successfully consume a task if the task's
* addition to @dsq isn't guaranteed to be visible somehow. Test
* @dsq->list without locking and skip if it seems empty.
*/
if (list_empty(&dsq->list))
return false;
raw_spin_lock(&dsq->lock);
nldsq_for_each_task(p, dsq) {
struct rq *task_rq = task_rq(p);
if (rq == task_rq) {
task_unlink_from_dsq(p, dsq);
move_local_task_to_local_dsq(p, 0, dsq, rq);
raw_spin_unlock(&dsq->lock);
return true;
}
if (task_can_run_on_remote_rq(p, rq, false)) {
if (likely(consume_remote_task(rq, p, dsq, task_rq)))
return true;
goto retry;
}
}
raw_spin_unlock(&dsq->lock);
return false;
}
static bool consume_global_dsq(struct rq *rq)
{
int node = cpu_to_node(cpu_of(rq));
return consume_dispatch_q(rq, global_dsqs[node]);
}
/**
* dispatch_to_local_dsq - Dispatch a task to a local dsq
* @rq: current rq which is locked
* @dst_dsq: destination DSQ
* @p: task to dispatch
* @enq_flags: %SCX_ENQ_*
*
* We're holding @rq lock and want to dispatch @p to @dst_dsq which is a local
* DSQ. This function performs all the synchronization dancing needed because
* local DSQs are protected with rq locks.
*
* The caller must have exclusive ownership of @p (e.g. through
* %SCX_OPSS_DISPATCHING).
*/
static void dispatch_to_local_dsq(struct rq *rq, struct scx_dispatch_q *dst_dsq,
struct task_struct *p, u64 enq_flags)
{
struct rq *src_rq = task_rq(p);
struct rq *dst_rq = container_of(dst_dsq, struct rq, scx.local_dsq);
/*
* We're synchronized against dequeue through DISPATCHING. As @p can't
* be dequeued, its task_rq and cpus_allowed are stable too.
*
* If dispatching to @rq that @p is already on, no lock dancing needed.
*/
if (rq == src_rq && rq == dst_rq) {
dispatch_enqueue(dst_dsq, p, enq_flags | SCX_ENQ_CLEAR_OPSS);
return;
}
#ifdef CONFIG_SMP
if (unlikely(!task_can_run_on_remote_rq(p, dst_rq, true))) {
dispatch_enqueue(find_global_dsq(p), p,
enq_flags | SCX_ENQ_CLEAR_OPSS);
return;
}
/*
* @p is on a possibly remote @src_rq which we need to lock to move the
* task. If dequeue is in progress, it'd be locking @src_rq and waiting
* on DISPATCHING, so we can't grab @src_rq lock while holding
* DISPATCHING.
*
* As DISPATCHING guarantees that @p is wholly ours, we can pretend that
* we're moving from a DSQ and use the same mechanism - mark the task
* under transfer with holding_cpu, release DISPATCHING and then follow
* the same protocol. See unlink_dsq_and_lock_src_rq().
*/
p->scx.holding_cpu = raw_smp_processor_id();
/* store_release ensures that dequeue sees the above */
atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE);
/* switch to @src_rq lock */
if (rq != src_rq) {
raw_spin_rq_unlock(rq);
raw_spin_rq_lock(src_rq);
}
/* task_rq couldn't have changed if we're still the holding cpu */
if (likely(p->scx.holding_cpu == raw_smp_processor_id()) &&
!WARN_ON_ONCE(src_rq != task_rq(p))) {
/*
* If @p is staying on the same rq, there's no need to go
* through the full deactivate/activate cycle. Optimize by
* abbreviating move_remote_task_to_local_dsq().
*/
if (src_rq == dst_rq) {
p->scx.holding_cpu = -1;
dispatch_enqueue(&dst_rq->scx.local_dsq, p, enq_flags);
} else {
move_remote_task_to_local_dsq(p, enq_flags,
src_rq, dst_rq);
}
/* if the destination CPU is idle, wake it up */
if (sched_class_above(p->sched_class, dst_rq->curr->sched_class))
resched_curr(dst_rq);
}
/* switch back to @rq lock */
if (rq != dst_rq) {
raw_spin_rq_unlock(dst_rq);
raw_spin_rq_lock(rq);
}
#else /* CONFIG_SMP */
BUG(); /* control can not reach here on UP */
#endif /* CONFIG_SMP */
}
/**
* finish_dispatch - Asynchronously finish dispatching a task
* @rq: current rq which is locked
* @p: task to finish dispatching
* @qseq_at_dispatch: qseq when @p started getting dispatched
* @dsq_id: destination DSQ ID
* @enq_flags: %SCX_ENQ_*
*
* Dispatching to local DSQs may need to wait for queueing to complete or
* require rq lock dancing. As we don't wanna do either while inside
* ops.dispatch() to avoid locking order inversion, we split dispatching into
* two parts. scx_bpf_dispatch() which is called by ops.dispatch() records the
* task and its qseq. Once ops.dispatch() returns, this function is called to
* finish up.
*
* There is no guarantee that @p is still valid for dispatching or even that it
* was valid in the first place. Make sure that the task is still owned by the
* BPF scheduler and claim the ownership before dispatching.
*/
static void finish_dispatch(struct rq *rq, struct task_struct *p,
unsigned long qseq_at_dispatch,
u64 dsq_id, u64 enq_flags)
{
struct scx_dispatch_q *dsq;
unsigned long opss;
touch_core_sched_dispatch(rq, p);
retry:
/*
* No need for _acquire here. @p is accessed only after a successful
* try_cmpxchg to DISPATCHING.
*/
opss = atomic_long_read(&p->scx.ops_state);
switch (opss & SCX_OPSS_STATE_MASK) {
case SCX_OPSS_DISPATCHING:
case SCX_OPSS_NONE:
/* someone else already got to it */
return;
case SCX_OPSS_QUEUED:
/*
* If qseq doesn't match, @p has gone through at least one
* dispatch/dequeue and re-enqueue cycle between
* scx_bpf_dispatch() and here and we have no claim on it.
*/
if ((opss & SCX_OPSS_QSEQ_MASK) != qseq_at_dispatch)
return;
/*
* While we know @p is accessible, we don't yet have a claim on
* it - the BPF scheduler is allowed to dispatch tasks
* spuriously and there can be a racing dequeue attempt. Let's
* claim @p by atomically transitioning it from QUEUED to
* DISPATCHING.
*/
if (likely(atomic_long_try_cmpxchg(&p->scx.ops_state, &opss,
SCX_OPSS_DISPATCHING)))
break;
goto retry;
case SCX_OPSS_QUEUEING:
/*
* do_enqueue_task() is in the process of transferring the task
* to the BPF scheduler while holding @p's rq lock. As we aren't
* holding any kernel or BPF resource that the enqueue path may
* depend upon, it's safe to wait.
*/
wait_ops_state(p, opss);
goto retry;
}
BUG_ON(!(p->scx.flags & SCX_TASK_QUEUED));
dsq = find_dsq_for_dispatch(this_rq(), dsq_id, p);
if (dsq->id == SCX_DSQ_LOCAL)
dispatch_to_local_dsq(rq, dsq, p, enq_flags);
else
dispatch_enqueue(dsq, p, enq_flags | SCX_ENQ_CLEAR_OPSS);
}
static void flush_dispatch_buf(struct rq *rq)
{
struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
u32 u;
for (u = 0; u < dspc->cursor; u++) {
struct scx_dsp_buf_ent *ent = &dspc->buf[u];
finish_dispatch(rq, ent->task, ent->qseq, ent->dsq_id,
ent->enq_flags);
}
dspc->nr_tasks += dspc->cursor;
dspc->cursor = 0;
}
static int balance_one(struct rq *rq, struct task_struct *prev)
{
struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
bool prev_on_scx = prev->sched_class == &ext_sched_class;
int nr_loops = SCX_DSP_MAX_LOOPS;
lockdep_assert_rq_held(rq);
rq->scx.flags |= SCX_RQ_IN_BALANCE;
rq->scx.flags &= ~SCX_RQ_BAL_KEEP;
if (static_branch_unlikely(&scx_ops_cpu_preempt) &&
unlikely(rq->scx.cpu_released)) {
/*
* If the previous sched_class for the current CPU was not SCX,
* notify the BPF scheduler that it again has control of the
* core. This callback complements ->cpu_release(), which is
* emitted in scx_next_task_picked().
*/
if (SCX_HAS_OP(cpu_acquire))
SCX_CALL_OP(0, cpu_acquire, cpu_of(rq), NULL);
rq->scx.cpu_released = false;
}
if (prev_on_scx) {
update_curr_scx(rq);
/*
* If @prev is runnable & has slice left, it has priority and
* fetching more just increases latency for the fetched tasks.
* Tell pick_task_scx() to keep running @prev. If the BPF
* scheduler wants to handle this explicitly, it should
* implement ->cpu_release().
*
* See scx_ops_disable_workfn() for the explanation on the
* bypassing test.
*/
if ((prev->scx.flags & SCX_TASK_QUEUED) &&
prev->scx.slice && !scx_rq_bypassing(rq)) {
rq->scx.flags |= SCX_RQ_BAL_KEEP;
goto has_tasks;
}
}
/* if there already are tasks to run, nothing to do */
if (rq->scx.local_dsq.nr)
goto has_tasks;
if (consume_global_dsq(rq))
goto has_tasks;
if (!SCX_HAS_OP(dispatch) || scx_rq_bypassing(rq) || !scx_rq_online(rq))
goto no_tasks;
dspc->rq = rq;
/*
* The dispatch loop. Because flush_dispatch_buf() may drop the rq lock,
* the local DSQ might still end up empty after a successful
* ops.dispatch(). If the local DSQ is empty even after ops.dispatch()
* produced some tasks, retry. The BPF scheduler may depend on this
* looping behavior to simplify its implementation.
*/
do {
dspc->nr_tasks = 0;
SCX_CALL_OP(SCX_KF_DISPATCH, dispatch, cpu_of(rq),
prev_on_scx ? prev : NULL);
flush_dispatch_buf(rq);
if (rq->scx.local_dsq.nr)
goto has_tasks;
if (consume_global_dsq(rq))
goto has_tasks;
/*
* ops.dispatch() can trap us in this loop by repeatedly
* dispatching ineligible tasks. Break out once in a while to
* allow the watchdog to run. As IRQ can't be enabled in
* balance(), we want to complete this scheduling cycle and then
* start a new one. IOW, we want to call resched_curr() on the
* next, most likely idle, task, not the current one. Use
* scx_bpf_kick_cpu() for deferred kicking.
*/
if (unlikely(!--nr_loops)) {
scx_bpf_kick_cpu(cpu_of(rq), 0);
break;
}
} while (dspc->nr_tasks);
no_tasks:
/*
* Didn't find another task to run. Keep running @prev unless
* %SCX_OPS_ENQ_LAST is in effect.
*/
if ((prev->scx.flags & SCX_TASK_QUEUED) &&
(!static_branch_unlikely(&scx_ops_enq_last) ||
scx_rq_bypassing(rq))) {
rq->scx.flags |= SCX_RQ_BAL_KEEP;
goto has_tasks;
}
rq->scx.flags &= ~SCX_RQ_IN_BALANCE;
return false;
has_tasks:
rq->scx.flags &= ~SCX_RQ_IN_BALANCE;
return true;
}
static int balance_scx(struct rq *rq, struct task_struct *prev,
struct rq_flags *rf)
{
int ret;
rq_unpin_lock(rq, rf);
ret = balance_one(rq, prev);
#ifdef CONFIG_SCHED_SMT
/*
* When core-sched is enabled, this ops.balance() call will be followed
* by pick_task_scx() on this CPU and the SMT siblings. Balance the
* siblings too.
*/
if (sched_core_enabled(rq)) {
const struct cpumask *smt_mask = cpu_smt_mask(cpu_of(rq));
int scpu;
for_each_cpu_andnot(scpu, smt_mask, cpumask_of(cpu_of(rq))) {
struct rq *srq = cpu_rq(scpu);
struct task_struct *sprev = srq->curr;
WARN_ON_ONCE(__rq_lockp(rq) != __rq_lockp(srq));
update_rq_clock(srq);
balance_one(srq, sprev);
}
}
#endif
rq_repin_lock(rq, rf);
return ret;
}
static void process_ddsp_deferred_locals(struct rq *rq)
{
struct task_struct *p;
lockdep_assert_rq_held(rq);
/*
* Now that @rq can be unlocked, execute the deferred enqueueing of
* tasks directly dispatched to the local DSQs of other CPUs. See
* direct_dispatch(). Keep popping from the head instead of using
* list_for_each_entry_safe() as dispatch_local_dsq() may unlock @rq
* temporarily.
*/
while ((p = list_first_entry_or_null(&rq->scx.ddsp_deferred_locals,
struct task_struct, scx.dsq_list.node))) {
struct scx_dispatch_q *dsq;
list_del_init(&p->scx.dsq_list.node);
dsq = find_dsq_for_dispatch(rq, p->scx.ddsp_dsq_id, p);
if (!WARN_ON_ONCE(dsq->id != SCX_DSQ_LOCAL))
dispatch_to_local_dsq(rq, dsq, p, p->scx.ddsp_enq_flags);
}
}
static void set_next_task_scx(struct rq *rq, struct task_struct *p, bool first)
{
if (p->scx.flags & SCX_TASK_QUEUED) {
/*
* Core-sched might decide to execute @p before it is
* dispatched. Call ops_dequeue() to notify the BPF scheduler.
*/
ops_dequeue(p, SCX_DEQ_CORE_SCHED_EXEC);
dispatch_dequeue(rq, p);
}
p->se.exec_start = rq_clock_task(rq);
/* see dequeue_task_scx() on why we skip when !QUEUED */
if (SCX_HAS_OP(running) && (p->scx.flags & SCX_TASK_QUEUED))
SCX_CALL_OP_TASK(SCX_KF_REST, running, p);
clr_task_runnable(p, true);
/*
* @p is getting newly scheduled or got kicked after someone updated its
* slice. Refresh whether tick can be stopped. See scx_can_stop_tick().
*/
if ((p->scx.slice == SCX_SLICE_INF) !=
(bool)(rq->scx.flags & SCX_RQ_CAN_STOP_TICK)) {
if (p->scx.slice == SCX_SLICE_INF)
rq->scx.flags |= SCX_RQ_CAN_STOP_TICK;
else
rq->scx.flags &= ~SCX_RQ_CAN_STOP_TICK;
sched_update_tick_dependency(rq);
/*
* For now, let's refresh the load_avgs just when transitioning
* in and out of nohz. In the future, we might want to add a
* mechanism which calls the following periodically on
* tick-stopped CPUs.
*/
update_other_load_avgs(rq);
}
}
static enum scx_cpu_preempt_reason
preempt_reason_from_class(const struct sched_class *class)
{
#ifdef CONFIG_SMP
if (class == &stop_sched_class)
return SCX_CPU_PREEMPT_STOP;
#endif
if (class == &dl_sched_class)
return SCX_CPU_PREEMPT_DL;
if (class == &rt_sched_class)
return SCX_CPU_PREEMPT_RT;
return SCX_CPU_PREEMPT_UNKNOWN;
}
static void switch_class(struct rq *rq, struct task_struct *next)
{
const struct sched_class *next_class = next->sched_class;
#ifdef CONFIG_SMP
/*
* Pairs with the smp_load_acquire() issued by a CPU in
* kick_cpus_irq_workfn() who is waiting for this CPU to perform a
* resched.
*/
smp_store_release(&rq->scx.pnt_seq, rq->scx.pnt_seq + 1);
#endif
if (!static_branch_unlikely(&scx_ops_cpu_preempt))
return;
/*
* The callback is conceptually meant to convey that the CPU is no
* longer under the control of SCX. Therefore, don't invoke the callback
* if the next class is below SCX (in which case the BPF scheduler has
* actively decided not to schedule any tasks on the CPU).
*/
if (sched_class_above(&ext_sched_class, next_class))
return;
/*
* At this point we know that SCX was preempted by a higher priority
* sched_class, so invoke the ->cpu_release() callback if we have not
* done so already. We only send the callback once between SCX being
* preempted, and it regaining control of the CPU.
*
* ->cpu_release() complements ->cpu_acquire(), which is emitted the
* next time that balance_scx() is invoked.
*/
if (!rq->scx.cpu_released) {
if (SCX_HAS_OP(cpu_release)) {
struct scx_cpu_release_args args = {
.reason = preempt_reason_from_class(next_class),
.task = next,
};
SCX_CALL_OP(SCX_KF_CPU_RELEASE,
cpu_release, cpu_of(rq), &args);
}
rq->scx.cpu_released = true;
}
}
static void put_prev_task_scx(struct rq *rq, struct task_struct *p,
struct task_struct *next)
{
update_curr_scx(rq);
/* see dequeue_task_scx() on why we skip when !QUEUED */
if (SCX_HAS_OP(stopping) && (p->scx.flags & SCX_TASK_QUEUED))
SCX_CALL_OP_TASK(SCX_KF_REST, stopping, p, true);
if (p->scx.flags & SCX_TASK_QUEUED) {
set_task_runnable(rq, p);
/*
* If @p has slice left and is being put, @p is getting
* preempted by a higher priority scheduler class or core-sched
* forcing a different task. Leave it at the head of the local
* DSQ.
*/
if (p->scx.slice && !scx_rq_bypassing(rq)) {
dispatch_enqueue(&rq->scx.local_dsq, p, SCX_ENQ_HEAD);
return;
}
/*
* If @p is runnable but we're about to enter a lower
* sched_class, %SCX_OPS_ENQ_LAST must be set. Tell
* ops.enqueue() that @p is the only one available for this cpu,
* which should trigger an explicit follow-up scheduling event.
*/
if (sched_class_above(&ext_sched_class, next->sched_class)) {
WARN_ON_ONCE(!static_branch_unlikely(&scx_ops_enq_last));
do_enqueue_task(rq, p, SCX_ENQ_LAST, -1);
} else {
do_enqueue_task(rq, p, 0, -1);
}
}
if (next && next->sched_class != &ext_sched_class)
switch_class(rq, next);
}
static struct task_struct *first_local_task(struct rq *rq)
{
return list_first_entry_or_null(&rq->scx.local_dsq.list,
struct task_struct, scx.dsq_list.node);
}
static struct task_struct *pick_task_scx(struct rq *rq)
{
struct task_struct *prev = rq->curr;
struct task_struct *p;
/*
* If balance_scx() is telling us to keep running @prev, replenish slice
* if necessary and keep running @prev. Otherwise, pop the first one
* from the local DSQ.
*
* WORKAROUND:
*
* %SCX_RQ_BAL_KEEP should be set iff $prev is on SCX as it must just
* have gone through balance_scx(). Unfortunately, there currently is a
* bug where fair could say yes on balance() but no on pick_task(),
* which then ends up calling pick_task_scx() without preceding
* balance_scx().
*
* For now, ignore cases where $prev is not on SCX. This isn't great and
* can theoretically lead to stalls. However, for switch_all cases, this
* happens only while a BPF scheduler is being loaded or unloaded, and,
* for partial cases, fair will likely keep triggering this CPU.
*
* Once fair is fixed, restore WARN_ON_ONCE().
*/
if ((rq->scx.flags & SCX_RQ_BAL_KEEP) &&
prev->sched_class == &ext_sched_class) {
p = prev;
if (!p->scx.slice)
p->scx.slice = SCX_SLICE_DFL;
} else {
p = first_local_task(rq);
if (!p)
return NULL;
if (unlikely(!p->scx.slice)) {
if (!scx_rq_bypassing(rq) && !scx_warned_zero_slice) {
printk_deferred(KERN_WARNING "sched_ext: %s[%d] has zero slice in %s()\n",
p->comm, p->pid, __func__);
scx_warned_zero_slice = true;
}
p->scx.slice = SCX_SLICE_DFL;
}
}
return p;
}
#ifdef CONFIG_SCHED_CORE
/**
* scx_prio_less - Task ordering for core-sched
* @a: task A
* @b: task B
*
* Core-sched is implemented as an additional scheduling layer on top of the
* usual sched_class'es and needs to find out the expected task ordering. For
* SCX, core-sched calls this function to interrogate the task ordering.
*
* Unless overridden by ops.core_sched_before(), @p->scx.core_sched_at is used
* to implement the default task ordering. The older the timestamp, the higher
* prority the task - the global FIFO ordering matching the default scheduling
* behavior.
*
* When ops.core_sched_before() is enabled, @p->scx.core_sched_at is used to
* implement FIFO ordering within each local DSQ. See pick_task_scx().
*/
bool scx_prio_less(const struct task_struct *a, const struct task_struct *b,
bool in_fi)
{
/*
* The const qualifiers are dropped from task_struct pointers when
* calling ops.core_sched_before(). Accesses are controlled by the
* verifier.
*/
if (SCX_HAS_OP(core_sched_before) && !scx_rq_bypassing(task_rq(a)))
return SCX_CALL_OP_2TASKS_RET(SCX_KF_REST, core_sched_before,
(struct task_struct *)a,
(struct task_struct *)b);
else
return time_after64(a->scx.core_sched_at, b->scx.core_sched_at);
}
#endif /* CONFIG_SCHED_CORE */
#ifdef CONFIG_SMP
static bool test_and_clear_cpu_idle(int cpu)
{
#ifdef CONFIG_SCHED_SMT
/*
* SMT mask should be cleared whether we can claim @cpu or not. The SMT
* cluster is not wholly idle either way. This also prevents
* scx_pick_idle_cpu() from getting caught in an infinite loop.
*/
if (sched_smt_active()) {
const struct cpumask *smt = cpu_smt_mask(cpu);
/*
* If offline, @cpu is not its own sibling and
* scx_pick_idle_cpu() can get caught in an infinite loop as
* @cpu is never cleared from idle_masks.smt. Ensure that @cpu
* is eventually cleared.
*/
if (cpumask_intersects(smt, idle_masks.smt))
cpumask_andnot(idle_masks.smt, idle_masks.smt, smt);
else if (cpumask_test_cpu(cpu, idle_masks.smt))
__cpumask_clear_cpu(cpu, idle_masks.smt);
}
#endif
return cpumask_test_and_clear_cpu(cpu, idle_masks.cpu);
}
static s32 scx_pick_idle_cpu(const struct cpumask *cpus_allowed, u64 flags)
{
int cpu;
retry:
if (sched_smt_active()) {
cpu = cpumask_any_and_distribute(idle_masks.smt, cpus_allowed);
if (cpu < nr_cpu_ids)
goto found;
if (flags & SCX_PICK_IDLE_CORE)
return -EBUSY;
}
cpu = cpumask_any_and_distribute(idle_masks.cpu, cpus_allowed);
if (cpu >= nr_cpu_ids)
return -EBUSY;
found:
if (test_and_clear_cpu_idle(cpu))
return cpu;
else
goto retry;
}
static s32 scx_select_cpu_dfl(struct task_struct *p, s32 prev_cpu,
u64 wake_flags, bool *found)
{
s32 cpu;
*found = false;
/*
* If WAKE_SYNC, the waker's local DSQ is empty, and the system is
* under utilized, wake up @p to the local DSQ of the waker. Checking
* only for an empty local DSQ is insufficient as it could give the
* wakee an unfair advantage when the system is oversaturated.
* Checking only for the presence of idle CPUs is also insufficient as
* the local DSQ of the waker could have tasks piled up on it even if
* there is an idle core elsewhere on the system.
*/
cpu = smp_processor_id();
if ((wake_flags & SCX_WAKE_SYNC) &&
!cpumask_empty(idle_masks.cpu) && !(current->flags & PF_EXITING) &&
cpu_rq(cpu)->scx.local_dsq.nr == 0) {
if (cpumask_test_cpu(cpu, p->cpus_ptr))
goto cpu_found;
}
/*
* If CPU has SMT, any wholly idle CPU is likely a better pick than
* partially idle @prev_cpu.
*/
if (sched_smt_active()) {
if (cpumask_test_cpu(prev_cpu, idle_masks.smt) &&
test_and_clear_cpu_idle(prev_cpu)) {
cpu = prev_cpu;
goto cpu_found;
}
cpu = scx_pick_idle_cpu(p->cpus_ptr, SCX_PICK_IDLE_CORE);
if (cpu >= 0)
goto cpu_found;
}
if (test_and_clear_cpu_idle(prev_cpu)) {
cpu = prev_cpu;
goto cpu_found;
}
cpu = scx_pick_idle_cpu(p->cpus_ptr, 0);
if (cpu >= 0)
goto cpu_found;
return prev_cpu;
cpu_found:
*found = true;
return cpu;
}
static int select_task_rq_scx(struct task_struct *p, int prev_cpu, int wake_flags)
{
/*
* sched_exec() calls with %WF_EXEC when @p is about to exec(2) as it
* can be a good migration opportunity with low cache and memory
* footprint. Returning a CPU different than @prev_cpu triggers
* immediate rq migration. However, for SCX, as the current rq
* association doesn't dictate where the task is going to run, this
* doesn't fit well. If necessary, we can later add a dedicated method
* which can decide to preempt self to force it through the regular
* scheduling path.
*/
if (unlikely(wake_flags & WF_EXEC))
return prev_cpu;
if (SCX_HAS_OP(select_cpu) && !scx_rq_bypassing(task_rq(p))) {
s32 cpu;
struct task_struct **ddsp_taskp;
ddsp_taskp = this_cpu_ptr(&direct_dispatch_task);
WARN_ON_ONCE(*ddsp_taskp);
*ddsp_taskp = p;
cpu = SCX_CALL_OP_TASK_RET(SCX_KF_ENQUEUE | SCX_KF_SELECT_CPU,
select_cpu, p, prev_cpu, wake_flags);
*ddsp_taskp = NULL;
if (ops_cpu_valid(cpu, "from ops.select_cpu()"))
return cpu;
else
return prev_cpu;
} else {
bool found;
s32 cpu;
cpu = scx_select_cpu_dfl(p, prev_cpu, wake_flags, &found);
if (found) {
p->scx.slice = SCX_SLICE_DFL;
p->scx.ddsp_dsq_id = SCX_DSQ_LOCAL;
}
return cpu;
}
}
static void task_woken_scx(struct rq *rq, struct task_struct *p)
{
run_deferred(rq);
}
static void set_cpus_allowed_scx(struct task_struct *p,
struct affinity_context *ac)
{
set_cpus_allowed_common(p, ac);
/*
* The effective cpumask is stored in @p->cpus_ptr which may temporarily
* differ from the configured one in @p->cpus_mask. Always tell the bpf
* scheduler the effective one.
*
* Fine-grained memory write control is enforced by BPF making the const
* designation pointless. Cast it away when calling the operation.
*/
if (SCX_HAS_OP(set_cpumask))
SCX_CALL_OP_TASK(SCX_KF_REST, set_cpumask, p,
(struct cpumask *)p->cpus_ptr);
}
static void reset_idle_masks(void)
{
/*
* Consider all online cpus idle. Should converge to the actual state
* quickly.
*/
cpumask_copy(idle_masks.cpu, cpu_online_mask);
cpumask_copy(idle_masks.smt, cpu_online_mask);
}
void __scx_update_idle(struct rq *rq, bool idle)
{
int cpu = cpu_of(rq);
if (SCX_HAS_OP(update_idle) && !scx_rq_bypassing(rq)) {
SCX_CALL_OP(SCX_KF_REST, update_idle, cpu_of(rq), idle);
if (!static_branch_unlikely(&scx_builtin_idle_enabled))
return;
}
if (idle)
cpumask_set_cpu(cpu, idle_masks.cpu);
else
cpumask_clear_cpu(cpu, idle_masks.cpu);
#ifdef CONFIG_SCHED_SMT
if (sched_smt_active()) {
const struct cpumask *smt = cpu_smt_mask(cpu);
if (idle) {
/*
* idle_masks.smt handling is racy but that's fine as
* it's only for optimization and self-correcting.
*/
for_each_cpu(cpu, smt) {
if (!cpumask_test_cpu(cpu, idle_masks.cpu))
return;
}
cpumask_or(idle_masks.smt, idle_masks.smt, smt);
} else {
cpumask_andnot(idle_masks.smt, idle_masks.smt, smt);
}
}
#endif
}
static void handle_hotplug(struct rq *rq, bool online)
{
int cpu = cpu_of(rq);
atomic_long_inc(&scx_hotplug_seq);
if (online && SCX_HAS_OP(cpu_online))
SCX_CALL_OP(SCX_KF_UNLOCKED, cpu_online, cpu);
else if (!online && SCX_HAS_OP(cpu_offline))
SCX_CALL_OP(SCX_KF_UNLOCKED, cpu_offline, cpu);
else
scx_ops_exit(SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG,
"cpu %d going %s, exiting scheduler", cpu,
online ? "online" : "offline");
}
void scx_rq_activate(struct rq *rq)
{
handle_hotplug(rq, true);
}
void scx_rq_deactivate(struct rq *rq)
{
handle_hotplug(rq, false);
}
static void rq_online_scx(struct rq *rq)
{
rq->scx.flags |= SCX_RQ_ONLINE;
}
static void rq_offline_scx(struct rq *rq)
{
rq->scx.flags &= ~SCX_RQ_ONLINE;
}
#else /* CONFIG_SMP */
static bool test_and_clear_cpu_idle(int cpu) { return false; }
static s32 scx_pick_idle_cpu(const struct cpumask *cpus_allowed, u64 flags) { return -EBUSY; }
static void reset_idle_masks(void) {}
#endif /* CONFIG_SMP */
static bool check_rq_for_timeouts(struct rq *rq)
{
struct task_struct *p;
struct rq_flags rf;
bool timed_out = false;
rq_lock_irqsave(rq, &rf);
list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node) {
unsigned long last_runnable = p->scx.runnable_at;
if (unlikely(time_after(jiffies,
last_runnable + scx_watchdog_timeout))) {
u32 dur_ms = jiffies_to_msecs(jiffies - last_runnable);
scx_ops_error_kind(SCX_EXIT_ERROR_STALL,
"%s[%d] failed to run for %u.%03us",
p->comm, p->pid,
dur_ms / 1000, dur_ms % 1000);
timed_out = true;
break;
}
}
rq_unlock_irqrestore(rq, &rf);
return timed_out;
}
static void scx_watchdog_workfn(struct work_struct *work)
{
int cpu;
WRITE_ONCE(scx_watchdog_timestamp, jiffies);
for_each_online_cpu(cpu) {
if (unlikely(check_rq_for_timeouts(cpu_rq(cpu))))
break;
cond_resched();
}
queue_delayed_work(system_unbound_wq, to_delayed_work(work),
scx_watchdog_timeout / 2);
}
void scx_tick(struct rq *rq)
{
unsigned long last_check;
if (!scx_enabled())
return;
last_check = READ_ONCE(scx_watchdog_timestamp);
if (unlikely(time_after(jiffies,
last_check + READ_ONCE(scx_watchdog_timeout)))) {
u32 dur_ms = jiffies_to_msecs(jiffies - last_check);
scx_ops_error_kind(SCX_EXIT_ERROR_STALL,
"watchdog failed to check in for %u.%03us",
dur_ms / 1000, dur_ms % 1000);
}
update_other_load_avgs(rq);
}
static void task_tick_scx(struct rq *rq, struct task_struct *curr, int queued)
{
update_curr_scx(rq);
/*
* While disabling, always resched and refresh core-sched timestamp as
* we can't trust the slice management or ops.core_sched_before().
*/
if (scx_rq_bypassing(rq)) {
curr->scx.slice = 0;
touch_core_sched(rq, curr);
} else if (SCX_HAS_OP(tick)) {
SCX_CALL_OP(SCX_KF_REST, tick, curr);
}
if (!curr->scx.slice)
resched_curr(rq);
}
#ifdef CONFIG_EXT_GROUP_SCHED
static struct cgroup *tg_cgrp(struct task_group *tg)
{
/*
* If CGROUP_SCHED is disabled, @tg is NULL. If @tg is an autogroup,
* @tg->css.cgroup is NULL. In both cases, @tg can be treated as the
* root cgroup.
*/
if (tg && tg->css.cgroup)
return tg->css.cgroup;
else
return &cgrp_dfl_root.cgrp;
}
#define SCX_INIT_TASK_ARGS_CGROUP(tg) .cgroup = tg_cgrp(tg),
#else /* CONFIG_EXT_GROUP_SCHED */
#define SCX_INIT_TASK_ARGS_CGROUP(tg)
#endif /* CONFIG_EXT_GROUP_SCHED */
static enum scx_task_state scx_get_task_state(const struct task_struct *p)
{
return (p->scx.flags & SCX_TASK_STATE_MASK) >> SCX_TASK_STATE_SHIFT;
}
static void scx_set_task_state(struct task_struct *p, enum scx_task_state state)
{
enum scx_task_state prev_state = scx_get_task_state(p);
bool warn = false;
BUILD_BUG_ON(SCX_TASK_NR_STATES > (1 << SCX_TASK_STATE_BITS));
switch (state) {
case SCX_TASK_NONE:
break;
case SCX_TASK_INIT:
warn = prev_state != SCX_TASK_NONE;
break;
case SCX_TASK_READY:
warn = prev_state == SCX_TASK_NONE;
break;
case SCX_TASK_ENABLED:
warn = prev_state != SCX_TASK_READY;
break;
default:
warn = true;
return;
}
WARN_ONCE(warn, "sched_ext: Invalid task state transition %d -> %d for %s[%d]",
prev_state, state, p->comm, p->pid);
p->scx.flags &= ~SCX_TASK_STATE_MASK;
p->scx.flags |= state << SCX_TASK_STATE_SHIFT;
}
static int scx_ops_init_task(struct task_struct *p, struct task_group *tg, bool fork)
{
int ret;
p->scx.disallow = false;
if (SCX_HAS_OP(init_task)) {
struct scx_init_task_args args = {
SCX_INIT_TASK_ARGS_CGROUP(tg)
.fork = fork,
};
ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, init_task, p, &args);
if (unlikely(ret)) {
ret = ops_sanitize_err("init_task", ret);
return ret;
}
}
scx_set_task_state(p, SCX_TASK_INIT);
if (p->scx.disallow) {
if (!fork) {
struct rq *rq;
struct rq_flags rf;
rq = task_rq_lock(p, &rf);
/*
* We're in the load path and @p->policy will be applied
* right after. Reverting @p->policy here and rejecting
* %SCHED_EXT transitions from scx_check_setscheduler()
* guarantees that if ops.init_task() sets @p->disallow,
* @p can never be in SCX.
*/
if (p->policy == SCHED_EXT) {
p->policy = SCHED_NORMAL;
atomic_long_inc(&scx_nr_rejected);
}
task_rq_unlock(rq, p, &rf);
} else if (p->policy == SCHED_EXT) {
scx_ops_error("ops.init_task() set task->scx.disallow for %s[%d] during fork",
p->comm, p->pid);
}
}
p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT;
return 0;
}
static void scx_ops_enable_task(struct task_struct *p)
{
u32 weight;
lockdep_assert_rq_held(task_rq(p));
/*
* Set the weight before calling ops.enable() so that the scheduler
* doesn't see a stale value if they inspect the task struct.
*/
if (task_has_idle_policy(p))
weight = WEIGHT_IDLEPRIO;
else
weight = sched_prio_to_weight[p->static_prio - MAX_RT_PRIO];
p->scx.weight = sched_weight_to_cgroup(weight);
if (SCX_HAS_OP(enable))
SCX_CALL_OP_TASK(SCX_KF_REST, enable, p);
scx_set_task_state(p, SCX_TASK_ENABLED);
if (SCX_HAS_OP(set_weight))
SCX_CALL_OP_TASK(SCX_KF_REST, set_weight, p, p->scx.weight);
}
static void scx_ops_disable_task(struct task_struct *p)
{
lockdep_assert_rq_held(task_rq(p));
WARN_ON_ONCE(scx_get_task_state(p) != SCX_TASK_ENABLED);
if (SCX_HAS_OP(disable))
SCX_CALL_OP(SCX_KF_REST, disable, p);
scx_set_task_state(p, SCX_TASK_READY);
}
static void scx_ops_exit_task(struct task_struct *p)
{
struct scx_exit_task_args args = {
.cancelled = false,
};
lockdep_assert_rq_held(task_rq(p));
switch (scx_get_task_state(p)) {
case SCX_TASK_NONE:
return;
case SCX_TASK_INIT:
args.cancelled = true;
break;
case SCX_TASK_READY:
break;
case SCX_TASK_ENABLED:
scx_ops_disable_task(p);
break;
default:
WARN_ON_ONCE(true);
return;
}
if (SCX_HAS_OP(exit_task))
SCX_CALL_OP(SCX_KF_REST, exit_task, p, &args);
scx_set_task_state(p, SCX_TASK_NONE);
}
void init_scx_entity(struct sched_ext_entity *scx)
{
/*
* init_idle() calls this function again after fork sequence is
* complete. Don't touch ->tasks_node as it's already linked.
*/
memset(scx, 0, offsetof(struct sched_ext_entity, tasks_node));
INIT_LIST_HEAD(&scx->dsq_list.node);
RB_CLEAR_NODE(&scx->dsq_priq);
scx->sticky_cpu = -1;
scx->holding_cpu = -1;
INIT_LIST_HEAD(&scx->runnable_node);
scx->runnable_at = jiffies;
scx->ddsp_dsq_id = SCX_DSQ_INVALID;
scx->slice = SCX_SLICE_DFL;
}
void scx_pre_fork(struct task_struct *p)
{
/*
* BPF scheduler enable/disable paths want to be able to iterate and
* update all tasks which can become complex when racing forks. As
* enable/disable are very cold paths, let's use a percpu_rwsem to
* exclude forks.
*/
percpu_down_read(&scx_fork_rwsem);
}
int scx_fork(struct task_struct *p)
{
percpu_rwsem_assert_held(&scx_fork_rwsem);
if (scx_ops_init_task_enabled)
return scx_ops_init_task(p, task_group(p), true);
else
return 0;
}
void scx_post_fork(struct task_struct *p)
{
if (scx_ops_init_task_enabled) {
scx_set_task_state(p, SCX_TASK_READY);
/*
* Enable the task immediately if it's running on sched_ext.
* Otherwise, it'll be enabled in switching_to_scx() if and
* when it's ever configured to run with a SCHED_EXT policy.
*/
if (p->sched_class == &ext_sched_class) {
struct rq_flags rf;
struct rq *rq;
rq = task_rq_lock(p, &rf);
scx_ops_enable_task(p);
task_rq_unlock(rq, p, &rf);
}
}
spin_lock_irq(&scx_tasks_lock);
list_add_tail(&p->scx.tasks_node, &scx_tasks);
spin_unlock_irq(&scx_tasks_lock);
percpu_up_read(&scx_fork_rwsem);
}
void scx_cancel_fork(struct task_struct *p)
{
if (scx_enabled()) {
struct rq *rq;
struct rq_flags rf;
rq = task_rq_lock(p, &rf);
WARN_ON_ONCE(scx_get_task_state(p) >= SCX_TASK_READY);
scx_ops_exit_task(p);
task_rq_unlock(rq, p, &rf);
}
percpu_up_read(&scx_fork_rwsem);
}
void sched_ext_free(struct task_struct *p)
{
unsigned long flags;
spin_lock_irqsave(&scx_tasks_lock, flags);
list_del_init(&p->scx.tasks_node);
spin_unlock_irqrestore(&scx_tasks_lock, flags);
/*
* @p is off scx_tasks and wholly ours. scx_ops_enable()'s READY ->
* ENABLED transitions can't race us. Disable ops for @p.
*/
if (scx_get_task_state(p) != SCX_TASK_NONE) {
struct rq_flags rf;
struct rq *rq;
rq = task_rq_lock(p, &rf);
scx_ops_exit_task(p);
task_rq_unlock(rq, p, &rf);
}
}
static void reweight_task_scx(struct rq *rq, struct task_struct *p,
const struct load_weight *lw)
{
lockdep_assert_rq_held(task_rq(p));
p->scx.weight = sched_weight_to_cgroup(scale_load_down(lw->weight));
if (SCX_HAS_OP(set_weight))
SCX_CALL_OP_TASK(SCX_KF_REST, set_weight, p, p->scx.weight);
}
static void prio_changed_scx(struct rq *rq, struct task_struct *p, int oldprio)
{
}
static void switching_to_scx(struct rq *rq, struct task_struct *p)
{
scx_ops_enable_task(p);
/*
* set_cpus_allowed_scx() is not called while @p is associated with a
* different scheduler class. Keep the BPF scheduler up-to-date.
*/
if (SCX_HAS_OP(set_cpumask))
SCX_CALL_OP_TASK(SCX_KF_REST, set_cpumask, p,
(struct cpumask *)p->cpus_ptr);
}
static void switched_from_scx(struct rq *rq, struct task_struct *p)
{
scx_ops_disable_task(p);
}
static void wakeup_preempt_scx(struct rq *rq, struct task_struct *p,int wake_flags) {}
static void switched_to_scx(struct rq *rq, struct task_struct *p) {}
int scx_check_setscheduler(struct task_struct *p, int policy)
{
lockdep_assert_rq_held(task_rq(p));
/* if disallow, reject transitioning into SCX */
if (scx_enabled() && READ_ONCE(p->scx.disallow) &&
p->policy != policy && policy == SCHED_EXT)
return -EACCES;
return 0;
}
#ifdef CONFIG_NO_HZ_FULL
bool scx_can_stop_tick(struct rq *rq)
{
struct task_struct *p = rq->curr;
if (scx_rq_bypassing(rq))
return false;
if (p->sched_class != &ext_sched_class)
return true;
/*
* @rq can dispatch from different DSQs, so we can't tell whether it
* needs the tick or not by looking at nr_running. Allow stopping ticks
* iff the BPF scheduler indicated so. See set_next_task_scx().
*/
return rq->scx.flags & SCX_RQ_CAN_STOP_TICK;
}
#endif
#ifdef CONFIG_EXT_GROUP_SCHED
DEFINE_STATIC_PERCPU_RWSEM(scx_cgroup_rwsem);
static bool scx_cgroup_enabled;
static bool cgroup_warned_missing_weight;
static bool cgroup_warned_missing_idle;
static void scx_cgroup_warn_missing_weight(struct task_group *tg)
{
if (scx_ops_enable_state() == SCX_OPS_DISABLED ||
cgroup_warned_missing_weight)
return;
if ((scx_ops.flags & SCX_OPS_HAS_CGROUP_WEIGHT) || !tg->css.parent)
return;
pr_warn("sched_ext: \"%s\" does not implement cgroup cpu.weight\n",
scx_ops.name);
cgroup_warned_missing_weight = true;
}
static void scx_cgroup_warn_missing_idle(struct task_group *tg)
{
if (!scx_cgroup_enabled || cgroup_warned_missing_idle)
return;
if (!tg->idle)
return;
pr_warn("sched_ext: \"%s\" does not implement cgroup cpu.idle\n",
scx_ops.name);
cgroup_warned_missing_idle = true;
}
int scx_tg_online(struct task_group *tg)
{
int ret = 0;
WARN_ON_ONCE(tg->scx_flags & (SCX_TG_ONLINE | SCX_TG_INITED));
percpu_down_read(&scx_cgroup_rwsem);
scx_cgroup_warn_missing_weight(tg);
if (scx_cgroup_enabled) {
if (SCX_HAS_OP(cgroup_init)) {
struct scx_cgroup_init_args args =
{ .weight = tg->scx_weight };
ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, cgroup_init,
tg->css.cgroup, &args);
if (ret)
ret = ops_sanitize_err("cgroup_init", ret);
}
if (ret == 0)
tg->scx_flags |= SCX_TG_ONLINE | SCX_TG_INITED;
} else {
tg->scx_flags |= SCX_TG_ONLINE;
}
percpu_up_read(&scx_cgroup_rwsem);
return ret;
}
void scx_tg_offline(struct task_group *tg)
{
WARN_ON_ONCE(!(tg->scx_flags & SCX_TG_ONLINE));
percpu_down_read(&scx_cgroup_rwsem);
if (SCX_HAS_OP(cgroup_exit) && (tg->scx_flags & SCX_TG_INITED))
SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_exit, tg->css.cgroup);
tg->scx_flags &= ~(SCX_TG_ONLINE | SCX_TG_INITED);
percpu_up_read(&scx_cgroup_rwsem);
}
int scx_cgroup_can_attach(struct cgroup_taskset *tset)
{
struct cgroup_subsys_state *css;
struct task_struct *p;
int ret;
/* released in scx_finish/cancel_attach() */
percpu_down_read(&scx_cgroup_rwsem);
if (!scx_cgroup_enabled)
return 0;
cgroup_taskset_for_each(p, css, tset) {
struct cgroup *from = tg_cgrp(task_group(p));
struct cgroup *to = tg_cgrp(css_tg(css));
WARN_ON_ONCE(p->scx.cgrp_moving_from);
/*
* sched_move_task() omits identity migrations. Let's match the
* behavior so that ops.cgroup_prep_move() and ops.cgroup_move()
* always match one-to-one.
*/
if (from == to)
continue;
if (SCX_HAS_OP(cgroup_prep_move)) {
ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, cgroup_prep_move,
p, from, css->cgroup);
if (ret)
goto err;
}
p->scx.cgrp_moving_from = from;
}
return 0;
err:
cgroup_taskset_for_each(p, css, tset) {
if (SCX_HAS_OP(cgroup_cancel_move) && p->scx.cgrp_moving_from)
SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_cancel_move, p,
p->scx.cgrp_moving_from, css->cgroup);
p->scx.cgrp_moving_from = NULL;
}
percpu_up_read(&scx_cgroup_rwsem);
return ops_sanitize_err("cgroup_prep_move", ret);
}
void scx_move_task(struct task_struct *p)
{
if (!scx_cgroup_enabled)
return;
/*
* We're called from sched_move_task() which handles both cgroup and
* autogroup moves. Ignore the latter.
*
* Also ignore exiting tasks, because in the exit path tasks transition
* from the autogroup to the root group, so task_group_is_autogroup()
* alone isn't able to catch exiting autogroup tasks. This is safe for
* cgroup_move(), because cgroup migrations never happen for PF_EXITING
* tasks.
*/
if (task_group_is_autogroup(task_group(p)) || (p->flags & PF_EXITING))
return;
/*
* @p must have ops.cgroup_prep_move() called on it and thus
* cgrp_moving_from set.
*/
if (SCX_HAS_OP(cgroup_move) && !WARN_ON_ONCE(!p->scx.cgrp_moving_from))
SCX_CALL_OP_TASK(SCX_KF_UNLOCKED, cgroup_move, p,
p->scx.cgrp_moving_from, tg_cgrp(task_group(p)));
p->scx.cgrp_moving_from = NULL;
}
void scx_cgroup_finish_attach(void)
{
percpu_up_read(&scx_cgroup_rwsem);
}
void scx_cgroup_cancel_attach(struct cgroup_taskset *tset)
{
struct cgroup_subsys_state *css;
struct task_struct *p;
if (!scx_cgroup_enabled)
goto out_unlock;
cgroup_taskset_for_each(p, css, tset) {
if (SCX_HAS_OP(cgroup_cancel_move) && p->scx.cgrp_moving_from)
SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_cancel_move, p,
p->scx.cgrp_moving_from, css->cgroup);
p->scx.cgrp_moving_from = NULL;
}
out_unlock:
percpu_up_read(&scx_cgroup_rwsem);
}
void scx_group_set_weight(struct task_group *tg, unsigned long weight)
{
percpu_down_read(&scx_cgroup_rwsem);
if (scx_cgroup_enabled && tg->scx_weight != weight) {
if (SCX_HAS_OP(cgroup_set_weight))
SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_set_weight,
tg_cgrp(tg), weight);
tg->scx_weight = weight;
}
percpu_up_read(&scx_cgroup_rwsem);
}
void scx_group_set_idle(struct task_group *tg, bool idle)
{
percpu_down_read(&scx_cgroup_rwsem);
scx_cgroup_warn_missing_idle(tg);
percpu_up_read(&scx_cgroup_rwsem);
}
static void scx_cgroup_lock(void)
{
percpu_down_write(&scx_cgroup_rwsem);
}
static void scx_cgroup_unlock(void)
{
percpu_up_write(&scx_cgroup_rwsem);
}
#else /* CONFIG_EXT_GROUP_SCHED */
static inline void scx_cgroup_lock(void) {}
static inline void scx_cgroup_unlock(void) {}
#endif /* CONFIG_EXT_GROUP_SCHED */
/*
* Omitted operations:
*
* - wakeup_preempt: NOOP as it isn't useful in the wakeup path because the task
* isn't tied to the CPU at that point. Preemption is implemented by resetting
* the victim task's slice to 0 and triggering reschedule on the target CPU.
*
* - migrate_task_rq: Unnecessary as task to cpu mapping is transient.
*
* - task_fork/dead: We need fork/dead notifications for all tasks regardless of
* their current sched_class. Call them directly from sched core instead.
*/
DEFINE_SCHED_CLASS(ext) = {
.enqueue_task = enqueue_task_scx,
.dequeue_task = dequeue_task_scx,
.yield_task = yield_task_scx,
.yield_to_task = yield_to_task_scx,
.wakeup_preempt = wakeup_preempt_scx,
.balance = balance_scx,
.pick_task = pick_task_scx,
.put_prev_task = put_prev_task_scx,
.set_next_task = set_next_task_scx,
#ifdef CONFIG_SMP
.select_task_rq = select_task_rq_scx,
.task_woken = task_woken_scx,
.set_cpus_allowed = set_cpus_allowed_scx,
.rq_online = rq_online_scx,
.rq_offline = rq_offline_scx,
#endif
.task_tick = task_tick_scx,
.switching_to = switching_to_scx,
.switched_from = switched_from_scx,
.switched_to = switched_to_scx,
.reweight_task = reweight_task_scx,
.prio_changed = prio_changed_scx,
.update_curr = update_curr_scx,
#ifdef CONFIG_UCLAMP_TASK
.uclamp_enabled = 1,
#endif
};
static void init_dsq(struct scx_dispatch_q *dsq, u64 dsq_id)
{
memset(dsq, 0, sizeof(*dsq));
raw_spin_lock_init(&dsq->lock);
INIT_LIST_HEAD(&dsq->list);
dsq->id = dsq_id;
}
static struct scx_dispatch_q *create_dsq(u64 dsq_id, int node)
{
struct scx_dispatch_q *dsq;
int ret;
if (dsq_id & SCX_DSQ_FLAG_BUILTIN)
return ERR_PTR(-EINVAL);
dsq = kmalloc_node(sizeof(*dsq), GFP_KERNEL, node);
if (!dsq)
return ERR_PTR(-ENOMEM);
init_dsq(dsq, dsq_id);
ret = rhashtable_insert_fast(&dsq_hash, &dsq->hash_node,
dsq_hash_params);
if (ret) {
kfree(dsq);
return ERR_PTR(ret);
}
return dsq;
}
static void free_dsq_irq_workfn(struct irq_work *irq_work)
{
struct llist_node *to_free = llist_del_all(&dsqs_to_free);
struct scx_dispatch_q *dsq, *tmp_dsq;
llist_for_each_entry_safe(dsq, tmp_dsq, to_free, free_node)
kfree_rcu(dsq, rcu);
}
static DEFINE_IRQ_WORK(free_dsq_irq_work, free_dsq_irq_workfn);
static void destroy_dsq(u64 dsq_id)
{
struct scx_dispatch_q *dsq;
unsigned long flags;
rcu_read_lock();
dsq = find_user_dsq(dsq_id);
if (!dsq)
goto out_unlock_rcu;
raw_spin_lock_irqsave(&dsq->lock, flags);
if (dsq->nr) {
scx_ops_error("attempting to destroy in-use dsq 0x%016llx (nr=%u)",
dsq->id, dsq->nr);
goto out_unlock_dsq;
}
if (rhashtable_remove_fast(&dsq_hash, &dsq->hash_node, dsq_hash_params))
goto out_unlock_dsq;
/*
* Mark dead by invalidating ->id to prevent dispatch_enqueue() from
* queueing more tasks. As this function can be called from anywhere,
* freeing is bounced through an irq work to avoid nesting RCU
* operations inside scheduler locks.
*/
dsq->id = SCX_DSQ_INVALID;
llist_add(&dsq->free_node, &dsqs_to_free);
irq_work_queue(&free_dsq_irq_work);
out_unlock_dsq:
raw_spin_unlock_irqrestore(&dsq->lock, flags);
out_unlock_rcu:
rcu_read_unlock();
}
#ifdef CONFIG_EXT_GROUP_SCHED
static void scx_cgroup_exit(void)
{
struct cgroup_subsys_state *css;
percpu_rwsem_assert_held(&scx_cgroup_rwsem);
scx_cgroup_enabled = false;
/*
* scx_tg_on/offline() are excluded through scx_cgroup_rwsem. If we walk
* cgroups and exit all the inited ones, all online cgroups are exited.
*/
rcu_read_lock();
css_for_each_descendant_post(css, &root_task_group.css) {
struct task_group *tg = css_tg(css);
if (!(tg->scx_flags & SCX_TG_INITED))
continue;
tg->scx_flags &= ~SCX_TG_INITED;
if (!scx_ops.cgroup_exit)
continue;
if (WARN_ON_ONCE(!css_tryget(css)))
continue;
rcu_read_unlock();
SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_exit, css->cgroup);
rcu_read_lock();
css_put(css);
}
rcu_read_unlock();
}
static int scx_cgroup_init(void)
{
struct cgroup_subsys_state *css;
int ret;
percpu_rwsem_assert_held(&scx_cgroup_rwsem);
cgroup_warned_missing_weight = false;
cgroup_warned_missing_idle = false;
/*
* scx_tg_on/offline() are excluded thorugh scx_cgroup_rwsem. If we walk
* cgroups and init, all online cgroups are initialized.
*/
rcu_read_lock();
css_for_each_descendant_pre(css, &root_task_group.css) {
struct task_group *tg = css_tg(css);
struct scx_cgroup_init_args args = { .weight = tg->scx_weight };
scx_cgroup_warn_missing_weight(tg);
scx_cgroup_warn_missing_idle(tg);
if ((tg->scx_flags &
(SCX_TG_ONLINE | SCX_TG_INITED)) != SCX_TG_ONLINE)
continue;
if (!scx_ops.cgroup_init) {
tg->scx_flags |= SCX_TG_INITED;
continue;
}
if (WARN_ON_ONCE(!css_tryget(css)))
continue;
rcu_read_unlock();
ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, cgroup_init,
css->cgroup, &args);
if (ret) {
css_put(css);
scx_ops_error("ops.cgroup_init() failed (%d)", ret);
return ret;
}
tg->scx_flags |= SCX_TG_INITED;
rcu_read_lock();
css_put(css);
}
rcu_read_unlock();
WARN_ON_ONCE(scx_cgroup_enabled);
scx_cgroup_enabled = true;
return 0;
}
#else
static void scx_cgroup_exit(void) {}
static int scx_cgroup_init(void) { return 0; }
#endif
/********************************************************************************
* Sysfs interface and ops enable/disable.
*/
#define SCX_ATTR(_name) \
static struct kobj_attribute scx_attr_##_name = { \
.attr = { .name = __stringify(_name), .mode = 0444 }, \
.show = scx_attr_##_name##_show, \
}
static ssize_t scx_attr_state_show(struct kobject *kobj,
struct kobj_attribute *ka, char *buf)
{
return sysfs_emit(buf, "%s\n",
scx_ops_enable_state_str[scx_ops_enable_state()]);
}
SCX_ATTR(state);
static ssize_t scx_attr_switch_all_show(struct kobject *kobj,
struct kobj_attribute *ka, char *buf)
{
return sysfs_emit(buf, "%d\n", READ_ONCE(scx_switching_all));
}
SCX_ATTR(switch_all);
static ssize_t scx_attr_nr_rejected_show(struct kobject *kobj,
struct kobj_attribute *ka, char *buf)
{
return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_nr_rejected));
}
SCX_ATTR(nr_rejected);
static ssize_t scx_attr_hotplug_seq_show(struct kobject *kobj,
struct kobj_attribute *ka, char *buf)
{
return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_hotplug_seq));
}
SCX_ATTR(hotplug_seq);
static ssize_t scx_attr_enable_seq_show(struct kobject *kobj,
struct kobj_attribute *ka, char *buf)
{
return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_enable_seq));
}
SCX_ATTR(enable_seq);
static struct attribute *scx_global_attrs[] = {
&scx_attr_state.attr,
&scx_attr_switch_all.attr,
&scx_attr_nr_rejected.attr,
&scx_attr_hotplug_seq.attr,
&scx_attr_enable_seq.attr,
NULL,
};
static const struct attribute_group scx_global_attr_group = {
.attrs = scx_global_attrs,
};
static void scx_kobj_release(struct kobject *kobj)
{
kfree(kobj);
}
static ssize_t scx_attr_ops_show(struct kobject *kobj,
struct kobj_attribute *ka, char *buf)
{
return sysfs_emit(buf, "%s\n", scx_ops.name);
}
SCX_ATTR(ops);
static struct attribute *scx_sched_attrs[] = {
&scx_attr_ops.attr,
NULL,
};
ATTRIBUTE_GROUPS(scx_sched);
static const struct kobj_type scx_ktype = {
.release = scx_kobj_release,
.sysfs_ops = &kobj_sysfs_ops,
.default_groups = scx_sched_groups,
};
static int scx_uevent(const struct kobject *kobj, struct kobj_uevent_env *env)
{
return add_uevent_var(env, "SCXOPS=%s", scx_ops.name);
}
static const struct kset_uevent_ops scx_uevent_ops = {
.uevent = scx_uevent,
};
/*
* Used by sched_fork() and __setscheduler_prio() to pick the matching
* sched_class. dl/rt are already handled.
*/
bool task_should_scx(struct task_struct *p)
{
if (!scx_enabled() ||
unlikely(scx_ops_enable_state() == SCX_OPS_DISABLING))
return false;
if (READ_ONCE(scx_switching_all))
return true;
return p->policy == SCHED_EXT;
}
/**
* scx_ops_bypass - [Un]bypass scx_ops and guarantee forward progress
*
* Bypassing guarantees that all runnable tasks make forward progress without
* trusting the BPF scheduler. We can't grab any mutexes or rwsems as they might
* be held by tasks that the BPF scheduler is forgetting to run, which
* unfortunately also excludes toggling the static branches.
*
* Let's work around by overriding a couple ops and modifying behaviors based on
* the DISABLING state and then cycling the queued tasks through dequeue/enqueue
* to force global FIFO scheduling.
*
* - ops.select_cpu() is ignored and the default select_cpu() is used.
*
* - ops.enqueue() is ignored and tasks are queued in simple global FIFO order.
* %SCX_OPS_ENQ_LAST is also ignored.
*
* - ops.dispatch() is ignored.
*
* - balance_scx() does not set %SCX_RQ_BAL_KEEP on non-zero slice as slice
* can't be trusted. Whenever a tick triggers, the running task is rotated to
* the tail of the queue with core_sched_at touched.
*
* - pick_next_task() suppresses zero slice warning.
*
* - scx_bpf_kick_cpu() is disabled to avoid irq_work malfunction during PM
* operations.
*
* - scx_prio_less() reverts to the default core_sched_at order.
*/
static void scx_ops_bypass(bool bypass)
{
int depth, cpu;
if (bypass) {
depth = atomic_inc_return(&scx_ops_bypass_depth);
WARN_ON_ONCE(depth <= 0);
if (depth != 1)
return;
} else {
depth = atomic_dec_return(&scx_ops_bypass_depth);
WARN_ON_ONCE(depth < 0);
if (depth != 0)
return;
}
/*
* No task property is changing. We just need to make sure all currently
* queued tasks are re-queued according to the new scx_rq_bypassing()
* state. As an optimization, walk each rq's runnable_list instead of
* the scx_tasks list.
*
* This function can't trust the scheduler and thus can't use
* cpus_read_lock(). Walk all possible CPUs instead of online.
*/
for_each_possible_cpu(cpu) {
struct rq *rq = cpu_rq(cpu);
struct rq_flags rf;
struct task_struct *p, *n;
rq_lock_irqsave(rq, &rf);
if (bypass) {
WARN_ON_ONCE(rq->scx.flags & SCX_RQ_BYPASSING);
rq->scx.flags |= SCX_RQ_BYPASSING;
} else {
WARN_ON_ONCE(!(rq->scx.flags & SCX_RQ_BYPASSING));
rq->scx.flags &= ~SCX_RQ_BYPASSING;
}
/*
* We need to guarantee that no tasks are on the BPF scheduler
* while bypassing. Either we see enabled or the enable path
* sees scx_rq_bypassing() before moving tasks to SCX.
*/
if (!scx_enabled()) {
rq_unlock_irqrestore(rq, &rf);
continue;
}
/*
* The use of list_for_each_entry_safe_reverse() is required
* because each task is going to be removed from and added back
* to the runnable_list during iteration. Because they're added
* to the tail of the list, safe reverse iteration can still
* visit all nodes.
*/
list_for_each_entry_safe_reverse(p, n, &rq->scx.runnable_list,
scx.runnable_node) {
struct sched_enq_and_set_ctx ctx;
/* cycling deq/enq is enough, see the function comment */
sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx);
sched_enq_and_set_task(&ctx);
}
rq_unlock_irqrestore(rq, &rf);
/* resched to restore ticks and idle state */
resched_cpu(cpu);
}
}
static void free_exit_info(struct scx_exit_info *ei)
{
kfree(ei->dump);
kfree(ei->msg);
kfree(ei->bt);
kfree(ei);
}
static struct scx_exit_info *alloc_exit_info(size_t exit_dump_len)
{
struct scx_exit_info *ei;
ei = kzalloc(sizeof(*ei), GFP_KERNEL);
if (!ei)
return NULL;
ei->bt = kcalloc(SCX_EXIT_BT_LEN, sizeof(ei->bt[0]), GFP_KERNEL);
ei->msg = kzalloc(SCX_EXIT_MSG_LEN, GFP_KERNEL);
ei->dump = kzalloc(exit_dump_len, GFP_KERNEL);
if (!ei->bt || !ei->msg || !ei->dump) {
free_exit_info(ei);
return NULL;
}
return ei;
}
static const char *scx_exit_reason(enum scx_exit_kind kind)
{
switch (kind) {
case SCX_EXIT_UNREG:
return "unregistered from user space";
case SCX_EXIT_UNREG_BPF:
return "unregistered from BPF";
case SCX_EXIT_UNREG_KERN:
return "unregistered from the main kernel";
case SCX_EXIT_SYSRQ:
return "disabled by sysrq-S";
case SCX_EXIT_ERROR:
return "runtime error";
case SCX_EXIT_ERROR_BPF:
return "scx_bpf_error";
case SCX_EXIT_ERROR_STALL:
return "runnable task stall";
default:
return "<UNKNOWN>";
}
}
static void scx_ops_disable_workfn(struct kthread_work *work)
{
struct scx_exit_info *ei = scx_exit_info;
struct scx_task_iter sti;
struct task_struct *p;
struct rhashtable_iter rht_iter;
struct scx_dispatch_q *dsq;
int i, kind;
kind = atomic_read(&scx_exit_kind);
while (true) {
/*
* NONE indicates that a new scx_ops has been registered since
* disable was scheduled - don't kill the new ops. DONE
* indicates that the ops has already been disabled.
*/
if (kind == SCX_EXIT_NONE || kind == SCX_EXIT_DONE)
return;
if (atomic_try_cmpxchg(&scx_exit_kind, &kind, SCX_EXIT_DONE))
break;
}
ei->kind = kind;
ei->reason = scx_exit_reason(ei->kind);
/* guarantee forward progress by bypassing scx_ops */
scx_ops_bypass(true);
switch (scx_ops_set_enable_state(SCX_OPS_DISABLING)) {
case SCX_OPS_DISABLING:
WARN_ONCE(true, "sched_ext: duplicate disabling instance?");
break;
case SCX_OPS_DISABLED:
pr_warn("sched_ext: ops error detected without ops (%s)\n",
scx_exit_info->msg);
WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_DISABLED) !=
SCX_OPS_DISABLING);
goto done;
default:
break;
}
/*
* Here, every runnable task is guaranteed to make forward progress and
* we can safely use blocking synchronization constructs. Actually
* disable ops.
*/
mutex_lock(&scx_ops_enable_mutex);
static_branch_disable(&__scx_switched_all);
WRITE_ONCE(scx_switching_all, false);
/*
* Shut down cgroup support before tasks so that the cgroup attach path
* doesn't race against scx_ops_exit_task().
*/
scx_cgroup_lock();
scx_cgroup_exit();
scx_cgroup_unlock();
/*
* The BPF scheduler is going away. All tasks including %TASK_DEAD ones
* must be switched out and exited synchronously.
*/
percpu_down_write(&scx_fork_rwsem);
scx_ops_init_task_enabled = false;
scx_task_iter_start(&sti);
while ((p = scx_task_iter_next_locked(&sti))) {
const struct sched_class *old_class = p->sched_class;
struct sched_enq_and_set_ctx ctx;
sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx);
p->sched_class = __setscheduler_class(p, p->prio);
check_class_changing(task_rq(p), p, old_class);
sched_enq_and_set_task(&ctx);
check_class_changed(task_rq(p), p, old_class, p->prio);
scx_ops_exit_task(p);
}
scx_task_iter_stop(&sti);
percpu_up_write(&scx_fork_rwsem);
/* no task is on scx, turn off all the switches and flush in-progress calls */
static_branch_disable(&__scx_ops_enabled);
for (i = SCX_OPI_BEGIN; i < SCX_OPI_END; i++)
static_branch_disable(&scx_has_op[i]);
static_branch_disable(&scx_ops_enq_last);
static_branch_disable(&scx_ops_enq_exiting);
static_branch_disable(&scx_ops_cpu_preempt);
static_branch_disable(&scx_builtin_idle_enabled);
synchronize_rcu();
if (ei->kind >= SCX_EXIT_ERROR) {
pr_err("sched_ext: BPF scheduler \"%s\" disabled (%s)\n",
scx_ops.name, ei->reason);
if (ei->msg[0] != '\0')
pr_err("sched_ext: %s: %s\n", scx_ops.name, ei->msg);
#ifdef CONFIG_STACKTRACE
stack_trace_print(ei->bt, ei->bt_len, 2);
#endif
} else {
pr_info("sched_ext: BPF scheduler \"%s\" disabled (%s)\n",
scx_ops.name, ei->reason);
}
if (scx_ops.exit)
SCX_CALL_OP(SCX_KF_UNLOCKED, exit, ei);
cancel_delayed_work_sync(&scx_watchdog_work);
/*
* Delete the kobject from the hierarchy eagerly in addition to just
* dropping a reference. Otherwise, if the object is deleted
* asynchronously, sysfs could observe an object of the same name still
* in the hierarchy when another scheduler is loaded.
*/
kobject_del(scx_root_kobj);
kobject_put(scx_root_kobj);
scx_root_kobj = NULL;
memset(&scx_ops, 0, sizeof(scx_ops));
rhashtable_walk_enter(&dsq_hash, &rht_iter);
do {
rhashtable_walk_start(&rht_iter);
while ((dsq = rhashtable_walk_next(&rht_iter)) && !IS_ERR(dsq))
destroy_dsq(dsq->id);
rhashtable_walk_stop(&rht_iter);
} while (dsq == ERR_PTR(-EAGAIN));
rhashtable_walk_exit(&rht_iter);
free_percpu(scx_dsp_ctx);
scx_dsp_ctx = NULL;
scx_dsp_max_batch = 0;
free_exit_info(scx_exit_info);
scx_exit_info = NULL;
mutex_unlock(&scx_ops_enable_mutex);
WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_DISABLED) !=
SCX_OPS_DISABLING);
done:
scx_ops_bypass(false);
}
static DEFINE_KTHREAD_WORK(scx_ops_disable_work, scx_ops_disable_workfn);
static void schedule_scx_ops_disable_work(void)
{
struct kthread_worker *helper = READ_ONCE(scx_ops_helper);
/*
* We may be called spuriously before the first bpf_sched_ext_reg(). If
* scx_ops_helper isn't set up yet, there's nothing to do.
*/
if (helper)
kthread_queue_work(helper, &scx_ops_disable_work);
}
static void scx_ops_disable(enum scx_exit_kind kind)
{
int none = SCX_EXIT_NONE;
if (WARN_ON_ONCE(kind == SCX_EXIT_NONE || kind == SCX_EXIT_DONE))
kind = SCX_EXIT_ERROR;
atomic_try_cmpxchg(&scx_exit_kind, &none, kind);
schedule_scx_ops_disable_work();
}
static void dump_newline(struct seq_buf *s)
{
trace_sched_ext_dump("");
/* @s may be zero sized and seq_buf triggers WARN if so */
if (s->size)
seq_buf_putc(s, '\n');
}
static __printf(2, 3) void dump_line(struct seq_buf *s, const char *fmt, ...)
{
va_list args;
#ifdef CONFIG_TRACEPOINTS
if (trace_sched_ext_dump_enabled()) {
/* protected by scx_dump_state()::dump_lock */
static char line_buf[SCX_EXIT_MSG_LEN];
va_start(args, fmt);
vscnprintf(line_buf, sizeof(line_buf), fmt, args);
va_end(args);
trace_sched_ext_dump(line_buf);
}
#endif
/* @s may be zero sized and seq_buf triggers WARN if so */
if (s->size) {
va_start(args, fmt);
seq_buf_vprintf(s, fmt, args);
va_end(args);
seq_buf_putc(s, '\n');
}
}
static void dump_stack_trace(struct seq_buf *s, const char *prefix,
const unsigned long *bt, unsigned int len)
{
unsigned int i;
for (i = 0; i < len; i++)
dump_line(s, "%s%pS", prefix, (void *)bt[i]);
}
static void ops_dump_init(struct seq_buf *s, const char *prefix)
{
struct scx_dump_data *dd = &scx_dump_data;
lockdep_assert_irqs_disabled();
dd->cpu = smp_processor_id(); /* allow scx_bpf_dump() */
dd->first = true;
dd->cursor = 0;
dd->s = s;
dd->prefix = prefix;
}
static void ops_dump_flush(void)
{
struct scx_dump_data *dd = &scx_dump_data;
char *line = dd->buf.line;
if (!dd->cursor)
return;
/*
* There's something to flush and this is the first line. Insert a blank
* line to distinguish ops dump.
*/
if (dd->first) {
dump_newline(dd->s);
dd->first = false;
}
/*
* There may be multiple lines in $line. Scan and emit each line
* separately.
*/
while (true) {
char *end = line;
char c;
while (*end != '\n' && *end != '\0')
end++;
/*
* If $line overflowed, it may not have newline at the end.
* Always emit with a newline.
*/
c = *end;
*end = '\0';
dump_line(dd->s, "%s%s", dd->prefix, line);
if (c == '\0')
break;
/* move to the next line */
end++;
if (*end == '\0')
break;
line = end;
}
dd->cursor = 0;
}
static void ops_dump_exit(void)
{
ops_dump_flush();
scx_dump_data.cpu = -1;
}
static void scx_dump_task(struct seq_buf *s, struct scx_dump_ctx *dctx,
struct task_struct *p, char marker)
{
static unsigned long bt[SCX_EXIT_BT_LEN];
char dsq_id_buf[19] = "(n/a)";
unsigned long ops_state = atomic_long_read(&p->scx.ops_state);
unsigned int bt_len = 0;
if (p->scx.dsq)
scnprintf(dsq_id_buf, sizeof(dsq_id_buf), "0x%llx",
(unsigned long long)p->scx.dsq->id);
dump_newline(s);
dump_line(s, " %c%c %s[%d] %+ldms",
marker, task_state_to_char(p), p->comm, p->pid,
jiffies_delta_msecs(p->scx.runnable_at, dctx->at_jiffies));
dump_line(s, " scx_state/flags=%u/0x%x dsq_flags=0x%x ops_state/qseq=%lu/%lu",
scx_get_task_state(p), p->scx.flags & ~SCX_TASK_STATE_MASK,
p->scx.dsq_flags, ops_state & SCX_OPSS_STATE_MASK,
ops_state >> SCX_OPSS_QSEQ_SHIFT);
dump_line(s, " sticky/holding_cpu=%d/%d dsq_id=%s dsq_vtime=%llu",
p->scx.sticky_cpu, p->scx.holding_cpu, dsq_id_buf,
p->scx.dsq_vtime);
dump_line(s, " cpus=%*pb", cpumask_pr_args(p->cpus_ptr));
if (SCX_HAS_OP(dump_task)) {
ops_dump_init(s, " ");
SCX_CALL_OP(SCX_KF_REST, dump_task, dctx, p);
ops_dump_exit();
}
#ifdef CONFIG_STACKTRACE
bt_len = stack_trace_save_tsk(p, bt, SCX_EXIT_BT_LEN, 1);
#endif
if (bt_len) {
dump_newline(s);
dump_stack_trace(s, " ", bt, bt_len);
}
}
static void scx_dump_state(struct scx_exit_info *ei, size_t dump_len)
{
static DEFINE_SPINLOCK(dump_lock);
static const char trunc_marker[] = "\n\n~~~~ TRUNCATED ~~~~\n";
struct scx_dump_ctx dctx = {
.kind = ei->kind,
.exit_code = ei->exit_code,
.reason = ei->reason,
.at_ns = ktime_get_ns(),
.at_jiffies = jiffies,
};
struct seq_buf s;
unsigned long flags;
char *buf;
int cpu;
spin_lock_irqsave(&dump_lock, flags);
seq_buf_init(&s, ei->dump, dump_len);
if (ei->kind == SCX_EXIT_NONE) {
dump_line(&s, "Debug dump triggered by %s", ei->reason);
} else {
dump_line(&s, "%s[%d] triggered exit kind %d:",
current->comm, current->pid, ei->kind);
dump_line(&s, " %s (%s)", ei->reason, ei->msg);
dump_newline(&s);
dump_line(&s, "Backtrace:");
dump_stack_trace(&s, " ", ei->bt, ei->bt_len);
}
if (SCX_HAS_OP(dump)) {
ops_dump_init(&s, "");
SCX_CALL_OP(SCX_KF_UNLOCKED, dump, &dctx);
ops_dump_exit();
}
dump_newline(&s);
dump_line(&s, "CPU states");
dump_line(&s, "----------");
for_each_possible_cpu(cpu) {
struct rq *rq = cpu_rq(cpu);
struct rq_flags rf;
struct task_struct *p;
struct seq_buf ns;
size_t avail, used;
bool idle;
rq_lock(rq, &rf);
idle = list_empty(&rq->scx.runnable_list) &&
rq->curr->sched_class == &idle_sched_class;
if (idle && !SCX_HAS_OP(dump_cpu))
goto next;
/*
* We don't yet know whether ops.dump_cpu() will produce output
* and we may want to skip the default CPU dump if it doesn't.
* Use a nested seq_buf to generate the standard dump so that we
* can decide whether to commit later.
*/
avail = seq_buf_get_buf(&s, &buf);
seq_buf_init(&ns, buf, avail);
dump_newline(&ns);
dump_line(&ns, "CPU %-4d: nr_run=%u flags=0x%x cpu_rel=%d ops_qseq=%lu pnt_seq=%lu",
cpu, rq->scx.nr_running, rq->scx.flags,
rq->scx.cpu_released, rq->scx.ops_qseq,
rq->scx.pnt_seq);
dump_line(&ns, " curr=%s[%d] class=%ps",
rq->curr->comm, rq->curr->pid,
rq->curr->sched_class);
if (!cpumask_empty(rq->scx.cpus_to_kick))
dump_line(&ns, " cpus_to_kick : %*pb",
cpumask_pr_args(rq->scx.cpus_to_kick));
if (!cpumask_empty(rq->scx.cpus_to_kick_if_idle))
dump_line(&ns, " idle_to_kick : %*pb",
cpumask_pr_args(rq->scx.cpus_to_kick_if_idle));
if (!cpumask_empty(rq->scx.cpus_to_preempt))
dump_line(&ns, " cpus_to_preempt: %*pb",
cpumask_pr_args(rq->scx.cpus_to_preempt));
if (!cpumask_empty(rq->scx.cpus_to_wait))
dump_line(&ns, " cpus_to_wait : %*pb",
cpumask_pr_args(rq->scx.cpus_to_wait));
used = seq_buf_used(&ns);
if (SCX_HAS_OP(dump_cpu)) {
ops_dump_init(&ns, " ");
SCX_CALL_OP(SCX_KF_REST, dump_cpu, &dctx, cpu, idle);
ops_dump_exit();
}
/*
* If idle && nothing generated by ops.dump_cpu(), there's
* nothing interesting. Skip.
*/
if (idle && used == seq_buf_used(&ns))
goto next;
/*
* $s may already have overflowed when $ns was created. If so,
* calling commit on it will trigger BUG.
*/
if (avail) {
seq_buf_commit(&s, seq_buf_used(&ns));
if (seq_buf_has_overflowed(&ns))
seq_buf_set_overflow(&s);
}
if (rq->curr->sched_class == &ext_sched_class)
scx_dump_task(&s, &dctx, rq->curr, '*');
list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node)
scx_dump_task(&s, &dctx, p, ' ');
next:
rq_unlock(rq, &rf);
}
if (seq_buf_has_overflowed(&s) && dump_len >= sizeof(trunc_marker))
memcpy(ei->dump + dump_len - sizeof(trunc_marker),
trunc_marker, sizeof(trunc_marker));
spin_unlock_irqrestore(&dump_lock, flags);
}
static void scx_ops_error_irq_workfn(struct irq_work *irq_work)
{
struct scx_exit_info *ei = scx_exit_info;
if (ei->kind >= SCX_EXIT_ERROR)
scx_dump_state(ei, scx_ops.exit_dump_len);
schedule_scx_ops_disable_work();
}
static DEFINE_IRQ_WORK(scx_ops_error_irq_work, scx_ops_error_irq_workfn);
static __printf(3, 4) void scx_ops_exit_kind(enum scx_exit_kind kind,
s64 exit_code,
const char *fmt, ...)
{
struct scx_exit_info *ei = scx_exit_info;
int none = SCX_EXIT_NONE;
va_list args;
if (!atomic_try_cmpxchg(&scx_exit_kind, &none, kind))
return;
ei->exit_code = exit_code;
#ifdef CONFIG_STACKTRACE
if (kind >= SCX_EXIT_ERROR)
ei->bt_len = stack_trace_save(ei->bt, SCX_EXIT_BT_LEN, 1);
#endif
va_start(args, fmt);
vscnprintf(ei->msg, SCX_EXIT_MSG_LEN, fmt, args);
va_end(args);
/*
* Set ei->kind and ->reason for scx_dump_state(). They'll be set again
* in scx_ops_disable_workfn().
*/
ei->kind = kind;
ei->reason = scx_exit_reason(ei->kind);
irq_work_queue(&scx_ops_error_irq_work);
}
static struct kthread_worker *scx_create_rt_helper(const char *name)
{
struct kthread_worker *helper;
helper = kthread_create_worker(0, name);
if (helper)
sched_set_fifo(helper->task);
return helper;
}
static void check_hotplug_seq(const struct sched_ext_ops *ops)
{
unsigned long long global_hotplug_seq;
/*
* If a hotplug event has occurred between when a scheduler was
* initialized, and when we were able to attach, exit and notify user
* space about it.
*/
if (ops->hotplug_seq) {
global_hotplug_seq = atomic_long_read(&scx_hotplug_seq);
if (ops->hotplug_seq != global_hotplug_seq) {
scx_ops_exit(SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG,
"expected hotplug seq %llu did not match actual %llu",
ops->hotplug_seq, global_hotplug_seq);
}
}
}
static int validate_ops(const struct sched_ext_ops *ops)
{
/*
* It doesn't make sense to specify the SCX_OPS_ENQ_LAST flag if the
* ops.enqueue() callback isn't implemented.
*/
if ((ops->flags & SCX_OPS_ENQ_LAST) && !ops->enqueue) {
scx_ops_error("SCX_OPS_ENQ_LAST requires ops.enqueue() to be implemented");
return -EINVAL;
}
return 0;
}
static int scx_ops_enable(struct sched_ext_ops *ops, struct bpf_link *link)
{
struct scx_task_iter sti;
struct task_struct *p;
unsigned long timeout;
int i, cpu, node, ret;
if (!cpumask_equal(housekeeping_cpumask(HK_TYPE_DOMAIN),
cpu_possible_mask)) {
pr_err("sched_ext: Not compatible with \"isolcpus=\" domain isolation");
return -EINVAL;
}
mutex_lock(&scx_ops_enable_mutex);
if (!scx_ops_helper) {
WRITE_ONCE(scx_ops_helper,
scx_create_rt_helper("sched_ext_ops_helper"));
if (!scx_ops_helper) {
ret = -ENOMEM;
goto err_unlock;
}
}
if (!global_dsqs) {
struct scx_dispatch_q **dsqs;
dsqs = kcalloc(nr_node_ids, sizeof(dsqs[0]), GFP_KERNEL);
if (!dsqs) {
ret = -ENOMEM;
goto err_unlock;
}
for_each_node_state(node, N_POSSIBLE) {
struct scx_dispatch_q *dsq;
dsq = kzalloc_node(sizeof(*dsq), GFP_KERNEL, node);
if (!dsq) {
for_each_node_state(node, N_POSSIBLE)
kfree(dsqs[node]);
kfree(dsqs);
ret = -ENOMEM;
goto err_unlock;
}
init_dsq(dsq, SCX_DSQ_GLOBAL);
dsqs[node] = dsq;
}
global_dsqs = dsqs;
}
if (scx_ops_enable_state() != SCX_OPS_DISABLED) {
ret = -EBUSY;
goto err_unlock;
}
scx_root_kobj = kzalloc(sizeof(*scx_root_kobj), GFP_KERNEL);
if (!scx_root_kobj) {
ret = -ENOMEM;
goto err_unlock;
}
scx_root_kobj->kset = scx_kset;
ret = kobject_init_and_add(scx_root_kobj, &scx_ktype, NULL, "root");
if (ret < 0)
goto err;
scx_exit_info = alloc_exit_info(ops->exit_dump_len);
if (!scx_exit_info) {
ret = -ENOMEM;
goto err_del;
}
/*
* Set scx_ops, transition to ENABLING and clear exit info to arm the
* disable path. Failure triggers full disabling from here on.
*/
scx_ops = *ops;
WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_ENABLING) !=
SCX_OPS_DISABLED);
atomic_set(&scx_exit_kind, SCX_EXIT_NONE);
scx_warned_zero_slice = false;
atomic_long_set(&scx_nr_rejected, 0);
for_each_possible_cpu(cpu)
cpu_rq(cpu)->scx.cpuperf_target = SCX_CPUPERF_ONE;
/*
* Keep CPUs stable during enable so that the BPF scheduler can track
* online CPUs by watching ->on/offline_cpu() after ->init().
*/
cpus_read_lock();
if (scx_ops.init) {
ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, init);
if (ret) {
ret = ops_sanitize_err("init", ret);
cpus_read_unlock();
scx_ops_error("ops.init() failed (%d)", ret);
goto err_disable;
}
}
for (i = SCX_OPI_CPU_HOTPLUG_BEGIN; i < SCX_OPI_CPU_HOTPLUG_END; i++)
if (((void (**)(void))ops)[i])
static_branch_enable_cpuslocked(&scx_has_op[i]);
check_hotplug_seq(ops);
cpus_read_unlock();
ret = validate_ops(ops);
if (ret)
goto err_disable;
WARN_ON_ONCE(scx_dsp_ctx);
scx_dsp_max_batch = ops->dispatch_max_batch ?: SCX_DSP_DFL_MAX_BATCH;
scx_dsp_ctx = __alloc_percpu(struct_size_t(struct scx_dsp_ctx, buf,
scx_dsp_max_batch),
__alignof__(struct scx_dsp_ctx));
if (!scx_dsp_ctx) {
ret = -ENOMEM;
goto err_disable;
}
if (ops->timeout_ms)
timeout = msecs_to_jiffies(ops->timeout_ms);
else
timeout = SCX_WATCHDOG_MAX_TIMEOUT;
WRITE_ONCE(scx_watchdog_timeout, timeout);
WRITE_ONCE(scx_watchdog_timestamp, jiffies);
queue_delayed_work(system_unbound_wq, &scx_watchdog_work,
scx_watchdog_timeout / 2);
/*
* Once __scx_ops_enabled is set, %current can be switched to SCX
* anytime. This can lead to stalls as some BPF schedulers (e.g.
* userspace scheduling) may not function correctly before all tasks are
* switched. Init in bypass mode to guarantee forward progress.
*/
scx_ops_bypass(true);
for (i = SCX_OPI_NORMAL_BEGIN; i < SCX_OPI_NORMAL_END; i++)
if (((void (**)(void))ops)[i])
static_branch_enable(&scx_has_op[i]);
if (ops->flags & SCX_OPS_ENQ_LAST)
static_branch_enable(&scx_ops_enq_last);
if (ops->flags & SCX_OPS_ENQ_EXITING)
static_branch_enable(&scx_ops_enq_exiting);
if (scx_ops.cpu_acquire || scx_ops.cpu_release)
static_branch_enable(&scx_ops_cpu_preempt);
if (!ops->update_idle || (ops->flags & SCX_OPS_KEEP_BUILTIN_IDLE)) {
reset_idle_masks();
static_branch_enable(&scx_builtin_idle_enabled);
} else {
static_branch_disable(&scx_builtin_idle_enabled);
}
/*
* Lock out forks, cgroup on/offlining and moves before opening the
* floodgate so that they don't wander into the operations prematurely.
*/
percpu_down_write(&scx_fork_rwsem);
WARN_ON_ONCE(scx_ops_init_task_enabled);
scx_ops_init_task_enabled = true;
/*
* Enable ops for every task. Fork is excluded by scx_fork_rwsem
* preventing new tasks from being added. No need to exclude tasks
* leaving as sched_ext_free() can handle both prepped and enabled
* tasks. Prep all tasks first and then enable them with preemption
* disabled.
*
* All cgroups should be initialized before scx_ops_init_task() so that
* the BPF scheduler can reliably track each task's cgroup membership
* from scx_ops_init_task(). Lock out cgroup on/offlining and task
* migrations while tasks are being initialized so that
* scx_cgroup_can_attach() never sees uninitialized tasks.
*/
scx_cgroup_lock();
ret = scx_cgroup_init();
if (ret)
goto err_disable_unlock_all;
scx_task_iter_start(&sti);
while ((p = scx_task_iter_next_locked(&sti))) {
/*
* @p may already be dead, have lost all its usages counts and
* be waiting for RCU grace period before being freed. @p can't
* be initialized for SCX in such cases and should be ignored.
*/
if (!tryget_task_struct(p))
continue;
scx_task_iter_unlock(&sti);
ret = scx_ops_init_task(p, task_group(p), false);
if (ret) {
put_task_struct(p);
scx_task_iter_relock(&sti);
scx_task_iter_stop(&sti);
scx_ops_error("ops.init_task() failed (%d) for %s[%d]",
ret, p->comm, p->pid);
goto err_disable_unlock_all;
}
scx_set_task_state(p, SCX_TASK_READY);
put_task_struct(p);
scx_task_iter_relock(&sti);
}
scx_task_iter_stop(&sti);
scx_cgroup_unlock();
percpu_up_write(&scx_fork_rwsem);
/*
* All tasks are READY. It's safe to turn on scx_enabled() and switch
* all eligible tasks.
*/
WRITE_ONCE(scx_switching_all, !(ops->flags & SCX_OPS_SWITCH_PARTIAL));
static_branch_enable(&__scx_ops_enabled);
/*
* We're fully committed and can't fail. The task READY -> ENABLED
* transitions here are synchronized against sched_ext_free() through
* scx_tasks_lock.
*/
percpu_down_write(&scx_fork_rwsem);
scx_task_iter_start(&sti);
while ((p = scx_task_iter_next_locked(&sti))) {
const struct sched_class *old_class = p->sched_class;
struct sched_enq_and_set_ctx ctx;
sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx);
p->scx.slice = SCX_SLICE_DFL;
p->sched_class = __setscheduler_class(p, p->prio);
check_class_changing(task_rq(p), p, old_class);
sched_enq_and_set_task(&ctx);
check_class_changed(task_rq(p), p, old_class, p->prio);
}
scx_task_iter_stop(&sti);
percpu_up_write(&scx_fork_rwsem);
scx_ops_bypass(false);
if (!scx_ops_tryset_enable_state(SCX_OPS_ENABLED, SCX_OPS_ENABLING)) {
WARN_ON_ONCE(atomic_read(&scx_exit_kind) == SCX_EXIT_NONE);
goto err_disable;
}
if (!(ops->flags & SCX_OPS_SWITCH_PARTIAL))
static_branch_enable(&__scx_switched_all);
pr_info("sched_ext: BPF scheduler \"%s\" enabled%s\n",
scx_ops.name, scx_switched_all() ? "" : " (partial)");
kobject_uevent(scx_root_kobj, KOBJ_ADD);
mutex_unlock(&scx_ops_enable_mutex);
atomic_long_inc(&scx_enable_seq);
return 0;
err_del:
kobject_del(scx_root_kobj);
err:
kobject_put(scx_root_kobj);
scx_root_kobj = NULL;
if (scx_exit_info) {
free_exit_info(scx_exit_info);
scx_exit_info = NULL;
}
err_unlock:
mutex_unlock(&scx_ops_enable_mutex);
return ret;
err_disable_unlock_all:
scx_cgroup_unlock();
percpu_up_write(&scx_fork_rwsem);
scx_ops_bypass(false);
err_disable:
mutex_unlock(&scx_ops_enable_mutex);
/*
* Returning an error code here would not pass all the error information
* to userspace. Record errno using scx_ops_error() for cases
* scx_ops_error() wasn't already invoked and exit indicating success so
* that the error is notified through ops.exit() with all the details.
*
* Flush scx_ops_disable_work to ensure that error is reported before
* init completion.
*/
scx_ops_error("scx_ops_enable() failed (%d)", ret);
kthread_flush_work(&scx_ops_disable_work);
return 0;
}
/********************************************************************************
* bpf_struct_ops plumbing.
*/
#include <linux/bpf_verifier.h>
#include <linux/bpf.h>
#include <linux/btf.h>
extern struct btf *btf_vmlinux;
static const struct btf_type *task_struct_type;
static u32 task_struct_type_id;
static bool set_arg_maybe_null(const char *op, int arg_n, int off, int size,
enum bpf_access_type type,
const struct bpf_prog *prog,
struct bpf_insn_access_aux *info)
{
struct btf *btf = bpf_get_btf_vmlinux();
const struct bpf_struct_ops_desc *st_ops_desc;
const struct btf_member *member;
const struct btf_type *t;
u32 btf_id, member_idx;
const char *mname;
/* struct_ops op args are all sequential, 64-bit numbers */
if (off != arg_n * sizeof(__u64))
return false;
/* btf_id should be the type id of struct sched_ext_ops */
btf_id = prog->aux->attach_btf_id;
st_ops_desc = bpf_struct_ops_find(btf, btf_id);
if (!st_ops_desc)
return false;
/* BTF type of struct sched_ext_ops */
t = st_ops_desc->type;
member_idx = prog->expected_attach_type;
if (member_idx >= btf_type_vlen(t))
return false;
/*
* Get the member name of this struct_ops program, which corresponds to
* a field in struct sched_ext_ops. For example, the member name of the
* dispatch struct_ops program (callback) is "dispatch".
*/
member = &btf_type_member(t)[member_idx];
mname = btf_name_by_offset(btf_vmlinux, member->name_off);
if (!strcmp(mname, op)) {
/*
* The value is a pointer to a type (struct task_struct) given
* by a BTF ID (PTR_TO_BTF_ID). It is trusted (PTR_TRUSTED),
* however, can be a NULL (PTR_MAYBE_NULL). The BPF program
* should check the pointer to make sure it is not NULL before
* using it, or the verifier will reject the program.
*
* Longer term, this is something that should be addressed by
* BTF, and be fully contained within the verifier.
*/
info->reg_type = PTR_MAYBE_NULL | PTR_TO_BTF_ID | PTR_TRUSTED;
info->btf = btf_vmlinux;
info->btf_id = task_struct_type_id;
return true;
}
return false;
}
static bool bpf_scx_is_valid_access(int off, int size,
enum bpf_access_type type,
const struct bpf_prog *prog,
struct bpf_insn_access_aux *info)
{
if (type != BPF_READ)
return false;
if (set_arg_maybe_null("dispatch", 1, off, size, type, prog, info) ||
set_arg_maybe_null("yield", 1, off, size, type, prog, info))
return true;
if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
return false;
if (off % size != 0)
return false;
return btf_ctx_access(off, size, type, prog, info);
}
static int bpf_scx_btf_struct_access(struct bpf_verifier_log *log,
const struct bpf_reg_state *reg, int off,
int size)
{
const struct btf_type *t;
t = btf_type_by_id(reg->btf, reg->btf_id);
if (t == task_struct_type) {
if (off >= offsetof(struct task_struct, scx.slice) &&
off + size <= offsetofend(struct task_struct, scx.slice))
return SCALAR_VALUE;
if (off >= offsetof(struct task_struct, scx.dsq_vtime) &&
off + size <= offsetofend(struct task_struct, scx.dsq_vtime))
return SCALAR_VALUE;
if (off >= offsetof(struct task_struct, scx.disallow) &&
off + size <= offsetofend(struct task_struct, scx.disallow))
return SCALAR_VALUE;
}
return -EACCES;
}
static const struct bpf_func_proto *
bpf_scx_get_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
{
switch (func_id) {
case BPF_FUNC_task_storage_get:
return &bpf_task_storage_get_proto;
case BPF_FUNC_task_storage_delete:
return &bpf_task_storage_delete_proto;
default:
return bpf_base_func_proto(func_id, prog);
}
}
static const struct bpf_verifier_ops bpf_scx_verifier_ops = {
.get_func_proto = bpf_scx_get_func_proto,
.is_valid_access = bpf_scx_is_valid_access,
.btf_struct_access = bpf_scx_btf_struct_access,
};
static int bpf_scx_init_member(const struct btf_type *t,
const struct btf_member *member,
void *kdata, const void *udata)
{
const struct sched_ext_ops *uops = udata;
struct sched_ext_ops *ops = kdata;
u32 moff = __btf_member_bit_offset(t, member) / 8;
int ret;
switch (moff) {
case offsetof(struct sched_ext_ops, dispatch_max_batch):
if (*(u32 *)(udata + moff) > INT_MAX)
return -E2BIG;
ops->dispatch_max_batch = *(u32 *)(udata + moff);
return 1;
case offsetof(struct sched_ext_ops, flags):
if (*(u64 *)(udata + moff) & ~SCX_OPS_ALL_FLAGS)
return -EINVAL;
ops->flags = *(u64 *)(udata + moff);
return 1;
case offsetof(struct sched_ext_ops, name):
ret = bpf_obj_name_cpy(ops->name, uops->name,
sizeof(ops->name));
if (ret < 0)
return ret;
if (ret == 0)
return -EINVAL;
return 1;
case offsetof(struct sched_ext_ops, timeout_ms):
if (msecs_to_jiffies(*(u32 *)(udata + moff)) >
SCX_WATCHDOG_MAX_TIMEOUT)
return -E2BIG;
ops->timeout_ms = *(u32 *)(udata + moff);
return 1;
case offsetof(struct sched_ext_ops, exit_dump_len):
ops->exit_dump_len =
*(u32 *)(udata + moff) ?: SCX_EXIT_DUMP_DFL_LEN;
return 1;
case offsetof(struct sched_ext_ops, hotplug_seq):
ops->hotplug_seq = *(u64 *)(udata + moff);
return 1;
}
return 0;
}
static int bpf_scx_check_member(const struct btf_type *t,
const struct btf_member *member,
const struct bpf_prog *prog)
{
u32 moff = __btf_member_bit_offset(t, member) / 8;
switch (moff) {
case offsetof(struct sched_ext_ops, init_task):
#ifdef CONFIG_EXT_GROUP_SCHED
case offsetof(struct sched_ext_ops, cgroup_init):
case offsetof(struct sched_ext_ops, cgroup_exit):
case offsetof(struct sched_ext_ops, cgroup_prep_move):
#endif
case offsetof(struct sched_ext_ops, cpu_online):
case offsetof(struct sched_ext_ops, cpu_offline):
case offsetof(struct sched_ext_ops, init):
case offsetof(struct sched_ext_ops, exit):
break;
default:
if (prog->sleepable)
return -EINVAL;
}
return 0;
}
static int bpf_scx_reg(void *kdata, struct bpf_link *link)
{
return scx_ops_enable(kdata, link);
}
static void bpf_scx_unreg(void *kdata, struct bpf_link *link)
{
scx_ops_disable(SCX_EXIT_UNREG);
kthread_flush_work(&scx_ops_disable_work);
}
static int bpf_scx_init(struct btf *btf)
{
s32 type_id;
type_id = btf_find_by_name_kind(btf, "task_struct", BTF_KIND_STRUCT);
if (type_id < 0)
return -EINVAL;
task_struct_type = btf_type_by_id(btf, type_id);
task_struct_type_id = type_id;
return 0;
}
static int bpf_scx_update(void *kdata, void *old_kdata, struct bpf_link *link)
{
/*
* sched_ext does not support updating the actively-loaded BPF
* scheduler, as registering a BPF scheduler can always fail if the
* scheduler returns an error code for e.g. ops.init(), ops.init_task(),
* etc. Similarly, we can always race with unregistration happening
* elsewhere, such as with sysrq.
*/
return -EOPNOTSUPP;
}
static int bpf_scx_validate(void *kdata)
{
return 0;
}
static s32 select_cpu_stub(struct task_struct *p, s32 prev_cpu, u64 wake_flags) { return -EINVAL; }
static void enqueue_stub(struct task_struct *p, u64 enq_flags) {}
static void dequeue_stub(struct task_struct *p, u64 enq_flags) {}
static void dispatch_stub(s32 prev_cpu, struct task_struct *p) {}
static void tick_stub(struct task_struct *p) {}
static void runnable_stub(struct task_struct *p, u64 enq_flags) {}
static void running_stub(struct task_struct *p) {}
static void stopping_stub(struct task_struct *p, bool runnable) {}
static void quiescent_stub(struct task_struct *p, u64 deq_flags) {}
static bool yield_stub(struct task_struct *from, struct task_struct *to) { return false; }
static bool core_sched_before_stub(struct task_struct *a, struct task_struct *b) { return false; }
static void set_weight_stub(struct task_struct *p, u32 weight) {}
static void set_cpumask_stub(struct task_struct *p, const struct cpumask *mask) {}
static void update_idle_stub(s32 cpu, bool idle) {}
static void cpu_acquire_stub(s32 cpu, struct scx_cpu_acquire_args *args) {}
static void cpu_release_stub(s32 cpu, struct scx_cpu_release_args *args) {}
static s32 init_task_stub(struct task_struct *p, struct scx_init_task_args *args) { return -EINVAL; }
static void exit_task_stub(struct task_struct *p, struct scx_exit_task_args *args) {}
static void enable_stub(struct task_struct *p) {}
static void disable_stub(struct task_struct *p) {}
#ifdef CONFIG_EXT_GROUP_SCHED
static s32 cgroup_init_stub(struct cgroup *cgrp, struct scx_cgroup_init_args *args) { return -EINVAL; }
static void cgroup_exit_stub(struct cgroup *cgrp) {}
static s32 cgroup_prep_move_stub(struct task_struct *p, struct cgroup *from, struct cgroup *to) { return -EINVAL; }
static void cgroup_move_stub(struct task_struct *p, struct cgroup *from, struct cgroup *to) {}
static void cgroup_cancel_move_stub(struct task_struct *p, struct cgroup *from, struct cgroup *to) {}
static void cgroup_set_weight_stub(struct cgroup *cgrp, u32 weight) {}
#endif
static void cpu_online_stub(s32 cpu) {}
static void cpu_offline_stub(s32 cpu) {}
static s32 init_stub(void) { return -EINVAL; }
static void exit_stub(struct scx_exit_info *info) {}
static void dump_stub(struct scx_dump_ctx *ctx) {}
static void dump_cpu_stub(struct scx_dump_ctx *ctx, s32 cpu, bool idle) {}
static void dump_task_stub(struct scx_dump_ctx *ctx, struct task_struct *p) {}
static struct sched_ext_ops __bpf_ops_sched_ext_ops = {
.select_cpu = select_cpu_stub,
.enqueue = enqueue_stub,
.dequeue = dequeue_stub,
.dispatch = dispatch_stub,
.tick = tick_stub,
.runnable = runnable_stub,
.running = running_stub,
.stopping = stopping_stub,
.quiescent = quiescent_stub,
.yield = yield_stub,
.core_sched_before = core_sched_before_stub,
.set_weight = set_weight_stub,
.set_cpumask = set_cpumask_stub,
.update_idle = update_idle_stub,
.cpu_acquire = cpu_acquire_stub,
.cpu_release = cpu_release_stub,
.init_task = init_task_stub,
.exit_task = exit_task_stub,
.enable = enable_stub,
.disable = disable_stub,
#ifdef CONFIG_EXT_GROUP_SCHED
.cgroup_init = cgroup_init_stub,
.cgroup_exit = cgroup_exit_stub,
.cgroup_prep_move = cgroup_prep_move_stub,
.cgroup_move = cgroup_move_stub,
.cgroup_cancel_move = cgroup_cancel_move_stub,
.cgroup_set_weight = cgroup_set_weight_stub,
#endif
.cpu_online = cpu_online_stub,
.cpu_offline = cpu_offline_stub,
.init = init_stub,
.exit = exit_stub,
.dump = dump_stub,
.dump_cpu = dump_cpu_stub,
.dump_task = dump_task_stub,
};
static struct bpf_struct_ops bpf_sched_ext_ops = {
.verifier_ops = &bpf_scx_verifier_ops,
.reg = bpf_scx_reg,
.unreg = bpf_scx_unreg,
.check_member = bpf_scx_check_member,
.init_member = bpf_scx_init_member,
.init = bpf_scx_init,
.update = bpf_scx_update,
.validate = bpf_scx_validate,
.name = "sched_ext_ops",
.owner = THIS_MODULE,
.cfi_stubs = &__bpf_ops_sched_ext_ops
};
/********************************************************************************
* System integration and init.
*/
static void sysrq_handle_sched_ext_reset(u8 key)
{
if (scx_ops_helper)
scx_ops_disable(SCX_EXIT_SYSRQ);
else
pr_info("sched_ext: BPF scheduler not yet used\n");
}
static const struct sysrq_key_op sysrq_sched_ext_reset_op = {
.handler = sysrq_handle_sched_ext_reset,
.help_msg = "reset-sched-ext(S)",
.action_msg = "Disable sched_ext and revert all tasks to CFS",
.enable_mask = SYSRQ_ENABLE_RTNICE,
};
static void sysrq_handle_sched_ext_dump(u8 key)
{
struct scx_exit_info ei = { .kind = SCX_EXIT_NONE, .reason = "SysRq-D" };
if (scx_enabled())
scx_dump_state(&ei, 0);
}
static const struct sysrq_key_op sysrq_sched_ext_dump_op = {
.handler = sysrq_handle_sched_ext_dump,
.help_msg = "dump-sched-ext(D)",
.action_msg = "Trigger sched_ext debug dump",
.enable_mask = SYSRQ_ENABLE_RTNICE,
};
static bool can_skip_idle_kick(struct rq *rq)
{
lockdep_assert_rq_held(rq);
/*
* We can skip idle kicking if @rq is going to go through at least one
* full SCX scheduling cycle before going idle. Just checking whether
* curr is not idle is insufficient because we could be racing
* balance_one() trying to pull the next task from a remote rq, which
* may fail, and @rq may become idle afterwards.
*
* The race window is small and we don't and can't guarantee that @rq is
* only kicked while idle anyway. Skip only when sure.
*/
return !is_idle_task(rq->curr) && !(rq->scx.flags & SCX_RQ_IN_BALANCE);
}
static bool kick_one_cpu(s32 cpu, struct rq *this_rq, unsigned long *pseqs)
{
struct rq *rq = cpu_rq(cpu);
struct scx_rq *this_scx = &this_rq->scx;
bool should_wait = false;
unsigned long flags;
raw_spin_rq_lock_irqsave(rq, flags);
/*
* During CPU hotplug, a CPU may depend on kicking itself to make
* forward progress. Allow kicking self regardless of online state.
*/
if (cpu_online(cpu) || cpu == cpu_of(this_rq)) {
if (cpumask_test_cpu(cpu, this_scx->cpus_to_preempt)) {
if (rq->curr->sched_class == &ext_sched_class)
rq->curr->scx.slice = 0;
cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt);
}
if (cpumask_test_cpu(cpu, this_scx->cpus_to_wait)) {
pseqs[cpu] = rq->scx.pnt_seq;
should_wait = true;
}
resched_curr(rq);
} else {
cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt);
cpumask_clear_cpu(cpu, this_scx->cpus_to_wait);
}
raw_spin_rq_unlock_irqrestore(rq, flags);
return should_wait;
}
static void kick_one_cpu_if_idle(s32 cpu, struct rq *this_rq)
{
struct rq *rq = cpu_rq(cpu);
unsigned long flags;
raw_spin_rq_lock_irqsave(rq, flags);
if (!can_skip_idle_kick(rq) &&
(cpu_online(cpu) || cpu == cpu_of(this_rq)))
resched_curr(rq);
raw_spin_rq_unlock_irqrestore(rq, flags);
}
static void kick_cpus_irq_workfn(struct irq_work *irq_work)
{
struct rq *this_rq = this_rq();
struct scx_rq *this_scx = &this_rq->scx;
unsigned long *pseqs = this_cpu_ptr(scx_kick_cpus_pnt_seqs);
bool should_wait = false;
s32 cpu;
for_each_cpu(cpu, this_scx->cpus_to_kick) {
should_wait |= kick_one_cpu(cpu, this_rq, pseqs);
cpumask_clear_cpu(cpu, this_scx->cpus_to_kick);
cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle);
}
for_each_cpu(cpu, this_scx->cpus_to_kick_if_idle) {
kick_one_cpu_if_idle(cpu, this_rq);
cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle);
}
if (!should_wait)
return;
for_each_cpu(cpu, this_scx->cpus_to_wait) {
unsigned long *wait_pnt_seq = &cpu_rq(cpu)->scx.pnt_seq;
if (cpu != cpu_of(this_rq)) {
/*
* Pairs with smp_store_release() issued by this CPU in
* scx_next_task_picked() on the resched path.
*
* We busy-wait here to guarantee that no other task can
* be scheduled on our core before the target CPU has
* entered the resched path.
*/
while (smp_load_acquire(wait_pnt_seq) == pseqs[cpu])
cpu_relax();
}
cpumask_clear_cpu(cpu, this_scx->cpus_to_wait);
}
}
/**
* print_scx_info - print out sched_ext scheduler state
* @log_lvl: the log level to use when printing
* @p: target task
*
* If a sched_ext scheduler is enabled, print the name and state of the
* scheduler. If @p is on sched_ext, print further information about the task.
*
* This function can be safely called on any task as long as the task_struct
* itself is accessible. While safe, this function isn't synchronized and may
* print out mixups or garbages of limited length.
*/
void print_scx_info(const char *log_lvl, struct task_struct *p)
{
enum scx_ops_enable_state state = scx_ops_enable_state();
const char *all = READ_ONCE(scx_switching_all) ? "+all" : "";
char runnable_at_buf[22] = "?";
struct sched_class *class;
unsigned long runnable_at;
if (state == SCX_OPS_DISABLED)
return;
/*
* Carefully check if the task was running on sched_ext, and then
* carefully copy the time it's been runnable, and its state.
*/
if (copy_from_kernel_nofault(&class, &p->sched_class, sizeof(class)) ||
class != &ext_sched_class) {
printk("%sSched_ext: %s (%s%s)", log_lvl, scx_ops.name,
scx_ops_enable_state_str[state], all);
return;
}
if (!copy_from_kernel_nofault(&runnable_at, &p->scx.runnable_at,
sizeof(runnable_at)))
scnprintf(runnable_at_buf, sizeof(runnable_at_buf), "%+ldms",
jiffies_delta_msecs(runnable_at, jiffies));
/* print everything onto one line to conserve console space */
printk("%sSched_ext: %s (%s%s), task: runnable_at=%s",
log_lvl, scx_ops.name, scx_ops_enable_state_str[state], all,
runnable_at_buf);
}
static int scx_pm_handler(struct notifier_block *nb, unsigned long event, void *ptr)
{
/*
* SCX schedulers often have userspace components which are sometimes
* involved in critial scheduling paths. PM operations involve freezing
* userspace which can lead to scheduling misbehaviors including stalls.
* Let's bypass while PM operations are in progress.
*/
switch (event) {
case PM_HIBERNATION_PREPARE:
case PM_SUSPEND_PREPARE:
case PM_RESTORE_PREPARE:
scx_ops_bypass(true);
break;
case PM_POST_HIBERNATION:
case PM_POST_SUSPEND:
case PM_POST_RESTORE:
scx_ops_bypass(false);
break;
}
return NOTIFY_OK;
}
static struct notifier_block scx_pm_notifier = {
.notifier_call = scx_pm_handler,
};
void __init init_sched_ext_class(void)
{
s32 cpu, v;
/*
* The following is to prevent the compiler from optimizing out the enum
* definitions so that BPF scheduler implementations can use them
* through the generated vmlinux.h.
*/
WRITE_ONCE(v, SCX_ENQ_WAKEUP | SCX_DEQ_SLEEP | SCX_KICK_PREEMPT |
SCX_TG_ONLINE);
BUG_ON(rhashtable_init(&dsq_hash, &dsq_hash_params));
#ifdef CONFIG_SMP
BUG_ON(!alloc_cpumask_var(&idle_masks.cpu, GFP_KERNEL));
BUG_ON(!alloc_cpumask_var(&idle_masks.smt, GFP_KERNEL));
#endif
scx_kick_cpus_pnt_seqs =
__alloc_percpu(sizeof(scx_kick_cpus_pnt_seqs[0]) * nr_cpu_ids,
__alignof__(scx_kick_cpus_pnt_seqs[0]));
BUG_ON(!scx_kick_cpus_pnt_seqs);
for_each_possible_cpu(cpu) {
struct rq *rq = cpu_rq(cpu);
init_dsq(&rq->scx.local_dsq, SCX_DSQ_LOCAL);
INIT_LIST_HEAD(&rq->scx.runnable_list);
INIT_LIST_HEAD(&rq->scx.ddsp_deferred_locals);
BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_kick, GFP_KERNEL));
BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_kick_if_idle, GFP_KERNEL));
BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_preempt, GFP_KERNEL));
BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_wait, GFP_KERNEL));
init_irq_work(&rq->scx.deferred_irq_work, deferred_irq_workfn);
init_irq_work(&rq->scx.kick_cpus_irq_work, kick_cpus_irq_workfn);
if (cpu_online(cpu))
cpu_rq(cpu)->scx.flags |= SCX_RQ_ONLINE;
}
register_sysrq_key('S', &sysrq_sched_ext_reset_op);
register_sysrq_key('D', &sysrq_sched_ext_dump_op);
INIT_DELAYED_WORK(&scx_watchdog_work, scx_watchdog_workfn);
}
/********************************************************************************
* Helpers that can be called from the BPF scheduler.
*/
#include <linux/btf_ids.h>
__bpf_kfunc_start_defs();
/**
* scx_bpf_select_cpu_dfl - The default implementation of ops.select_cpu()
* @p: task_struct to select a CPU for
* @prev_cpu: CPU @p was on previously
* @wake_flags: %SCX_WAKE_* flags
* @is_idle: out parameter indicating whether the returned CPU is idle
*
* Can only be called from ops.select_cpu() if the built-in CPU selection is
* enabled - ops.update_idle() is missing or %SCX_OPS_KEEP_BUILTIN_IDLE is set.
* @p, @prev_cpu and @wake_flags match ops.select_cpu().
*
* Returns the picked CPU with *@is_idle indicating whether the picked CPU is
* currently idle and thus a good candidate for direct dispatching.
*/
__bpf_kfunc s32 scx_bpf_select_cpu_dfl(struct task_struct *p, s32 prev_cpu,
u64 wake_flags, bool *is_idle)
{
if (!static_branch_likely(&scx_builtin_idle_enabled)) {
scx_ops_error("built-in idle tracking is disabled");
goto prev_cpu;
}
if (!scx_kf_allowed(SCX_KF_SELECT_CPU))
goto prev_cpu;
#ifdef CONFIG_SMP
return scx_select_cpu_dfl(p, prev_cpu, wake_flags, is_idle);
#endif
prev_cpu:
*is_idle = false;
return prev_cpu;
}
__bpf_kfunc_end_defs();
BTF_KFUNCS_START(scx_kfunc_ids_select_cpu)
BTF_ID_FLAGS(func, scx_bpf_select_cpu_dfl, KF_RCU)
BTF_KFUNCS_END(scx_kfunc_ids_select_cpu)
static const struct btf_kfunc_id_set scx_kfunc_set_select_cpu = {
.owner = THIS_MODULE,
.set = &scx_kfunc_ids_select_cpu,
};
static bool scx_dispatch_preamble(struct task_struct *p, u64 enq_flags)
{
if (!scx_kf_allowed(SCX_KF_ENQUEUE | SCX_KF_DISPATCH))
return false;
lockdep_assert_irqs_disabled();
if (unlikely(!p)) {
scx_ops_error("called with NULL task");
return false;
}
if (unlikely(enq_flags & __SCX_ENQ_INTERNAL_MASK)) {
scx_ops_error("invalid enq_flags 0x%llx", enq_flags);
return false;
}
return true;
}
static void scx_dispatch_commit(struct task_struct *p, u64 dsq_id, u64 enq_flags)
{
struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
struct task_struct *ddsp_task;
ddsp_task = __this_cpu_read(direct_dispatch_task);
if (ddsp_task) {
mark_direct_dispatch(ddsp_task, p, dsq_id, enq_flags);
return;
}
if (unlikely(dspc->cursor >= scx_dsp_max_batch)) {
scx_ops_error("dispatch buffer overflow");
return;
}
dspc->buf[dspc->cursor++] = (struct scx_dsp_buf_ent){
.task = p,
.qseq = atomic_long_read(&p->scx.ops_state) & SCX_OPSS_QSEQ_MASK,
.dsq_id = dsq_id,
.enq_flags = enq_flags,
};
}
__bpf_kfunc_start_defs();
/**
* scx_bpf_dispatch - Dispatch a task into the FIFO queue of a DSQ
* @p: task_struct to dispatch
* @dsq_id: DSQ to dispatch to
* @slice: duration @p can run for in nsecs, 0 to keep the current value
* @enq_flags: SCX_ENQ_*
*
* Dispatch @p into the FIFO queue of the DSQ identified by @dsq_id. It is safe
* to call this function spuriously. Can be called from ops.enqueue(),
* ops.select_cpu(), and ops.dispatch().
*
* When called from ops.select_cpu() or ops.enqueue(), it's for direct dispatch
* and @p must match the task being enqueued. Also, %SCX_DSQ_LOCAL_ON can't be
* used to target the local DSQ of a CPU other than the enqueueing one. Use
* ops.select_cpu() to be on the target CPU in the first place.
*
* When called from ops.select_cpu(), @enq_flags and @dsp_id are stored, and @p
* will be directly dispatched to the corresponding dispatch queue after
* ops.select_cpu() returns. If @p is dispatched to SCX_DSQ_LOCAL, it will be
* dispatched to the local DSQ of the CPU returned by ops.select_cpu().
* @enq_flags are OR'd with the enqueue flags on the enqueue path before the
* task is dispatched.
*
* When called from ops.dispatch(), there are no restrictions on @p or @dsq_id
* and this function can be called upto ops.dispatch_max_batch times to dispatch
* multiple tasks. scx_bpf_dispatch_nr_slots() returns the number of the
* remaining slots. scx_bpf_consume() flushes the batch and resets the counter.
*
* This function doesn't have any locking restrictions and may be called under
* BPF locks (in the future when BPF introduces more flexible locking).
*
* @p is allowed to run for @slice. The scheduling path is triggered on slice
* exhaustion. If zero, the current residual slice is maintained. If
* %SCX_SLICE_INF, @p never expires and the BPF scheduler must kick the CPU with
* scx_bpf_kick_cpu() to trigger scheduling.
*/
__bpf_kfunc void scx_bpf_dispatch(struct task_struct *p, u64 dsq_id, u64 slice,
u64 enq_flags)
{
if (!scx_dispatch_preamble(p, enq_flags))
return;
if (slice)
p->scx.slice = slice;
else
p->scx.slice = p->scx.slice ?: 1;
scx_dispatch_commit(p, dsq_id, enq_flags);
}
/**
* scx_bpf_dispatch_vtime - Dispatch a task into the vtime priority queue of a DSQ
* @p: task_struct to dispatch
* @dsq_id: DSQ to dispatch to
* @slice: duration @p can run for in nsecs, 0 to keep the current value
* @vtime: @p's ordering inside the vtime-sorted queue of the target DSQ
* @enq_flags: SCX_ENQ_*
*
* Dispatch @p into the vtime priority queue of the DSQ identified by @dsq_id.
* Tasks queued into the priority queue are ordered by @vtime and always
* consumed after the tasks in the FIFO queue. All other aspects are identical
* to scx_bpf_dispatch().
*
* @vtime ordering is according to time_before64() which considers wrapping. A
* numerically larger vtime may indicate an earlier position in the ordering and
* vice-versa.
*/
__bpf_kfunc void scx_bpf_dispatch_vtime(struct task_struct *p, u64 dsq_id,
u64 slice, u64 vtime, u64 enq_flags)
{
if (!scx_dispatch_preamble(p, enq_flags))
return;
if (slice)
p->scx.slice = slice;
else
p->scx.slice = p->scx.slice ?: 1;
p->scx.dsq_vtime = vtime;
scx_dispatch_commit(p, dsq_id, enq_flags | SCX_ENQ_DSQ_PRIQ);
}
__bpf_kfunc_end_defs();
BTF_KFUNCS_START(scx_kfunc_ids_enqueue_dispatch)
BTF_ID_FLAGS(func, scx_bpf_dispatch, KF_RCU)
BTF_ID_FLAGS(func, scx_bpf_dispatch_vtime, KF_RCU)
BTF_KFUNCS_END(scx_kfunc_ids_enqueue_dispatch)
static const struct btf_kfunc_id_set scx_kfunc_set_enqueue_dispatch = {
.owner = THIS_MODULE,
.set = &scx_kfunc_ids_enqueue_dispatch,
};
static bool scx_dispatch_from_dsq(struct bpf_iter_scx_dsq_kern *kit,
struct task_struct *p, u64 dsq_id,
u64 enq_flags)
{
struct scx_dispatch_q *src_dsq = kit->dsq, *dst_dsq;
struct rq *this_rq, *src_rq, *dst_rq, *locked_rq;
bool dispatched = false;
bool in_balance;
unsigned long flags;
if (!scx_kf_allowed_if_unlocked() && !scx_kf_allowed(SCX_KF_DISPATCH))
return false;
/*
* Can be called from either ops.dispatch() locking this_rq() or any
* context where no rq lock is held. If latter, lock @p's task_rq which
* we'll likely need anyway.
*/
src_rq = task_rq(p);
local_irq_save(flags);
this_rq = this_rq();
in_balance = this_rq->scx.flags & SCX_RQ_IN_BALANCE;
if (in_balance) {
if (this_rq != src_rq) {
raw_spin_rq_unlock(this_rq);
raw_spin_rq_lock(src_rq);
}
} else {
raw_spin_rq_lock(src_rq);
}
locked_rq = src_rq;
raw_spin_lock(&src_dsq->lock);
/*
* Did someone else get to it? @p could have already left $src_dsq, got
* re-enqueud, or be in the process of being consumed by someone else.
*/
if (unlikely(p->scx.dsq != src_dsq ||
u32_before(kit->cursor.priv, p->scx.dsq_seq) ||
p->scx.holding_cpu >= 0) ||
WARN_ON_ONCE(src_rq != task_rq(p))) {
raw_spin_unlock(&src_dsq->lock);
goto out;
}
/* @p is still on $src_dsq and stable, determine the destination */
dst_dsq = find_dsq_for_dispatch(this_rq, dsq_id, p);
if (dst_dsq->id == SCX_DSQ_LOCAL) {
dst_rq = container_of(dst_dsq, struct rq, scx.local_dsq);
if (!task_can_run_on_remote_rq(p, dst_rq, true)) {
dst_dsq = find_global_dsq(p);
dst_rq = src_rq;
}
} else {
/* no need to migrate if destination is a non-local DSQ */
dst_rq = src_rq;
}
/*
* Move @p into $dst_dsq. If $dst_dsq is the local DSQ of a different
* CPU, @p will be migrated.
*/
if (dst_dsq->id == SCX_DSQ_LOCAL) {
/* @p is going from a non-local DSQ to a local DSQ */
if (src_rq == dst_rq) {
task_unlink_from_dsq(p, src_dsq);
move_local_task_to_local_dsq(p, enq_flags,
src_dsq, dst_rq);
raw_spin_unlock(&src_dsq->lock);
} else {
raw_spin_unlock(&src_dsq->lock);
move_remote_task_to_local_dsq(p, enq_flags,
src_rq, dst_rq);
locked_rq = dst_rq;
}
} else {
/*
* @p is going from a non-local DSQ to a non-local DSQ. As
* $src_dsq is already locked, do an abbreviated dequeue.
*/
task_unlink_from_dsq(p, src_dsq);
p->scx.dsq = NULL;
raw_spin_unlock(&src_dsq->lock);
if (kit->cursor.flags & __SCX_DSQ_ITER_HAS_VTIME)
p->scx.dsq_vtime = kit->vtime;
dispatch_enqueue(dst_dsq, p, enq_flags);
}
if (kit->cursor.flags & __SCX_DSQ_ITER_HAS_SLICE)
p->scx.slice = kit->slice;
dispatched = true;
out:
if (in_balance) {
if (this_rq != locked_rq) {
raw_spin_rq_unlock(locked_rq);
raw_spin_rq_lock(this_rq);
}
} else {
raw_spin_rq_unlock_irqrestore(locked_rq, flags);
}
kit->cursor.flags &= ~(__SCX_DSQ_ITER_HAS_SLICE |
__SCX_DSQ_ITER_HAS_VTIME);
return dispatched;
}
__bpf_kfunc_start_defs();
/**
* scx_bpf_dispatch_nr_slots - Return the number of remaining dispatch slots
*
* Can only be called from ops.dispatch().
*/
__bpf_kfunc u32 scx_bpf_dispatch_nr_slots(void)
{
if (!scx_kf_allowed(SCX_KF_DISPATCH))
return 0;
return scx_dsp_max_batch - __this_cpu_read(scx_dsp_ctx->cursor);
}
/**
* scx_bpf_dispatch_cancel - Cancel the latest dispatch
*
* Cancel the latest dispatch. Can be called multiple times to cancel further
* dispatches. Can only be called from ops.dispatch().
*/
__bpf_kfunc void scx_bpf_dispatch_cancel(void)
{
struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
if (!scx_kf_allowed(SCX_KF_DISPATCH))
return;
if (dspc->cursor > 0)
dspc->cursor--;
else
scx_ops_error("dispatch buffer underflow");
}
/**
* scx_bpf_consume - Transfer a task from a DSQ to the current CPU's local DSQ
* @dsq_id: DSQ to consume
*
* Consume a task from the non-local DSQ identified by @dsq_id and transfer it
* to the current CPU's local DSQ for execution. Can only be called from
* ops.dispatch().
*
* This function flushes the in-flight dispatches from scx_bpf_dispatch() before
* trying to consume the specified DSQ. It may also grab rq locks and thus can't
* be called under any BPF locks.
*
* Returns %true if a task has been consumed, %false if there isn't any task to
* consume.
*/
__bpf_kfunc bool scx_bpf_consume(u64 dsq_id)
{
struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
struct scx_dispatch_q *dsq;
if (!scx_kf_allowed(SCX_KF_DISPATCH))
return false;
flush_dispatch_buf(dspc->rq);
dsq = find_user_dsq(dsq_id);
if (unlikely(!dsq)) {
scx_ops_error("invalid DSQ ID 0x%016llx", dsq_id);
return false;
}
if (consume_dispatch_q(dspc->rq, dsq)) {
/*
* A successfully consumed task can be dequeued before it starts
* running while the CPU is trying to migrate other dispatched
* tasks. Bump nr_tasks to tell balance_scx() to retry on empty
* local DSQ.
*/
dspc->nr_tasks++;
return true;
} else {
return false;
}
}
/**
* scx_bpf_dispatch_from_dsq_set_slice - Override slice when dispatching from DSQ
* @it__iter: DSQ iterator in progress
* @slice: duration the dispatched task can run for in nsecs
*
* Override the slice of the next task that will be dispatched from @it__iter
* using scx_bpf_dispatch_from_dsq[_vtime](). If this function is not called,
* the previous slice duration is kept.
*/
__bpf_kfunc void scx_bpf_dispatch_from_dsq_set_slice(
struct bpf_iter_scx_dsq *it__iter, u64 slice)
{
struct bpf_iter_scx_dsq_kern *kit = (void *)it__iter;
kit->slice = slice;
kit->cursor.flags |= __SCX_DSQ_ITER_HAS_SLICE;
}
/**
* scx_bpf_dispatch_from_dsq_set_vtime - Override vtime when dispatching from DSQ
* @it__iter: DSQ iterator in progress
* @vtime: task's ordering inside the vtime-sorted queue of the target DSQ
*
* Override the vtime of the next task that will be dispatched from @it__iter
* using scx_bpf_dispatch_from_dsq_vtime(). If this function is not called, the
* previous slice vtime is kept. If scx_bpf_dispatch_from_dsq() is used to
* dispatch the next task, the override is ignored and cleared.
*/
__bpf_kfunc void scx_bpf_dispatch_from_dsq_set_vtime(
struct bpf_iter_scx_dsq *it__iter, u64 vtime)
{
struct bpf_iter_scx_dsq_kern *kit = (void *)it__iter;
kit->vtime = vtime;
kit->cursor.flags |= __SCX_DSQ_ITER_HAS_VTIME;
}
/**
* scx_bpf_dispatch_from_dsq - Move a task from DSQ iteration to a DSQ
* @it__iter: DSQ iterator in progress
* @p: task to transfer
* @dsq_id: DSQ to move @p to
* @enq_flags: SCX_ENQ_*
*
* Transfer @p which is on the DSQ currently iterated by @it__iter to the DSQ
* specified by @dsq_id. All DSQs - local DSQs, global DSQ and user DSQs - can
* be the destination.
*
* For the transfer to be successful, @p must still be on the DSQ and have been
* queued before the DSQ iteration started. This function doesn't care whether
* @p was obtained from the DSQ iteration. @p just has to be on the DSQ and have
* been queued before the iteration started.
*
* @p's slice is kept by default. Use scx_bpf_dispatch_from_dsq_set_slice() to
* update.
*
* Can be called from ops.dispatch() or any BPF context which doesn't hold a rq
* lock (e.g. BPF timers or SYSCALL programs).
*
* Returns %true if @p has been consumed, %false if @p had already been consumed
* or dequeued.
*/
__bpf_kfunc bool scx_bpf_dispatch_from_dsq(struct bpf_iter_scx_dsq *it__iter,
struct task_struct *p, u64 dsq_id,
u64 enq_flags)
{
return scx_dispatch_from_dsq((struct bpf_iter_scx_dsq_kern *)it__iter,
p, dsq_id, enq_flags);
}
/**
* scx_bpf_dispatch_vtime_from_dsq - Move a task from DSQ iteration to a PRIQ DSQ
* @it__iter: DSQ iterator in progress
* @p: task to transfer
* @dsq_id: DSQ to move @p to
* @enq_flags: SCX_ENQ_*
*
* Transfer @p which is on the DSQ currently iterated by @it__iter to the
* priority queue of the DSQ specified by @dsq_id. The destination must be a
* user DSQ as only user DSQs support priority queue.
*
* @p's slice and vtime are kept by default. Use
* scx_bpf_dispatch_from_dsq_set_slice() and
* scx_bpf_dispatch_from_dsq_set_vtime() to update.
*
* All other aspects are identical to scx_bpf_dispatch_from_dsq(). See
* scx_bpf_dispatch_vtime() for more information on @vtime.
*/
__bpf_kfunc bool scx_bpf_dispatch_vtime_from_dsq(struct bpf_iter_scx_dsq *it__iter,
struct task_struct *p, u64 dsq_id,
u64 enq_flags)
{
return scx_dispatch_from_dsq((struct bpf_iter_scx_dsq_kern *)it__iter,
p, dsq_id, enq_flags | SCX_ENQ_DSQ_PRIQ);
}
__bpf_kfunc_end_defs();
BTF_KFUNCS_START(scx_kfunc_ids_dispatch)
BTF_ID_FLAGS(func, scx_bpf_dispatch_nr_slots)
BTF_ID_FLAGS(func, scx_bpf_dispatch_cancel)
BTF_ID_FLAGS(func, scx_bpf_consume)
BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq_set_slice)
BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq_set_vtime)
BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq, KF_RCU)
BTF_ID_FLAGS(func, scx_bpf_dispatch_vtime_from_dsq, KF_RCU)
BTF_KFUNCS_END(scx_kfunc_ids_dispatch)
static const struct btf_kfunc_id_set scx_kfunc_set_dispatch = {
.owner = THIS_MODULE,
.set = &scx_kfunc_ids_dispatch,
};
__bpf_kfunc_start_defs();
/**
* scx_bpf_reenqueue_local - Re-enqueue tasks on a local DSQ
*
* Iterate over all of the tasks currently enqueued on the local DSQ of the
* caller's CPU, and re-enqueue them in the BPF scheduler. Returns the number of
* processed tasks. Can only be called from ops.cpu_release().
*/
__bpf_kfunc u32 scx_bpf_reenqueue_local(void)
{
LIST_HEAD(tasks);
u32 nr_enqueued = 0;
struct rq *rq;
struct task_struct *p, *n;
if (!scx_kf_allowed(SCX_KF_CPU_RELEASE))
return 0;
rq = cpu_rq(smp_processor_id());
lockdep_assert_rq_held(rq);
/*
* The BPF scheduler may choose to dispatch tasks back to
* @rq->scx.local_dsq. Move all candidate tasks off to a private list
* first to avoid processing the same tasks repeatedly.
*/
list_for_each_entry_safe(p, n, &rq->scx.local_dsq.list,
scx.dsq_list.node) {
/*
* If @p is being migrated, @p's current CPU may not agree with
* its allowed CPUs and the migration_cpu_stop is about to
* deactivate and re-activate @p anyway. Skip re-enqueueing.
*
* While racing sched property changes may also dequeue and
* re-enqueue a migrating task while its current CPU and allowed
* CPUs disagree, they use %ENQUEUE_RESTORE which is bypassed to
* the current local DSQ for running tasks and thus are not
* visible to the BPF scheduler.
*/
if (p->migration_pending)
continue;
dispatch_dequeue(rq, p);
list_add_tail(&p->scx.dsq_list.node, &tasks);
}
list_for_each_entry_safe(p, n, &tasks, scx.dsq_list.node) {
list_del_init(&p->scx.dsq_list.node);
do_enqueue_task(rq, p, SCX_ENQ_REENQ, -1);
nr_enqueued++;
}
return nr_enqueued;
}
__bpf_kfunc_end_defs();
BTF_KFUNCS_START(scx_kfunc_ids_cpu_release)
BTF_ID_FLAGS(func, scx_bpf_reenqueue_local)
BTF_KFUNCS_END(scx_kfunc_ids_cpu_release)
static const struct btf_kfunc_id_set scx_kfunc_set_cpu_release = {
.owner = THIS_MODULE,
.set = &scx_kfunc_ids_cpu_release,
};
__bpf_kfunc_start_defs();
/**
* scx_bpf_create_dsq - Create a custom DSQ
* @dsq_id: DSQ to create
* @node: NUMA node to allocate from
*
* Create a custom DSQ identified by @dsq_id. Can be called from any sleepable
* scx callback, and any BPF_PROG_TYPE_SYSCALL prog.
*/
__bpf_kfunc s32 scx_bpf_create_dsq(u64 dsq_id, s32 node)
{
if (unlikely(node >= (int)nr_node_ids ||
(node < 0 && node != NUMA_NO_NODE)))
return -EINVAL;
return PTR_ERR_OR_ZERO(create_dsq(dsq_id, node));
}
__bpf_kfunc_end_defs();
BTF_KFUNCS_START(scx_kfunc_ids_unlocked)
BTF_ID_FLAGS(func, scx_bpf_create_dsq, KF_SLEEPABLE)
BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq, KF_RCU)
BTF_ID_FLAGS(func, scx_bpf_dispatch_vtime_from_dsq, KF_RCU)
BTF_KFUNCS_END(scx_kfunc_ids_unlocked)
static const struct btf_kfunc_id_set scx_kfunc_set_unlocked = {
.owner = THIS_MODULE,
.set = &scx_kfunc_ids_unlocked,
};
__bpf_kfunc_start_defs();
/**
* scx_bpf_kick_cpu - Trigger reschedule on a CPU
* @cpu: cpu to kick
* @flags: %SCX_KICK_* flags
*
* Kick @cpu into rescheduling. This can be used to wake up an idle CPU or
* trigger rescheduling on a busy CPU. This can be called from any online
* scx_ops operation and the actual kicking is performed asynchronously through
* an irq work.
*/
__bpf_kfunc void scx_bpf_kick_cpu(s32 cpu, u64 flags)
{
struct rq *this_rq;
unsigned long irq_flags;
if (!ops_cpu_valid(cpu, NULL))
return;
local_irq_save(irq_flags);
this_rq = this_rq();
/*
* While bypassing for PM ops, IRQ handling may not be online which can
* lead to irq_work_queue() malfunction such as infinite busy wait for
* IRQ status update. Suppress kicking.
*/
if (scx_rq_bypassing(this_rq))
goto out;
/*
* Actual kicking is bounced to kick_cpus_irq_workfn() to avoid nesting
* rq locks. We can probably be smarter and avoid bouncing if called
* from ops which don't hold a rq lock.
*/
if (flags & SCX_KICK_IDLE) {
struct rq *target_rq = cpu_rq(cpu);
if (unlikely(flags & (SCX_KICK_PREEMPT | SCX_KICK_WAIT)))
scx_ops_error("PREEMPT/WAIT cannot be used with SCX_KICK_IDLE");
if (raw_spin_rq_trylock(target_rq)) {
if (can_skip_idle_kick(target_rq)) {
raw_spin_rq_unlock(target_rq);
goto out;
}
raw_spin_rq_unlock(target_rq);
}
cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick_if_idle);
} else {
cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick);
if (flags & SCX_KICK_PREEMPT)
cpumask_set_cpu(cpu, this_rq->scx.cpus_to_preempt);
if (flags & SCX_KICK_WAIT)
cpumask_set_cpu(cpu, this_rq->scx.cpus_to_wait);
}
irq_work_queue(&this_rq->scx.kick_cpus_irq_work);
out:
local_irq_restore(irq_flags);
}
/**
* scx_bpf_dsq_nr_queued - Return the number of queued tasks
* @dsq_id: id of the DSQ
*
* Return the number of tasks in the DSQ matching @dsq_id. If not found,
* -%ENOENT is returned.
*/
__bpf_kfunc s32 scx_bpf_dsq_nr_queued(u64 dsq_id)
{
struct scx_dispatch_q *dsq;
s32 ret;
preempt_disable();
if (dsq_id == SCX_DSQ_LOCAL) {
ret = READ_ONCE(this_rq()->scx.local_dsq.nr);
goto out;
} else if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) {
s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK;
if (ops_cpu_valid(cpu, NULL)) {
ret = READ_ONCE(cpu_rq(cpu)->scx.local_dsq.nr);
goto out;
}
} else {
dsq = find_user_dsq(dsq_id);
if (dsq) {
ret = READ_ONCE(dsq->nr);
goto out;
}
}
ret = -ENOENT;
out:
preempt_enable();
return ret;
}
/**
* scx_bpf_destroy_dsq - Destroy a custom DSQ
* @dsq_id: DSQ to destroy
*
* Destroy the custom DSQ identified by @dsq_id. Only DSQs created with
* scx_bpf_create_dsq() can be destroyed. The caller must ensure that the DSQ is
* empty and no further tasks are dispatched to it. Ignored if called on a DSQ
* which doesn't exist. Can be called from any online scx_ops operations.
*/
__bpf_kfunc void scx_bpf_destroy_dsq(u64 dsq_id)
{
destroy_dsq(dsq_id);
}
/**
* bpf_iter_scx_dsq_new - Create a DSQ iterator
* @it: iterator to initialize
* @dsq_id: DSQ to iterate
* @flags: %SCX_DSQ_ITER_*
*
* Initialize BPF iterator @it which can be used with bpf_for_each() to walk
* tasks in the DSQ specified by @dsq_id. Iteration using @it only includes
* tasks which are already queued when this function is invoked.
*/
__bpf_kfunc int bpf_iter_scx_dsq_new(struct bpf_iter_scx_dsq *it, u64 dsq_id,
u64 flags)
{
struct bpf_iter_scx_dsq_kern *kit = (void *)it;
BUILD_BUG_ON(sizeof(struct bpf_iter_scx_dsq_kern) >
sizeof(struct bpf_iter_scx_dsq));
BUILD_BUG_ON(__alignof__(struct bpf_iter_scx_dsq_kern) !=
__alignof__(struct bpf_iter_scx_dsq));
if (flags & ~__SCX_DSQ_ITER_USER_FLAGS)
return -EINVAL;
kit->dsq = find_user_dsq(dsq_id);
if (!kit->dsq)
return -ENOENT;
INIT_LIST_HEAD(&kit->cursor.node);
kit->cursor.flags |= SCX_DSQ_LNODE_ITER_CURSOR | flags;
kit->cursor.priv = READ_ONCE(kit->dsq->seq);
return 0;
}
/**
* bpf_iter_scx_dsq_next - Progress a DSQ iterator
* @it: iterator to progress
*
* Return the next task. See bpf_iter_scx_dsq_new().
*/
__bpf_kfunc struct task_struct *bpf_iter_scx_dsq_next(struct bpf_iter_scx_dsq *it)
{
struct bpf_iter_scx_dsq_kern *kit = (void *)it;
bool rev = kit->cursor.flags & SCX_DSQ_ITER_REV;
struct task_struct *p;
unsigned long flags;
if (!kit->dsq)
return NULL;
raw_spin_lock_irqsave(&kit->dsq->lock, flags);
if (list_empty(&kit->cursor.node))
p = NULL;
else
p = container_of(&kit->cursor, struct task_struct, scx.dsq_list);
/*
* Only tasks which were queued before the iteration started are
* visible. This bounds BPF iterations and guarantees that vtime never
* jumps in the other direction while iterating.
*/
do {
p = nldsq_next_task(kit->dsq, p, rev);
} while (p && unlikely(u32_before(kit->cursor.priv, p->scx.dsq_seq)));
if (p) {
if (rev)
list_move_tail(&kit->cursor.node, &p->scx.dsq_list.node);
else
list_move(&kit->cursor.node, &p->scx.dsq_list.node);
} else {
list_del_init(&kit->cursor.node);
}
raw_spin_unlock_irqrestore(&kit->dsq->lock, flags);
return p;
}
/**
* bpf_iter_scx_dsq_destroy - Destroy a DSQ iterator
* @it: iterator to destroy
*
* Undo scx_iter_scx_dsq_new().
*/
__bpf_kfunc void bpf_iter_scx_dsq_destroy(struct bpf_iter_scx_dsq *it)
{
struct bpf_iter_scx_dsq_kern *kit = (void *)it;
if (!kit->dsq)
return;
if (!list_empty(&kit->cursor.node)) {
unsigned long flags;
raw_spin_lock_irqsave(&kit->dsq->lock, flags);
list_del_init(&kit->cursor.node);
raw_spin_unlock_irqrestore(&kit->dsq->lock, flags);
}
kit->dsq = NULL;
}
__bpf_kfunc_end_defs();
static s32 __bstr_format(u64 *data_buf, char *line_buf, size_t line_size,
char *fmt, unsigned long long *data, u32 data__sz)
{
struct bpf_bprintf_data bprintf_data = { .get_bin_args = true };
s32 ret;
if (data__sz % 8 || data__sz > MAX_BPRINTF_VARARGS * 8 ||
(data__sz && !data)) {
scx_ops_error("invalid data=%p and data__sz=%u",
(void *)data, data__sz);
return -EINVAL;
}
ret = copy_from_kernel_nofault(data_buf, data, data__sz);
if (ret < 0) {
scx_ops_error("failed to read data fields (%d)", ret);
return ret;
}
ret = bpf_bprintf_prepare(fmt, UINT_MAX, data_buf, data__sz / 8,
&bprintf_data);
if (ret < 0) {
scx_ops_error("format preparation failed (%d)", ret);
return ret;
}
ret = bstr_printf(line_buf, line_size, fmt,
bprintf_data.bin_args);
bpf_bprintf_cleanup(&bprintf_data);
if (ret < 0) {
scx_ops_error("(\"%s\", %p, %u) failed to format",
fmt, data, data__sz);
return ret;
}
return ret;
}
static s32 bstr_format(struct scx_bstr_buf *buf,
char *fmt, unsigned long long *data, u32 data__sz)
{
return __bstr_format(buf->data, buf->line, sizeof(buf->line),
fmt, data, data__sz);
}
__bpf_kfunc_start_defs();
/**
* scx_bpf_exit_bstr - Gracefully exit the BPF scheduler.
* @exit_code: Exit value to pass to user space via struct scx_exit_info.
* @fmt: error message format string
* @data: format string parameters packaged using ___bpf_fill() macro
* @data__sz: @data len, must end in '__sz' for the verifier
*
* Indicate that the BPF scheduler wants to exit gracefully, and initiate ops
* disabling.
*/
__bpf_kfunc void scx_bpf_exit_bstr(s64 exit_code, char *fmt,
unsigned long long *data, u32 data__sz)
{
unsigned long flags;
raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags);
if (bstr_format(&scx_exit_bstr_buf, fmt, data, data__sz) >= 0)
scx_ops_exit_kind(SCX_EXIT_UNREG_BPF, exit_code, "%s",
scx_exit_bstr_buf.line);
raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags);
}
/**
* scx_bpf_error_bstr - Indicate fatal error
* @fmt: error message format string
* @data: format string parameters packaged using ___bpf_fill() macro
* @data__sz: @data len, must end in '__sz' for the verifier
*
* Indicate that the BPF scheduler encountered a fatal error and initiate ops
* disabling.
*/
__bpf_kfunc void scx_bpf_error_bstr(char *fmt, unsigned long long *data,
u32 data__sz)
{
unsigned long flags;
raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags);
if (bstr_format(&scx_exit_bstr_buf, fmt, data, data__sz) >= 0)
scx_ops_exit_kind(SCX_EXIT_ERROR_BPF, 0, "%s",
scx_exit_bstr_buf.line);
raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags);
}
/**
* scx_bpf_dump - Generate extra debug dump specific to the BPF scheduler
* @fmt: format string
* @data: format string parameters packaged using ___bpf_fill() macro
* @data__sz: @data len, must end in '__sz' for the verifier
*
* To be called through scx_bpf_dump() helper from ops.dump(), dump_cpu() and
* dump_task() to generate extra debug dump specific to the BPF scheduler.
*
* The extra dump may be multiple lines. A single line may be split over
* multiple calls. The last line is automatically terminated.
*/
__bpf_kfunc void scx_bpf_dump_bstr(char *fmt, unsigned long long *data,
u32 data__sz)
{
struct scx_dump_data *dd = &scx_dump_data;
struct scx_bstr_buf *buf = &dd->buf;
s32 ret;
if (raw_smp_processor_id() != dd->cpu) {
scx_ops_error("scx_bpf_dump() must only be called from ops.dump() and friends");
return;
}
/* append the formatted string to the line buf */
ret = __bstr_format(buf->data, buf->line + dd->cursor,
sizeof(buf->line) - dd->cursor, fmt, data, data__sz);
if (ret < 0) {
dump_line(dd->s, "%s[!] (\"%s\", %p, %u) failed to format (%d)",
dd->prefix, fmt, data, data__sz, ret);
return;
}
dd->cursor += ret;
dd->cursor = min_t(s32, dd->cursor, sizeof(buf->line));
if (!dd->cursor)
return;
/*
* If the line buf overflowed or ends in a newline, flush it into the
* dump. This is to allow the caller to generate a single line over
* multiple calls. As ops_dump_flush() can also handle multiple lines in
* the line buf, the only case which can lead to an unexpected
* truncation is when the caller keeps generating newlines in the middle
* instead of the end consecutively. Don't do that.
*/
if (dd->cursor >= sizeof(buf->line) || buf->line[dd->cursor - 1] == '\n')
ops_dump_flush();
}
/**
* scx_bpf_cpuperf_cap - Query the maximum relative capacity of a CPU
* @cpu: CPU of interest
*
* Return the maximum relative capacity of @cpu in relation to the most
* performant CPU in the system. The return value is in the range [1,
* %SCX_CPUPERF_ONE]. See scx_bpf_cpuperf_cur().
*/
__bpf_kfunc u32 scx_bpf_cpuperf_cap(s32 cpu)
{
if (ops_cpu_valid(cpu, NULL))
return arch_scale_cpu_capacity(cpu);
else
return SCX_CPUPERF_ONE;
}
/**
* scx_bpf_cpuperf_cur - Query the current relative performance of a CPU
* @cpu: CPU of interest
*
* Return the current relative performance of @cpu in relation to its maximum.
* The return value is in the range [1, %SCX_CPUPERF_ONE].
*
* The current performance level of a CPU in relation to the maximum performance
* available in the system can be calculated as follows:
*
* scx_bpf_cpuperf_cap() * scx_bpf_cpuperf_cur() / %SCX_CPUPERF_ONE
*
* The result is in the range [1, %SCX_CPUPERF_ONE].
*/
__bpf_kfunc u32 scx_bpf_cpuperf_cur(s32 cpu)
{
if (ops_cpu_valid(cpu, NULL))
return arch_scale_freq_capacity(cpu);
else
return SCX_CPUPERF_ONE;
}
/**
* scx_bpf_cpuperf_set - Set the relative performance target of a CPU
* @cpu: CPU of interest
* @perf: target performance level [0, %SCX_CPUPERF_ONE]
* @flags: %SCX_CPUPERF_* flags
*
* Set the target performance level of @cpu to @perf. @perf is in linear
* relative scale between 0 and %SCX_CPUPERF_ONE. This determines how the
* schedutil cpufreq governor chooses the target frequency.
*
* The actual performance level chosen, CPU grouping, and the overhead and
* latency of the operations are dependent on the hardware and cpufreq driver in
* use. Consult hardware and cpufreq documentation for more information. The
* current performance level can be monitored using scx_bpf_cpuperf_cur().
*/
__bpf_kfunc void scx_bpf_cpuperf_set(s32 cpu, u32 perf)
{
if (unlikely(perf > SCX_CPUPERF_ONE)) {
scx_ops_error("Invalid cpuperf target %u for CPU %d", perf, cpu);
return;
}
if (ops_cpu_valid(cpu, NULL)) {
struct rq *rq = cpu_rq(cpu);
rq->scx.cpuperf_target = perf;
rcu_read_lock_sched_notrace();
cpufreq_update_util(cpu_rq(cpu), 0);
rcu_read_unlock_sched_notrace();
}
}
/**
* scx_bpf_nr_cpu_ids - Return the number of possible CPU IDs
*
* All valid CPU IDs in the system are smaller than the returned value.
*/
__bpf_kfunc u32 scx_bpf_nr_cpu_ids(void)
{
return nr_cpu_ids;
}
/**
* scx_bpf_get_possible_cpumask - Get a referenced kptr to cpu_possible_mask
*/
__bpf_kfunc const struct cpumask *scx_bpf_get_possible_cpumask(void)
{
return cpu_possible_mask;
}
/**
* scx_bpf_get_online_cpumask - Get a referenced kptr to cpu_online_mask
*/
__bpf_kfunc const struct cpumask *scx_bpf_get_online_cpumask(void)
{
return cpu_online_mask;
}
/**
* scx_bpf_put_cpumask - Release a possible/online cpumask
* @cpumask: cpumask to release
*/
__bpf_kfunc void scx_bpf_put_cpumask(const struct cpumask *cpumask)
{
/*
* Empty function body because we aren't actually acquiring or releasing
* a reference to a global cpumask, which is read-only in the caller and
* is never released. The acquire / release semantics here are just used
* to make the cpumask is a trusted pointer in the caller.
*/
}
/**
* scx_bpf_get_idle_cpumask - Get a referenced kptr to the idle-tracking
* per-CPU cpumask.
*
* Returns NULL if idle tracking is not enabled, or running on a UP kernel.
*/
__bpf_kfunc const struct cpumask *scx_bpf_get_idle_cpumask(void)
{
if (!static_branch_likely(&scx_builtin_idle_enabled)) {
scx_ops_error("built-in idle tracking is disabled");
return cpu_none_mask;
}
#ifdef CONFIG_SMP
return idle_masks.cpu;
#else
return cpu_none_mask;
#endif
}
/**
* scx_bpf_get_idle_smtmask - Get a referenced kptr to the idle-tracking,
* per-physical-core cpumask. Can be used to determine if an entire physical
* core is free.
*
* Returns NULL if idle tracking is not enabled, or running on a UP kernel.
*/
__bpf_kfunc const struct cpumask *scx_bpf_get_idle_smtmask(void)
{
if (!static_branch_likely(&scx_builtin_idle_enabled)) {
scx_ops_error("built-in idle tracking is disabled");
return cpu_none_mask;
}
#ifdef CONFIG_SMP
if (sched_smt_active())
return idle_masks.smt;
else
return idle_masks.cpu;
#else
return cpu_none_mask;
#endif
}
/**
* scx_bpf_put_idle_cpumask - Release a previously acquired referenced kptr to
* either the percpu, or SMT idle-tracking cpumask.
*/
__bpf_kfunc void scx_bpf_put_idle_cpumask(const struct cpumask *idle_mask)
{
/*
* Empty function body because we aren't actually acquiring or releasing
* a reference to a global idle cpumask, which is read-only in the
* caller and is never released. The acquire / release semantics here
* are just used to make the cpumask a trusted pointer in the caller.
*/
}
/**
* scx_bpf_test_and_clear_cpu_idle - Test and clear @cpu's idle state
* @cpu: cpu to test and clear idle for
*
* Returns %true if @cpu was idle and its idle state was successfully cleared.
* %false otherwise.
*
* Unavailable if ops.update_idle() is implemented and
* %SCX_OPS_KEEP_BUILTIN_IDLE is not set.
*/
__bpf_kfunc bool scx_bpf_test_and_clear_cpu_idle(s32 cpu)
{
if (!static_branch_likely(&scx_builtin_idle_enabled)) {
scx_ops_error("built-in idle tracking is disabled");
return false;
}
if (ops_cpu_valid(cpu, NULL))
return test_and_clear_cpu_idle(cpu);
else
return false;
}
/**
* scx_bpf_pick_idle_cpu - Pick and claim an idle cpu
* @cpus_allowed: Allowed cpumask
* @flags: %SCX_PICK_IDLE_CPU_* flags
*
* Pick and claim an idle cpu in @cpus_allowed. Returns the picked idle cpu
* number on success. -%EBUSY if no matching cpu was found.
*
* Idle CPU tracking may race against CPU scheduling state transitions. For
* example, this function may return -%EBUSY as CPUs are transitioning into the
* idle state. If the caller then assumes that there will be dispatch events on
* the CPUs as they were all busy, the scheduler may end up stalling with CPUs
* idling while there are pending tasks. Use scx_bpf_pick_any_cpu() and
* scx_bpf_kick_cpu() to guarantee that there will be at least one dispatch
* event in the near future.
*
* Unavailable if ops.update_idle() is implemented and
* %SCX_OPS_KEEP_BUILTIN_IDLE is not set.
*/
__bpf_kfunc s32 scx_bpf_pick_idle_cpu(const struct cpumask *cpus_allowed,
u64 flags)
{
if (!static_branch_likely(&scx_builtin_idle_enabled)) {
scx_ops_error("built-in idle tracking is disabled");
return -EBUSY;
}
return scx_pick_idle_cpu(cpus_allowed, flags);
}
/**
* scx_bpf_pick_any_cpu - Pick and claim an idle cpu if available or pick any CPU
* @cpus_allowed: Allowed cpumask
* @flags: %SCX_PICK_IDLE_CPU_* flags
*
* Pick and claim an idle cpu in @cpus_allowed. If none is available, pick any
* CPU in @cpus_allowed. Guaranteed to succeed and returns the picked idle cpu
* number if @cpus_allowed is not empty. -%EBUSY is returned if @cpus_allowed is
* empty.
*
* If ops.update_idle() is implemented and %SCX_OPS_KEEP_BUILTIN_IDLE is not
* set, this function can't tell which CPUs are idle and will always pick any
* CPU.
*/
__bpf_kfunc s32 scx_bpf_pick_any_cpu(const struct cpumask *cpus_allowed,
u64 flags)
{
s32 cpu;
if (static_branch_likely(&scx_builtin_idle_enabled)) {
cpu = scx_pick_idle_cpu(cpus_allowed, flags);
if (cpu >= 0)
return cpu;
}
cpu = cpumask_any_distribute(cpus_allowed);
if (cpu < nr_cpu_ids)
return cpu;
else
return -EBUSY;
}
/**
* scx_bpf_task_running - Is task currently running?
* @p: task of interest
*/
__bpf_kfunc bool scx_bpf_task_running(const struct task_struct *p)
{
return task_rq(p)->curr == p;
}
/**
* scx_bpf_task_cpu - CPU a task is currently associated with
* @p: task of interest
*/
__bpf_kfunc s32 scx_bpf_task_cpu(const struct task_struct *p)
{
return task_cpu(p);
}
/**
* scx_bpf_cpu_rq - Fetch the rq of a CPU
* @cpu: CPU of the rq
*/
__bpf_kfunc struct rq *scx_bpf_cpu_rq(s32 cpu)
{
if (!ops_cpu_valid(cpu, NULL))
return NULL;
return cpu_rq(cpu);
}
/**
* scx_bpf_task_cgroup - Return the sched cgroup of a task
* @p: task of interest
*
* @p->sched_task_group->css.cgroup represents the cgroup @p is associated with
* from the scheduler's POV. SCX operations should use this function to
* determine @p's current cgroup as, unlike following @p->cgroups,
* @p->sched_task_group is protected by @p's rq lock and thus atomic w.r.t. all
* rq-locked operations. Can be called on the parameter tasks of rq-locked
* operations. The restriction guarantees that @p's rq is locked by the caller.
*/
#ifdef CONFIG_CGROUP_SCHED
__bpf_kfunc struct cgroup *scx_bpf_task_cgroup(struct task_struct *p)
{
struct task_group *tg = p->sched_task_group;
struct cgroup *cgrp = &cgrp_dfl_root.cgrp;
if (!scx_kf_allowed_on_arg_tasks(__SCX_KF_RQ_LOCKED, p))
goto out;
/*
* A task_group may either be a cgroup or an autogroup. In the latter
* case, @tg->css.cgroup is %NULL. A task_group can't become the other
* kind once created.
*/
if (tg && tg->css.cgroup)
cgrp = tg->css.cgroup;
else
cgrp = &cgrp_dfl_root.cgrp;
out:
cgroup_get(cgrp);
return cgrp;
}
#endif
__bpf_kfunc_end_defs();
BTF_KFUNCS_START(scx_kfunc_ids_any)
BTF_ID_FLAGS(func, scx_bpf_kick_cpu)
BTF_ID_FLAGS(func, scx_bpf_dsq_nr_queued)
BTF_ID_FLAGS(func, scx_bpf_destroy_dsq)
BTF_ID_FLAGS(func, bpf_iter_scx_dsq_new, KF_ITER_NEW | KF_RCU_PROTECTED)
BTF_ID_FLAGS(func, bpf_iter_scx_dsq_next, KF_ITER_NEXT | KF_RET_NULL)
BTF_ID_FLAGS(func, bpf_iter_scx_dsq_destroy, KF_ITER_DESTROY)
BTF_ID_FLAGS(func, scx_bpf_exit_bstr, KF_TRUSTED_ARGS)
BTF_ID_FLAGS(func, scx_bpf_error_bstr, KF_TRUSTED_ARGS)
BTF_ID_FLAGS(func, scx_bpf_dump_bstr, KF_TRUSTED_ARGS)
BTF_ID_FLAGS(func, scx_bpf_cpuperf_cap)
BTF_ID_FLAGS(func, scx_bpf_cpuperf_cur)
BTF_ID_FLAGS(func, scx_bpf_cpuperf_set)
BTF_ID_FLAGS(func, scx_bpf_nr_cpu_ids)
BTF_ID_FLAGS(func, scx_bpf_get_possible_cpumask, KF_ACQUIRE)
BTF_ID_FLAGS(func, scx_bpf_get_online_cpumask, KF_ACQUIRE)
BTF_ID_FLAGS(func, scx_bpf_put_cpumask, KF_RELEASE)
BTF_ID_FLAGS(func, scx_bpf_get_idle_cpumask, KF_ACQUIRE)
BTF_ID_FLAGS(func, scx_bpf_get_idle_smtmask, KF_ACQUIRE)
BTF_ID_FLAGS(func, scx_bpf_put_idle_cpumask, KF_RELEASE)
BTF_ID_FLAGS(func, scx_bpf_test_and_clear_cpu_idle)
BTF_ID_FLAGS(func, scx_bpf_pick_idle_cpu, KF_RCU)
BTF_ID_FLAGS(func, scx_bpf_pick_any_cpu, KF_RCU)
BTF_ID_FLAGS(func, scx_bpf_task_running, KF_RCU)
BTF_ID_FLAGS(func, scx_bpf_task_cpu, KF_RCU)
BTF_ID_FLAGS(func, scx_bpf_cpu_rq)
#ifdef CONFIG_CGROUP_SCHED
BTF_ID_FLAGS(func, scx_bpf_task_cgroup, KF_RCU | KF_ACQUIRE)
#endif
BTF_KFUNCS_END(scx_kfunc_ids_any)
static const struct btf_kfunc_id_set scx_kfunc_set_any = {
.owner = THIS_MODULE,
.set = &scx_kfunc_ids_any,
};
static int __init scx_init(void)
{
int ret;
/*
* kfunc registration can't be done from init_sched_ext_class() as
* register_btf_kfunc_id_set() needs most of the system to be up.
*
* Some kfuncs are context-sensitive and can only be called from
* specific SCX ops. They are grouped into BTF sets accordingly.
* Unfortunately, BPF currently doesn't have a way of enforcing such
* restrictions. Eventually, the verifier should be able to enforce
* them. For now, register them the same and make each kfunc explicitly
* check using scx_kf_allowed().
*/
if ((ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
&scx_kfunc_set_select_cpu)) ||
(ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
&scx_kfunc_set_enqueue_dispatch)) ||
(ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
&scx_kfunc_set_dispatch)) ||
(ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
&scx_kfunc_set_cpu_release)) ||
(ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
&scx_kfunc_set_unlocked)) ||
(ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL,
&scx_kfunc_set_unlocked)) ||
(ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
&scx_kfunc_set_any)) ||
(ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING,
&scx_kfunc_set_any)) ||
(ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL,
&scx_kfunc_set_any))) {
pr_err("sched_ext: Failed to register kfunc sets (%d)\n", ret);
return ret;
}
ret = register_bpf_struct_ops(&bpf_sched_ext_ops, sched_ext_ops);
if (ret) {
pr_err("sched_ext: Failed to register struct_ops (%d)\n", ret);
return ret;
}
ret = register_pm_notifier(&scx_pm_notifier);
if (ret) {
pr_err("sched_ext: Failed to register PM notifier (%d)\n", ret);
return ret;
}
scx_kset = kset_create_and_add("sched_ext", &scx_uevent_ops, kernel_kobj);
if (!scx_kset) {
pr_err("sched_ext: Failed to create /sys/kernel/sched_ext\n");
return -ENOMEM;
}
ret = sysfs_create_group(&scx_kset->kobj, &scx_global_attr_group);
if (ret < 0) {
pr_err("sched_ext: Failed to add global attributes\n");
return ret;
}
return 0;
}
__initcall(scx_init);